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a b s t r a c t

We consider two-player zero-sum stochastic games with the limsup and with the liminf
payoffs. For the limsup payoff, we prove that the existence of an optimal strategy implies
the existence of a stationary optimal strategy. Our construction does not require the
knowledge of an optimal strategy, only its existence. The main technique of the proof is
to analyze the game with specific restricted action spaces. For the liminf payoff, we prove
that the existence of a subgame-optimal strategy (i.e. a strategy that is optimal in every
subgame) implies the existence of a subgame-optimal strategy under which the prescribed
mixed actions only depend on the current state and on the state and the actions chosen at
the previous period. In particular, such a strategy requires only finite memory. The proof
relies on techniques that originate in gambling theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Zero-sum stochastic gameswith the limsup andwith the liminf payoffs.We consider two-player zero-sum stochastic
games with finite state and action spaces. The game proceeds as follows: at the start of each period, the play is in one of
the states. The two players then choose their actions simultaneously. The current state and the chosen actions determine an
instantaneous reward that is to be paid by player 2 to player 1, and a probability distribution according to which the next
state is drawn. Thus, the play of the game results in an infinite sequence of rewards, which is evaluated by a payoff function.
Player 1’s objective is tomaximize the payoff, whereas player 2’s objective is tominimize it. Zero-sum stochastic games have
a wide range of applications not only in economics [1], but also in computer science (e.g. [2,5]), descriptive set theory and
logic (e.g. [21]).

In this paper we examine the limsup and the liminf payoffs. The limsup payoff evaluates a sequence of rewards by the
limit superior of the rewards, and so it evaluates by the peak performances. A player whose objective is to maximize the
limsup payoff strives to obtain a good reward infinitely many times. The liminf payoff evaluates a sequence of rewards by
the limit inferior of the rewards. A player whose objective is to maximize the liminf payoff strives to obtain bad rewards
only finitely many times.
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Generally, in a zero-sum stochastic gamewith the limsup orwith the liminf payoff, a playermay have no optimal strategy
at his disposal (cf. examples 13.4 and 13.5 in [19, p. 205]). The question that we address here is not whether an optimal
strategy exists. Rather, assuming that an optimal strategy does exist, we ask how simple it can be. Since there is great interest,
in theory as well as in applications, in strategies that only need finite memory, and especially in stationary strategies, we
investigate whether the players have such optimal strategies.

Our main contributions.We prove the following simplification results.
I. For the limsup payoff, we prove that the existence of an optimal strategy implies the existence of a stationary optimal

strategy. The proof relies on a construction of a specific type of stationary strategies, called maximally mixed. Roughly
speaking, maximally mixed strategies are constructed as follows. To each state of the game we associate a ‘‘one-day’’ matrix
game. In the one-day game the players choose their actions once, transition to a new state occurs, and the amount that player
1 receives from player 2 is equal to the value of the new state. Now consider mixed actions that are optimal in the one-day
game. Among these mixed actions select those that have maximal support. A stationary strategy is called maximally mixed
if, in every state, it prescribes such a mixed action.

The construction of maximally mixed strategies thus does not rely on the assumption that an optimal strategy exists.
Rather, the assumption is only needed to prove that maximally mixed strategies are all optimal with respect to the limsup
payoff.

II. For the liminf payoff, we prove the somewhatweaker statement that the existence of a subgame-optimal strategy (i.e. a
strategy that is optimal in every subgame) implies the existence of a subgame-optimal strategy under which the prescribed
mixed actions only depend on the current state and on the state and the actions chosen at the previous period. In particular,
such a strategy requires only finite memory. The techniques used in the proof are very different, and mainly originate in
gambling theory.

Related literature. The limsup and liminf payoffs have been analyzed in the game theoretic literature (e.g. [17–19,23],
and [16]). These payoffs also play an important role in computer science. Chatterjee et al. [6] provide a survey of perfect
information, or turn-based, stochastic games with the limsup and the liminf payoffs, both on the existential and the
algorithmic aspects. Our model encompasses perfect information stochastic games as a special case: these are games where
in every state only one of the players has more than one action.

Several payoff functions that are regularly considered in computer science can be written as a limsup or liminf payoff.
For example, the payoff functions of reachability games and safety games can both be seen as limsup payoffs but also as
liminf payoffs. The payoff functions of Büchi games can be seen as limsup payoffs, and those of co-Büchi games can be seen
as liminf payoffs. For the definitions of these games, we refer to Chatterjee and Henziger [7].

We remark that results similar to ours are available in the literature of gambling and dynamic programming. Dubins and
Savage [10] showed for a (one-person) gambling problem with a finite state space and limsup payoff that the existence of
an optimal strategy implies the existence of a stationary optimal strategy. Blackwell [3] proved the same result for positive
dynamic programming with a countable state space. There is also a generalization to a Borel measurable setting by Orkin
[22]. Recently, Sudderth [26] showed for gambling problems with a countable state space and limsup payoff as well as for
gambling problems with a finite state space and liminf payoff that the existence of an optimal strategy implies the existence
of a Markov optimal strategy. A strategy is called Markov if the prescribed mixed actions only depend on the current state
and on the current time period, but not directly on the past states and actions.

We now briefly discuss related results for payoffs other than the limsup and the liminf payoffs. For the discounted payoff,
Shapley [24] showed that the players always have optimal strategies in the class of stationary strategies. For the average
payoff, however, the players do not always have stationary optimal strategies, as was shown by the famous game called the
Big Match (cf. [4,13], see also Example 1). Nevertheless, Flesch et al. [11] proved for the average payoff evaluation that if a
player has an optimal strategy, then he also has a Markov optimal strategy.

The structure of the paper. The paper is organized as follows: Section 2 introduces the model, Section 3 is devoted to the
description of limsup and liminf payoffs, Section 4 summarizes the main results, Sections 5 and 6 contain the proofs of the
main results, and Section 7 discusses some extensions.

2. The model

Two-player zero-sum stochastic games. We examine two-player zero-sum stochastic games. Such a game is given by
(1) a nonempty and finite state space S, (2) for each state s ∈ S, nonempty and finite action spacesA(s) andB(s) for player 1 and
respectively player 2, (3) for each state s ∈ S and actions a ∈ A(s), b ∈ B(s), a probability measure p(s, a, b) = p(s′|s, a, b)s′∈S
on S, (4) a reward function r : Z → R, where Z = {(s, a, b)|s ∈ S, a ∈ A(s), b ∈ B(s)}, and (5) a payoff function u : r(Z)∞ → R,
where r(Z) is the range of r .

