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Abstract
A Sender wants to persuade multiple Receivers with homogeneous preferences and
a common belief about the state of the world to vote in favor of a proposal. Prior
to the vote Sender commits to a communication strategy which sends private, po-
tentially correlated, signals to Receivers that are contingent on the true state of the
world. While Sender benefits from using private messages rather than public com-
munication if Receivers vote sincerely, under the optimal communication strategy,
sincere voting is not in any Receiver’s best interest. If the proposal does not re-
quire unanimous agreement, Sender’s optimal communication strategy after which
sincere voting indeed constitutes a Bayes-Nash equilibrium is such that no voter is
ever pivotal.

Keywords: Bayesian Persuasion, Strategic Voting, Swing Voter’s Curse.
JEL codes: C72, D72, D82, D83.

1 Introduction

Suppose a country is holding a referendum in order to decide whether or not to adopt a
certain policy. Then, typically, government has a strict preference for either the proposal
or the status quo. For instance, in the run up to the Brexit referendum, a majority of the
cabinet campaigned against leaving the European Union (that is, in favor of the status
quo),1 whereas in the 2017 Turkish constitutional referendum government campaigned for
replacing the existing parliamentary system with a presidential system (that is, in favor
of the proposal). Either way, the aim of a political campaign run by government is to
increase the probability that their preferred outcome obtains a majority of the votes, that
is, to persuade the electorate.
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1



1.1 Voting Games

In a voting game, all voters decide between voting for or against a proposal. The proposal
is being implemented if at least k out of n voters vote for it. Voters’ utility is determined by
the unknown state of the world and the outcome that is being implemented. Throughout
the paper we assume that all voters are identical: they have the same prior and their
preferences over outcomes are aligned.2

The literature mainly distinguishes two forms of voter behavior: sincere voting and
strategic voting.3 Roughly speaking, a sincere voter operates under the assumption that
his vote is decisive, i.e., that his vote decides the election. Hence, he votes for whichever
alternative he prefers the most (given his belief) and disregards the behavior of any other
voters. A strategic voter, however, takes into account the voting behavior of others and
may, hence, vote for an alternative which does not reflect his true preference: doing so
might implement an alternative he prefers over the alternative that would have been
implemented, had he voted sincerely.4

If voters act strategically, a myriad of trivial (and unappealing) equilibria might
emerge: for instance, in a simple majority game all voters voting for their least pre-
ferred option is an equilibrium as no voter can affect the outcome by changing their vote.
Under sincere voting, on the other hand, equilibrium has no meaning as voters ignore
the behavior of others. In this paper we will combine the best of both worlds and focus
on situations in which sincere voting is an equilibrium. That is, it is optimal for each
Receiver to vote sincerely provided that all other voters vote sincerely. This allows us, in
particular, to eliminate any trivial equilibria. We illustrate this constraint, which is new
to the literature on voter persuasion, with an example.

1.2 An Illustrating Example

Consider a government (Sender) who proposes to ban cars on certain days of the year.
For simplicity, assume that changing the status quo requires the approval of two out of
three committee members (Receivers). Committee members are not certain whether the
proposal will benefit (B) or harm (H) society and vote for the proposal if they think that
the chance of B is at least 50%. Government wants the proposal to pass independently

2No idiosyncraticity is one difference with Alonso and Câmara (2016), which employs heteregeneous
Receivers and exploits this heterogeneity by targeting different winning coalitions. Chan et al. (2019)
consider heterogeneity by assuming voters have different costs to acquire information. For another paper
which considers costly information acquisition, see Matyskova (2018).

3Spenkuch (2018) argues that evidence suggests that voters cannot be neatly categorized into sincere
and strategic “types”. However, we stick to the general convention in our model.

4Wang (2013) considers sincere voting under public persuasion and strategic voting under private
persuasion with independent signals. In Alonso and Câmara (2016) agents have the same beliefs about
the state, so there is no need to consider strategic voting.
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of its benefit or harm and, hence, wants to persuade voters to approve the proposal.5

Government and committee members have a common prior belief that the ban will be
beneficial with 30% probability.6 If committee members vote sincerely, then, without
intervention, no committee member will vote in favor of the ban and the ban will not be
implemented. In particular, this is an equilibrium as no voter could change the outcome
by unilaterally changing their vote.

Fully informative research Supose that prior to the vote, government attempts to
influence the committee by conducting research and truthfully sharing the results with the
committee members. Government can, for example, ask political scientists and economists
to report their findings on the possible implications of implementing the ban.7 Given the
common prior, there is a 30% chance that this research will prove the ban on cars to
be beneficial. Hence, by conducting this research, government can increase the ex ante
probability of implementing the ban to 30%.

Persuasion with public signals Government can, however, improve upon this by
conducting a partially informative research whose results will be shared publicly.8 This
could be done, for example, by hiring a partisan economist who does a research which
only points out the benefits of implementing the ban. Let government’s research be
formalized by distributions π(·|B) and π(·|H) on some set of signals. Let b = (b, b, b) and
h = (h, h, h) be the signals in which all members receive a message that recommends to
vote either for or, respectively, against the ban. Consider the following distribution.9

π∗p B H
b 1 3

7

h 0 4
7

After observing message b any Receiver’s belief that the ban is beneficial is 1/2, so voting
in favor of the proposal is consistent with sincere voting. Again, since all voters vote

5Rather than a single entity trying to persuade many agents, there are also models in which many
entities try to persuade a single agent. Gentzkow and Kamenica (2017) show that the amount of informa-
tion revealed increases with competition. Li and Norman (2018) consider a model both with simultaneous
and sequential moves, where they show that it is possible to have a loss of information by the addition
of a sender.

6Many single Receiver models which build on Kamenica and Gentzkow (2011) also consider a Sender
or Receiver who has private information. Hedlund (2017) and Kosenko (2018) consider a Sender with
private information, whereas in Kolotilin et al. (2017), there is a privately informed Receiver.

7We assume that the only source of information of a committee member is government. Tsakas and
Tsakas (2017) consider a model where there exists noise due to exogenous information distortions and
show that increasing noise cannot be beneficial to Sender.

8Alonso and Câmara (2016), Laclau and Renou (2016), and Alonso and Câmara (2018) all use public
communication strategies.

9As each member’s posterior is the same in this case, the situation is very similar to the situation in
Kamenica and Gentzkow (2011).
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equally, this is an equilibrium. The probability that the proposal is being implemented
is exactly the probability that signal b realizes. Hence, the acceptance probability of the
proposal is 3/10 · 1 + 7/10 · 3/7 = 60%.

Persuasion with private independent signals Instead of using a public signal, gov-
ernment could communicate privately with each committee member.10 Private commu-
nication can easily be achieved by any Sender using today’s technology, especially via
social media. So, suppose government employs a research strategy which is observed
by the committee, but each member receives (conditional on the state) an independent
private message.11 We can think of this situation as employing three biased researchers
conducting three independent studies that are conditional on the true state. Each re-
searcher reports the results of their study privately to one committee member, so that
each committee member observes b or h with the following conditional probabilities.

π B H
b 1 3

7

h 0 4
7

The acceptance probability of the ban is 3
10
· 1 + 7

10
·
(
3 · 3

7
· 3

7
· 4

7
+ 3

7
· 3

7
· 3

7

)
≈ 58%, which

is strictly less than in case of public communication.

Persuasion with private correlated signals Government’s capabilities do not end
with employing independent private signals; it can do better by using correlated private
messages.12 Suppose that government hires two economists, one being honest and one
partisan. The honest economist conducts a fully informative study and reports to one
randomly selected committee member. The partisan conducts a biased study that will
send b if B is the true state and send b with probability 9/14 if H is the true state. He
reports his results to the remaining two committee members. The following table captures
the conditional probabilities for each of the five possible signal vectors being sent.

10Arieli and Babichenko (2019) also consider a multiple Receiver model with private communication
for different utility functions of Sender.

11Wang (2013) considers private strategies with independent realizations and makes a comparison with
public strategies.

12Bergemann and Morris (2016) consider correlation in an environment where players observe the
information structure but also can observe additional private messages. Heese and Lauermann (2017)
also consider correlated private messages where voters have heterogeneous and private preferences.
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π∗ B H
(b, b, b) 1 0

(b, b, h) 0 3
14

(b, h, b) 0 3
14

(h, b, b) 0 3
14

(h, h, h) 0 5
14

According to π∗ the probability of a Receiver to observe b, if the true state is H, is
3/7. Hence, the posterior on the ban being beneficial after observing b is 1/2 as before.
Thus, provided that voters act sincerely, government is able to increase the probability
of implementing its preferred outcome to 3/10 + 7/10 · 9/14 = 75% by sending private
messages.

The swing voter’s curse and the equilibrium constraint In the previous setting
committee members know that the ban will be harmful to society upon receiving h, but
are uncertain upon observing b. Still, given their posterior belief, each member votes
for the proposal upon observing b under sincere “Sender-preferred” voting.13 Yet, given
communication strategy π∗, if all voters are sincere, each one becomes pivotal if and only
if they have received b and the ban is harmful. This phenomenon is an instance of the
swing voter’s curse (Feddersen and Pesendorfer, 1996). A swing voter is an agent whose
vote is decisive, that is, a pivotal voter. The swing voter’s curse refers to situations in
which a partially informed voter is pivotal only when he should vote against his favorite
outcome.14 Given communication strategy π∗ each committee member is better off voting
against the ban after having observed b: in this case either the state is B and the other
two members have observed b as well (so he is not pivotal), or the state is H and he is
pivotal. In the former his vote has no effect on the outcome, and in the latter he is pivotal
and should vote against the ban. Thus, sincere voting cannot be an equilibrium. It is,
then, natural to ask: what can Sender achieve under the additional constraint that sincere
voting be an equilibrium? We will characterize the optimal communication strategy under
this constraint and analyze its effect on Sender’s expected utility.

