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ABSTRACT
Mixed-effects models can be used to examine the association between a
categorical moderator and the magnitude of the effect size. Two
approaches are available to estimate the residual between-studies variance,
s2res—namely, separate estimation within each category of the moderator
versus pooled estimation across all categories. We examine, by means of a
Monte Carlo simulation study, both approaches for s2res estimation in com-
bination with two methods, the Wald-type v2 and F tests, to test the statis-
tical significance of the moderator. Results suggest that the F test using a
pooled estimate of s2res across categories is the best option in most condi-
tions, although the F test using separate estimates of s2res is preferable if
the residual heterogeneity variances are heteroscedastic.

KEYWORDS
Meta-analysis; mixed-effects
model; subgroup
analyses; residual between--
studies variance

META-ANALYSIS HAS EMERGED as the standard methodology for quantitatively integrating
the results of a set of primary studies examining a common research question (Borenstein,
Hedges, Higgins, & Rothstein, 2009; Cooper, Hedges, & Valentine, 2009; Schmidt & Hunter,
2015). Two of the main purposes of a meta-analysis are to calculate an overall effect estimate
across studies and to assess the amount of variability among the individual effect sizes. If the
amount of variability is larger than expected based on sampling error alone, then this is typically
taken to indicate that the underlying true effects are heterogeneous. The amount of between-stud-
ies variance in the true effects can then be estimated using a random-effects model (DerSimonian
& Laird, 1986). A further goal then consists of searching for study-level characteristics (often
called moderator variables) that may be able to explain at least part of that variability (Lau,
Ioannidis, & Schmid, 1998; Thompson, 1994).

In the present paper, we are particularly interested in the use of subgroup analyses, which are
commonly used to examine the association between categorical moderator variables and the mag-
nitude of the effect size. Based on a subgroup analysis, we can estimate the (average) effect size
for each level of the moderator and test for between-group differences. Such analyses may provide
valuable insights regarding the influence of qualitative moderators and under which conditions
an educational intervention is more effective.

A general recommendation when conducting such moderator analyses is to adopt a mixed-
effects model that explicitly models potential residual heterogeneity in the effects—that is, hetero-
geneity in the true effects not accounted for by the moderator variable(s) included in the model
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(Thompson & Higgins, 2002). For models with a categorical moderator, residual heterogeneity
simply denotes heterogeneity in the true effects within the various levels of the moderator.

Two approaches can be used to estimate the amount of residual heterogeneity in the context
of such models. One is to allow for and estimate a different between-studies variance component
(denoted by s2res) within each level of the moderator, while the other consists of assuming a com-
mon amount of residual heterogeneity across categories and to calculate a pooled estimate thereof
(Borenstein et al., 2009).

Rubio-Aparicio, S�anchez-Meca, L�opez-L�opez, Mar�ın-Mart�ınez, and Botella (2017) recently car-
ried out a simulation study to compare the statistical performance of the omnibus Wald-type v2

test for between-group differences in the (average) effect sizes (here denoted as the QB test) in
terms of its Type I error and statistical power rates when the two alternative procedures for esti-
mating s2res (i.e., separate versus pooled estimation) are used. The results indicated that pooled
estimation is preferable for most scenarios, unless s2res is different across categories and the num-
ber of studies in each category is large enough to obtain precise separate estimates. However, the
Type I error rate of the QB test was not nominal for many of the conditions examined, regardless
of the approach used in the estimation of s2res. A potential explanation is that the test does not
take into account the uncertainty derived from the estimation process of s2res, which typically
results in inflated rejection rates under the null hypothesis.

Hartung, Makambi, and Argaç (2001) and Hartung, Argaç, and Makambi (2002) proposed an
alternative method that accounts for the imprecision in the estimated amount of residual hetero-
geneity in subgroup analyses.

Knapp and Hartung (2003) proposed an improved method for meta-regression based on the
same rationale that underlies the Hartung and colleagues’ method (2001, 2002). In meta-regres-
sion, this method has repeatedly been found to provide adequate control of the Type I error rate
in several simulation studies (Huizenga, Visser, & Dolan, 2011; Knapp & Hartung, 2003; Sidik &
Jonkman, 2005; Viechtbauer, L�opez-L�opez, S�anchez-Meca, & Mar�ın-Mart�ınez, 2015) and is rou-
tinely recommended nowadays (Gonzalez-Mul�e & Aguinis, 2017). Nonetheless, the implementa-
tion of the alternative method is still relatively uncommon when testing for categorical
moderators in contrast with growing popularity of the improved method for continuous modera-
tors. It is important to note that the issue of estimating s2res separately for each category of the
moderator or by means of a pooled estimate is specific to qualitative moderators, as continuous
moderators are typically analyzed assuming a common s2res. Therefore, the performance of the
improved method proposed by Hartung and colleagues (2001, 2002) when using pooled or separ-
ate estimates of s2res and the conditions under which one approach should be recommended over
the other have not yet been studied.

The purpose of the present study was to examine the Type I error and statistical power rates
of the improved method proposed by Hartung and colleagues (Hartung et al., 2001, 2002; Knapp
& Hartung, 2003) to test the statistical significance of a qualitative moderator under a mixed-
effects model when using pooled versus separate estimates of the residual heterogeneity variance.
In addition, we compared Hartung and colleagues’ method (2001, 2002) to the standard QB test.
In sum, we compared the performance of four statistical tests: Hartung and colleagues (2001,
2002) versus standard QB tests in combination with pooled versus separate estimates of s2res. The
results of this simulation study can shed light on where pooled or separate estimates of
s2res should be preferred given the characteristics of the meta-analytic database.

