Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells

Citation for published version (APA):

Document status and date:
Published: 01/08/2019

DOI:
10.1016/j.msec.2019.03.068

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at: repository@maastrichtuniversity.nl providing details and we will investigate your claim.

Download date: 02 Nov. 2023
Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells

Zohreh Bagher, Zhaleh Atouh, Rafieh Alizadeh, Mohammad Farhadi, Payam Zarrintaj, Lorenzo Moroni, Mohsen Setayeshmehr, Ali Komeili, S. Kamran Kamrava

ABSTRACT

Developing a simple procedure for efficient derivation of motor neurons (MNs) is essential for neural tissue engineering studies. Stem cells with high capacity for neural differentiation and scaffolds with the potential to promote motor neurons differentiation are promising candidates for neural tissue engineering. Recently, human olfactory ecto-mesenchymal stem cells (OE-MSCs), which are isolated easily from the olfactory mucosa, are considered a new hope for neuronal replacement due to their neural crest origin. Herein, we synthesized conducting hydrogels using different concentrations of chitosan-g-aniline pentamer, gelatin, and agarose. The chemical structures, swelling and deswelling ratio, ionic conductivity and thermal properties of the hydrogel were characterized. Scaffolds with 10% chitosan-g-aniline pentamer/gelatin (S10) were chosen for further investigation and the potential of OE-MSCs as a new source for programming to motor neuron-like cells investigated on tissue culture plate (TCP) and conductive hydrogels. Cell differentiation was evaluated at the level of mRNA and protein synthesis and indicated that conductive hydrogels significantly increased the markers related to motor neurons including Hb-9, Islet-1 and ChAT compared to TCP. Taken together, the results suggest that OE-MSCs would be successfully differentiated into motor neuron-like cells on conductive hydrogels and would have a promising potential for treating motor neuron-related diseases.

1. Introduction

Motor neurons (MNs) are known as a typical class of neurons that are located in the central nervous system and project their axons to control muscular activity [1]. They are damaged in motor neuron-related diseases such as amyotrophic lateral sclerosis and spinal cord injuries [2]. Replacement of injured cells is a fundamental concept to promote regeneration and minimize the extent of injury, but the appropriate cell type for transplantation has not been identified yet for neuromuscular junctions [3]. The discovery of olfactory ecto-mesenchymal stem cells (OE-MSCs) opens a bright horizon to stem cell-based therapies in the future [4]. OE-MSCs are multipotent adult stem cells originated from the neural crest, which could be obtained by simple biopsy of olfactory mucosa resident in the nasal cavity [5,6]. These cells are very interesting in neural tissue engineering, because they (1) have tendency to differentiate into neurons, (2) are free of ethical concerns, and (3) exhibit low immunogenicity, and (4) could be used for autologous transplantation [5,7,8]. However, promoting the differentiation into desirable phenotypes, access to sufficient cell number and survival rate of cells upon transplantation remain the main obstacles in the utilization of stem cell-based therapy [9,10]. To improve the efficiency of transplantation, several recent studies used scaffolds to create a biomimetic microenvironment to enhance the viability of transplanted cells and differentiated them towards specific neural lineages [11,12]. In the past years, various kinds of scaffolds, such as hydrogels, nanofibers and decellularized matrices have been developed for tissue regeneration application [13,14]. Hydrogels provide a suitable porous and interconnected structure for tissue
regeneration, mimicking the hydrated state of extracellular matrix [15,16]. Among possible hydrogels to be developed for tissue regeneration applications, conducting polymers are an efficient tool to control cellular behavior due to their electrical conductivity, which makes them good candidates in neural tissue engineering applications [17–19]. Among conductive polymers, polyaniline (PANI) is very eminent because of its unique and easy doping process, good environmental, thermal, and chemical stability, wide range of conductivity and ease of synthesis [20,21]. However, the hydrophobicity and lack of degradability of PANI restricted its applications in practical biomedical and tissue engineering. These limitations can be overcome by using oligomers of aniline such as aniline pentamer (AP), which have good solubility, biodegradability and electroactivity [22,23]. Moreover, their amine-capped structure makes them suitable to be copolymerized or grafted with other polymers like chitosan and gelatin [24,25]. Pendant amine groups on chitosan repeating units are attractive domains for grafting of aniline oligomers and improve characteristics such as hydrophilicity, biodegradability, and processability [26]. Additionally, combining AP with gelatin, which is a natural macromolecule with many attractive properties, has already been shown as a promising approach to improve the biological properties of AP [27]. It was reported that the conductive hydrogel based on chitosan-tetraaniline was utilized for muscle and skin regeneration which such hydrogel enhanced the cellular activities and regeneration [28–30]. Electroactive chitosan exhibited the antibacterial properties along with rapid shape memory which can be used as a wound dressing [31,32]. It was reported that the conductivity of the hydrogel has more impact on neural cell activity than hydrogel modulus [33].