We endow r(Z) with the discrete topology, and r(Z)∞ with the product topology. We assume that u is bounded and Borel
measurable.1

1 The payoff function of the game could also be defined on the domain Z∞ . Note that the Borelmeasurability of u implies that themapping (z0, z1, . . .) →

u(r(z0), r(z1), . . .) from Z∞ toR is also Borelmeasurable, when Z has the discrete topology and Z∞ the product topology. Formore details, we refer toMaitra
and Sudderth [20].
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The game is played at periods in N = {0, 1, . . .} and begins in an initial state s0 ∈ S. At every period t ∈ N, the play is in a
state st ∈ S. In this state, player 1 chooses an action at ∈ A(st ) and simultaneously player 2 chooses an action bt ∈ B(st ). Then,
with zt = (st , at , bt ), player 1 receives reward r(zt ) from player 2, and state st+1 is drawn in accordance with the probability
measure p(zt ). Thus, play of the game induces an infinite sequence {r(zt )}t∈N of rewards. The payoff is u(r0, r1, . . . , ) where
rt = r(zt ).

Strategies. The set of histories at period t is denoted by Ht . Thus, H0 = S and Ht = Z t
× S for every period t ≥ 1. Let

H = ∪t∈NHt denote the set of all histories. For each history h, let sh denote the final state in h.
Amixed action for player 1 in state s ∈ S is a probabilitymeasure x(s) onA(s). The support of x(s), denoted by Support(x(s)),

is defined as the set of actions in A(s) having a positive probability under x(s). Similarly, a mixed action for player 2 in state
s ∈ S is a probability measure y(s) on B(s). The support of y(s), denoted by Support(y(s)), is defined as the set of actions in
B(s) having a positive probability under y(s). The respective sets of mixed actions in state s are denoted by X(s) and Y (s).

A strategy for player 1 is a map π that to each history h ∈ H assigns a mixed action π (h) ∈ X(sh). Similarly, a strategy for
player 2 is a map σ that to each history h ∈ H assigns a mixed action σ (h) ∈ Y (sh). The set of strategies is denoted by Π for
player 1 and by Σ for player 2. A strategy is called pure if it places probability 1 on one action after each history.

A strategy is called stationary if the assigned mixed actions only depend on the history through its final state. Thus, a
stationary strategy for player 1 can be seen as an element x of X := ×s∈SX(s). Similarly, a stationary strategy for player 2 can
be seen as an element y of Y := ×s∈SY (s). A pair of stationary strategies (x, y) induces a Markov chain on the state space S.
A nonempty set E ⊆ S is called ergodic with respect to (x, y), if starting in any state in E, the Markov chain eventually visits
every state in E and visits no state outside E with probability 1.

A strategy is called Markov if the mixed action chosen in each period t depends only on the current state st together with
t . Thus, a Markov strategy for player 1 can be seen as an element of ×s∈S, t∈NX(s). Similarly, a Markov strategy for player 2
can be seen as an element ×s∈S, t∈NY (s). Markov strategies include stationary strategies as a special case.

For an initial state s ∈ S and a pair of strategies (π, σ ) ∈ Π × Σ , we denote the expected payoff by u(s, π, σ ). Player 1’s
objective is to maximize the expected payoff given by u, and player 2’s objective is to minimize it.

Value and optimality. It follows from the result of Martin [21] that the game has a value v(s) for every initial state s ∈ S, i.e.

v(s) = sup
π∈Π

inf
σ∈Σ

u(s, π, σ ) = inf
σ∈Σ

sup
π∈Π

u(s, π, σ ).

For ε ≥ 0, a strategy π ∈ Π for player 1 is called ε-optimal for initial state s if u(s, π, σ ) ≥ v(s)− ε for every strategy σ ∈ Σ

for player 2. Similarly, a strategy σ ∈ Σ for player 2 is called ε-optimal for initial state s if u(s, π, σ ) ≤ v(s) + ε for every
strategy π ∈ Π for player 1. A strategy is called ε-optimal if it is ε-optimal for every initial state.

In view of the existence of the value, for all ε > 0, each player has an ε-optimal strategy. A 0-optimal strategy is simply
called optimal.

Subgame-optimality. Consider a strategy π ∈ Π for player 1 and a sequence g ∈ Z t , for some t ∈ N (for t = 0, g is the
empty sequence). The continuation strategyπ |g is the strategy inΠ given, for every history h ∈ H , byπ |g (h) = π (gh), where
gh stands for the concatenation of g and h.

A strategy π ∈ Π for player 1 is called subgame-optimal, if π |g is optimal for every g ∈ Z t and t ∈ N. Continuation
strategies and subgame-optimal strategies for player 2 are defined analogously.

Note that every subgame-optimal strategy is optimal. The converse holds for stationary strategies: a stationary optimal
strategy is always subgame-optimal.

3. The limsup and liminf payoffs, and examples

In this section we define two closely related payoff functions, the limsup and the liminf payoffs, and provide some
examples.

3.1. The limsup payoff

The limsup payoff is defined for each (r0, r1, . . . ) ∈ r(Z)∞ as

u(r0, r1, . . . ) = lim sup
t→∞

rt .

For every s ∈ S, let v(s) denote the limsup value for initial state s.
We emphasize that, under our definition of the evaluation u(s, π, σ ) of the pair of strategies (π, σ ) in the initial state s, one

computes the expectation of the limit superior of the sequence of rewards, rather than the limit superior of the expectation
of the rewards. We briefly discuss the latter evaluation in Section 7.

For the limsup payoff, player 1 generally does not have a stationary ε-optimal strategy, for small ε > 0. This is shown by
example 13.4 in [19, p. 205]. We illustrate this point by means of an adaptation of the well-known Big Match.
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Example 1. Consider the following game2 with the limsup payoff u. There are three states S = {s, 0∗, 1∗
}. State 0∗ is

absorbing, and the reward is 0 in this state. State 1∗ is also absorbing, and the reward is 1 in this state. State s is the interesting
state. In this state, the actions are T and B for player 1, and L and R for player 2. Action pair (T , L) gives reward 1 and the state
remains s, action pair (T , R) gives reward 0 and the state remains s, action pair (B, L) gives reward 0 and leads to state 0∗, and
action pair (B, R) gives reward 1 and leads to state 1∗. The game can be represented as follows, where ∗ denotes absorption.

L R
T 1 0
B 0∗ 1∗

We prove the following statements for initial state s:

(a) The value is v(s) = 1.
(b) Player 1 has no optimal strategy.
(c) Player 1 has no stationary ε-optimal strategy for ε ∈ [0, 1).
(d) Player 1 has no Markov ε-optimal strategy for ε ∈ [0, 1

2 ).

We use the notations L∞ and R∞ for the strategies of player 2 that always choose action L and action R in state s, respectively.