In the next section, the mixed-effects model is outlined, followed by a description of the two
hypothesis tests for categorical moderators and the different estimators of s2res either using pooled
or separate estimates across categories. Then, the methods and results from a Monte Carlo simu-
lation study comparing the performance of the different procedures are detailed. Last, we provide
a discussion of the main results and implications arising from them.
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Mixed-effects model

In a meta-analysis with k studies grouped into m mutually exclusive categories of the moderator
variable, let kj denote the number of effect sizes of category j (j ¼ 1; :::;m; with kj > 1 for all j),
so that k ¼ P

jkj. The mixed-effects model assumes a random-effects model for the study-specific
true effects within each category of the moderator variable and hence the statistical model is
given by

Tij ¼ lhj þ �ij þ eij; (1)

where Tij denotes the ith effect size estimate within the jth category, lhj represents the mean
true effect size of the jth category, and �ij and eij represent the within-study and between-studies
errors, respectively. It is common to assume that these two errors are normally distributed and
independent of each other, and therefore, the estimated effect sizes are normally distributed as
Tij � Nðlhj ; r2ij þ s2res jð ÞÞ, with r2ij being the within-study variance for the ith study in the jth cat-
egory of the moderator and s2res jð Þ denoting the residual between-studies variance in the jth
category. The model also implies that the true effects in the jth category, hij, follow a normal dis-
tribution with mean lhj and between-studies variance s2res jð Þ—that is, hij � Nðlhj ; s2res jð ÞÞ.
Therefore, in a mixed-effects model a random sampling process underlies the standard random-
effects model in each category of the moderator.

One of the main objectives in a subgroup analysis is to test the statistical association of the
moderator with the effect sizes, which is accomplished by comparing the mean effect sizes from
each category of the moderator. For that aim, we first estimate the mean effect size of the jth cat-
egory of the moderator, lhj , with

Tj ¼
P

i ŵijTijP
i ŵij

; (2)

where the weights ŵij ¼ 1=ðr̂2
ij þ ŝ2resðjÞÞ are computed with r̂2

ij denoting the estimated within-
study variance of the ith effect size of the jth category and ŝ2resðjÞ is an estimate of the residual
between-studies variance of the jth category. Two strategies can be applied to estimate s2res jð Þ: (a)
by pooling the estimated residual between-studies variances of the categories (ŝ2resðþÞ) or (b) by
means of separate estimates of the residual between-studies variance (e.g., ŝ2resð1Þ and ŝ2resð2Þ for a
dichotomous moderator, or ŝ2resð1Þ, ŝ

2
resð2Þ, and ŝ2resð3Þ for a moderator with three categories) . Note

that one of main purposes of our investigation was to examine the extent to which pooled or sep-
arate estimates of the residual between-studies variance can affect the performance of statistical
tests in a subgroup analysis.

An estimate of the variance of Tj can be obtained with

Var Tj

h i
¼ 1P

iŵij
: (3)

Tests of between-group differences

The statistical association of a categorical moderator with the effect sizes can be tested by means
of a standard Wald-type v2 test (Borenstein et al., 2009)

QB ¼
Xm

j¼1
ŵþj T j�T

� �2
(4)

where ŵþj ¼ 1=Var½Tj�, with Var Tj

h i
defined in Equation 3, and T represents the weighted

average of all effect sizes and is computed with
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T ¼
P

j

P
iŵij TijP

j

P
iŵij

(5)

where ŵij ¼ 1=ðr̂2
ij þ ŝ2resðjÞÞ and Tij denotes the ith effect size estimate of the jth category of

the moderator. Note that, as mentioned above, ŝ2resðjÞ can be calculated in two ways: as a pooled
(ŝ2resðþÞ) or as a separate (ŝ2resðjÞ) estimate.

Under the null hypothesis that the m categories share the same true mean effect size
(H0 : lh1 ¼ lh2 ¼ ::: ¼ lhm), the QB statistic follows asymptotically a v2 distribution with m – 1
degrees of freedom (requiring both large within-study sample sizes and large kj for j ¼ 1; :::;m).

An alternative method for testing the statistical significance of a categorical moderator is com-
puted with ( Hartung et al., 2001, Hartung et al., 2002 )

F ¼
QB
m�1
QW
k�m

(6)

where QW ¼ P
jQwj and

Qwj ¼
Xkj
i¼1

ŵij Tij�Tj

� �2
(7)

with ŵij ¼ 1=ðr̂2
ij þ ŝ2resðjÞÞ.

Under the null hypothesis of no difference between the mean effect sizes across categories
(H0 : lh1 ¼ lh2 ¼ lh3 ¼ ::: ¼ lhm), the F statistic follows asymptotically an F distribution with (m
– 1) and (k – m) degrees of freedom. The F statistic proposed by Hartung and colleagues takes
into account the uncertainty due to the estimation of the residual between-studies variance and,
as a consequence, it is expected to outperform the standard QB statistic.