In this study, OE-MSGs for the first time were used to investigate their potential ability as an ideal cell source to support motor neuron differentiation on tissue culture polystyrene (TCP), and conductive hydrogel. We hypothesized that the conductivity of AP would increase cell proliferation and differentiation of OE-MSCs into motor neuron-like cells compared to conventional tissue culture plate. These hydrogels could have potential applications in treating neural diseases such as spinal cord injuries.

2. Materials and methods

The materials were purchased from Sigma-Aldrich (USA) unless otherwise noted.

2.1. Synthesis of chitosan-aniline pentamer/gelatin/agarose hydrogel (AP-g-CH/GL/AG)

2.1.1. Synthesis of aniline pentamer (AP)

Aniline pentamer was synthesized according to a method reported in the literature [24]. First, Amino-capped aniline trimer was synthesized by oxidizing aniline and p-phenylenediamine by (NH₄)₂S₂O₈ in a mixture solution of 1 mol.L⁻¹ HCl and acetone. Aniline pentamer was then synthesized by dissolving Amino-capped aniline trimer and N, N-diphenylamine in a mixture solution of DMF and hydrochloric acid (HCl) with vigorous stirring. To obtain the emeraldine (EM) base form of AP, ammonium persulphate was added to the mixture as an oxidant agent and stirred for 2 h in an ice bath. The EM base form of AP was then reduced with hydrogen at 3 atm platinumoxide for 2 h to produce the fully reduced leucoemeraldine (LM) form of AP. The light gray LM AP was then eluted with distilled water until the fully reduced leucoemeraldine (LM) form of AP. The light gray LM then reduced with hydrogen at 3 atm platinumoxide for 2 h to produce agent and stirred for 2 h in an ice bath. The EM base form of AP was of AP, ammonium persulfate was added to the mixture as an oxidant products of the reactions. It was then dried under reduced pressure. In order to obtain carboxyl-capped aniline pentamer, amino groups at the end of EM base form of AP reacted with succinic anhydride and converted to carboxyl groups [34]. The mechanism is schematically showed in Fig. 1.

2.1.2. Synthesis of chitosan-graft-aniline pentamer (AP-g-CH)

0.1 g aniline pentamer, 0.02 g NHS, and 0.03 g EDC were dissolved in 10 ml of DMF and stirred under nitrogen atmosphere for 24 h at room temperature to obtain NHS capped aniline pentamer. The mixture was then added dropwise into the solution of 0.5 g chitosan in 0.1 M HCl and the stirring was brought on for 24 h under the nitrogen atmosphere at 50 °C. After the reaction, the crude product was stored at room temperature for further usages. The AP content in the synthesized AP-g-CH copolymer was 8.9% according to UV–Vis test.

2.1.3. Synthesis of (AP-g-CH/GL/AG)

The solution of 1% wt. of agarose (AG) and gelatin (GL) in distilled water were prepared distinctly. These solutions with the previous AP-g-CH solution were mixed with various volume amount of 0:0.30, 2.5:2.5:2.5, 5:5:20, 7.5:7.5:15, 10:10:10 where the numbers indicate the volume of AP-g-CH, gelatin, and agarose solutions, respectively (the total volume of each sample was 30 cc). The mixtures were stirred for 20 min and poured into suitable molds and kept at room temperature overnight. The obtained scaffolds were immersed in ethanol for 48 h under stirring and ethanol was changed every 8 h in order to eliminate unreacted moieties then it was incubated in distilled water for 72 h while the water was replaced every 8 h. Prepared samples are abbreviated as S0, S5, S10, S15, and S20, where the number indicates the summation of the volume of employed AP-g-CH and gelatin (GL) solutions in the AP-g-CH/GL/AG scaffolds. Table 1 also indicates the chemical composition of each sample.

2.2. Characterization of scaffolds

2.2.1. Structural characterization of AP and chitosan-graft-AP

To investigate the successful synthesis of AP and its grafting on the chitosan chains, Fourier-transform infrared (FTIR) spectra of AP and chitosan were recorded in the range of 400–4000 cm⁻¹ using a Nicolet 6700 FT-IR spectrometer (Thermo Scientific Instrument).

2.2.2. Swelling and deswelling properties

Swelling kinetic of hydrogels was investigated using a gravimetric method. Specific amounts of dried hydrogels were immersed in distilled water with the pH of 7.2 and their swelling behavior was investigated at various temperatures (30 °C, 40 °C, 50 °C). At pre-determined time intervals, samples were drawn out of the water and weighed after wiping out their superficial water with moistened filter paper until a swelling equilibrium was reached. The swelling ratio was measured according to Eq. (1):

\[
SR = \frac{W_i - W_d}{W_d} \times 100\% 
\]

where \(W_s\), \(W_d\), and \(SR\) are the weight of the swollen gel at a certain time, the weight of dry gel, and the swelling ratio of hydrogels at a certain time, respectively [35].