Proof of (a): Take an ε ∈ (0, 1), and a sequence (wn)n∈N in (0, 1) such thatΠ∞

n=0wn = 1−ε. Let π ε be the strategy for player 1
that at period t prescribes action T with probability wℓ(t) and action B with probability 1 − wℓ(t), where ℓ(t) denotes the
number of times action L has been played by player 2 before period t . We prove that for every strategy τ for player 2

u(s, π ε, τ ) ≥ 1 − ε. (1)

Indeed, take any pure strategy τ for player 2. (Given player 1’s strategy π ε , player 2 is facing a Markov Decision Problem,
so it is sufficient to consider only pure responses for player 2). Such a strategy gives rise to a sequence τ = (bt )t∈N, where
bt ∈ {L, R} is the action player 2 takes in period t , given that player 1 has not played action B thus far. Consider the play under
(π ε, τ ). Note that the total probability of absorption in entry (B, L) is at most ε under (π ε, τ ). Indeed, the total probability
of absorption in entry (B, L) under (π ε, τ ) is at most the total probability of absorption in entry (B, L) when player 2 always
chooses action L against π ε , and this latter probability is exactly ε = 1 − Π∞

n=0wn by the choice of π ε . We distinguish two
cases.

Suppose first that L occurs infinitely often in τ . Since the total probability of absorption in entry (B, L) is at most ε, with
probability of at least 1 − ε one of the following events occurs: either absorption takes place at some period in entry (B, R),
or entry (T , L) is played infinitely often. Hence, (1) follows.

Now assume that L occurs only finitely many times in τ . Since the total probability of absorption in entry (B, L) is at most
ε, the probability that absorption in entry (B, R) eventually occurs is at least 1 − ε. Hence, (1) follows again.

Thus, v(s) = 1 indeed, and the strategy π ε is ε-optimal for player 1, for every ε ∈ (0, 1).

Proof of (b)3: Take any strategy π for player 1. We prove that π is not optimal by distinguishing two cases.
Case 1: the probability under (s, π, R∞) that action B is ever chosen is zero. In this case, u(s, π, R∞) = 0, and π is not

optimal.
Case 2: the probability under (s, π, R∞) that action B is ever chosen is positive. Let t denote the first period atwhich action

B is chosen with a positive probability under (s, π, R∞). Consider any strategy σ for player 2 which chooses action R before
period t and chooses action L at period t . Then, u(s, π, σ ) < 1, and π is not optimal in this case either.

Proof of (c): Take any stationary strategy x for player 1. If x places probability 1 on action T , then u(s, x, R∞) = 0. Otherwise,
if x places probability less than 1 on action T , then u(s, x, L∞) = 0. Thus, x is not ε-optimal for ε ∈ [0, 1), as claimed.
Proof of (d): Let π be a Markov strategy for player 1 and, for t ∈ N, let wt be the probability that π assigns to action T when
in state s in period t . Fix ε ∈ [0, 1

2 ).
Case 1: Π∞

t=0wt > ε. The probability under (s, π, R∞) that the state remains equal to s and the players choose actions
(T , R) forever is greater than ε. Hence, u(s, π, R∞) < 1 − ε.

Case 2:Π∞

t=0wt ≤ ε. The probability under (s, π, L∞) that player 1 eventually plays B is at least 1−ε. Hence, u(s, π, L∞) ≤

ε. Since ε < 1
2 , we have ε < 1 − ε, and the proof is complete. ⋄

Remark. In the above game, the ε-optimal strategy for player 1 constructed in part (a) takes into account which actions
player 2 has chosen in the past. However, if the rewards only depend on the current state but not on the actions, then player 1
always has ε-optimal strategies that only take the sequence of states visited into account when recommending a mixed
action. This can be verified by following the steps in the iterative procedure for calculating the value of the game given in
[17–19]. This procedure is, in general, transfinite for games with an infinite state space. However, it is simpler for games
with a finite state space like those here (Theorem 7.11.13, page 201 in [19]).

2 This game, when the average payoff is considered instead of the limsup payoff, is the famous Big Match, which was introduced by Gillette [13]. The
average payoff evaluates a sequence of rewards by taking the long-term average reward. It was shown by Blackwell and Ferguson [4] that the game has a
value for the average payoff. We also refer to section 7.17 in [19].

3 A similar proof is credited to Dubins by Blackwell and Ferguson [4] for the Big Match with the average payoff.
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3.2. The liminf payoff

The liminf payoff is defined for each (r0, r1, . . . ) ∈ r(Z)∞ as

u(r0, r1, . . . ) = lim inf
t→∞

rt .

For every s ∈ S, let v(s) denote the liminf value for initial state s.
We emphasize that, under our definition of the evaluation u(s, π, σ ) of the pair of strategies (π, σ ) in the initial state s,

one computes the expectation of the limit inferior of the sequence of rewards, rather than the limit inferior of the expectation
of the rewards. We briefly discuss the latter evaluation in Section 7.

The limsup and the liminf payoffs are closely related. Indeed, in a zero-sum stochastic game with the limsup payoff,
player 1’s objective is to maximize the limsup payoff, and player 2’s objective is to minimize it. The objective of player 2 can
however also be seen as maximizing the liminf of the rewards given by −r , the negative of the reward function.4 Similarly,
in a zero-sum stochastic game with the liminf payoff, the objective of player 2 can also be seen as maximizing the limsup of
the rewards given by −r .

Example 2. We illustrate that the limsup and the liminf values can be different. For this purpose, we revisit Example 1, but
now with the liminf payoff.

L R
T 1 0
B 0∗ 1∗

For any ε ∈ (0, 1), player 2 can guarantee that the liminf payoff is at most ε, by using the stationary strategy that chooses
action Lwith probability 1 − ε and action Rwith probability ε. Hence, the liminf value for state s is v(s) = 0. Recall that the
limsup value for state s is v(s) = 1. ⋄

Secchi [23] showed for the liminf payoff that player 1 always has a stationary ε-optimal strategy, for every ε > 0. The
following game, which is a variation of example 13.5 in [19, p. 205], shows that player 1 generally does not have a 0-optimal
strategy for the liminf payoff.

Example 3. The game and the notation are similar to those in Example 1. The only modification is that entry (T , L) in state
s is also absorbing.

L R
T 1∗ 0
B 0∗ 1∗

We consider the liminf payoff. For any ε ∈ (0, 1), player 1 can guarantee a liminf payoff of at least 1 − ε, by using the
stationary strategy xε that chooses action T with probability 1 − ε and action B with probability ε. Indeed, the strategy xε

makes sure that absorption eventually takes place and that the total probability of absorption in entry (B, L) is at most ε,
regardless of the strategy of player 2. Hence, the liminf value is v(s) = 1. However, player 1 has no optimal strategy, which
can be verified similarly to claim (b) of Example 1. ⋄

4. The main results

In this section, we discuss our main results. We start with the limsup payoff.

Theorem 1 (Limsup Payoff). Consider a zero-sum stochastic gamewith the limsup payoff. If player 1 has an optimal strategy, then
he has a stationary optimal strategy as well.

The proof of the theorem borrows a number of ideas from Flesch et al. [11]. Associated to each state of the game is a
‘‘one-day’’ matrix game. In the one-day game the players choose their actions once, the transition to a new state occurs,
and the amount that player 1 receives from player 2 is equal to the value of the new state. We then consider mixed actions
for player 1 that are optimal in the one-day game. Of these mixed actions we select those that have the largest support. A
stationary strategy for player 1 is called maximally mixed if, in every state, it prescribes such a mixed action.