1.3 Outline of the paper

In Section 2 we introduce the necessary notation, define the voting game, and formulate
Sender’s problem. In Section 3 we focus on sincere voters. We first show that Sender can

13Sincere voting depends on first-order beliefs only. Mathevet et al. (forthcoming) consider higher-
order beliefs and characterize the extent to which a Sender can manipulate agents’ beliefs by disclosing
information.

14There are empirical studies on the swing voter’s curse such as Battaglini et al. (2010) and Grosser
and Seebauer (2016). For a both theoretical and empirical approach on the swing voter’s curse in the
context of communication with experts, see Buechel and Mechtenberg (2019).
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restrict attention to straightforward communication strategies and then find the optimal
communication strategy. In Section 4 we define the Bayes-Nash equilibrium in order to
analyze the case of strategic voting. In Section 5, we find the optimal communication
strategy under strategic voting. Finally, we conclude in Section 6.

2 Preliminaries and Notation

2.1 Communication Strategies and Beliefs

Let N = {1, . . . , n} be the set of Receivers and let Ω be a finite set of states of the world.
Let Si be a finite set of messages Sender can send to Receiver i ∈ N and let S =

∏
i∈N Si

be the set of signals. A communication strategy is a function π : Ω → ∆(S) which maps
each state of the world to a joint probability distribution over signal realizations. Denote
the set of all communication strategies by Π. For each signal s ∈ S, let si ∈ Si denote
the message for Receiver i. For each s′i ∈ Si and ω ∈ Ω, let

πi(s
′
i|ω) =

∑
s∈S:si=s′i

π(s|ω),

which is the probability that Receiver i observes si given that the true state is ω. For
any π ∈ Π define Sπ = {s ∈ S| ∃ω ∈ Ω : π(s|ω) > 0}. That is, Sπ consists of signals in S
which are sent with positive probability by π. Similarly, for each π ∈ Π and i ∈ N , define
Sπi = {si ∈ Si| ∃ω ∈ Ω : πi(si|ω) > 0} to be the set of messages Receiver i observes with
positive probability under π.

Throughout the paper we assume that Sender and Receivers share a common prior
belief λ0 ∈ ∆◦(Ω) about the true state of the world, where ∆◦(Ω) denotes the set of
strictly positive probability distributions on Ω. Given λ0 ∈ ∆◦ (Ω) and π ∈ Π, a signal
s ∈ Sπ generates the posterior belief vector λs ∈ ∆(Ω)n defined by

λsi (ω) =
πi(si|ω)λ0(ω)∑

ω′∈Ω πi(si|ω′)λ0(ω′)
, i ∈ N,ω ∈ Ω.

That is, λsi (ω) denotes i’s updated belief upon receiving si that the true state is ω. Let
σ ∈ ∆(∆(Ω)n) be a distribution over belief vectors. A communication strategy π ∈ Π
induces σ if for all λ ∈ supp(σ) it holds that

σ (λ) =
∑

s∈Sπ :λs=λ

∑
ω∈Ω

π(s|ω)λ0(ω). (1)

In words, σ(λ) is the probability of posterior vector λ.15 We say that σ is inducible if there
exists a communication strategy which induces it. We call σ finite if |supp(σ)| <∞.16

15Note that if λ does not belong to supp(σ), then the equality in (1) remains valid as then the right-hand
side is equal to 0.

16As S is finite, each inducible σ is a finite distribution.
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2.2 Voting Problems

A voting problem is a tuple
(
N,Ω, Z, (Ai)i∈N , k, v, (ui)i∈N , λ

0
)

of the set of Receivers N ,
the set of states Ω, the set of outcomes Z, Receivers’ action sets Ai that determine the
outcome together with integer quota k ≥ 1, Sender’s utility function v : Z × Ω → R,
Receivers’ utility functions ui : Z × Ω→ R and a common prior λ0.

From here we shall focus on a binary set of states, that is, Ω = {X, Y }. We assume
that there are two voting outcomes which we represent by Z = {x, y} and that there are
two possible actions for each Receiver. That is, for each i ∈ N we assume Ai = {x, y}.
Action x means casting a vote in favor of x and action y a vote in favor of y.

Let A =
∏

i∈N Ai be the space of action profiles. Let zk : A→ Z be a voting rule such
that for each a ∈ A, we have

zk(a) =

{
x if |i ∈ N : ai = x| ≥ k,

y otherwise.

So, zk(a) is the outcome of the vote when the action profile is a and quota is k.17 If k = n,
then zk is the unanimity rule.

We assume that Sender’s utility is independent of the state and only depends on the
outcome. For any z ∈ Z, Sender’s utility function is defined as

v(z) =

{
1 if z = x,

0 otherwise.

That is, Sender wants to implement x and does not care about the true state.
For each i ∈ N , let ui : Z × Ω → {0, 1} be the utility function of Receiver i, where

ui(z, ω) is the utility of i when the implemented outcome is z and the true state is ω.
Define ui by

ui(z, ω) =

{
1 if [z = x and ω = X] or [z = y and ω = Y ],

0 otherwise.

That is, Receivers want the implemented outcome to match the true state of the world.

2.3 Persuasion

Let a communication strategy π ∈ Π be given. For each i ∈ N , let απi : Sπi → Ai be the
sincere action function of Receiver i. That is, απi assigns the action that a sincere voter
i would choose upon observing si. More precisely, let

απi (si) =

{
x if λsi (X) ≥ 1

2
,

y otherwise.

17Note that any anonymous and monotonic voting rule is of this form.
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Note that απi is the “Sender-preferred” sincere action function: Receivers vote in favor of
Sender’s preferred outcome in case they are indifferent. In particular, if λ0 (X) ≥ 1/2,
then interests of Sender and Receivers are aligned and there is no need for communication.

Let π ∈ Π be a communication strategy and for any i ∈ N let

Mx
i (π) = {m ∈ Sπi | απi (m) = x} ,

My
i (π) = {m ∈ Sπi | απi (m) = y} ,

which are the sets of messages in Sπi which make i choose x and y, respectively.
We say that Receiver i is pivotal in s ∈ Sπ if for any ai ∈ Ai, zk(ai, απ−i(s−i)) = ai.

That is, i is pivotal in the voting game following s if i’s vote determines the voting outcome
given that all j 6= i vote sincerely. Define

Zx(π) =
{
s ∈ Sπ| zk (απ(s)) = x

}
as the set of signals in Sπ that lead to x being implemented under sincere voting. Sender’s
expected utility given λ0 ∈ ∆◦ (Ω) and π ∈ Π is the value of π at λ0 and denoted by
V π (λ0). The value V π (λ0) equals the probability that x is being implemented given λ0

and π. That is,

V π
(
λ0
)

= Eλ0
[
Eπ

[
v
(
zk (απ(s))

)]]
= λ0(X)

∑
s∈Zx(π)

π(s|X) + λ0(Y )
∑

s∈Zx(π)

π(s|Y ). (2)

Let Π′ ⊆ Π. We say that π∗ ∈ Π′ is optimal in Π′ at λ0 ∈ ∆◦ (Ω) if

V π∗
(
λ0
)

= sup
π∈Π′

V π
(
λ0
)
. (3)

3 Sincere Voting

In our motivating example of a government wanting to ban cars on certain days of the
year, the messages committee members observe are recommendations to either vote in
favor of or against the ban, that is, for each i ∈ N , Sπi ⊆ Ai. However, it could also
be that messages are statistics about the pollution caused by excess car usage on which
Receivers base their decision, rather than a recommended action, so that Sπi would not
be a subset of Ai. In Section 4.1 we show that we can without loss of generality assume
Sπi ⊆ Ai for all i ∈ N when searching for the optimal communication strategy of Sender,
a property known as straightforwardness of the communication strategy.

3.1 Straightforward Communication Strategies

Definition 3.1. A communication strategy π ∈ Π is straightforward if for all i ∈ N

8



(i) Sπi ⊆ Ai,

(ii) απi (ai) = ai for all ai ∈ Ai.

Denote the set of all straightforward communication strategies by Πs. Under a straight-
forward communication strategy, for each i ∈ N , the set of messages i can observe with
positive probability is a subset of his action set; thus, the communication strategy sends
a “recommended” action to each Receiver. Condition (ii) requires that these recommen-
dations be convincing in the sense that sincere voters follow their recommendations.

By definition, a communication strategy π ∈ Π with Sπ ∈ {x, y}n is straightforward
if for any i ∈ N and s, t ∈ Sπ with si = x and ti = y, we have λsi (X) ≥ 1/2 and
λti (Y ) > 1/2. Hence, π is straightforward if and only if for all i ∈ N

λ0(X)πi (x|X) ≥ λ0(Y )πi (x|Y ) , (4)

λ0(X)πi (y|X) < λ0(Y )πi (y|Y ) . (5)

We show in Lemma 3.2 that most of the time we do not have to pay attention to (5).18

Lemma 3.2. Let λ0(X) ∈ (0, 1/2). Then π ∈ Πs if and only if π satisfies (4).