The pre-equilibrated samples (in the distilled water with the pH of 7.2 at 30 °C, 40 °C, and 50 °C for 24 h) were weighed in pre-determined time intervals after wiping off the excess surface water. The water retention (WR) of the samples was calculated by Eq. (2):

\[
WR = \frac{W_i - W_d}{W_s - W_d} 
\]

where \(W_i\) and \(W_s\) are the weight of the hydrogel at a certain time during deswelling and the weight of swollen hydrogel at equilibrium state, respectively [36].

2.2.3. Ionic conductivity

The conductivity of hydrogel samples at their maximum swollen state, which represent the summation of ionic and electronic conductivity, was measured. In order to survey the electronic contribution to the total conductivity, samples were freeze-dried and their electrical
conductivity was measured at the dried state (in dried state the ionic conductivity is negligible and the conductivity is equal to electronic conductivity). Ionic conductivity was then calculated by reducing electronic conductivity from total conductivity.

Ionic conductivity of the hydrogels at various temperatures ranging from 30 °C to 80 °C were measured by a two probe techniques. All scapholds were doped by 1 M HCl before measurements. The specific ionic conductivity \( \sigma \) in S.cm\(^{-1} \) was measured according to Eq.(3):

\[
\sigma = \frac{l}{RA}
\]

where \( l, R \) and \( A \) are specific conductivity, resistance, length and cross sectional area of the composites, respectively.

According to Arrhenius equation, \( \ln(\sigma T) \) vs \( 1000/T \) was plotted and \( E_a \) and \( A \) which are the activation energy of conductivity and pre-exponential factor were obtained from the slope and intercept of the diagram. The Arrhenius equation is given by:

\[
\sigma = A \exp\left(\frac{-E_a}{RT}\right)
\]

where \( \sigma, T, \) and \( R \) are the ionic conductivity, absolute temperature, the molar gas constant, respectively [37].

2.2.4. Thermal properties
The thermal degradation of the samples was characterized by thermogravimetric analysis (TGA) using a Perkin–Elmer Pyris-1 TGA apparatus. The hydrogels were heated from 50 °C to 700 °C at a heating rate of 10 °C.min\(^{-1} \) under a nitrogen atmosphere.

2.2.5. Mechanical assessment
2.2.5.1. Compression stability and elasticity of hydrogel. In order to evaluate mechanical properties of hydrogels, cylindrical shapes with the diameter of 10 mm and thickness of 6 mm were prepared. Uniaxial compression was applied on the hydrogels using Santam-STM200 (Iran) apparatus with a load cell of 10 KN and strain rate of 1 mm. min\(^{-1} \) and stress-strain curve was determined.

2.2.5.2. Compression evaluation (shape memory). In order to investigate if the hydrogels have the potential to recover themselves after force loading, shape memory test was implemented. Samples were prepared in cylindrical shape (2 cm height, 10 cm\(^2 \) area), and compressed. During compression, hydrogels were deformed, and then they were immersed in water bath to absorb the lost water and recover their initial shape. The compression and recovered deformation were plotted for samples containing various amount of aniline.

2.2.6. Microstructure and morphology evaluation
Morphology of the optimum hydrogel was evaluated using scanning electron microscopy (SEM) in which samples were freeze-dried and coated with gold using a sputter coater. Moreover, porosity of samples was assessed using liquid displacement method. For this aim, freeze-dried hydrogels were immersed in specific volume of hexane (\( V_1 \)). The total volume of hexane and hydrogel (\( V_2 \)) was measured. After that, samples were removed and the residual volume of hexane (\( V_3 \)) was measured and scaffold porosity was measured using Eq. 5.

\[
\varepsilon = \frac{V_1 - V_3}{V_2 - V_3} \times 100
\]

2.3. Cell culture
2.3.1. Human olfactory ectomesenchymal stem cell isolation and characterization
Human OE-MSCs were obtained with mechanical method according
to Delorme et al. [4]. Briefly, human nasal mucosa was obtained from 2 males, at Hazrate Rasoul Hospital (Iran University of Medical Sciences); the patient were informed about the experiment and signed consent forms (Tehran, Iran, ethical code: IR.IAU.TMU.REC.1396.177). Briefly, after washing with PBS containing 100 u/ml penicillin and 100 g/ml streptomycin, the biopsies dissected into pieces and placed into a 6-well plate under a sterile glass coverslip and fed with DMEM/F12 medium supplemented with fetal bovine serum (FBS, 10%), penicillin and streptomycin (1%) and the tissues were incubated at 37 °C in 5% CO₂. The culture medium was changed every 2 or 3 days and when the remaining cells reached 80% confluence, the coverslip was removed and the adherent cells were trypsinized and expanded for 3 passages. MSCs derived from nasal mucosa were characterized according to Moayeri et al. using flow cytometry for cell surface markers including CD105, CD90, CD73, CD45, and CD34 and their differentiation capacity towards osteocytes and adipocytes was assessed [38].