This construction does not rely on the assumption that an optimal strategy exists for player 1. Rather, the assumption is
invoked at a later stage of the proof, whenwe show that all maximally mixed strategies for player 1 are optimal with respect
to the limsup payoff.

Recall that every stationary optimal strategy is subgame-optimal. Hence, by the above theorem, if player 1 has an optimal
strategy in a limsup game then he also has a subgame-optimal strategy.

For the liminf evaluation, we obtain the following simplification result.

4 Here, we use that lim supt→∞ r(zt ) = −lim inft→∞ − r(zt ), so minimizing lim supt→∞ r(zt ) is equivalent to maximizing lim inft→∞ − r(zt ).
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Theorem 2 (Liminf Payoff). Consider a zero-sum stochastic game with the liminf payoff. If player 1 has a subgame-optimal
strategy, then he also has a subgame-optimal strategy under which the prescribed mixed actions only depend on the current state
and on the state and the actions chosen at the previous period.

The proof relies on techniques that originate in gambling theory (e.g. [23,25]. It remains an open problem whether the
assumption in Theorem 2 can be weakened to the existence of an optimal strategy, and whether one can then derive the
existence of a stationary optimal strategy.

In Section 7, we discuss extensions of the main results.

5. The proof of Theorem 1

In this sectionwe prove Theorem 1. First we definemaximallymixed strategies for player 1. Then, we define the auxiliary
concept of effective strategies for player 1. Subsequently, we show that effective strategies are optimal, given that player 1
has an optimal strategy. Finally, we show thatmaximallymixed strategies are effective. The final subsection provides several
illustrative examples.

5.1. Maximally mixed strategies

Consider a zero-sum stochastic game Gwith the limsup payoff. For each state s ∈ S, we consider amatrix gameM(s). This
matrix game is fundamental and frequently used in stochastic games.

Let s ∈ S. The matrix game M(s) is defined as follows. The sets of actions are A(s) and respectively B(s) for players 1 and
2, and the payoff for each pair of actions (a, b) ∈ A(s) × B(s) is

uM (s, a, b) :=

∑
s′∈S

p(s′|s, a, b) · v(s′).

Note that uM (s, a, b) is the expectation of the limsup value after transition in the original game G, when the players play
actions a and b in state s.

The value of the matrix gameM(s) is exactly v(s):

Val(M(s)) = v(s).

Indeed, if π denotes an ε-optimal strategy for player 1 in the game G for the initial state s, then uM (s, π (s), y) ≥ v(s) − ε

must hold for every y ∈ Y (s), where π (s) is the mixed action that π prescribes for the initial state s. This implies that
Val(M(s)) ≥ v(s). We similarly obtain the opposite inequality.

In the matrix gameM(s), we define

X∗(s) := {x ∈ X(s) | uM (s, x, y) ≥ v(s) ∀y ∈ Y (s)}

Y ∗(s) := {y ∈ Y (s) | uM (s, x, y) = v(s) ∀x ∈ X∗(s)}.

The set X∗(s) consists of all optimal mixed actions for player 1 in the matrix gameM(s), whereas Y ∗(s) is the set of equalizers
for player 2. Both X∗(s) and Y ∗(s) are nonempty polytopes. In fact, all optimal mixed actions of player 2 in the matrix game
M(s) belong to Y ∗(s).

Define

A∗(s) := {a ∈ A(s) | x(a) > 0 for some x ∈ X∗(s)},

and

B∗(s) := {b ∈ B(s) | y(b) > 0 for some y ∈ Y ∗(s)}.

The set A∗(s), respectively B∗(s), consists of all actions in A(s), respectively B(s), that are used by some mixed action in X∗(s),
respectively Y ∗(s).

It is easy to see that if y ∈ Y ∗(s) then Support(y) ⊆ Y ∗(s). Indeed, let x ∈ X∗(s). Then

v(s) = uM (s, x, y) =

∑
b∈B

y(b)uM (s, x, b).

We have uM (s, x, b) ≥ v(s) for each b ∈ B. Therefore, if y(b) > 0 then uM (s, x, b) = v(s), as desired. It now follows that
B∗(s) ⊆ Y ∗(s). Since Y ∗(s) is convex, we also have

Y ∗(s) = {y ∈ Y (s) | Support(y) ⊆ B∗(s)}.

Define

X∗∗(s) := {x ∈ X∗(s) | x(a) > 0 ∀a ∈ A∗(s)}.
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The set X∗∗(s) consists of all mixed actions in X∗(s) which put positive probability on each such action. By convexity of X∗(s),
the set X∗∗(s) is nonempty.5

Define X∗∗
= ×s∈SX∗∗(s). Thus, the set X∗∗ consists of all stationary strategies for player 1 that use a mixed action in

X∗∗(s) in every state s ∈ S. These stationary strategies are calledmaximally mixed strategies.
The following lemma is closely related to lemma 2.5 in [11]. The first part of the lemma is a well known fact that for a pair

of stationary strategies the limsup payoff is constant on each ergodic set. The second and the third parts claim that if player
1 uses a maximally mixed strategy and player 2 uses a stationary strategy, then on each ergodic set, the limsup value is a
constant and player 2’s strategy behaves as a strategy that always choosesmixed actions in Y ∗(s) in each state s. The intuition
behind this result is as follows. Observe that starting from any state in an ergodic set E, all the states in E must be visited
infinitely often and hence all the triples (s, a, b) with positive probability must also occur infinitely often with probability
one. Thus, the limsup payoff must almost surely equal the maximum of r(s, a, b) taken over all such triples and so v(s′) must
also equal this maximum for all s′ in E. In particular, the limsup value is constant on E.

For (x, y) ∈ X × Y and E ⊆ S define

u(E, x, y) = max{r(s, a, b) | s ∈ E, x(s)(a) > 0, y(s)(b) > 0}.

Lemma 3. Let E ⊆ S be an ergodic set for some pair of stationary strategies (x, y) ∈ X × Y .

1. u(s, x, y) = u(E, x, y) for each s ∈ E.
2. Suppose that x ∈ X∗∗. Then v(s) = v(s′) for every s, s′ ∈ E. Henceforth we denote this constant by v(E).
3. Suppose that x ∈ X∗∗. Then y(s) ∈ Y ∗(s) for every s ∈ E.

Proof. Consider the Markov chain on the states induced by (x, y).
[1] Starting from any state s in the ergodic set E, all the states in E must be visited infinitely often and hence all the triples

(s′, a, b) with positive probability must also occur infinitely often with probability one. Hence the payoff u(s, x, y) equals the
maximal reward over all such triples.