Although focusing on straightforward communication strategies would simplify the prob-
lem, one important defect of doing so is the shrinkage in the set of inducible posteriors:
it is not in general true that any inducible posterior can be induced by a straightforward
communication strategy. We demonstrate this in the next example.

Example 3.3. Let N = {1, 2} and λ0(X) = 1/3. Let Si = {w, x, y} be the set of
messages. Let the communication strategy π̂ ∈ Π be given by

π̂ ω = X ω = Y
(w, x) 1

2
0

(w, y) 0 1
2

(w,w) 1
2

1
2

A simple calculation of the posteriors shows that the support of the distribution σ̂ induced
by π̂ is supp (σ̂) = {(1/3, 1), (1/3, 0), (1/3, 1/3)} , where a posterior belief vector λ is
represented by (λ1(X), λ2(X)). The communication strategy π̂ is not straightforward since
Receiver 2 has more messages than actions, so that Sπ2 * A2. The reason we cannot find
a straightforward communication strategy which induces σ̂ is that Receiver 2 has three
different posterior beliefs under σ̂, whereas a straightforward communication strategy can
induce at most |Ai| = 2 different posterior beliefs. 4

18All proofs can be found in the appendix.
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In spite of this limitation of focusing on straightforward communication strategies, it is
still without loss of generality to do so when solving the optimization problem in (3):
there might not always exist a straightforward communication strategy which induces the
same distribution as any given π̂ ∈ Π, but there always exists π ∈ Πs which has at least
the same value as π̂.

Lemma 3.4. Let λ0 ∈ ∆◦ (Ω) and π̂ ∈ Π. Then there is π ∈ Πs with V π (λ0) ≥ V π̂ (λ0).

If a certain value can be achieved, it can be achieved using a straightforward commu-
nication strategy. So, when searching for Sender’s optimal communication strategy at
any given λ0, we can without loss of generality restrict our attention to straightforward
communication strategies. We demonstrate Lemma 3.4 in the next example.

Example 3.5. Recall Example 3.3, where we showed that no straightforward commu-
nication strategy can induce σ̂. Under π̂, signals (w,w) and (w, y) lead to action profile
(y, y) and signal (w, x) leads to action profile (y, x). Assume that outcome x is imple-
mented if at least one of the agents votes for x, i.e., k = 1. Then the probability that x
is implemented is

V π̂
(
λ0
)

= λ0(X)π̂((w, x)|X) + λ0(Y )π̂((w, x)|Y ) =
1

3
· 1

2
+

2

3
· 0 =

1

6
.

Let π ∈ Π be such that Sπ = {(y, y), (y, x)} and, for all ω ∈ Ω, let π((y, y)|ω) =
π̂((w,w)|ω) + π̂((w, y)|ω) and π((y, x)|ω) = π̂((w, x)|ω). Then

π ω = X ω = Y
(y, x) 1

2
0

(y, y) 1
2

1

We have supp(σ) = {(1/3, 1), (1/3, 1/5)} 6= supp (σ̂). Yet, x is implemented if Receivers
have posterior (1/3, 1), that is if the signal realization is (y, x). Thus, x is implemented
with probability

V π
(
λ0
)

= λ0(X)π((y, x)|X) + λ0(Y )π((y, x)|Y ) =
1

3
· 1

2
+

2

3
· 0 =

1

6

as well. 4

3.2 Optimal Public Communication

We say that a communication strategy π ∈ Π is public if for all s ∈ Sπ and all i, j ∈ N ,
si = sj, that is, if all Receivers observe the same message under π. Since agents have
homogeneous preferences, a public communication strategy either persuades all Receivers
or none. Thus, the analysis of a multiple Receiver model with public communication
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strategies is very similar to the well-known analysis of the single Receiver model in Ka-
menica and Gentzkow (2011). Having that said, we proceed with a brief discussion of the
former in order to allow for later references.

Let Πp be the set of all public communication strategies. The most that Sender can
achieve using public signals is

V ∗p
(
λ0
)

= sup
π∈Πp

V π
(
λ0
)
. (6)

If the communication strategy π̂ in Lemma 3.4 is public, then π as constructed in the
proof of the lemma is public as well. Hence, when searching for the optimal public com-
munication strategy, it is no of loss of generality to consider only public straightforward
communication strategies, that is, those π ∈ Π with Sπ ⊆ {x,y}.19

Proposition 3.6. Let λ0 ∈ ∆◦ (Ω). Let π∗p be given by

π∗p (s|ω) =


1 if s = x and ω = X,

min
{
λ0(X)
λ0(Y )

, 1
}

if s = x and ω = Y,

max
{

1− λ0(X)
λ0(Y )

, 0
}

if s = y and ω = Y.

Then π∗p is optimal in Πp. In particular, V ∗p (λ0) = min {2λ0(X), 1}.

Via public communication Sender can achieve the value 2λ0(X). In the following sections
we show how Sender can improve upon this by communicating privately with Receivers.

3.3 Optimal Private Communication

Our aim is to find a communication strategy which maximizes Sender’s expected utility
if Sender can use arbitrary private signals. In this case, the highest value she can achieve
at any λ0 ∈ ∆◦ (Ω) is

V ∗
(
λ0
)

= sup
π∈Π

V π
(
λ0
)
.

For the single Receiver case, Kamenica and Gentzkow (2011) show that it is optimal for
Sender to send x to the Receiver with probability 1 if the state is X. Lemma 3.7 shows
that this result extends to the multiple Receiver case.20

19We denote by x,y ∈ A the vectors (xi)i∈N and (yi)i∈N , respectively.
20Our result also follows from Lemma 1 of Arieli and Babichenko (2019). In their model, agents want

their action to match the true state, whereas in our model agents want the outcome of the vote to match
the true state. However, as sincere voters operate under the assumption that their vote is decisive, the
two optimization problems are equivalent. Nevertheless, for the sake of completeness, we provide a simple
proof in the appendix.
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Lemma 3.7. Let λ0 ∈ ∆◦ (Ω) and π̂ ∈ Π. Then there is π ∈ Πs such that for all i ∈ N
it holds that πi(x|X) = 1 and V π (λ0) ≥ V π̂ (λ0).

The voting rule zk is anonymous: only the total number of votes in favor of each outcome
matters, not the identities of the voters who voted for each alternative. Hence, we can
expect that communication strategies need not discriminate between Receivers either. In
order to make this claim formal, let B denote the set of all permutations on N .21 For
each s ∈ Sπ and each b ∈ B, denote by sb the unique signal vector with sbi = sb(i) for
all i ∈ N . A communication strategy π ∈ Π is called anonymous if π (s|ω) = π

(
sb|ω

)
for all bijections b ∈ B and all ω ∈ Ω. The set of all straightforward and anonymous
communication strategies is denoted by Πsa. In the next lemma we show that Sender can
indeed restrict her search for the optimal communication strategy to Πsa.

Lemma 3.8. Let λ0 ∈ ∆◦ (Ω) and π̂ ∈ Π. Then there is π ∈ Πsa with V π (λ0) ≥ V π̂ (λ0).

In the following, define for ` = 0, . . . , n,

Sx` = {s ∈ {x, y}n : | {j ∈ N : sj = x} | = `} .

That is, Sx` is the set of signals in which exactly ` Receivers observe x. An anonymous
communication strategy π can be represented by weights q = (q0, . . . , qn) ≥ 0 and r =
(r0, . . . , rn) ≥ 0 with

∑n
`=0 q` =

∑n
`=0 r` = 1 such that

π (s|X) =

(
n

`

)−1

q`, s ∈ Sx` ,

π (s|Y ) =

(
n

`

)−1

r`, s ∈ Sx` .

That is, q` is the probability that x is sent to exactly ` Receivers if the state is X and
r` is the probability that x is sent to exactly ` Receivers if the state is Y . Thus, the
probabilities that an agent observes x given that the state is X and Y , respectively, are

πi (x|X) =
n∑
`=0

∑
s∈Sx` :si=x

(
n

`

)−1

q` =
n∑
`=0

(
n− 1

`− 1

)(
n

`

)−1

q` =
n∑
`=0

`

n
q` (7)

πi (x|Y ) =
n∑
`=0

∑
s∈Sx` :si=x

(
n

`

)−1

r` =
n∑
`=0

(
n− 1

`− 1

)(
n

`

)−1

r` =
n∑
`=0

`

n
r`. (8)

Recall that by Lemma 3.7, it is optimal to send x to everyone with probability 1 if the state
is X, that is, there is an optimal anonymous communication strategy with representation
(q, r) satisfying qn = 1. So, what remains is finding the optimal values for r. In the next
proposition, we express V ∗ (λ0) as the solution to a simple linear optimization problem.

21A permutation on N is a bijection b : N → N .
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Proposition 3.9. Let λ0 ∈ ∆◦ (Ω). Then V ∗ (λ0) is the solution to

max
r0,rk

λ0(X) + λ0(Y )rk

s.t. r0 ≥ 0, (9)

rk ≥ 0, (10)

r0 + rk = 1, (11)

λ0(X)− λ0(Y )
k

n
rk ≥ 0. (12)

The intuition behind Proposition 3.9 is as follows. Suppose the true state is Y and
message x is sent to ` < k Receivers with positive probability. Under a straightforward
communication strategy such a signal will not implement x and can be replaced by y.
Suppose the true state is Y and message x is sent to ` > k Receivers, so x is implemented
under a straightforward communication strategy. Sending x to exactly k Receivers would
have the same effect without violating the straightforwardness constraint. Hence, choosing
r such that r0 + rk = 1 is without loss of generality.