2.3.3. Directed differentiation of human OE-MSCs into MNs on TCP and scaffolds

We utilized a three phase protocol for MN-like cell differentiation as described previously [39]. OE-MSCs were differentiated by plating 2 × 10⁵ cells onto the scaffolds and TCP and incubated 24 h with pre-induction medium containing DMEM/F12 (1:1), 20% FBS, 2% B27, 10 ng/ml fibroblast growth factor 2 (FGF2), 250 μM iso-butyrimethylxanthin, and 100 μM 2-metcaptoethanol at 37 °C and 5% CO₂. For inducing motor neuron differentiation, the media was replaced with an induction media supplemented with DMEM/F12 (1:1), 0.2% B27, 100 ng/ml of Shh, and 0.01 ng/ml RA for one week. After 7 days of differentiation, cells were treated with a medium composed of DMEM/F12 (1:1), 0.2% B27 in the presence of neurotrophic factors, including 100 ng/ml glial cell-derived neurotrophic factor (GDNF), and 200 ng/ml brain-derived neurotrophic factor (BDNF) up to 7 days to induce neuronal maturation. A half-volume medium change was performed every 2–3 days.

2.3.4. Quantitative RT-PCR

The Gene expression of neural markers (Nestin, Islet-1, Chat, HB9) and internal control (GAPDH) were performed by quantitative qRT-PCR in treatment groups. Total RNA was extracted from OE-MSCs and differentiated cells using RNeasy Plus Mini Kit (Qiagen, USA) and treated with DNase I (Ambion) to omit other DNAs. Then, the synthesis of complementary DNA (cDNA) from 1 μg of RNA was done based on RevertAid First Strand cDNA Synthesis Kit (Fermentas, USA). Real-time PCR was performed by using 10 μl of SYBR*Green PCR Master Mix (Applied Biosystems, USA), 1 μg of cDNA, 300 nM of forward and reverse primers, and nuclease-free H2O was used to adjust the final volume up to 20 μl. The genes primer sequences used for real-time PCR and annealing temperature are demonstrated in Table 2. All the reactions were done as triplicate. Real-time PCR results were further analyzed using ΔΔCT equation.

2.3.5. Immunofluorescent staining

After 15 days induction, to detect the expression of motor neuron-related antigens, the cells were rinsed three times with PBS and fixed in 4% paraformaldehyde during 30 min. After permeabilization with 0.2% Triton X-100 for 30 min, the cells were blocked with 5% bovine serum albumin (BSA) and incubated with primary anti-body against human anti-choline acetyltransferase (Chat; Abcam, 1:200), anti-Islet-1 (Abcam, 1:200), and anti HB-9 (Santacruz, 1:200), diluted in 5% BSA in PBS overnight. Secondary antibodies included Alexa Fluor 647 donkey anti-goat (1:500) and FITC-donkey anti-rabbit (1:500) and the nuclei were counterstained with DAPI for 3 min at room temperature. The cells were photo-graphed under fluorescent light with a Nikon microscope.

2.3.6. Flow cytometric analysis

In order to quantify protein expression, the expressions of Islet-1, HB9, and Chat proteins at the end of the induction were evaluated by flow cytometry. The treated cells were incubated overnight in the dark at 4 °C with the appropriate primary antibodies followed by 45 min at 37 °C for the secondary antibody. Antibodies used were the same as those for immunofluorescence staining. FACS Calibur flow cytometer (BD BioSciences) was used to detect expressions of these proteins. The results were analyzed using FlowJo software. All flow cytometry samples were performed in triplicate.

2.4. Statistical analysis

The statistical analysis in this study was carried out using Student t-test. All assays were performed in triplicate and the data were represented as the mean ± SD. P values < 0.05 were considered as significant.

3. Results and discussion

3.1. Scaffold synthesis and characterization

3.1.1. FT-IR

The FT-IR spectra of AP, CH, and AP-g-CH are represented in Fig. 2. In the IR spectrum of CH, the absorption peaks at 1653 cm⁻¹ and 1610 cm⁻¹ are corresponded to the C=O stretching of amide groups and N–H bending of amine groups [40]. The IR spectrum of AP exhibits peaks at 3260 cm⁻¹ and 3370 cm⁻¹ representing the stretching of N–H and OH groups, respectively. The peaks at 1703 cm⁻¹ and 1648 cm⁻¹ are assigned to the carbonyl groups (–CO) in –COOH and amide groups (–NHO–) [40,41]. The 1603 cm⁻¹ and 1501 cm⁻¹ peaks are attributed to the vibration of benzene ring and quinoid rings, respectively [42]. The absorption peak at 1300 cm⁻¹ is ascribed to the C–N stretching in the vicinity of quinoid rings [24,43].