The F test for subgroup analyses can be considered to be a special case of the improved
method for meta-regression. In the meta-regression context, Knapp and Hartung (2003) proposed
a multiplicative adjustment factor for the estimated variances of the model coefficients and sug-
gested truncating this factor to 1 if a smaller value were obtained in order to minimize false posi-
tive findings. Several pieces of meta-analytic software currently incorporate such truncation,
including Comprehensive Meta-Analysis 3.3 (Borenstein, Hedges, Higgins, & Rothstein, 2017)
and the metareg macro for Stata (Harbord & Higgins, 2008); whereas, other alternatives such as
the metafor package for R (Viechtbauer, 2010) use the untruncated factor by default. This adjust-
ment factor is equal to the denominator of the F formula (see Equation 6), hence, implementing
the truncation in the context of a subgroup analysis would be straightforward. However,
Viechtbauer et al. (2015) showed that the improved method for meta-regression provides an
adequate adjustment of the nominal significance level without truncating; whereas, overly conser-
vative results may be obtained if the truncation is applied. Consequently, in the present study, we
allowed the denominator of the F test to be smaller than 1, and we generally would recommend
this version of the test.

Estimating the residual between-studies variance

Several methods have been proposed to estimate s2 in the context of the random-effects model
(S�anchez-Meca & Mar�ın-Mart�ınez, 2008; Viechtbauer, 2005). Most of these estimators have also
been extended to the mixed-effects model, and we selected three methods that are commonly
implemented and have been found to perform adequately in previous simulation studies (L�opez-
L�opez, Mar�ın-Mart�ınez, S�anchez-Meca, Van den Noortgate, & Viechtbauer, 2014; Veroniki et al.,
2016). In this section, we describe the three estimators used in the present study and their com-
putation using both separate estimates and a pooled estimate of s2resðjÞ.
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DerSimonian and Laird (DL) estimator
The estimator proposed by DerSimonian and Laird (1986), probably themost commonly used in
meta-analysis, is derived from the method of moments. Applying this estimator, the residual
between-studies variance for the jth category of the moderator, ŝ2resðjÞ, can be computed with the
expression

ŝ2res jð ÞDL ¼
Qw�

j
� kj�1
� �
cj

(8)

where Qw�
j
is computed with Equation 7, but using ŵ�

ij ¼ 1=r̂2
ij as the weights, and cj is given

by

cj ¼
X

i
ŵ�

ij �
P

i ŵ�
ij

� �2

P
iŵ

�
ij

: (9)

Note that the Qwj statistic defined in Equation 7 is not the same as the standard Qw�
j
statistic

proposed by Hedges and Olkin (1985) to test the model misspecification in a mixed-effects
model. Unlike Qwj, the weights used to calculate the Qw�

j
statistics are a function of the within-

study variance only. Should the DL estimate turn out to be negative, it is truncated to 0.
The pooled estimate of the residual between-studies variance applying DerSimonian and Laird

is given by (Borenstein et al., 2009)

ŝ2res þð ÞDL ¼
P

jQw�
j
�P

j kj�1
� �

P
jcj

: (10)

Restricted maximum likelihood (REML) estimator
An alternative for estimating s2resðjÞ is based on restricted maximium likelihood estimation. The
REML estimator for the jth category of the moderator can be obtained iteratively from

ŝ2res jð ÞREML ¼
P

iŵ
2
ij Tij�Tj

� �2
�r̂2

ij

� �
P

iŵ
2
ij

þ 1P
iŵij

(11)

by first computing the right-hand side using initial values for the weights (e.g., by setting ŝ2resðjÞ
in ŵij ¼ 1=ðr̂2

ij þ ŝ2resðjÞÞ equal to the estimate obtained using the noniterative DL estimator),
updating the weights (and hence also Tj) using the estimate of ŝ2resðjÞ obtained, and then iterating
this process until convergence. Should ŝ2resðjÞ ever become negative during this process, the esti-
mate is truncated to 0.

The pooled REML estimate of the residual variance is again computed iteratively, but now
using

ŝ2res þð ÞREML ¼
P

j

P
iŵ

2
ij Tij�Tj

� �2
�r̂2

ij

� �
P

j

P
iŵ

2
ij

þ mP
j

P
iŵij

; (12)

with weights ŵij ¼ 1=ðr̂2
ij þ ŝ2resðþÞÞ.

Paule and Mandel (PM) estimator
The third estimator that we included in our simulation study was proposed by Paule and Mandel
(1982), and it is sometimes labeled empirical Bayes estimator (Morris, 1983). A recent review of
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simulation studies concluded with recommending the use of the PM estimator in meta-analysis
(Langan, Higgins, & Simmonds, 2017). Furthermore, another simulation study comparing seven
methods in the context of meta-regression found that the PM, DL, and REML estimators yielded
the best results across conditions (L�opez-L�opez et al., 2014).

The PM estimate for the jth category is given by the solution toX
i
ŵij Tij�Tj

� �2
� kj�1
� � ¼ 0: (13)

The left-hand side of Equation 13 is a monotonically decreasing function of ŝ2resðjÞ and can be
easily solved for 0 using any standard root-finding algorithm. We denote the resulting estimate
with ŝ2res jð ÞPM. Should Equation 13 be negative for ŝ2resðjÞ ¼ 0, then the estimate is truncated to 0.

To obtain the pooled estimate for the PM estimator, ŝ2res þð ÞPM , we must solveX
j

X
i
ŵij Tij�Tj

� �2
�
X

j
kj�1
� � ¼ 0 (14)

with weights ŵij ¼ 1=ðr̂2
ij þ ŝ2resðþÞÞ.