By Lemma 3.8 and Proposition 3.9, for any λ0 ∈ ∆◦(Ω), it holds that

V ∗
(
λ0
)

= sup
π∈Π

V π
(
λ0
)

= max
π∈Πsa

V π
(
λ0
)
,

i.e., there is an anonymous and straightforward communication strategy that achieves
V ∗ (λ0). Such an optimal communication strategy is given in Theorem 3.10.22

Theorem 3.10. Let π∗ ∈ Πsa with representation (q∗, r∗) be given by

(q∗n; r∗0, r
∗
k) =

{
(1; 0, 1) if λ0(X) ≥ k

n+k
,(

1; 1− λ0(X)
λ0(Y )

n
k
, λ

0(X)
λ0(Y )

n
k

)
if λ0(X) < k

n+k
.

Then π∗ is optimal at λ0. In particular, V ∗ is given by

V ∗
(
λ0
)

= min

{
n+ k

k
λ0 (X) , 1

}
.

The communication strategy π∗ differs from π∗p only if the state is Y. By sending x to
k rather than n Receivers, Sender can increase the probability that at least k voters
observe x without affecting each individual Receiver’s probability of observing x, so the
straightforwardness constraint remains satisfied.

Example 3.11. Let n = 3, k = 2, and λ0(X) = 1/3. Since λ0(X) = 1/3 < 2/5 =
k/(n + k), by Theorem 3.10, the optimal private communication strategy is given by
q∗3 = 1, r∗0 = 1/4, and r∗2 = 3/4. Alternatively, we can represent π∗ by

22Note that Theorem 3.10 is equivalent to Corollary 2 of Arieli and Babichenko (2019).
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π∗ ω = X ω = Y
(x, x, x) 1 0

(x, x, y) 0 1
4

(x, y, x) 0 1
4

(y, x, x) 0 1
4

(y, y, y) 0 1
4

Moreover, Sender is better off employing π∗ rather than π∗p as V π∗ (1/3) = 5/6 > 2/3 =
V π∗p (1/3). 4

4 Strategic Voting

Recall the sincere voters from Example 3.11 and consider some fixed Receiver i. If the true
state is X, all Receivers observe x and, as they act sincerely, Receiver i is not pivotal. If,
on the other hand, the state is Y , he is pivotal upon observing x as his vote will determine
the outcome. Therefore, i is better off choosing action y upon observing x: either the true
state is indeed X and his vote does not matter, or the state is Y in which case voting for
y is strictly beneficial. This phenomenon has been coined the swing voter’s curse: even
though an agent believes that the true state is X, his rational action is to vote in favor of
y. The following example illustrates this point by calculating Receiver’s expected utility
from voting x after having observed x.

Example 4.1. Recall the communication strategy π∗ in Example 3.11. The expected
utility of Receiver i from voting for x conditional on having observed message x and
provided that all other Receivers vote sincerely is given by

λxi (X)
∑

s∈Sπ :si=x

π((x, s−i)|X)

πi (x|X)
ui (x,X) + λxi (Y )

∑
s∈Sπ :si=x

π((x, s−i)|Y )

πi (x|Y )
ui (x, Y )

=
1

2
· 1 · 1 + 0 =

1

2
.

On the other hand, his expected utility from voting for y conditional on having observing
message x and provided that all other Receivers vote sincerely is given by

λxi (X)
∑

s∈Sπ :si=x

π((x, s−i)|X)

πi (x|X)
ui (x,X) + λxi (Y )

∑
s∈Sπ :si=x

π((x, s−i)|Y )

πi (x|Y )
ui (y, Y )

=
1

2
· 1 · 1 +

1

2
·
(

1/4

1/2
· 1 +

1/4

1/2
· 1
)

= 1.

Hence, choosing action y upon observing message x is optimal for Receiver i. 4
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Requiring that sincere voting indeed be in the voters’ best interest poses a new constraint
on Sender’s optimization problem. This constraint is formalized in the following definition.

Definition 4.2. For any π ∈ Π, we say that απ = (απi )i∈N constitutes a Bayes-Nash
equilibrium if for all i ∈ N , s′ ∈ Sπ, and ai ∈ Ai, it holds that∑

ω∈Ω

λs
′

i (ω)
∑

s∈Sπ :si=s′i

π((s′i, s−i)|ω)

πi (s′i|ω)
ui
(
zk
(
απi (s′i), α

π
−i(s−i)

)
, ω
)

≥
∑
ω∈Ω

λs
′

i (ω)
∑

s∈Sπ :si=s′i

π((s′i, s−i)|ω)

πi (s′i|ω)
ui
(
zk
(
ai, α

π
−i(s−i)

)
, ω
)
. (13)

Given a signal realization and other Receivers’ sincere actions, (13) requires that a Re-
ceiver not be able to profitably deviate from απi (si). One can easily observe that if a signal
s is sent under which no agents are pivotal, there is no difference in the expected utility
from voting for x and y for any Receiver. Thus, an investigation of the BNE constraint
(13) targets signals in which some agent is pivotal. We therefore define, for each i ∈ N ,
π ∈ Π, and m ∈ Sπi the set

P i,m(π) = {s ∈ Sπ : si = m and i is pivotal} .

We start by simplifying the BNE constraint (13) by means of these sets.

Lemma 4.3. Let λ0 ∈ ∆◦ (Ω) and π ∈ Π. Then απ = (απi )i∈N is a BNE if and only if
for all i ∈ N , m ∈Mx

i (π), and m′ ∈My
i (π) it holds that

λ0(X)
∑

s∈P i,m(π)

π(s|X) ≥ λ0(Y )
∑

s∈P i,m(π)

π(s|Y ), (14)

λ0(Y )
∑

s∈P i,m′ (π)

π(s|Y ) ≥ λ0(X)
∑

s∈P i,m′ (π)

π(s|X). (15)

Because of the swing voter’s curse, sincere voting cannot be an equilibrium under the
optimal private communication strategy π∗ if k ≤ n− 1: upon observing x, Receivers are
pivotal with probability 1 if the state is Y and not pivotal if the state is X. Hence, voting
for y is optimal. However, sincere voting is a BNE under π∗ if zk is the unanimity voting
rule, i.e., if k = n.

Proposition 4.4. Let λ0 ∈ ∆◦ (Ω) and let π∗ ∈ Π be the optimal private communication
strategy at λ0 in Theorem 3.10. Then απ

∗
is a BNE if and only if k = n.

If k = n, then π∗ is a public communication strategy. But even if k ≤ n − 1, any public
communication strategy implements sincere voting as BNE: in this case no agent is ever
pivotal and the two constraints in Lemma 4.3 are trivially satisfied.
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π∗ ω = X ω = Y
(x, x, x, x, x) 1 0

(x, x, x, y, y) 0 1
12

(x, x, y, y, x) 0 1
12

(x, y, y, x, x) 0 1
12

(y, y, x, x, x) 0 1
12

(y, x, y, x, x) 0 1
12

(y, x, x, y, x) 0 1
12

(y, x, x, x, y) 0 1
12

(x, y, x, y, x) 0 1
12

(x, x, y, x, y) 0 1
12

(x, y, x, x, y) 0 1
12

(y, y, y, y, y) 0 1
6

Table 1: Communication strategy π∗.

π ω = X ω = Y
(x, x, x, x, x) 0 0

(x, x, x, y, y) 1
10

1
20

(x, x, y, y, x) 1
10

1
20

(x, y, y, x, x) 1
10

1
20

(y, y, x, x, x) 1
10

1
20

(y, x, y, x, x) 1
10

1
20

(y, x, x, y, x) 1
10

1
20

(y, x, x, x, y) 1
10

1
20

(x, y, x, y, x) 1
10

1
20

(x, x, y, x, y) 1
10

1
20

(x, y, x, x, y) 1
10

1
20

(y, y, y, y, y) 0 1
2

Table 2: Communication strategy π.

Suppose π∗ from Theorem 3.10 is being implemented and Receiver i observes x. Then
it is in his best interest to vote y as we have seen in Example 4.1. Given the constraints
in Lemma 4.3, there are two intuitive ways to adjust π∗ which ensure sincere voting be
an equilibrium: following the observation x one either needs that i’s probability of being
pivotal is higher if the state is X (at π∗ this probability is 0) or lower if the state is Y (at
π∗ this probability is 1). We illustrate both approaches in the following example.

Example 4.5. Let n = 5, k = 3, and λ0(X) = 1/3. The optimal private communication
strategy π∗ is given in Table 1 and a communication strategy π with higher probability of
being pivotal if the state is X is given in Table 2. Note that π is chosen such that r3 is as
high as possible, subject to the constraints imposed by straightforwardness (4) and BNE
constraints (14) and (15). For any i ∈ N , we have λxi (X) = 1/2, so that απi (x) = x. A
simple calculation shows that upon receiving x Receivers are indifferent between following
their recommendation and deviating. That is, (14) holds with equality. Moreover, agents
are never pivotal upon observing y, so (15) is trivially satisfied. Therefore, απ is a BNE.
However, π does not improve upon π∗p:

V π

(
1

3

)
=

1

3

∑
s∈Zx(π)

π(s|X) +
2

3

∑
s∈Zx(π)

π(s|Y ) =
1

3
· 1 +

2

3
· 1

2
=

2

3
= V ∗p

(
1

3

)
.