[2] Let x ∈ X∗∗. Recall that x(s) ∈ X∗∗(s) ⊆ X∗(s) for every s ∈ E. Let v(E) = maxs∈Ev(s). Consider the set E ′
=

{s ∈ E | v(s) = v(E)}. We argue that E ′
= E. Suppose s ∈ E ′. It follows from the inequality uM (s, x, y) ≥ v(s) and the

equality

uM (s, x, y) =

∑
s′,a,b

p(s′|s, a, b) · v(s′) · x(s)(a) · y(s)(b)

that the next state s′ is in E ′ with probability 1. Thus the Markov chain never leaves the set E ′. However, every state in the
ergodic set E must be visited almost surely starting from any state in E ′

⊆ E. We conclude that E ′
= E.

[3] Let x ∈ X∗∗. Take a state s ∈ E and a mixed action x′(s) ∈ X∗(s). We know that (x(s), y(s)) only induces transitions to
states in E. Since x(s) ∈ X∗∗(s), we have that the support of x(s) includes the support of x′(s). Hence (x′(s), y(s)) also induces
transitions to states in E only. Therefore by part [2], uM (s, x′(s), y(s)) = v(E) = v(s). Since x′(s) is chosen arbitrarily in X∗(s),
we have shown that y(s) ∈ Y ∗(s), as desired. □

In the remaining part of this section, we prove the following result, which in particular implies Theorem 1.

Theorem 4. Consider a zero-sum stochastic game with the limsup payoff. Assume that player 1 has an optimal strategy. Then
every maximally mixed strategy is optimal for player 1.

Note that the construction of the set X∗∗ of maximally mixed strategies does not rely on the existence of an optimal
strategy. As we will see in the subsequent subsections, the assumption that there exists an optimal strategy for player 1 will
only be invoked to guarantee that the strategies in X∗∗ are optimal. We emphasize that we do not need to know an optimal
strategy, its existence is sufficient.

We remark that the set X∗∗ also played an important role in [11]. They proved with respect to the average payoff that, if
player 1 has an optimal strategy, then for every ε > 0, he has a stationary ε-optimal strategy within X∗∗, and that he also
has a Markov optimal strategy that only makes use of mixed actions in X∗∗(s), for all s ∈ S.

We prove Theorem 4 in two main steps. First, we introduce one other class of stationary strategies, called effective, and
show that if player 1 has an optimal strategy then all effective strategies are optimal (Theorem 5). Then, we prove that all
maximally mixed strategies are effective (Theorem 6).

5.2. Effective strategies

Restricted sets of strategies. Let Π∗ denote the set of strategies π for player 1 such that π (h) ∈ X∗(sh) for each history
h ∈ H . Let X∗

= ×s∈SX∗(s) denote the set of stationary strategies in Π∗. Note that X∗∗
⊆ X∗.

5 Any convex combination of all extreme points of the polytope X∗(s) with only positive weights belongs to X∗∗(s).
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Similarly, let Σ∗ denote the set of strategies σ for player 2 such that σ (h) ∈ Y ∗(sh) for each history h ∈ H , and let
Y ∗

= ×s∈SY ∗(s) denote the set of stationary strategies in Σ∗.

Effective strategies. For every state s ∈ S, we define

γ ∗(s) := sup
π∈Π∗

inf
σ∈Σ∗

u(s, π, σ ).

Intuitively, γ ∗(s) is the highest expected payoff that player 1 can guarantee from state s by using a strategy in Π∗, given
that player 2 is restricted to using a strategy in Σ∗. As we show below (see the proof of Theorem 5), if player 1 has an
optimal strategy and he is using it against a strategy of player 2 from Σ∗, then after any history h that occurs with a positive
probability, the optimal strategy of player 1 recommends a mixed action in X∗(sh). This means intuitively that, against any
strategy in Σ∗, the optimal strategy of player 1 behaves as a strategy in Π∗. This will also imply that, if player 1 has an
optimal strategy, then γ ∗(s) is at least as large as the limsup value of the original game v(s).

A maximally mixed strategy x ∈ X∗∗ for player 1 is called effective, if player 2 has a stationary strategy y ∈ Y with the
following two properties:

1. The strategy y is a best response for the limsup payoff against x, i.e. u(s, x, y) ≤ u(s, x, σ ) for every state s ∈ S and
every strategy σ for player 2.

2. For every ergodic set E ⊆ S with respect to (x, y) we have u(E, x, y) ≥ mins∈Eγ
∗(s).

It will follow from Theorem 6 that, in every zero-sum stochastic game with the limsup payoff, player 1 has an effective
strategy.

5.3. Optimality of effective strategies

The following result is shown in [11] for the case of the average payoff. The main ideas of the proof remain the same for
the limsup payoff.

Theorem 5. Consider a zero-sum stochastic game with the limsup payoff. Assume that player 1 has an optimal strategy. Then,
every effective strategy for player 1 is optimal.

Proof. Step 1 (cf. lemma 2.2 in [11]): Let π ∈ Π be an optimal strategy for player 1, σ ∈ Σ∗ be a strategy for player 2, and
s ∈ S be the initial state. Then, for every history h ∈ H with P(s,π,σ )(h) > 0, we have π (h) ∈ X∗(sh). This means intuitively
that, against any strategy in Σ∗, the strategy π behaves as a strategy in Π∗.
Proof of step 1: Indeed, suppose by way of contradiction that there is a history h ∈ Ht , for some t ∈ N, for which we have
P(s,π,σ )(h) > 0 andπ (h) ̸∈ X∗(sh). Assume that h is a shortest such history. Thatmeans that, with probability 1with respect to
(s, π, σ ), at each period t ′ < t ,π prescribes amixed action in X∗(st ′ ) and σ prescribes amixed action in Y ∗(st ′ ). Consequently,
the sequence v(s) = v(s0), v(s1), . . . , v(st ) is a martingale (up to period t), with respect to P(s,π,σ ), so that in particular

E(s,π,σ )(v(st )) = v(s). (2)

For δ > 0, let σ δ be a strategy for player 2 such that: (i) before period t: σ δ agrees with σ , (ii) at period t: σ δ plays a best
response to π (ht ) in the matrix gameM(st ), and (iii) from t + 1 on: σ δ plays a δ-optimal strategy from the state st+1. Due to
property (i) and equality (2), for all δ > 0

E(s,π,σ δ )(v(st )) = E(s,π,σ )(v(st )) = v(s). (3)

Due to property (ii) and the mistake that π makes at h, it follows for all δ > 0 sufficiently small that

E(s,π,σ δ )(v(st+1)) + δ < E(s,π,σ δ )(v(st )). (4)

Due to property (iii), for all δ > 0

u(s, π, σ δ) ≤

∑
s′

P(s,π,σ δ )(st+1 = s′) · (v(s′) + δ) = E(s,π,σ δ )(v(st+1)) + δ. (5)

Combining (5), (4), and (3), we obtain that for all δ > 0 sufficiently small,

u(s, π, σ δ) < v(s).

This however contradicts the optimality of π .