Method

In the previous section, we presented two methods for testing the statistical significance of a
categorical moderator (i.e., the QB and F tests) and three methods (i.e., the DL, REML, and PM
estimators) that can be used to obtain either a pooled estimate or separate estimates for s2res. This
yields 12 different ways of testing the statistical significance of a categorical moderator in a
mixed-effects model subgroup analysis—namely, the QB(S) test using separate estimates of the het-
erogeneity variance combined with either the DL, REML, or PM estimator (QBðSÞDL , QBðSÞREML

, and
QBðSÞPM , respectively); the QB(P) test when using a pooled estimate using either the DL, REML,
or PM estimator (QBðPÞDL , QBðPÞREML

, and QBðPÞPM , respectively); the F(S) test using separate esti-
mates (FðSÞDL , FðSÞREML

, and FðSÞPM , respectively); and the F(P) test when using a pooled
estimate (FðPÞDL , FðPÞREML

, and FðPÞPM , respectively). To compare the performance of these
methods, we conducted a Monte Carlo simulation study programed in R using the metafor
package (Viechtbauer, 2010). Supplementary File 1 contains the full R code of our simula-
tion study.

Meta-analyses of k studies were simulated with the standardized mean difference as the effect
size index. Each individual study included in a meta-analysis compared two groups (experimental
and control) with respect to some continuous outcome. For a given study, values of the outcome
were sampled from normal distributions with equal variances (i.e., NðlE; r2Þ and NðlC; r2Þ). For
each study, the population standardized mean difference, h, was defined as (Hedges & Olkin,
1985)

h ¼ lE�lc
r

: (15)

Without loss of generality, the normal distributions of the experimental and control popula-
tions were defined as Nðh; 1Þ and Nð0; 1Þ, respectively.

The effect size was estimated by means of the nearly unbiased estimator proposed by Hedges
and Olkin (1985, p. 81)

T ¼ c mð Þ yE�yC
s

(16)

where yE and yC are the sample means of the experimental and control groups, s is the pooled
standard deviation computed with

THE JOURNAL OF EXPERIMENTAL EDUCATION 293

https://doi.org/10.1080/00220973.2018.1561404


s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nE�1ð Þs2E þ nC�1ð Þs2C

nE þ nC � 2

s
; (17)

with nE and nC being the experimental and control group sample sizes, respectively, s2E and s2C
being the variances of the two groups, and cðmÞ being a correction factor for small sample sizes
given by

c mð Þ ¼ 1� 3
4N � 9

(18)

where N ¼ nE þ nC. The estimated within-study variance of T, assuming equal variances and
normality within each study, is given by

r̂2 ¼ nE þ nC
nEnC

þ T2

2 nE þ nCð Þ : (19)

The k studies were assumed to fall into two or three categories (with k1 and k2 studies in each
group for a dichotomous moderator, and k1, k2, and k3 for a moderator with three categories).
The true standardized mean differences within each subgroup were simulated from Nðlhj ; s2resðjÞÞ
according to a mixed-effects model.

For a dichotomous moderator, we set the number of studies, k, to values of 12, 20, 40, and 60.
For a moderator with three categories, we set k to values of 12, 24, 48, and 60. Choice of values
for k was based on a review of meta-analyses undertaken by Ahn, Ames, and Myers (2012) in the
educational context where the first quartile, median, and third quartile of the empirical distribu-
tion of the number of studies were found to be 22, 38, and 67, respectively. Moreover, we manip-
ulated how k was distributed within each category of the moderator, so that in some conditions
there was a balanced distribution (i.e., k1 ¼ k2; or k1 ¼ k2 ¼ k3), while in the remaining condi-
tions there was an unbalanced distribution (i.e., k1 6¼ k2 , or k1 6¼ k2 6¼ k3 ) between the two or
three categories. For a dichotomous moderator, an unbalanced distribution implied that the
second category contained three times as many studies as the first category. For instance, when
k¼ 12 we set k1 ¼ k2 ¼ 6 in the balanced conditions and k1 ¼ 3 and k2 ¼ 9 in the unequal con-
ditions. For a moderator with three categories, an unbalanced distribution implied that the
second category contained twice as many studies as the first category, and the third category was
three times as many studies as the first one. For instance, when k¼ 12 we set k1 ¼ k2 ¼ k3 = 4
in balanced conditions and k1 ¼ 2, k2 ¼ 4, and k3 ¼ 6 in the unequal conditions.

Furthermore, s2res jð Þ was manipulated in two different ways. First, we considered three values
for this parameter, 0.08, 0.16, and 0.32. Second, we simulated a set of scenarios with homoscedas-
tic variances across categories (s2resð1Þ ¼ s2res 2ð Þ; or s2resð1Þ ¼ s2res 2ð Þ ¼ s2res 3ð Þ; as well as another set
of heteroscedastic conditions (s2resð1Þ 6¼ s2res 2ð Þ; or s2resð1Þ 6¼ s2resð2Þ 6¼ s2resð3Þ). In particular, under
homogeneous conditions s2resð1Þ ¼ s2res 2ð Þ = 0.08, s2resð1Þ ¼ s2res 2ð Þ = 0.16, and s2resð1Þ ¼ s2res 2ð Þ= 0.32 for
a dichotomous moderator, and s2resð1Þ ¼ s2res 2ð Þ ¼ s2res 3ð Þ = 0.16 for a moderator with three catego-
ries. Heteroscedastic variances were manipulated for a dichotomous moderator with pairs of val-
ues s2resð1Þ ¼ 0:08 and s2resð2Þ ¼ 0:16, s2resð1Þ ¼ 0:16 and s2resð2Þ ¼ 0:08, s2resð1Þ ¼ 0:08 and
s2resð2Þ ¼ 0:32, s2resð1Þ ¼ 0:32 and s2resð2Þ ¼ 0:08, s2resð1Þ ¼ 0:16 and s2resð2Þ ¼ 0:32, and s2resð1Þ ¼ 0:32
and s2resð2Þ ¼ 0:16. For a moderator with three categories, the variance of the second category was
always fixed at 0.16 (s2resð2Þ ¼ 0:16Þ, and the variances of the first and the third categories were
varied (s2resð1Þ ¼ 0:08 and s2resð3Þ ¼ 0:16, s2resð1Þ ¼ 0:16 and s2resð3Þ ¼ 0:08, s2resð1Þ ¼ 0:08 and s2resð3Þ ¼
0:08; s2resð1Þ ¼ 0:08 and s2resð3Þ ¼ 0:32, s2resð1Þ ¼ 0:32 and s2resð3Þ ¼ 0:08, s2resð1Þ ¼ 0:32 and s2resð3Þ ¼
0:32; s2resð1Þ ¼ 0:16 and s2resð3Þ ¼ 0:32, and s2resð1Þ ¼ 0:32 and s2resð3Þ ¼ 0:16).