Now consider communication strategy π′ in Table 3 where x is sent to k + 1 = 4 agents
rather than a minimal winning coalition consisting of k = 3 agents if the state is Y .
Clearly, P i,x (π) = P i,y (π) = ∅, that is, an agent’s probability of being pivotal is always
0. Thus, (14) and (15) hold with equality, so that απ

′
is a BNE. For all i ∈ N , we have
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π′ ω = X ω = Y
(x, x, x, x, x) 1 0

(x, x, x, x, y) 0 1
8

(x, x, x, y, x) 0 1
8

(x, x, y, x, y) 0 1
8

(x, y, x, x, y) 0 1
8

(y, x, x, x, x) 0 1
8

(y, y, y, y, y) 0 3
8

Table 3: Communication strategy π′.

λxi (X) = 1/2 and λyi (X) = 0. So, π′ is straightforward as well. Moreover,

V π′
(

1

3

)
=

1

3

∑
s∈Zx(π′)

π′(s|X) +
2

3

∑
s∈Zx(π′)

π′(s|Y ) =
1

3
· 1 +

2

3
· 5

8
=

3

4
>

2

3
= V ∗p

(
1

3

)
.

that is, π′ improves upon π∗p. 4

5 Optimal Communication under Strategic Voting

In Proposition 4.4 we have characterized an optimal communication strategy that imple-
ments sincere voting as BNE for the case k = n. In this section we will, therefore, focus
on k ≤ n − 1. Let Πe be the set of all communication strategies under which sincere
voting constitutes a BNE, i.e., Πe = {π ∈ Π| απ is a BNE}. Sender’s problem is to find
π ∈ Πe which maximizes her expected utility. That is,

V ∗e
(
λ0
)

= sup
π∈Πe

V π
(
λ0
)
.

We first show that even under the additional BNE constraints (14) and (15) we can still
restrict attention to straightforward and anonymous communication strategies. Let Πsae

denote the set of communication strategies in Πe that are straightforward and anonymous.

Lemma 5.1. Let λ0 ∈ ∆◦ (Ω) and π̂ ∈ Πe. Then there is π ∈ Πsae with V π (λ0) ≥ V π̂ (λ0).

In Proposition 5.4 we will express V ∗e (λ0) as the solution to a linear optimization problem.
Lemma 5.1 allows us again to represent the constraints in terms of parameters q and r.
In particular, the two BNE constraints in Lemma 4.3 are equivalent to

λ0(X)qk ≥ λ0(Y )rk, (16)

λ0(Y )rk−1 ≥ λ0(X)qk−1. (17)

A trivial way to satisfy these constraints is to choose qk−1 = qk = rk = 0. The next lemma
shows that this can be done without loss of generality.
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Lemma 5.2. Let λ0 ∈ ∆◦ (Ω), π̂ ∈ Πsae, and k ≤ n− 1. Then there exists π ∈ Πsae with
representation (q, r) such that qk−1 = qk = rk = 0 and V π (λ0) ≥ V π̂ (λ0).

Lemma 5.2 is in stark contrast to Theorem 3.10: when no BNE constraint is present, it
is in Sender’s best interest to make Receivers pivotal upon observing x if the state is Y ,
i.e., rk > 0.23 We show next how the problem can be further simplified.

Lemma 5.3. Let λ0 ∈ ∆◦ (Ω), π̂ = (q̂, r̂) ∈ Πsae, and k ≤ n − 1. Then there exists
π ∈ Πsae with representation (q, r) such that qn = 1, r` = 0 for all ` 6= 0, k + 1, and
V π (λ0) ≥ V π̂ (λ0).

When choosing q and r as suggested in Lemma 5.3, constraints (16) and (17) are clearly
satisfied. Thus, the optimization problem that Sender faces under the additional BNE
constraint is very similar to the one in Proposition 3.9.

Proposition 5.4. Let λ0 ∈ ∆◦ (Ω) and k ≤ n− 1. Then V ∗e (λ0) is the solution to

max
r0,rk+1

λ0(X) + λ0(Y )rk+1

s.t. r0 ≥ 0, (18)

rk+1 ≥ 0, (19)

r0 + rk+1 = 1, (20)

λ0(X)− λ0(Y )
k + 1

n
rk+1 ≥ 0. (21)

Interestingly, Proposition 5.4 differs from Proposition 3.9 only in that the BNE constraint
shifts weight from rk to rk+1. As all constraints are weak inequalities, and because of
Lemma 5.1, for any λ0 ∈ ∆◦(Ω), it holds that

V ∗e
(
λ0
)

= max
π∈Πsae

V π
(
λ0
)
,

so there is π ∈ Πsae that achieves the optimal value. Such an optimal communication
strategy is given in Theorem 5.5.

Theorem 5.5. Let λ0 ∈ ∆◦ (Ω). If k ≤ n−1, then the communication strategy π∗e ∈ Πsae

with representation (q∗e, r∗e) given by

(
q∗en ; r∗e0 , r

∗e
k+1

)
=

{
(1; 0, 1) if λ0(X) ≥ k+1

n+k+1(
1; 1− λ0(X)

λ0(Y )
n
k+1

, λ
0(X)
λ0(Y )

n
k+1

)
if λ0(X) < k+1

n+k+1

is optimal at λ0 in Πe. In particular, the optimal value function is given by

V ∗e
(
λ0
)

= min

{
n+ k + 1

k + 1
λ0(X), 1

}
.

23We should mention that Lemma 5.2 is not true for k = n, as in that case it is optimal for Sender to
make all Receivers observe x if the state is X, i.e., qk = qn = 1.
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Theorem 5.5 covers the case that voting is not unanimous. Lemma 5.3 established that for
an optimal communication strategy π∗e it holds that q∗en = 1. If λ0(X) ≥ (k+1)/(n+k+1),
then it is optimal to send x with probability 1 to a coalition of k+ 1 Receivers if the state
is Y . So, Receivers are not pivotal in either state and x is implemented with probability 1.
If λ0(X) < (k + 1)/(n+ k + 1), then r∗e0 > 0. As there is a positive probability that x is
not implemented, the value of the optimal communication strategy is strictly less than 1.

If k ≥ n − 1, Proposition 4.4 and Theorem 5.5 together imply that a public signal
is optimal. Yet, if k = n − 1, there is another, very different, optimal communication
strategy: in Example 4.5 we presented π which had the property that agents were pivotal
upon observing x in either state, and we showed that this strategy obtains the same value
as the optimal public communication strategy π∗p. The fact that π∗p is optimal under
the BNE constraint if k = n− 1 motivates the following corollary.

Corollary 5.6. Let k = n− 1 and λ0 ∈ ∆◦ (Ω). The communication strategy represented
by qk = 1, rk = λ0 (X) /λ0 (Y ) qk, and r0 = 1− rk is optimal.

In order to prove the corollary, one only needs to verify that the constraints are satisfied
and that this communication strategy performs as well as π∗p. The corollary highlights a
fundamentally different way to achieve the optimal value in this setting.

If k ≤ n−1, designing the communication strategy so that sincere behavior constitutes
a BNE is not without a cost for Sender, namely losing some probability of implementing
her preferred outcome.

Corollary 5.7. Let λ0 ∈ ∆◦ (Ω).

(i) If k ≤ n− 1 then V ∗p (λ0) ≤ V ∗e (λ0) ≤ V ∗ (λ0) ≤ k+1
k

n+k
n+k+1

V ∗e (λ0).

(ii) If k = n then V ∗ (λ0) = V ∗p (λ0) = V ∗e (λ0).

In Figure 1, we plot the value functions V ∗, V ∗e and V ∗p for n = 5 and k = 3. Sender’s
expected utility is highest when she does not care about implementing sincere voting as a
BNE, which is given by the straight line in Figure 1. Under the BNE constraint she cannot
prevent a decrease in the probability of implementing her preferred outcome and ends up
with a lower expected utility, i.e., V ∗ (λ0) > V ∗e (λ0) for λ0(X) < (k + 1)/(n+ k + 1).

It is easy to see that the value of an optimal communication strategy which implements
sincere voting as BNE is decreasing in the quota.

Corollary 5.8. Let λ0 ∈ ∆◦ (Ω). The optimal value V ∗e (λ0) is weakly decreasing in k.

This result is intuitive, since persuasion becomes more difficult for Sender as the number
of Receivers that have to be convinced increases. In particular, the value of the optimal
communication strategy which implements sincere voting as BNE decreases with k and
equals the value of the optimal public communication strategy if k ≥ n− 1. In contrast,
if we fix the quota, then Sender can implement x with probability 1 when the number of
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λ0

V (λ0)

1
2

1

1

0

V ∗ V ∗e

V ∗p

Figure 1: Values of π∗, π∗e and π∗p for n = 5 and k = 3.

Receivers tends to infinity, i.e., limn→∞ V
∗e (λ0) = 1. Finally, if the the quota is a fixed

ratio of the number of voters as in case of majority voting, Theorem 5.5 reveals that the
cost of implementing sincere voting as BNE decreases as the population increases. In
particular, if k = dpne for some p ∈ (0, 1], one has, for all λ0 ∈ ∆◦(Ω),

lim
n→∞

V ∗e
(
λ0
)

= lim
n→∞

V ∗
(
λ0
)

=

{
1 if λ0(X) ≥ p

1+p
,

1+p
p
λ0(X) if λ0(X) < p

1+p
.