---

Table 2

<table>
<thead>
<tr>
<th>Annealing temp (°C)</th>
<th>Primer sequence(5'-3')</th>
<th>Target gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>F GCACAGAGAAGACAGGCAACT</td>
<td>ChAT</td>
</tr>
<tr>
<td>55</td>
<td>R AACATTCATGCATGTCAT</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>F AGCAGCAGGATGACCTGACMA</td>
<td>Hb-9</td>
</tr>
<tr>
<td>56</td>
<td>R ACCAAGTCCTACGGATGTCCTC</td>
<td>Iset-1</td>
</tr>
<tr>
<td>55</td>
<td>F AAGATTCAGCTGCTGTCGG</td>
<td>Nestin</td>
</tr>
<tr>
<td>55</td>
<td>R TCCAGCTTGGCTGTCCTGAAA</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>F TGCCACGCGAGGCA</td>
<td>GAPDH</td>
</tr>
<tr>
<td>55</td>
<td>R CCTGAAGGTCGGTACGAT</td>
<td></td>
</tr>
</tbody>
</table>
The FT-IR spectrum of AP-g-CH exhibits all the characteristic peaks of chitosan. Besides, the peak at 1608 cm$^{-1}$ is assigned to the benzene rings of AP. During the coupling of APs on chitosan chains, carboxylic acid groups in Carboxyl-capped Aniline Pentamer react with amine groups of chitosan. Hence, the disappearance of the peak at 1703 which is attributed to the –COOH groups further authenticates the chemical connection of AP to the CH chains.

3.1.2. Swelling/deswelling characterization

Swelling behavior of hydrogels was investigated since the mechanical properties, absorption of physiological fluid, diffusivity of nutrients and drugs in the hydrogel, and the drug release rate is correlated to the swelling capacity of hydrogels \[44,45\]. Fig. 3a represents the swelling ratio of hydrogels versus time at room temperature revealing that all the hydrogels absorbed water fast at the first minutes of incubation and reached to an equilibrium state thereafter. During the swelling process, water must prevail the osmotic pressure inside the gel in order to permeate in the gel \[46\]. The osmotic pressure depends on elasticity \[36\]. Hydrogels have low elasticity in the early phases during swelling. Therefore, the swelling rate is very fast at the beginning. During the swelling process, the amount of absorbed water in the hydrogel increases leading to higher elasticity and thus higher osmotic pressure in the hydrogel. Hence, water needs to overcome higher pressure in order to permeate inside the gel. So, the swelling rate decreases gradually with time. Among hydrogel samples containing AP, S10 and S20 with the swelling ratio of 336.7% ± 13.6 and 215.45% ± 15.5 were the highest and the lowest swelling ratio, respectively. Swelling ratio is proportional to two various parameters: the porosity of hydrogels and the type of polymer. Herein, with increasing AP content, the water absorption is hindered since the amount of free volume between polymer chains reduces and less space is provided for water molecules to be absorbed. In addition to AP content, the amount of each polymer in the hydrogel structure is important since various polymers have different amount of water absorption. For example, gelatin reveals higher water absorption in comparison to agarose and chitosan \[47,48\]. Consequently, it seems that samples with higher gelatin content show higher water absorption capacity. The summation of these two parameters determines the swelling ratio of the samples. In S10, gelatin content increases the water absorption and the amount of AP was not sufficiently high to restrict the water absorption, thus revealing the highest swelling ratio. On the other hand, in S20 the effect of APs in restricting water absorption was higher than the effect of gelatin in increasing it; so S20 revealed the lowest water absorption.

The deswelling trend of hydrogels is demonstrated in Fig. 3b. The amount of absorbed water by hydrogels decreased fast at the first minutes during deswelling process, and then became slower until reaching the equilibrium state. S10 and S20 represented the highest and the lowest deswelling capacity, respectively.

3.1.3. Conductivity measurements

In order to estimate the conductivity of hydrogels in the body, their conductivity was measured at their maximum swollen state. The conductivity of samples was in the order of $10^{-4}$ S/cm. This conductivity was attributed to the ionic conductivity, since the electronic conductivity of samples (conductivity at dried state) which was in the range of $1.5 \times 10^{-11}$ S/cm to $2.91 \times 10^{-11}$ S/cm, was negligible. This order of ionic conductivity is adequate for conducting micro-currents in the human body to stimulate neural cells proliferation and differentiation \[49,50\].

