A generally applicable synthesis of amino acid p-nitroanilides as synthons

Citation for published version (APA):

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 14 Sep. 2023
A generally applicable synthesis of amino acid p-nitroanilides as synthons

Dirk T.S. Rijkers*ab, H. Coenraad Hemkerb, Gerard H.L. Nefkens* and Godefridus I. Tesser*

* Catholic University of Nijmegen, Department of Organic Chemistry, Toernooiveld, 6525 ED Nijmegen, The Netherlands
b University of Limburg, Faculty of Medicine, Department of Biochemistry, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Introduction

Amino acid p-nitroanilides are versatile chromogenic substrates for proteolytic enzymes [1]. Their synthesis is problematic because of the low nucleophilicity of p-nitroaniline, since the current coupling methods of peptide synthesis appear inadequate. In an earlier paper we mentioned the applicability of phosphorus oxychloride as condensing agent in the synthesis of protected arginine p-nitroanilides [2]. We now describe here the use of this reagent in the synthesis of orthogonally protected p-nitroanilides and their transformation into synthons for chromogenic substrates.

Results and Discussion

We found that phosphorus oxychloride [3] is an excellent condensing agent for amines and alcohols (J. Broos, personal communication) of low nucleophilicity (Scheme 1). Virtually all Boc- and Z-protected amino acid p-nitroanilides were obtained in high yield (70–90%) in an optically pure form, some being given in Table I. We also found Boc-Ala-pNA to be excellently stable in 50% piperidine in DMF, which prompted us to synthesize Fmoc-amino acid p-nitroanilides, which have not been mentioned in the literature until now (Table I). The use of Fmoc as α-amino protection allows side chain protections which can be cleaved off under mildly acidic conditions at the end of the synthesis. As an example, Scheme 2 depicts the synthesis of the chromogenic substrate (S2238) used in the determination of thrombin.

Bz-Ile-Glu-Gly-Arg-pNA.HCl (S2222), Bz-Ile-Glu(N-piperidyl)-Gly-Arg-pNA.HCl (S2337), from Boc-Arg-pNA.HCl and H-D-Val-Leu-Lys-pNA.2HCl

Scheme 1. Equimolar amounts of phosphorus oxychloride and carboxylic acid are required in this procedure. X symbolizes an α-amino protective group, X' a side-chain protection and AA stands for an amino acid.
Table 1
Some protected amino acid p-nitroanilides synthesized with phosphorus oxychloride as condensing agent

<table>
<thead>
<tr>
<th>Y (%)</th>
<th>m.p. (°C)</th>
<th>αD</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>foam</td>
<td>-7.9°</td>
</tr>
<tr>
<td>84</td>
<td>foam</td>
<td>-8.1°</td>
</tr>
<tr>
<td>91</td>
<td>187</td>
<td>-12.8°</td>
</tr>
<tr>
<td>96</td>
<td>174</td>
<td>-10.7°</td>
</tr>
<tr>
<td>65</td>
<td>amorph</td>
<td>-12.4°</td>
</tr>
<tr>
<td>89</td>
<td>212-213</td>
<td>+13.3°</td>
</tr>
<tr>
<td>70</td>
<td>189-191</td>
<td>-27.2°</td>
</tr>
<tr>
<td>79</td>
<td>183</td>
<td>-39.1°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y (%)</th>
<th>m.p. (°C)</th>
<th>αD</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>98</td>
<td>-26.8°</td>
</tr>
<tr>
<td>79</td>
<td>94 (dec.)</td>
<td>+24.5°</td>
</tr>
<tr>
<td>88</td>
<td>96 (dec.)</td>
<td>-45.5°</td>
</tr>
<tr>
<td>81</td>
<td>116-117</td>
<td>-23.3°</td>
</tr>
<tr>
<td>90</td>
<td>foam</td>
<td>-18.8°</td>
</tr>
<tr>
<td>95</td>
<td>foam</td>
<td>-6.1°</td>
</tr>
<tr>
<td>71</td>
<td>214-215</td>
<td>-25.3°</td>
</tr>
</tbody>
</table>

* c = 1, MeOH.
* b = 1, DMF.

(S2251), from Boc-Lys(Z)-pNA or Fmoc-Lys(Boc)-pNA, were synthesized in high yield as substrates for factor Xa and plasmin, respectively, and exhibited the known kinetic data. Our conclusion, that phosphorus oxychloride is a powerful condensing agent in the synthesis of p-nitroanilides, is confirmed by these results.

Reference:

Results:

C-terminal recently purpose followed by These an applied t

Introduce

C-terminus is o of reduc

Lithium esters to molar at EtOH. T

Cleavag lead to molar e: THF/EtOAc few e termina also yie contain to be ra

Acet Glu/OtO

of the r: also yie contain to be ra obtaine-

amount