6 Conclusion

This paper investigates Bayesian persuasion where prior to a vote, a Sender attempts to
persuade some homogeneous Receivers to vote for her favorite outcome. Motivated by
social media that allow for targeted communication with individual receivers, we allow
Sender to use private messages that may be correlated. While it is indeed beneficial
for Sender to employ a private communication strategy with correlated messages rather
than a public communication strategy, this might lead to situations in which Receivers
should not vote according to their belief, that is, situations in which sincere voting is not
an equilibrium. We show that the most efficient way for Sender to ensure that sincere
voting be in the best interest of each Receiver is to send signals after which nobody is
pivotal. That is, instead of persuading minimal winning coalitions, Sender should target
slightly larger coalitions. This comes at a cost in terms of success probability, but this
cost decreases as the population increases.
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A Proofs

Proof of Lemma 3.2. It is sufficient to show that (4) implies (5). So, let (4) be satis-
fied. Then

λ0(X)πi (y|X) = λ0(X) (1− πi (x|X))

(4)

≤ λ0(X)− λ0(Y )πi (x|Y )

= λ0(X)− λ0(Y ) + λ0(Y )πi(y|Y )

< λ0(Y )πi(y|Y ),

where the first inequality follows from (4) and the last inequality holds since λ0(X) <
1/2 < λ0(Y ). So, π satisfies (5). Hence, π is straightforward.

Proof of Lemma 3.4. If λ0 (X) ≥ 1/2, let π ∈ Πs be defined as π (x|ω) = 1 for all ω ∈
Ω and observe that V π (λ0) = 1 ≥ V π̂ (λ0) . Let λ0 (X) ∈ (0, 1/2) . For each action profile
a ∈ A, define Sa(π̂) =

{
s ∈ Sπ̂| απ̂(s) = a

}
, which is the set of signals in Sπ̂ that lead to

action profile a under sincere voting. Note that for a 6= b, we have Sa(π̂) ∩ Sb(π̂) = ∅.
Define a communication strategy π ∈ Π by π(a|ω) =

∑
s∈Sa(π̂) π̂(s|ω) for each ω ∈ Ω and

a ∈ A, and note that Sπi ⊆ Ai for all i ∈ N . Fix i ∈ N . Then, for any ω ∈ Ω and ai ∈ Sπi ,

πi(ai|ω) =
∑

t∈Sπ :ti=ai

π(t|ω) =
∑

t∈Sπ :ti=ai

∑
s∈St(π̂)

π̂(s|ω).

Recall that for each i ∈ N we have Mx
i (π̂) =

{
m ∈ Sπ̂i | απ̂i (m) = x

}
, which is the set of

messages after which i chooses action x under sincere voting. Since λ0 (X) ∈ (0, 1/2), by
Lemma 3.2 it is sufficient to show that π satisfies (4).

Claim: It holds that ⋃
t∈Sπ :ti=x

St(π̂) =
⋃

m∈Mx
i (π̂)

{
t′ ∈ Sπ̂ : t′i = m

}
, (22)

and both unions are over disjoint sets.

Proof. Let s ∈
⋃
t∈Sπ :ti=x

St(π̂). Then, there exists t ∈ Sπ with ti = x such that

s ∈ St(π̂). Thus, by the definition of St (π), απ̂i (si) = x, so that si ∈Mx
i (π̂). In particular,

s ∈
{
t′ ∈ Sπ̂ : t′i = si

}
⊆
⋃
m∈Mx

i (π̂)

{
t′ ∈ Sπ̂ : t′i = m

}
. For the converse, suppose s ∈⋃

m∈Mx
i (π̂)

{
t′ ∈ Sπ̂ : t′i = m

}
. Then there exists m ∈ Mx

i (π̂) with si = m. Let t =

απ̂(s) ∈ A and observe that ti = απ̂i (m) = x. Since by construction s ∈ St (π̂) and t ∈ Sπ,
it holds that s ∈

⋃
t∈Sπ :ti=x

St(π̂).

As noted before, for any a, b ∈ Sπ with a 6= b we have Sa (π̂)∩Sb (π̂) = ∅. Moreover, for
any m,m′ ∈ Mx

i (π̂) with m 6= m′, we have
{
t′ ∈ Sπ̂ : t′i = m

}
∩
{
t′ ∈ Sπ̂ : t′i = m′

}
= ∅.

Thus, both unions are over disjoint sets. This proves the claim. �
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Let Mx
i (π̂) = {m1, . . . ,mL} for some L ≥ 1. For each ` ∈ {1, . . . , L}, m` ∈ Mx

i (π̂) and
s ∈ Sπ̂ with si = m`, let

c` =
∑

t∈Sπ̂ :ti=m`

π̂(t|X)λ0(X),

d` =
∑

t∈Sπ̂ :ti=m`

π̂(t|X)λ0(X) +
∑

t∈Sπ̂ :ti=m`

π̂(t|Y )λ0(Y ),

and note that c`/d` = λsi (X) ≥ 1/2 since απ̂i (m`) = x. Thus, it holds that d` ≤ 2c`. Let
s′ ∈ Sπ be such that s′i = x. We have that

λti(X) =
πi(x|X)λ0(X)

πi(x|X)λ0(X) + πi(x|Y )λ0(Y )

=

∑
t∈Sπ :ti=x

∑
s∈St(π̂) π̂(s|X)λ0(X)∑

t∈Sπ :ti=x

∑
s∈St(π̂) π̂(s|X)λ0(X) +

∑
t∈Sπ :ti=x

∑
s∈St(π̂) π̂(s|Y )λ0(Y )

(22)
=

∑
m∈Mx

i (π̂)

∑
t∈Sπ̂ :ti=m

π̂(t|X)λ0(X)∑
m∈Mx

i (π̂)

∑
t∈Sπ̂ :ti=m

π̂(t|X)λ0(X) +
∑

m∈Mx
i (π̂)

∑
t∈Sπ̂ :ti=m

π̂(t|Y )λ0(Y )

=
c1 + · · ·+ cL
d1 + · · ·+ dL

≥ c1 + · · ·+ cL
2(c1 + · · ·+ cL)

=
1

2
.

Thus, for any m ∈Mx
i (π̂), we have απi (x) = απ̂i (m) = x. Hence, π satisfies (4).

What remains to be shown is that π has at least the same value as π̂. By definition
of Zx(π) it holds that∑

a∈Zx(π)

π(a|ω) =
∑

a∈Zx(π)

∑
s∈Sa(π̂)

π̂(s|ω) =
∑

s∈Zx(π̂)

π̂(s|ω).

Thus, we have

V π
(
λ0
)

= λ0(X)
∑

s∈Zx(π)

π(s|X) + λ0(Y )
∑

s∈Zx(π)

π(s|Y )

= λ0(X)
∑

s∈Zx(π̂)

π̂(s|X) + λ0(Y )
∑

s∈Zx(π̂)

π̂(s|Y )

= V π̂
(
λ0
)
.

Proof of Proposition 3.6. If λ0 (X) ≥ 1/2, then V π∗p (λ0) = 1. Let λ0 (X) < 1/2.
When searching for an optimal π ∈ Πps, we can also assume without loss of generality
that π(x|X) = 1, as V π is increasing in π(x|X) and setting π(x|X) = 1 makes it easier to
satisfy the straightforwardness constraint. It holds now that π is straightforward if and
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only if π(x|Y ) ≤ λ0(X)/λ0(Y ). Since the value is increasing in π(x|Y ), it is optimal for
Sender to choose π(x|Y ) = λ0(X)/λ0(Y ). The optimal value for any λ0 ∈ ∆◦ (Ω) is then
given by

V ∗p
(
λ0
)

= λ0(X)π∗p(x|X) + λ0(Y )π∗p(x|Y ) = λ0(X) + λ0(Y )
λ0(X)

λ0(Y )
= 2λ0(X).

Proof of Lemma 3.7. If λ0 (X) ≥ 1/2, then let π ∈ Πs be defined as π (x|ω) = 1 for
all ω ∈ Ω and observe that V π (λ0) = 1 ≥ V π̂ (λ0) . Let λ0 (X) < 1/2. By Lemma 3.4, we
can assume without loss of generality that π̂ ∈ Πs. Thus, by Lemma 3.2, λ0(X)π̂i(x|X) ≥
λ0(Y )π̂i(x|Y ) for all i ∈ N . Let π ∈ Πs be the communication strategy such that for all
i ∈ N and si ∈ Si, πi(si|Y ) = π̂i(si|Y ) and πi(x|X) = 1. That is, signal probabilities in
state Y remain the same, but π sends x to every Receiver with probability 1 if the state
is X. Then

λ0(X)πi(x|X) ≥ λ0(X)π̂i(x|X) ≥ λ0(Y )π̂i(x|Y ) = λ0(Y )πi(x|Y ),

where the second inequality holds since π̂ ∈ Πs. By Lemma 3.2, π is straightforward.
Finally,

V π
(
λ0
)

= λ0(X) + λ0(Y )
∑

s∈Zx(π)

π(s|Y ) ≥ λ0(X)
∑

s∈Zx(π̂)

π̂(s|X) + λ0(Y )
∑

s∈Zx(π̂)

π̂(s|Y )

= V π̂
(
λ0
)
,

which completes the proof.