Fig. 4a represents the results of conductivity measurements for samples at their maximum swollen state at various temperatures. The conductivity of neat agarose hydrogel at 30 °C increased 20 times by the introduction of AP to its structure (it was $1.41 \times 10^{-5}$ for neat agarose and $2.86 \times 10^{-4}$ for S10). The conductivity of neat agarose hydrogel was due to the ionic conductivity of hydroxyl groups on the main chain of agarose. Ionic conductivity increased in the AP-g-CH/GL/AG hydrogels due to the number of ions which were provided for hydrogel by AP. According to literature, the ionic conductivity in the hydrogel samples is a function of two parameters: the number of ions and their
mobility [51,52]. Among samples with AP, S5 had the least ionic conductivity due to its lowest ion content. On the other hand, S10 represented the highest ionic conductivity regarding its highest swelling ratio simplifying ions mobility. Although S15 and S20 had higher ion content, they revealed lower conductivity in comparison to S10 due to their lower swelling capacity suppressing mobility of ions.

Fig. 4b illustrates the Arrhenius plot of $\ln(\sigma_T)$ versus 1000/T. This plot showed a linear trend, where the slope of plot multiplied by $R$ represents the activation energy for conductivity and the exponential of the intercept shows the pre-exponential factor. It is implied from the Arrhenius equation that samples with lower activation energy and higher pre-exponential factor have more conductivity. The pre-exponential factor reflects the number of ions in the hydrogel, while activation energy of conductivity reflects the mobility of ions [21].

Herein, according to Table 3, hydrogels with AP content had a higher pre-exponential factor than neat agarose hydrogel because they had higher ion content. Moreover, they had smaller Ea, since less amount of energy was required for ion transfer in them. Among samples with AP content, S10 revealed the smallest activation energy for conductivity. This was justifiable due to its highest swelling capacity leading to easier mobility of ions and S20 revealed the highest Ea due to its lowest swelling ratio and lower ion mobility. The pre-exponential factor was highest for S20 due to the highest number of ions in this hydrogel provided by AP.

3.1.4. Thermal properties characterization

The TGA curves of AP, chitosan, gelatin, agarose, and AP-g-CH/GL/AG hydrogels are shown in Fig. 5. According to TGA curves, the weight loss of hydrogels took place in two stages: a small weight loss in the range of 80 °C to 120 °C, which is due to the evaporation of water and other solvents, and a major weight loss in the range of 300 °C to 350 °C that is ascribed to the degradation of main chains. AP showed higher thermal stability and its major weight loss occurred around 450 °C. Thus, hydrogel samples with higher AP-g-Chi and gelatin content revealed higher thermal stability due to higher thermal stability of AP and gelatin compared with agarose.

3.1.5. Mechanical evaluation

Mechanical properties of the scaffold play an important role in tissue regeneration providing integrity to the cells to grow and the ability to withstand the stresses. Fig. 6A reveals the compression strength of the electroactive hydrogel in which aniline pentamer enhanced the hydrogel modulus due to the presence of aromatic ring in the structure and the segmental rigidity. The linear elastic behavior was observed at low and high stress and non-linear elastic behavior was observed at medium stress. The reason for such behavior is that during loading, hydrogel is squeezed and water molecules released out of the gel structure [26]. Hydrogels compression modulus enhanced with aniline pentamer from 32 to 46 KPa; Furthermore, carboxylic groups at the aniline pentamer increased the crosslinking density because of the hydrogen bonding. Shape memory behavior of hydrogels was affected by aniline oligomers content in a way that their compressive strain decreased by aniline content from 31% to 22% (Fig. 6B).

3.1.6. Morphology assessment

Porosity plays an essential role in tissue engineering. High porosity
of scaffold resulted in higher surface area which helped cells proliferation. Samples’ porosity was about 80% with diameter distribution 35 ± 5 μm which is appropriate for cell growth [53] (Fig. 7).

3.2. Cell isolation and evaluation of cell behavior on scaffolds

3.2.1. Identification of MSCs derived from nasal mucosa

Cell transplantation has been emerged as a promising therapeutic approach to treat a variety of neurological disorders [54]. Among the candidate cells for cell therapy, OE-MSCs are derived easily from olfactory mucosa due to their unique properties such as high proliferation rate and meso-ectodermal origin. These cells have received great attention in neural tissue engineering [4,5,7,55]. In this study, we first showed that OE-MSCs expressed phenotypic markers of mesenchymal stem cell using flow cytometry and then their differentiation capacity towards mesodermal lineage were assessed. The result obtained from flow cytometry analysis demonstrated that the cells were positive for CD90 (98.7), CD105 (97.0), and CD73 (99.2) and negative for CD34 (0.723) and CD45 (0.163) (Fig. 8a). The Fig. 8b shows the spindle shape of the OE-MSCs and their capability to differentiate into adipogenic and osteogenic lineages. Adipogenesis were detected with the visualization of lipid vacuoles stainable with oil red as well as the alizarin red stain, to assessed mineralized calcium. Hence, it is concluded that employing agarose as a polymer which forms a gel without a crosslinking agent and gelatin as a natural biocompatible polymer in the hydrogel structure made S10 a potentially appealing substrate for proliferation of OE-MSCs.