Step 2 (cf. lemma 2.3 in [11]): γ ∗(s) ≥ v(s) for every state s ∈ S. This means intuitively that it weakly favors player 1 if the
players are restricted to the strategy sets Π∗ and Σ∗.
Proof of step 2: This step is a direct consequence of the assumption of Theorem 5 and step 1 above, as any optimal strategy
of player 1 behaves as a strategy in Π∗ against a strategy in Σ∗.
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Step 3: Conclusion of the proof of Theorem 5. Let x be an effective strategy for player 1. Then there exists a best response
y ∈ Y to x such that for every ergodic set E with respect to (x, y) we have u(E, x, y) ≥ mins∈Eγ

∗(s). We now argue that
u(w, x, y) ≥ v(w) for every initial state w ∈ S and thus establish the optimality of x.

First consider the case when the initial state w belongs to some ergodic set E for (x, y). By part 2 of Lemma 3, the limsup
value on E is a constant v(E). Thus, we need to show that u(E, x, y) ≥ v(E). By the definition of an effective strategy together
with step 2, we have

u(E, x, y) ≥ min
s∈E

γ ∗(s) ≥ min
s∈E

v(s) = v(E),

as desired.
Now suppose that the initial state w is transient for the Markov chain on S determined by (x, y). Thus w does not belong

to an ergodic set. However, the random stopping time τ at which the process s0 = w, s1, s2, . . . first reaches an ergodic set
is finite with P(w,x,y)-probability one. Also because x(s) ∈ X∗∗(s) ⊆ X∗(s) for every s ∈ S, the process v(s0), v(s1), . . . is a
bounded submartingale (and even a martingale, as y is a best response to x). Hence,

v(w) ≤ E(w,x,y)v(sτ ) ≤ E(w,x,y)u(sτ , x, y) = u(w, x, y).

The first inequality above is by the optional sampling theorem for bounded submartingales; the second is by the previous case
since sτ belongs to an ergodic set P(w,x,y)-almost surely; the equality follows by conditioning on the history up to time τ and
using the fact that the limsup of the sequence r0, r1, . . . is the same as the limsup of the sequence rτ , rτ+1, . . . P(w,x,y)-almost
surely.

This completes the proof of Theorem 5. □

5.4. Maximally mixed strategies are effective

Theorem 6. Consider a zero-sum stochastic game with the limsup payoff. Then, every maximally mixed strategy is effective.

Proof. Take any x ∈ X∗∗. Once x has been fixed, player 2 essentially faces aMarkov Decision Problem. Consequently, player 2
has a stationary best response y ∈ Y to x, in fact even a pure one (cf. [25], as well as [6], where an argument is given based
on [8,14] and [9]; see also [15]).

Let E be an ergodic set for (x, y). We show that

u(E, x, y) ≥ γ ∗(s) ∀s ∈ E. (6)

By part (3) of Lemma 3, y(s) ∈ Y ∗(s) for all s ∈ E. Choose any y′
∈ Y ∗ that coincides with y on E. Clearly we have

u(E, x, y′) = u(E, x, y). (7)

Now for each π ∈ Π∗ and each s ∈ E it holds that u(E, x, y′) ≥ u(s, π, y′). To see this, take any π ∈ Π∗ and s ∈ E. Since
x ∈ X∗∗, ifπ places positive probability on an action a ∈ A(sh) after a history h, then this action a is also playedwith a positive
probability under x. Consequently, if, starting with the state s, the state s′ is reached with positive probability under (π, y′),
it is reached with positive probability under (x, y′), and hence also under (x, y). It follows that s′ is an element of E. Now the
claim follows in view of Eq. (7).

Thus we conclude that for each s ∈ E,

u(E, x, y) = u(E, x, y′) ≥ sup
π∈Π∗

u(s, π, y′) ≥ sup
π∈Π∗

inf
σ∈Σ∗

u(s, π, σ ) = γ ∗(s),

which proves (6). □

5.5. Examples

Example 4 (Repeated Games). When the set of states is a singleton, i.e. when S = {s}, we essentially have a repeated game. In
this case the associatedmatrix game is trivial in the sense that uM (s, a, b) is equal to the value v(s) for each (a, b) ∈ A(s)×B(s).
Consequently, X∗(s) = X(s), X∗∗(s) = {x ∈ X(s) : x(a) > 0 for each a ∈ A(s)} and Y ∗(s) = Y (s). Further, Π∗

= Π and
Σ∗

= Σ .
Let

R = min
b∈B(s)

max
a∈A(s)

r(s, a, b). (8)

The limsup value of the repeated game is v(s) = R. Indeed, if x ∈ X∗∗ then u(s, x, σ ) ≥ R for any σ ∈ Σ . Hence, v(s) ≥ R. On
the other hand, if b ∈ B(s) is such that the minimum in (8) is attained at b, then u(s, π, b∞) ≤ R for any π ∈ Π . Here, b∞ is
the stationary strategy for player 2 that always chooses action b. Hence, v(s) ≤ R.

It follows from the arguments above that γ ∗(s) = R and that each maximally mixed strategy x ∈ X∗∗ is effective, and
optimal for the limsup payoff. ⋄
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Example 5 (When Player 1 has an Optimal Strategy).
L R

T 2 0∗

B 0∗ 1∗

We examine this game with the limsup payoff. The notation is similar to those of the previous examples.
Let s denote the non-absorbing state. Player 2 can guarantee that the limsup payoff is at most ε, for any ε ∈ (0, 1), by

playing the stationary strategy that chooses action Lwith probability 1− ε and action Rwith probability ε. Hence, v(s) = 0.
Note that any strategy of player 1 is optimal.

The corresponding matrix gameM(s) is

L R
T 0 0
B 0 1

Hence, X∗(s) = X(s), X∗∗(s) = {(p, 1 − p)|p ∈ (0, 1)} and Y ∗(s) = {(1, 0)}. Consequently, due to payoff 2 in the cell (T , L) in
the original game, we obtain γ ∗(s) = 2. It is easy to check that any maximally mixed strategy x ∈ X∗∗ is effective. Indeed,
y = (1, 0) is a (unique) best response for player 2, and the ergodic sets for (x, y) are the singletons consisting of the absorbing
states. ⋄

Example 6 (When Player 1 has no Optimal Strategy). We revisit the game of Example 1 with the limsup payoff.

L R
T 1 0
B 0∗ 1∗

As before, s denotes the non-absorbing state. Recall that v(s) = 1.
The corresponding matrix gameM(s) is

L R
T 1 1
B 0 1

Hence, X∗(s) = {(1, 0)}, X∗∗(s) = {(1, 0)} and Y ∗(s) = Y (s). Consequently, due to payoff 0 in the cell (T , R) in the original
game, we obtain γ ∗(s) = 0. The uniquemaximallymixed strategy in X∗∗ is effective. But, it is not ε-optimal for ε ∈ [0, 1). ⋄

6. The proof of Theorem 2

We start with a general remark regarding the proof of Theorem 2. Consider a zero-sum stochastic game Gwith the liminf
payoff. By making use of lemma 4.9 in [23], we could conclude that there exists a stationary strategy x∗ for player 1 such
that, for all strategies σ for player 2 and all initial states s, we have u(s, x∗, σ ) ≥ E(s,x∗,σ )[limtv(st )]. Suppose that, in addition,
x∗ can be chosen so that, for every state s, the mixed action x∗(s) is optimal in thematrix gameM(s). Then, for all strategies σ
for player 2 and all initial states s, the stochastic process v(st ) of successive values is a bounded submartingale under P(s,x∗,σ ).
Hence, E(s,x∗,σ )[limtv(st )] ≥ v(s). Therefore such a strategy x∗ would be optimal for player 1 in the game G.