Proof of Lemma 3.8. If λ0 (X) ≥ 1/2, then let π ∈ Πsa be defined as π (x|ω) = 1 for
all ω ∈ Ω and observe that V π (λ0) = 1 ≥ V π̂ (λ0) . Let λ0 (X) < 1/2. By Lemma 3.4,
assume without loss of generality that π̂ is straightforward. For each ω ∈ Ω, s ∈ S, and
b ∈ B define πb by πb(s|ω) = π̂(sb|ω), so that Sπ

b
= {sb−1 | s ∈ Sπ̂}. Let π ∈ Π be defined

by

π (s|ω) =
1

n!

∑
b∈B

πb (s|ω) , ω ∈ Ω, s ∈ S. (23)

Clearly, π is anonymous. We next show that π is straightforward. Fix i ∈ N . Then

πi (x|X) =
∑

s∈Sπ :si=x

π (s|X) =
∑

s∈Sπ :si=x

1

n!

∑
b∈B

πb (s|X)

=
1

n!

∑
b∈B

∑
s∈Sπ :si=x

π̂
(
sb|X

)
=

1

n!

∑
b∈B

∑
s∈Sπ :sb(i)=x

π̂ (s|X)

=
1

n!

∑
b∈B

π̂b(i) (x|X) .
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By Lemma 3.2, one has λ0(X)π̂b(i) (x|X) ≥ λ0(Y )π̂b(i) (x|Y ) for all b ∈ B. Thus,

λ0(X)πi (x|X) = λ0(X)
1

n!

∑
b∈B

π̂b(i) (x|X) ≥ λ0(Y )
1

n!

∑
b∈B

π̂b(i) (x|Y ) = λ0(Y )πi (x|Y ) .

Hence, π satisfies (4) and, by Lemma 3.2, is straightforward. Finally,

V π
(
λ0
)

= λ0(X)
∑

s∈Zx(π)

π (s|X) + λ0(Y )
∑

s∈Zx(π)

π (s|Y )

= λ0(X)
∑

s∈Zx(π)

1

n!

∑
b∈B

πb (s|X) + λ0(Y )
∑

s∈Zx(π)

1

n!

∑
b∈B

πb (s|Y )

= λ0(X)
1

n!

∑
b∈B

∑
s∈Zx(πb)

πb (s|X) + λ0(Y )
1

n!

∑
b∈B

∑
s∈Zx(πb)

πb (s|Y )

= λ0(X)
1

n!

∑
b∈B

∑
s∈Zx(π̂)

π̂ (s|X) + λ0(Y )
1

n!

∑
b∈B

∑
s∈Zx(π̂)

π̂ (s|Y )

= λ0(X)
∑

s∈Zx(π̂)

π̂ (s|X) + λ0(Y )
∑

s∈Zx(π̂)

π̂ (s|Y )

= V π̂
(
λ0
)
.

where the fourth equation holds because Zx(πb) = {sb−1 | s ∈ Zx(π̂)}.

Proof of Proposition 3.9. If λ0 (X) ≥ 1/2, then the solution to the linear optimiza-
tion problem in Proposition 3.9 is given by (r∗0, r

∗
k) = (0, 1), leading to V ∗(λ0) = 1

as desired. Let λ0 (X) < 1/2. First note that the communication strategy π as con-
structed in the proof of Lemma 3.7 satisfies anonymity if π̂ is anonymous. Hence, by
Lemma 3.7, V ∗ (λ0) can be obtained by an anonymous and straightforward communi-
cation strategy with qn = 1. We first show that it is no loss of generality to have
r` = 0 for all ` 6= 0, k. For this purpose let π̂ ∈ Πsa be a communication strategy
with representation (q̂, r̂). Let π ∈ Πsa with representation (q, r) be defined as qn = 1,
r0 = r̂0 + · · ·+ r̂k−1 and rk = r̂k + · · ·+ r̂n. Then

∑
s∈Zx(π) π (s|X) =

∑
s∈Zx(π̂) π̂ (s|X) and∑

s∈Zx(π) π (s|Y ) =
∑

s∈Zx(π̂) π̂ (s|Y ), so that V π (λ0) = V π̂ (λ0). Therefore, Sender can

restrict attention to weights r0 and rk that satisfy the Constraints (9)–(11). By Lemma
3.2, π is straightforward if and only if

0 ≤ λ0(X)πi(x|X)− λ0(Y )πi(x|Y ) = λ0(X)− λ0(Y )
k

n
rk,

which is equivalent to (12). The objective function is, thus,

V π
(
λ0
)

= λ0(X)
∑

s∈Zx(π)

π (s|X) + λ0(Y )
∑

s∈Zx(π)

π (s|Y ) = λ0(X) · 1 + λ0(Y )rk

= λ0(X) + λ0(Y )rk.
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Proof of Theorem 3.10. Sender’s maximization problem is given in Proposition 3.9.
As the objective function is increasing in rk, Constraints (11) and (12) imply

r∗k = min

{
λ0(X)

λ0(Y )

n

k
, 1

}
=

{
1 if λ0(X) ≥ k

n+k
,

λ0(X)
λ0(Y )

n
k

if λ0(X) < k
n+k

.

Thus, the optimal value for any λ0 ∈ ∆◦ (Ω) is

V π∗
(
λ0
)

= λ0(X) + λ0(Y )rk =

{
1 if λ0(X) ≥ k

n+k
,

n+k
k
λ0(X) if λ0(X) < k

n+k
.

Proof of Lemma 4.3. Let i ∈ N be fixed. For any s ∈ Sπ it holds that

ui
(
zk
(
x, απ−i(s−i)

)
, X
)
− ui

(
zk
(
y, απ−i(s−i)

)
, X
)

=

{
1 if i is pivotal at s,

0 if i is not pivotal at s,

ui
(
zk
(
y, απ−i(t−i)

)
, Y
)
− ui

(
zk
(
x, απ−i(t−i)

)
, Y
)

=

{
1 if i is pivotal at s,

0 if i is not pivotal at s.

For given m ∈Mx
i (π), let s′ ∈ Sπ be such that s′i = m and let c =

∑
ω∈Ω λ

0 (ω) πi (s
′
i|ω).

Then

λ0(X)
∑

s∈P i,m(π)

π(s|X)− λ0 (Y )
∑

s∈P i,m(π)

π(s|Y )

=c

λ0(X)πi (s
′
i|X)

c

∑
s∈P i,m(π)

π(s|X)

πi (s′i|X)
− λ0(Y )πi (s

′
i|Y )

c

∑
s∈P i,m(π)

π(s|Y )

πi (s′i|Y )


=c

λs′i (X)
∑

s∈P i,m(π)

π(s|X)

πi (s′i|X)

(
ui
(
zk
(
x, απ−i(s−i)

)
, X
)
− ui

(
zk
(
y, απ−i(s−i)

)
, X
))

−λs′i (Y )
∑

s∈P i,m(π)

π(s|Y )

πi (s′i|Y )

(
ui
(
zk
(
y, απ−i(s−i)

)
, Y
))
− ui

(
zk
(
x, απ−i(s−i)

)
, Y
)

=c
∑
ω∈Ω

λs
′

i (ω)
∑

s∈Sπ :si=s′i

π(s|ω)

πi (s′i|ω)

(
ui
(
zk
(
x, απ−i(s−i)

)
, ω
)
− ui

(
zk
(
y, απ−i(s−i)

)
, ω
))
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and one shows similarly that for given m′ ∈Mx
i (π) and t′ ∈ Sπ with t′i = m′

λ0(Y )
∑

t∈P i,m′ (π)

π(t|Y )− λ0 (X)
∑

t∈P i,m′ (π)

π(s|X)

=c′
∑
ω∈Ω

λt
′

i (ω)
∑

t∈Sπ :ti=t′i

π(t|ω)

πi (t′i|ω)

(
ui
(
zk
(
y, απ−i(t−i)

)
, ω
)
− ui

(
zk
(
x, απ−i(t−i)

)
, ω
))
,

where c′ =
∑

ω∈Ω λ
0 (ω) πi (t

′
i|ω). Thus, (13) holds if and only if (14) and (15) hold.

Proof of Proposition 4.4. Let i ∈ N and suppose first that k ≤ n − 1. Then upon
receiving x, i is pivotal if the state is Y but not pivotal if the state is X. Thus, we have∑

s∈P i,x(π∗) π
∗(s|X) = 0 and

∑
s∈P i,x(π∗) π

∗(s|Y ) > 0. If απ
∗

were a BNE at π∗, (14) would

imply that: 0 ≥ λ0(Y )
∑

s∈P i,x(π∗) π
∗ (s|Y ) > 0, which is impossible.

Let k = n. Since i is not pivotal upon observing y, (15) is trivially satisfied, and we
only need to check (14). By Theorem 3.10 we have q∗n = 1 and r∗n = min {λ0(X)/λ0(Y ), 1}.
Thus,

λ0(X)
∑

s∈P i,x(π∗)

π∗(s|X) = λ0(X) = λ0(Y )
λ0(X)

λ0(Y )
≥ λ0(Y )r∗n = λ0(Y )

∑
s∈P i,x(π∗)

π∗(s|Y ).

Hence, (14) is satisfied and απ
∗

is a BNE.