The average total sample size of the individual studies N was set to 20, 40, 60, 80, 200, and
2,000. These values were chosen following the revision of meta-analyses in education carried out
by Ahn et al. (2012). In this review, the first quartile, median, and third quartile of the average
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total sample size distribution were 90, 185 and 1,900, respectively. The data in the primary studies
were simulated assuming nE ¼ nC. A v2 distribution with four degrees of freedom was used, so
that the skewness of the distribution was þ1.414. In addition, values equal to 16, 36, 56, 76, 196,
or 1,996 were added to get the desired average value.

The mean effect size of each category of the moderator was also manipulated. Regarding a
dichotomous moderator, in some conditions the two parametric mean effects were both equal to
0.5 (lh1 ¼ lh2 ¼ 0:5); whereas, for other conditions they were set to different values: lh1 ¼ 0:5
and lh2 ¼ 0:3, lh1 ¼ 0:5 and lh2 ¼ 0:1, and lh1 ¼ 0:7 and lh2 ¼ 0:1. With respect to the moder-
ator with three categories, in the equal conditions the three parametric mean effects were set to
0.3 (lh1 ¼ lh2 ¼ lh3 ¼ 0:3), while in the unequal conditions another set of values was manipu-
lated: lh1 ¼ 0:2, lh2 ¼ 0:3 and lh3 ¼ 0:4, lh1 ¼ 0:1, lh2 ¼ 0:3 and lh3 ¼ 0:5, and lh1 ¼ 0,
lh2 ¼ 0:3, and lh3 ¼ 0:6. Note that for both types of moderators (two and three categories) the
difference between the largest mean effect size and the smallest one was fixed at 0.2, 0.4, and 0.6
across the unequal conditions. The manipulated conditions for the mean effect sizes covered a
wide range of values around what can be considered effect sizes of medium magnitude, following
the benchmark of 0.5 proposed by Cohen (1988) in the behavioral sciences and the empirical
value of 0.3 found by Lipsey and Wilson (1993) in the educational sciences. The conditions with
equal mean effect sizes across categories allowed us to study the Type I error rate; whereas, the
conditions with different mean effect sizes enabled us to assess the statistical power.

To assess the Type I error rate, the total number of conditions was 4 (number of studies) � 2
(balanced-unbalanced number of studies in the two categories) � 6 (average total sample size) �
9 (residual between-studies variance) = 432. With respect to the statistical power, 432� 3¼ 1,296
conditions were examined. Overall, the total number of conditions was therefore 1,728� 2 (mod-
erator with two and three categories) = 3,456 and for each condition we generated 10,000 replica-
tions. Thus, 34,560,000 meta-analyses were simulated. The 12 methods (QBðSÞDL , QBðSÞREML

, QBðSÞPM ,
QBðPÞDL , QBðPÞREML

, QBðPÞPM , FðSÞDL , FðSÞREML
, FðSÞPM , FðPÞDL , FðPÞREML

, and FðPÞPM ) were applied to each
one of these replications. In each of the 3,456 conditions of our simulation study, the proportion
of rejections of the null hypothesis of equality of the mean effect sizes across categories of the
moderator was examined.

Results

In this section, we describe and compare the performance of the methods under the simulated
conditions. For brevity, we present only the results for the PM estimator since the pattern of
results was very similar for the remaining estimators. Nevertheless, Supplementary File 2 presents
figures using the DL and REML estimators, and the full set of results can be obtained from the
corresponding author upon request. This section is divided into two parts, corresponding to the
Type I error and the statistical power rates.

Type I error

Setting lh1 ¼ lh2 ¼ 0:5 and lh1 ¼ lh2 ¼ lh3 ¼ 0:3 allowed comparing the methods in terms of
their Type I error rates for a moderator with two and three categories, respectively. Figures in
this section include dashed horizontal lines delimiting the range of values that can be considered
to be equivalent to the nominal significance level of 5% after accounting for Monte Carlo error
[.0543; .0457]. Therefore, empirical rejection rates within this interval indicated adequate control
of the Type I error rate.

Figure 1 shows the average Type I error rates as a function of the number of studies, balanced
and unbalanced distribution of number of studies within each category of the moderator, average
sample size per study, and the amount of residual heterogeneity in scenarios with homoscedastic

THE JOURNAL OF EXPERIMENTAL EDUCATION 295

https://doi.org/10.1080/00220973.2018.1561404


residual between-studies variances across the two categories of the moderator. As k increased
(Figure 1A), the proportion of rejections of the null hypothesis of equality for QB(S), QB(P), and
F(S), converged to the nominal significance level; whereas, F(P) showed nominal levels regardless
of the number of studies. Focusing on the balanced versus unbalanced distribution of the number
of studies across categories (Figure 1B), QB(P) and F(P) were not influenced by this factor;
whereas, QB(S) and F(S) showed higher empirical rejection rates (above .05) when the number of
studies was unbalanced across categories. Last, sample size and the amount of residual heterogen-
eity did not seem to have a strong influence on the rejection rates (Figures 1C and 1D), with F(P)
consistently yielding the best control of the Type I error rate.