In an attempt to find such a strategy, provided that player 1 has a subgame-optimal strategy, it is natural to restrict
player 1 to mixed actions at each state that are optimal in the corresponding matrix game and then to apply Secchi’s result.
However, there is a technical difficultywith such an approach. As is explained below, the restricted game is not awell-defined
stochastic game in the usual sense. Much of the proof of Theorem 2 is devoted to overcoming this technical difficulty.

We define two conditions on a zero-sum stochastic game that will play an important role in the proof.

Condition C1. The reward function only depends on the state, and thus not on the actions chosen by the players: r(s, a, b) =

r(s, a′, b′) for all states s ∈ S, and actions a, a′
∈ A(s) and b, b′

∈ B(s).

Condition C2. In every state, different actions of player 1 lead to different states: for all states s ∈ S and distinct actions
a, a′

∈ A(s), the sets

{w ∈ S | ∃b ∈ B(s) : p(w|s, a, b) > 0} and {w ∈ S | ∃b ∈ B(s) : p(w|s, a′, b) > 0}

are disjoint.

Consider an arbitrary zero-sum stochastic game G with the liminf payoff. Let X∗(s) for every s ∈ S, and Π∗ be as in
Section 5.

The related stochastic game G∗: We define a closely related stochastic game G∗. The idea behind G∗ is to restrict player 1
to only using mixed actions in X∗(s), that is, optimal mixed actions in the matrix game M(s), in state s. The subtlety of this
approach lies in the fact that restricting player 1’s set of mixed strategies to X∗(s) does not lead to a well-defined stochastic
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game, since player 2 does not observemixtures played by player 1, only the realization of thesemixtures. To circumvent this
difficulty we introduce an auxiliary game G∗ where the extreme points of X∗(s) are declared player 1’s pure actions, and we
impose the assumption that player 2 observes them. All this is done so that we are able to apply the result of Secchi [23] on
liminf stochastic games.

For every state s ∈ S, let E(s) denote the set of extreme points of X∗(s). Since X∗(s) is a nonempty polytope, the set E(s) is
nonempty and finite. The state space of the new stochastic game G∗ is S. In state s ∈ S, the action space is E(s) for player 1
and B(s) for player 2. For states s ∈ S and actions e ∈ E(s), b ∈ B(s), the reward is given by

r∗(s, e, b) =

∑
a∈A(s)

e(a) · r(s, a, b),

and the transition is given by

p∗(w|s, e, b) =

∑
a∈A(s)

e(a) · p(w|s, a, b) ∀w ∈ S.

We remark that if Condition C1 is satisfied, then r∗(s, e, b) does not depend on e and b and coincides with r(s, a, b) for each
a ∈ A(s) and b ∈ B(s).

During the play of the game G∗, as usual, the players observe the current state and the actions chosen in the current state.
That is, if the current state is s, the players observe s, and after choosing actions, they observe the action chosen in E(s) by
player 1 and the action chosen in B(s) by player 2. In this game G∗, the set A(s) has no special meaning, and is merely used to
define the rewards and the transitions.We denote by v∗(s) the liminf value ofG∗. The following lemma provides a connection
between the liminf value of G∗ and the original game G.

Lemma 7. Consider a zero-sum stochastic game G with the liminf payoff that satisfies Conditions C1 and C2. Then, for every state
s ∈ S we have

v∗(s) = sup
π∈Π∗

inf
σ∈Σ

u(s, π, σ ) = inf
σ∈Σ

sup
π∈Π∗

u(s, π, σ ).

Proof. Consider a zero-sum stochastic game G with the liminf payoff that satisfies Conditions C1 and C2. Let W denote
the set of all sequences of the form (s0, b0, . . . , st−1, bt−1, st ), where sk ∈ S for all k ∈ {0, . . . , t}, and bk ∈ B(sk) for all
k ∈ {0, . . . , t − 1}.

Further notation and definitions for the game G: By Condition C2, for all states s, s′ ∈ S there is at most one action a ∈ A(s)
such that p(s′|s, a, b) > 0 for some b ∈ B(s). Whenever such an action exists, we denote it by as,s′ . Thus, if the play moves
from state s to state s′, then the players can conclude that player 1 played action as,s′ in state s.

Let ξ : H → W denote the mapping that, to each history h ∈ H , assigns the sequence ξ (h) ∈ W that arises by erasing
the actions of player 1. Note that by Condition C2, ξ is a bijection.6 This allows us to considerW as the set of histories in the
game G, and as the domain of strategies in Π∗ (or even Π ) and Σ .

Further notation and definitions for the game G∗: We denote by u∗ the liminf payoff function for G∗. Let α and β denote
strategies in G∗ for players 1 and 2 respectively, and let Φ and Ψ denote the sets of strategies in G∗ for players 1 and 2
respectively.

Let H∗ denote the set of histories in the game G∗. A history in H∗ is thus of the form

h = (s0, e0, b0, . . . , st−1, et−1, bt−1, st ),

where sk ∈ S for all k ∈ {0, . . . , t}, and ek ∈ E(sk) and bk ∈ B(sk) for all k ∈ {0, . . . , t − 1}.
Let ξ ∗

: H∗
→ W denote the mapping that, to each h ∈ H∗, assigns the sequence ξ ∗(h) ∈ W that arises by erasing the

actions of player 1.
For player 1, let Φ∗ denote the set of strategies in Φ that prescribe a mixed action only depending on the sequence of

states and the sequence of actions played by player 2. Thus, these strategies do notmake use of the actions played by player 1.
Consequently, the domain of strategies in Φ∗ can be identified withW .

For player 2, similarly, let Ψ ∗ denote the set of strategies in Ψ that prescribe a mixed action only depending on the
sequence of states and the sequence of actions played by player 2. Consequently, the domain of strategies in Ψ ∗ can be
identified withW . Due to this, we can also identify Ψ ∗ with Σ .

Identification of strategies between G and G∗: As discussed above, the domain of the strategy sets Φ∗ and Π∗ for player 1
can be identified with W . We can therefore define a mapping ρ1 : Φ∗

→ Π∗ such that, for all α ∈ Φ∗, the strategy ρ1(α) is
the unique strategy π ∈ Π∗ with the following property: for each sequence h = (s0, b0, . . . , st−1, bt−1, st ) inW we have

π (h)(a) =

∑
e∈E(st )

α(h)(e) · e(a) ∀a ∈ A(st ).