3.2.2. The effect of hydrogels on OE-MSCs proliferation

One of the most important element of the scaffold structure is that it must support cell growth [56]. In this context, in the field of nerve regeneration some attentions have been oriented towards the synthesis of conductive scaffolds, since it was demonstrated that the conductive polymers affect a variety of cell behaviors, such as proliferation and differentiation [57]. Previous works in literature demonstrated the effectiveness of incorporating aniline oligomers as electroactive, bio-compatible, and biodegradable moieties in the hydrogel structure [58,59]. However, in this study, apart from using aniline pentamer as conductive moiety, the bioactivity of the scaffold was further improved by using agarose in the hydrogel structure which forms a gel without the need for chemical crosslinkers. Moreover, a combination of chitosan and gelatin as natural polymers enhanced the biocompatibility of this novel hydrogel. Based on the aforementioned results, S10 hydrogel was selected as the optimum hydrogel with the highest ionic conductivity; then, in vitro studies were conducted to judge the proliferation of the cultured OE-MSCs on scaffolds. The results of MTT from day 1 to day 5, as presented in Fig. 9, showed that on the first day of culture cell proliferation on TCP compared to hydrogels was higher but there was no statistically significant difference among them (P > 0.05). When incubated for 3 and 5 days, both of the groups proliferated in comparison with day 1, indicating that the hydrogel showed no cytotoxicity effect. After 3 and 5 days of culturing, comparing the cell proliferation showed that cell viability on the hydrogels was significantly higher than TCP (p < 0.05 and 0.01), respectively, indicating that the conductive hydrogel facilitated the proliferation of the OE-MSCs during culture period. Since chemical crosslinking agents which are commonly used in the hydrogels, impart some toxicity to the hydrogel in this study, Agarose has been used since it does not need crosslinking agents. It simply forms a gel due to its thermogelling properties [60]. Recent studies have reported the biocompatibility of novel conductive hydrogels based on agarose-aniline pentamer and demonstrated the potential of this scaffolds to stimulate the proliferation of PC12 cells [34]. Hence, it is concluded that employing agarose as a polymer which forms a gel without a crosslinking agent and gelatin as a natural biocompatible polymer in the hydrogel structure made S10 a potentially appealing substrate for proliferation of OE-MSCs.

3.2.3. The analysis of OE-MSCs differentiation into motor neuron-like cells on TCP and scaffolds

Degeneration of spinal motor neuron function in a number of devastating neurological disorders results in difficulties in essential
human behaviors such as muscle movements, including breathing, walking, and swallowing [61]. Exploiting a simple and effective method to produce MNs without any transgenic manipulation in a short time is important for treating motor neuron-related disorders [62]. It was demonstrated that the scaffold conductivity plays an important role for neural tissue engineering and could significantly increase neuronal gene expression without any other external stimuli [33]. In this study, OE-MSCs were used as a new meso-ectodermal cell source for motor neuron-like cell differentiation and we assume that OE-MSCs, which are 100% nestin-positive [63,64], have better tendency to differentiate into neuron cells compared to MSCs. OE-MSCs were seeded in the presence of neural inductive molecules on scaffolds and TCP plates for 2 weeks and the characterization of differentiated cells performed via Real-time PCR, immunostaining, and flow cytometry. We hypothesized that AP-g-CH/GL/AG hydrogels due to their high water content, thermal stability, biocompatibility, and conductivity of about $10^{-4}$ S/cm provide an optimal microenvironment for cell proliferation and neural differentiation.

As shown in Fig. 10, quantitative RT-PCR analysis revealed that cells not only expressed neural progenitors such as nestin, but also expressed transcription factors including ISL1, HB9, and Chat which are MN markers [65]. Previous studies have shown the potential of MSCs from various sources to differentiate into MN-like cells under certain media conditions [2,39,66]. Gene expression at day 15 showed that the expression of nestin, a marker of neural progenitor cells, decreased compared to TCP group at the end of the induction, while the expression of MN marker increased. The expression of motor neuron markers such as ISL1, HB9, and Chat were 12.52 ± 0.42, 20.45 ± 1.90, and 15.26 ± 3.03 times, respectively, which were statically significant compared to differentiated cells on TCP groups (*p < 0.05).

It should be noted that although OE-MSCs could differentiate into MN-like cells in the present of induction media in TCP groups,
wards MN-like cells on TCP and nano
differentiating the ventral spinal fate [69]. We have previously reported in vitro
tralization identity, respectively, are the most important signals speci-
2 weeks. RA and Shh which induce acquisition of caudal and ven-
MNs from human OE-MSCs on TCP and conductive hydrogels for
used a combination of RA, Shh, BDNF, and GDNF for the induction of
promote cell proliferation and neural di-
conductive hydrogels in this study, as an arti-
structure for the cells and could in-
conductive hydrogels provided further than only a passive supporting
further studies are needed to evaluate the complete maturation of cell
differentiation. Given the ability of conductive hydrogel used in this
study to support OE-MSCs proliferation and differentiation into MN
cells, we next wished to examine the potential of this construct in an
animal model of spinal cord injury (SCI) and we hope to develop ef-
effective treatments for MN-related disorders.