Figure 2 presents the average Type I error rates in conditions wherein the residual between-
studies variances were heteroscedastic across the two categories of the moderator, and the
category with fewer studies had the smaller variance. The influence of the number of studies
(Figure 2A) was more pronounced for the QB test, with lower Type I error rates as k increased
and QB(S) showing inflated rates with fewer than 40 studies. The F test was less affected, with F(S)
showing an adequate control and F(P) yielding overly conservative results, regardless of the

Figure 1. Average Type I error rates in scenarios with homoscedastic residual between-studies variances across the two catego-
ries of the moderator.

296 M. RUBIO-APARICIO ET AL.



number of studies. Regarding the distribution of the number of studies (Figure 2B), QB(S) and
F(S) were not influenced by this factor; whereas, QB(P) and F(P) showed error rates below .05
under an unbalanced distribution of the number of studies. Furthermore, the results did not
show important variations as a function of the average sample size and the amount of residual
heterogeneity (Figures 2C and 2D), with F(S) and QB(P) leading to a good adjustment to the nom-
inal level on average, F(P) yielding overconservative results, and QB(S) showing inflated Type I
error rates.

Figure 3 shows the average Type I error rates in scenarios with heteroscedastic residual
between-studies variances across the two categories of the moderator and larger variance for the
category with fewer studies. When looking at the results as a function of the number of studies
(Figure 3A), the rejection rates generally fell above the nominal significance level, with accurate
rates provided only by QB(S) and F(S) with at least 60 and 40 studies, respectively. Regarding the
distribution of the number of studies in each category of the moderator, only F(P) and F(S)
achieved good adjustment when the number of studies was balanced across categories, with
inflated Type I error rates for all methods in the unbalanced scenarios (Figure 3B). The influence

Figure 2. Average Type I error rates in scenarios with heteroscedastic residual between-studies variances across the two catego-
ries of the moderator and smaller variance in the smaller category.
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of the average sample size and the amount of residual heterogeneity were relatively minor
(Figures 3C and 3D), and all methods yielded rejection rates that were too liberal. The F(S) test
consistently provided the closest performance to the nominal significance level.

Figure 4 presents the average Type I error rates in scenarios with homoscedastic residual
between-studies variances across the three categories of the moderator (s2resð1Þ ¼ s2res 2ð Þ ¼ s2res 3ð Þ =
0.16). F(P) consistently yielded the best control of the Type I error rate in all situations for num-
ber of studies, balanced and unbalanced distribution of number of studies across the three catego-
ries, and sample size (Figures 4A, 4B, and 4C, respectively). QB(S) and F(S) yielded inflated rates
above .15 under all scenarios.

Figure 5 shows the average Type I error rates in conditions in which the residual between-
studies variances were heteroscedastic across the three categories of the moderator, with smaller
variance for the category with fewer studies. QB(P) provided accurate rates as the number of stud-
ies increased, whereas F(P) yielded rates slightly under .05 regardless of the number of studies
(Figure 5A). When looking at the results as a function of the distribution of the number of stud-
ies (Figure 5B), F(P) yielded a good adjustment to the nominal level under a balanced distribution

Figure 3. Average Type I error rates in scenarios with heteroscedastic residual between-studies variances across the two catego-
ries of the moderator and larger variance in the smaller category.
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of the number of studies as did QB(P) under an unbalanced distribution. In addition, results did
not show substantial variations as a function of the sample size and the amount of residual het-
erogeneity (Figures 5C and 5D), with QB(P) yielding inflated error rates and F(P) showing over-
conservative results. Last, QB(S) and F(S) presented inflated rates above .15 across all the
conditions (Figures 5A, 5B, 5C, and 5D).

Figure 6 presents the average Type I error rates in scenarios in which the residual between-
studies variances were heteroscedastic across the three categories of the moderator, with larger
variance for the category with fewer studies. The influence of the conditions manipulated for the
number of studies, balanced and unbalanced distribution of the number of studies, sample size,
and amount of residual heterogeneity was similar for all the methods to the pattern found in
Figure 5. In general, the adjustment to the Type I error rate of the QB(P) and F(P) was deteriorated
across all conditions (Figures 6A, 6B, 6C, and 6D) with F(P) performing closest to the nominal
significance level. Once again, QB(S) and F(S) presented the poorest adjustment under all condi-
tions (Figures 6A, 6B, 6C, and 6D).

Figure 4. Average Type I error rates in scenarios with homoscedastic residual between-studies variances across the three catego-
ries of the moderator.
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Finally, it is worth noting that, in general, the methods yielded a poorer adjustment to the
error rate under scenarios with a moderator with three categories (see Figures 4–6) than under
the dichotomous scenarios (see Figures 1–3).

Statistical power

Statistical power reflects the probability of a method rejecting the null hypothesis that is in fact
false. In general, power rates equal to or greater than 0.8 are often considered to be acceptable in
psychology and education (Cohen, 1988).