Proof of Lemma 5.1. If λ0 (X) ≥ 1/2, then consider π ∈ Πsae with representation
(q, r) such that qn = 1 and rk+1 = 1. Observe that V π (λ0) = 1 ≥ V π̂ (λ0) . Let λ0 (X) <
1/2. We first show that without loss of generality we can assume π̂ to be anonymous.
Also, without loss of generality, we assume that for all i, j ∈ N with i 6= j, we have
Sπ̂i ∩ Sπ̂j = ∅, i.e., different Receivers observe different messages. Let π′ ∈ Π be defined as

π′ (s|ω) =
1

n!

∑
b∈B

π̂
(
sb|ω

)
, ω ∈ Ω, s ∈ S.

We showed in the proof of Lemma 3.8 that π′ ∈ Πa and has value greater than or equal
to π̂. It is therefore sufficient to show that απ

′
is a BNE. Let i ∈ N and m ∈Mx

i (π′) . Let
j ∈ N be the unique Receiver such that m ∈ Sπ̂j . Then∑

s∈P i,m(π′)

∑
b∈B

π̂
(
sb|X

)
=

∑
s∈P i,m(π′)

∑
b∈B:b(i)=j

π̂
(
sb|X

)
= (n− 1)!

∑
s∈P j,m(π̂)

π̂(s|X). (24)

Therefore,

λ0(X)
∑

s∈P i,m(π′)

π′ (s|X) = λ0(X)
1

n!

∑
s∈P i,m(π′)

∑
b∈B

π̂
(
sb|X

) (24)
= λ0(X)

1

n

∑
s∈P j,m(π̂)

π̂ (s|X)

≥ λ0(Y )
1

n

∑
s∈P j,m(π̂)

π̂ (s|Y ) = λ0(Y )
∑

s∈P i,m(π′)

π′ (s|Y ) ,
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where the inequality comes from Lemma 4.3 and the fact that απ̂ is a BNE. A similar
argument holds for m′ ∈ My

i (π′) . It follows that απ
′

is a BNE. Thus, we can assume
without loss of generality that π̂ is anonymous.

Recall that for each action profile a ∈ A, Sa (π̂) =
{
s ∈ Sπ̂|απ̂(s) = a

}
. For each

a ∈ A and ω ∈ Ω, define π(a|ω) =
∑

s∈Sa(π̂) π̂(s|ω). We showed in the proof of Lemma

3.4 that π is straightforward and V π (λ0) = V π̂ (λ0) . So, what remains to show is that απ

is a BNE.

Claim: For all i ∈ N it holds that⋃
a∈P i,x(π)

Sa (π̂) =
⋃

m∈Mx
i (π̂)

P i,m (π̂) . (25)

and the unions on both sides of the equation are over disjoint sets.

Proof. Let s ∈
⋃
a∈P i,x(π) S

a (π̂). Then, there exists a ∈ Sπ with ai = x such that

απ̂(s) = a and i is pivotal in s. Since ai = x, we have απ̂i (si) = ai = x, hence si ∈Mx
i (π̂) ,

so s ∈
⋃
m∈Mx

i (π̂) P
i,m (π̂). For the converse, let s ∈

⋃
m∈Mx

i (π̂) P
i,m (π̂). Then, si ∈Mx

i (π̂)

and i is pivotal in s. Let a = απ̂(s), so that s ∈ Sa (π̂). Since si ∈ Mx
i (π̂), we have

ai = απ̂i (si) = x, so that a ∈ P i,x (π̂) , hence s ∈
⋃
a∈P i,x(π) S

a (π̂). For the same reasons
as in the proof of Lemma 3.8 both unions are over disjoint sets. �

Since the unions on both sides of (25) are disjoint, we have

λ0(X)
∑

a∈P i,x(π)

π(a|X) = λ0(X)
∑

a∈P i,x(π)

∑
t∈Sa(π̂)

π̂(t|X)
(25)
= λ0(X)

∑
m∈Mx

i (π̂)

∑
s∈P i,m(π̂)

π̂(s|X)

≥ λ0(Y )
∑

m∈Mx
i (π̂)

∑
s∈P i,m(π̂)

π̂(s|Y ) = λ0(Y )
∑

a∈P i,x(π)

π(a|Y ),

where the inequality holds since απ̂ is a BNE. Showing that choosing action y is optimal
upon observing message y is similar. It follows that π ∈ Πsae.

Proof of Lemma 5.2. If λ0 (X) ≥ 1/2, then consider π ∈ Πsae with representation
(q, r) such that qn = 1 and rk+1 = 1. Observe that V π (λ0) = 1 ≥ V π̂ (λ0) . Let λ0 (X) <
1/2. Let π ∈ Πa be defined such that qk−1 = qk = 0, qk+1 = q̂k−1 + q̂k + q̂k+1, q` = q̂` for
all ` 6= k − 1, k, k + 1, rk = 0, rk+1 = r̂k + r̂k+1, and r` = r̂` for all ` 6= k, k + 1. Clearly,
π satisfies (16) and (17), so π ∈ Πae. We next show that π is straightforward. Since π̂
is straightforward, it holds that λ0(Y )

∑n
`=0

`
n
r̂` ≤ λ0(X)

∑n
`=0

`
n
q̂`. Moreover, as απ̂ is a

BNE, it holds that λ0(Y )r̂k ≤ λ0(X)q̂k. Hence,

λ0(Y )
n∑
`=0

`

n
r` = λ0(Y )

(
n∑
`=0

`

n
r̂` +

1

n
r̂k

)
≤ λ0(X)

(
n∑
`=0

`

n
q̂` +

1

n
q̂k +

2

n
q̂k−1

)
= λ0(X)

n∑
`=0

`

n
q`,
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which proves that π ∈ Πsae. Finally,

V π
(
λ0
)

= λ0 (X)
∑
`≥k

q` + λ0 (Y )
∑
`≥k

r` = λ0 (X)
∑
`≥k

q̂` + λ0 (Y )
∑
`≥k

r̂` = V π̂
(
λ0
)
,

which completes the proof.

Proof of Lemma 5.3. If λ0 (X) ≥ 1/2, then consider π ∈ Πsae with representation
(q, r) such that qn = 1 and rk+1 = 1. Observe that V π (λ0) = 1 ≥ V π̂ (λ0) . Let λ0 (X) <
1/2. By Lemma 5.2, we can assume without loss of generality that q̂k = r̂k = 0. Let
π ∈ Πa be defined by qn = 1, q` = 0 for all ` 6= n, r0 =

∑k−1
`=0 r̂`, rk+1 =

∑n
`=k+1 r̂` and

r` = 0 for all ` 6= 0, k + 1. Then π ∈ Πsa since

λ0(Y )πi(x|Y ) = λ0(Y )
n∑
`=0

`

n
r` = λ0(Y )

k + 1

n
rk+1 = λ0(Y )

k + 1

n

n∑
`=k+1

r̂` ≤ λ0(Y )
n∑
`=0

`

n
r̂`

≤ λ0(X)
n∑
`=0

`

n
q̂` ≤ λ0 (X) = λ0(X)πi(x|X),

where the second inequality holds as π̂ ∈ Πsae. Since qk−1 = qk = rk = 0, (16) and (17)
are satisfied. So, π ∈ Πsae. Finally,

V π
(
λ0
)

= λ0 (X) + λ0 (Y ) rk+1 ≥ λ0 (X)
n∑
`=k

q̂` + λ0 (Y )
n∑

`=k+1

r̂` = V π̂
(
λ0
)
,

where the last equality uses that r̂k = 0.

Proof of Proposition 5.4. If λ0 (X) ≥ 1/2, then the solution to the linear optimiza-
tion problem in Proposition 5.4 is given by (r∗0, r

∗
k+1) = (0, 1), leading to V ∗e(λ0) = 1 as

desired. Let λ0 (X) < 1/2. By Lemmas 5.1, 5.2 and 5.3, if there is an optimal π̂ ∈ Πsae

then there is π ∈ Πsae with representation q, r such that qk = 1, r` = 0 for all ` 6= 0, k+ 1,
and V ∗ (λ0) = λ0 (X) + λ0 (Y ) rk+1. Such π is straightforward if and only if

λ0 (X) = λ0 (X) πi (x|X) ≥ λ0 (Y ) πi (x|Y ) = λ0 (Y )
k + 1

n
rk+1,

which is equivalent to (21).

Proof of Theorem 5.5. By (21), it holds that

λ0(X)

λ0(Y )

n

k + 1
≥ rk+1.
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Since the objective function is increasing in rk+1, the optimal value is obtained by choosing

r∗k+1 =

{
1 if λ0(X) ≥ k+1

n+k+1
,

λ0(X)
λ0(Y )

n
k+1

if λ0(X) < k+1
n+k+1

.

Hence, if λ0 (X) ≥ k+1
n+k+1

then V ∗e (λ0) = 1. Otherwise, it holds that

V ∗e
(
λ0
)

= λ0(X) + λ0(Y )rk+1 = λ0(X) + λ0(Y )
λ0(X)

λ0(Y )

n

k + 1
= λ0(X)

n+ k + 1

k + 1
.

Proof of Corollary 5.7. (i) These inequalities follow immediately from the simple
observation that, for all k = 1, . . . , n− 1,

2 ≤ n+ k + 1

k + 1
≤ n+ k

k
.

(ii) This follows immediately from Proposition 3.6 and Theorems 3.10 and 5.5.

Proof of Corollary 5.8. This follows immediately from the observation that (n+ k +
1)/(k + 1) is decreasing in k and bounded from below by 2 for all k ≤ n− 1.
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