Fig. 10. Relative mRNA expression using real-time PCR for the detection of
motor neuron-like cells markers on conductive hydrogel versus TCP samples. GAPDH is used as a housekeeping gene control. (n = 3 biological samples, mean ± SD).

Fig. 11. Immunocytochemical analysis for expression of HB9 and Islet-1 as markers of mature and progenitor motor neurons, respectively.
effect of conductive hydrogels on MN differentiation. Here, to confirm
the real-time PCR results immunofluorescent staining and flow cyto-
metry analysis were used to examine the expression of MN specific
markers at protein levels. Immunocytochemistry confirmed that the
cells were positive for both ISL1 and HB9 proteins, which seems to
indicate that the expression is enhanced in hydrogels than on TCP
(Fig. 11).

Evaluating the percentage of MN markers (Islet-1, Chat and HB9) by
flow cytometer revealed a remarkable increase in the number of posi-
cive cells on conductive hydrogels versus TCP groups (Fig. 12). The
expression of Islet-1 (36.33% ± 2.61), Chat (34.46% ± 1.55) and HB9
(54.43% ± 1.55) in conductive hydrogels was higher than the expres-
sion of Islet-1 (22.8% ± 2.98), Chat (21.5% ± 0.85) and HB9
(30.73% ± 1.097) on TCP groups (P < 0.05, 0.01 and 0.001), re-
respectively.

HB9 as a homeobox gene expressed selectively by MNs at the late
phases of the motor neuron differentiation [73]. Reinhardt et al. have
used small molecules of human neural progenitor and enabled to im-
prove the efficiency of pure HB9 motor neurons to 50% within 30 days
[74]. Interestingly, the result of the flow cytometry in this study showed
that OE-MSCs could generate similar percentage of HB9 in only 2 weeks
on scaffolds. In other studies, MNs were induced from human plur-
ipotent stem cells with adenoviral gene delivery. This approach could
produce mature MNs in a short time and with high efficacy, it needs
genetic manipulations which are difficult to control in a precise manner
and is also a time-consuming process [75]. In this study, tissue en-
engineering strategies succeeded to induce the transition of progenitor
cells into motor neuron-like cells in a short time by providing a bio-
mimetic environment enhancing the efficiency of cell differentiation.
We hypothesized that our success to achieve derivation of MNs specific
markers within a short culture period can be attributed to the following
reasons: 1) the neural crest origin of OE-MSCs which indicates the
tendency of these cells to differentiate into the neural lineage [5,7] 2)
icorporation of AP in the hydrogel structure provides sufficient con-
ductivity which induces neural differentiation [34]. It should be em-
phazized that although the conductive hydrogels used in this study are
potential scaffolds to induce OE-MSCs differentiation into MN-like cells,
further studies are needed to evaluate the complete maturation of cell
differentiation. Given the ability of conductive hydrogel used in this
study to support OE-MSCs proliferation and differentiation into MN
cells, we next wished to examine the potential of this construct in an
animal model of spinal cord injury (SCI) and we hope to develop ef-
effective treatments for MN-related disorders.
4. Conclusion

In this study, chitosan-aniline pentamer/gelatin/agarose hydrogels with different concentrations were synthesized and characterized successfully. All samples showed appropriate swelling ratio and electrical conductivity highlighting the fact that AP is a potential conductive moiety to be used in hydrogels for tissue engineering applications. Among all samples, the one with 10% AP-g-CH/GL revealed the highest conductivity. This highest conductivity was attributed to the highest swelling ratio, which provides more free space for ions to move faster. This hydrogel exhibited an ionic conductivity in the order of $10^{-4}$ S/m, which is adequate for conducting micro-currents in the human body and stimulating neural cells proliferation and differentiation. Thermal property measurements revealed that thermal stability of hydrogels improve with AP content due to the higher thermal stability of AP. S10 as the sample with best swelling and ionic conductivity was chosen for further investigation tests. Quantitative real-time PCR, immunocytochemistry staining, and flow cytometry analysis was utilized to evaluate the efficacy of the hydrogel to induce OE-MSCs to motor neuron-like cells. Islet-1, HB-9, and Chat which are known as MN markers according to literature, revealed significant increase in RNA and protein level in comparison to TCP. All these results suggest that the developed conductive hydrogels provide a desirable micro-environment for proliferation and MN-like cells differentiation of OE-MSCs, demonstrating their great potential to treat MN-related diseases.

Acknowledgments

The financial support of the Research and Technology Council of the Science and Research Branch of Islamic Azad University is gratefully acknowledged. Authors are also grateful for the close cooperation of the Iranian Research Assist Company in improving the following research’s results.

References