Figure 7 presents the average power rates in scenarios with homoscedastic residual between-
studies variances across the two categories of the moderator. First, the influence of the different
conditions manipulated was equivalent for QB(S), QB(P), F(S), and F(P) and, in most conditions,
yielding a statistical power below 0.8. As expected, for all methods, power increased as the num-
ber of studies (Figure 7A) and the magnitude of the difference between the mean effect sizes of
the two categories (Figure 7E) increased, with at least 60 studies and a difference between the

Figure 5. Average Type I error rates in scenarios with heteroscedastic residual between-studies variances across the three cate-
gories of the moderator and smaller variance in the smaller category.
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mean effect sizes equal to 0.6 (lh1 ¼ 0:7 and lh2 ¼ 0:1) being needed for the methods to provide
power rates close to 0.8. Furthermore, larger residual heterogeneity resulted in lower power rates
(Figure 7D); whereas, the distribution of the number of studies across categories (Figure 7B) and
the average sample size per study (Figure 7C) did not show a substantial impact on the power
rates of the methods under assessment. The QB test yielded slightly higher power rates than the F
test across all manipulated conditions.

Figures 8 and 9 present the average power rates in scenarios in which the residual between-
studies variances were heteroscedastic across the two categories of the moderator, with the largest
variance either falling in the category with more (Figure 8) or with fewer studies (Figure 9). The
influence of the different conditions manipulated on the power rates of QB(S), QB(P), F(S), and F(P)
was very similar to those under homoscedastic residual between-studies variances (see Figure 7),
with larger k and larger differences among the mean effects leading to higher power rates. It is
worth noting the effect of the residual between-studies variance on the power rates. On the one
hand, when the category with fewer studies had less heterogeneous effect sizes (Figure 8D), QB(S),
QB(P), F(S), and F(P) yielded power rates relatively higher under the condition of s2resð1Þ ¼ 0:08 and
s2resð2Þ ¼ 0:32. On the other hand, when the category with fewer studies was more heterogeneous

Figure 6. Average Type I error rates in scenarios with heteroscedastic residual between-studies variances across the three cate-
gories of the moderator and larger variance in the smaller category.
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(Figure 9D), power rates for all methods were slightly higher under the condition of s2resð1Þ ¼ 0:16
and s2resð2Þ ¼ 0:08.

Figure 10 shows the average power rates in scenarios with homoscedastic residual between-
studies variances across the three categories of the moderator (s2resð1Þ ¼ s2res 2ð Þ ¼ s2res 3ð Þ = 0.16). As
in the dichotomous situation, the influence of the different manipulated conditions was equiva-
lent for all methods, with statistical power rates below 0.8 in most situations (Figures 10A, 10B,
10C, and 10D). As expected, power increased as the number of studies (Figure 10A) and the
magnitude of the difference between the mean effect sizes of the first and third category of the
moderator (Figure 10D) increased. The distribution of the number of studies (Figure 10B) and
the sample size (Figure 10C) did not substantially affect the results. The QB(S) and F(S) were the
tests with the highest power rates across all manipulated conditions.

Figure 7. Average power rates in scenarios with homoscedastic residual between-studies variances across the two categories of
the moderator.
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Figures 11 and 12 present the average power rates under the two heterogeneous situations of
the residual between-studies variances across the three categories of the moderator, with the
smallest variance either for the category with fewer studies (Figure 11) or with more
studies (Figure 12). The impact of the conditions manipulated was very similar to the pattern
observed under homoscedastic variances (see Figure 10), with higher power rates for the QB(S)

and F(S) tests. Regarding the effect of the residual between-studies variances on the results, power
rates for all methods were slightly higher under the conditions of s2resð1Þ ¼ :08; s2res 2ð Þ ¼
:16; s2res 3ð Þ ¼ :16 (Figure 11D), and s2resð1Þ ¼ :16; s2res 2ð Þ ¼ :16; s2res 3ð Þ ¼ :08 (Figure 12D).

Figure 8. Average power rates in scenarios with heteroscedastic residual between-studies variances across the two categories of
the moderator and smaller variance in the smaller category.

THE JOURNAL OF EXPERIMENTAL EDUCATION 303



Discussion

This study compared a variety of methods in the context of subgroup analyses using mixed-
effects models. Specifically, two methods for testing the statistical significance of the categorical
moderator (i.e., the QB and F tests), two procedures for estimating the residual between-studies
variance (pooled or separate estimates), and three residual heterogeneity variance estimators (DL,
REML, and PM) were combined to provide 12 analysis approaches that were examined in a
Monte Carlo simulation study, with standardized mean differences as the effect size measure.
Two comparative criteria, empirical Type I error and statistical power rates were considered for
assessing the adequacy of each method across a wide variety of realistic scenarios in education.

Results were not found to be affected by the residual between-studies variance estimator used.
However, some notable differences were observed depending on the method employed for testing

Figure 9. Average power rates in scenarios with heteroscedastic residual between-studies variances across the two categories of
the moderator and larger variance in the smaller category.
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the statistical association of a categorical moderator and on the approach implemented to esti-
mate the amount of residual heterogeneity in each category (pooled versus separate estimates).

Some authors (e.g., Thompson & Higgins, 2002) have criticized the standard random-effects
method for not taking into account the uncertainty derived from the variance estimation process,
which can lead to wrong statistical conclusions. This led to the development of improved hypoth-
esis tests by Hartung and colleagues in the context of random-effects meta-analysis (Hartung,
1999) and mixed-effects meta-regression (Knapp & Hartung, 2003). These tests are known to out-
perform the standard methods in terms of their control of the Type I error rate (Huizenga et al.,
2011; S�anchez-Meca & Mar�ın-Mart�ınez, 2008; Sidik & Jonkman, 2005; Viechtbauer et al., 2015)
and are recommended for routine use nowadays. Hartung and colleagues (2001) also proposed an
improved method for subgroup analyses using mixed-effects models using an F test, and we
examined its performance compared to the typically implemented QB test and using pooled or
separate estimates of the residual heterogeneity variance. The empirical Type I error rates
obtained by both methods suggest that, in general, the improved F test has clear advantages over
the standard QB test for moderators with two and three categories. As expected, this finding

Figure 10. Average power rates in scenarios with homoscedastic residual between-studies variances across the three categories
of the moderator.
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coincides with that obtained in previous studies for continuous moderators (Huizenga et al.,
2011; Knapp & Hartung, 2003; Viechtbauer et al., 2015). Therefore, this leads us to encourage
meta-analysts who carry out subgroup analyses to apply the F test instead of the standard QB test
in most situations.

When comparing the performance of the F(P) and F(S) tests, under homoscedastic variances
across the two or three categories, F(P) yielded the best control of the Type I error rates, regard-
less of how the number of studies was distributed across the categories of the moderator.

Under heteroscedastic variances across categories, the performance of the F(P) and F(S) was dif-
ferent depending on whether the moderator was dichotomous or with three categories. Both F(P)
and F(S) achieved adequate performance as long as the number of studies was distributed equally
across the two categories of the moderator; whereas, for a moderator with three categories, only
F(P) showed a good performance. However, under an unbalanced distribution of the number of
studies, the practical consequences of allowing for heteroscedastic residual between-studies

Figure 11. Average power rates in scenarios with heteroscedastic residual between-studies variances across the three categories
of the moderator and smaller variance in the smaller category.
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variances were more evident. On the one hand, when the value of the smallest residual between-
studies variance was associated with the category with the smallest number of studies, the F(S)
showed good adjustment for the dichotomous situation (see Figure 2); whereas, for a moderator
with three categories QB(P) showed the best adjustment (see Figure 5). On the other hand, when
the value of the largest residual between-studies variance was associated with the category with
the smallest number of studies, all tests showed a poor adjustment to the nominal level for both
moderators with two and three categories (see Figures 3 and 6, respectively).

These results allow us to recommend the use of the F(P) test in most conditions, except when
the meta-analyst suspects that the true value of s2res may vary across categories and the number of
studies across categories is unbalanced. In that case, the F(S) and QB(P) tests showed the best per-
formance for moderators with two and three categories, respectively. Note that using a pooled

Figure 12. Average power rates in scenarios with heteroscedastic residual between-studies variances across the three categories
of the moderator and larger variance in the smaller category.
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estimate would be expected to provide more-accurate results for most scenarios, as the estimate is
then based on a larger number of studies. This can be particularly important if the total number
of studies is small (e.g., k < 20), which has been found to be the case for most Cochrane reviews
(Davey, Turner, Clarke, & Higgins, 2011).

The statistical power of all methods was lower than .80 in most conditions, unless the magni-
tude of the difference between the mean effects across the two or three categories was equal to
0.6. As expected, statistical power rates increased with a larger number of studies, yielding rates
close to .80 with at least 60 studies (see Figures 7–12). Note that the differences in the statistical
power rates for the methods may also be caused by either inflated or overly conservative Type I
error rates.

In summary, the results of our simulation study suggest that out of the different alternatives
considered in the present study, the improved F test computed using a pooled estimate is the
most suitable option to test the statistical association between a categorical moderator and the
effect sizes in most conditions. Nevertheless, if the meta-analyst suspects that the residual
between-studies variances are heteroscedastic across categories of the moderator and the number
of studies is unbalanced across categories, then the F test using separate estimates of the residual
between-studies variance for a dichotomous moderator and the Q test using a pooled estimation
of the residual between-studies variance for a moderator with three categories may be preferable.

These conclusions provide valuable information for applied researchers carrying out subgroup
meta-analyses in the educational arena. Our empirical results enabled us to make several recom-
mendations about which method (QB or F test) in combination with which procedure for esti-
mating the residual between-studies variance (pooled or separate estimation) is the most suitable
option depending on the characteristics of the meta-analytic database. Educational researchers
should be aware of the practical consequences that the choice of one method or another could
have for their meta-analytic results. For this reason, it is highly recommended to use software
(e.g., the metafor package in R) that allows the researcher to choose between both tests and both
estimation procedures when conducting a subgroup meta-analysis.

Limitations

Our study has several limitations. First, the present simulation study was conducted with standar-
dized mean differences, but its results may be generalized to other effect size measures with
(asymptotically) normal sampling distributions (e.g., mean difference, log odds ratio, log risk
ratio, Fisher’s Z-transformed correlation coefficients). Second, our results are limited to the
manipulated conditions. Nevertheless, the values for the parameters were chosen to represent real
meta-analyses in education. Lastly, an important limitation in this field is that the meta-analyst
cannot determine whether the residual between-studies variances are homoscedastic or heterosce-
dastic across categories, as the parameters are unknown. In the absence of a formal statistic to
test the homoscedasticity of the residual between-studies variances across categories, it is possible
to compare the model fit using separate or pooled estimates.

Future research directions

Additional simulation studies are needed to assess the performance of the methods under more-
adverse conditions, such as a nonnormal distribution for the true effects within each category of
the moderator. Furthermore, in the future the development of a statistical test to assess the
homoscedasticity of the residual between-studies variances across categories of a moderator could
be an important contribution in the context of subgroup analyses in meta-analysis.
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