6 Up to histories in H and sequences inW that are not consistent with the transitions of the game.
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Intuitively, for any sequence h in W , the probability of any action a ∈ A(st ) under π (h) is equal to the probability of a under
α(h), i.e., that action a is chosen by e ∈ E(st ), after e being drawn according toα(h). Themapping ρ1 is surjective, but generally
not one-to-one.

For completeness, for player 2 we denote the identity mapping Ψ ∗
→ Σ by ρ2.

We then have for all states s ∈ S, and all strategies α ∈ Φ∗ and β ∈ Ψ ∗ that

u∗(s, α, β) = u(s, ρ1(α), ρ2(β)). (9)

This equality relies on the fact that (α, β) and (ρ1(α), ρ2(β)) generate the same probability measure onW , thus using C1 and
the fact that for a fixed state s, the payoff r∗(s, e, b) is independent of e and b, they generate the same probability measure
on r(Z)∞.

Hence, by surjectivity of ρ1 and ρ2, we have for all states s ∈ S

inf
β∈Ψ ∗

sup
α∈Φ∗

u∗(s, α, β) = inf
β∈Ψ ∗

sup
α∈Φ∗

u(s, ρ1(α), ρ2(β)) = inf
σ∈Σ

sup
π∈Π∗

u(s, π, σ ). (10)

The main body of the proof. Fix an initial state s ∈ S.

Part A. First, we obviously have

sup
π∈Π∗

inf
σ∈Σ

u(s, π, σ ) ≤ inf
σ∈Σ

sup
π∈Π∗

u(s, π, σ ). (11)

(For this inequality to hold, we only need that u is a real-valued function.)

Part B. Now we prove

v∗(s) ≤ sup
π∈Π∗

inf
σ∈Σ

u(s, π, σ ). (12)

Let ε > 0. By theorem 4.16 in [23], player 1 has a stationary ε-optimal strategy α in the game G∗. Denote x = ρ1(α). Thus,
x ∈ X∗. Let y ∈ Y be a stationary best response of player 2 to x (such a strategy y is a best response both in G and in G∗). Then,
by using (9),

v∗(s) − ε ≤ u∗(s, α, y)
= u(s, x, y)
= inf

σ∈Σ
u(s, x, σ )

≤ sup
π∈Π∗

inf
σ∈Σ

u(s, π, σ ).

Since ε > 0 was arbitrary, we have shown (12).

Part C. Now we argue that

v∗(s) ≥ inf
σ∈Σ

sup
π∈Π∗

u(s, π, σ ). (13)

As the game G satisfies Condition C1 by assumption, so does the game G∗. As remarked at the end of Section 3.1, under
Condition C1, player 2 has an ε-optimal strategy, for every ε > 0, which does not take the actions chosen by player 1 into
account. That is, player 2 has an ε-optimal strategy in G∗, for every ε > 0, within the set Ψ ∗. Hence,

v∗(s) = inf
β∈Ψ

sup
α∈Φ

u∗(s, α, β)

= inf
β∈Ψ ∗

sup
α∈Φ

u∗(s, α, β)

≥ inf
β∈Ψ ∗

sup
α∈Φ∗

u∗(s, α, β)

= inf
σ∈Σ

sup
π∈Π∗

u(s, π, σ ),

where the last equality is (10), and this proves (13).
By (11), (12) and (13), the proof of Lemma 7 is complete. □

Lemma 8. Consider a zero-sum stochastic game G with the liminf payoff that satisfies Conditions C1 and C2. If player 1 has a
subgame-optimal strategy, then he has a stationary optimal strategy as well.

Proof. Assume that the zero-sum stochastic game G with the liminf payoff satisfies Conditions C1 and C2. Let π∗ be a
subgame-optimal strategy for player 1 in the game G.
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Due to Condition C1, the reward function r of G and hence also the reward function r∗ of G∗ only depend on the state. For
the sake of exposition, let r(s) = r∗(s) denote the reward for every state s ∈ S.

Step 1: The strategy π∗ is a member of the restricted set of strategies Π∗.

Proof of step 1: An argument by contradiction, similar to that for step 1 in the proof of Theorem 5, shows that an optimal
strategy in the stochastic game at any state smust begin with an optimal mixed action in the matrix gameM(s). Because π∗

is optimal in every subgame, the action π∗(h) must be optimal inM(sh) for every history h. Thus π∗(h) ∈ X∗(sh) for all h, and
therefore π∗

∈ Π∗.

Step 2:We have for every state s ∈ S

sup
π∈Π∗

inf
σ∈Σ

u(s, π, σ ) ≥ v(s).

Proof of step 2: This is by step 1 and the optimality of π∗.

Step 3: For every π ∈ Π∗, σ ∈ Σ , and s ∈ S, the stochastic process {v(st )} converges P(s,π,σ )-almost surely and
E(s,π,σ )[limt→∞v(st )] ≥ v(s).

Proof of step 3: The process {v(st )} is a P(s,π,σ )-submartingale because π selects mixed actions optimal in M(sh) at every
h. The process is bounded because the reward function r is bounded. So the almost sure convergence of {v(st )} follows
from a martingale convergence theorem. Also, by the dominated convergence theorem and the fact that submartingales are
nondecreasing in expectation:

E(s,π,σ )[ lim
t→∞

v(st )] = lim
t→∞

E(s,π,σ )[v(st )] ≥ v(s).

Step 4:Recall that v∗(s) denotes the liminf value of the gameG∗.We claim for the original gameG that there exists a stationary
strategy x∗

∈ X∗ for player 1 such that, for all stationary strategies y ∈ Y and all s ∈ S,

E(s,x∗,y)[lim inf
t→∞

r(st )] ≥ E(s,x∗,y)[lim inf
t→∞

v∗(st )].

Proof of step 4: By applying lemma 4.9 of Secchi [23] to the game G∗, there exists a stationary strategy ẽ for player 1 in G∗,
i.e. ẽ ∈ ×s∈S∆(E(s)) where ∆(E(s)) stands for the set of probability measures on E(s), such that for all stationary strategies
y ∈ Y and all s ∈ S

P(s,̃e,y)[r(st ) ≥ v∗(st ) for all but finitely many t] = 1.

Let x∗
∈ X∗ be the stationary strategy for player 1 in the game G defined by letting for each state s ∈ S and each action

a ∈ A(s)

x∗(s, a) =

∑
e∈E(s)

ẽ(s, e) · e(a).

Thus, the probability that x∗ places on action a in state s is exactly the probability that one obtains if e ∈ E(s) is drawn from
ẽ in state s, and subsequently a is drawn from e.7 Since stationary strategies only take the current state into account when
choosing an action, we obtain for all stationary strategies y ∈ Y and all s ∈ S

P(s,x∗,y)[r(st ) ≥ v∗(st ) for all but finitely many t] = 1.

Hence, for all stationary strategies y ∈ Y and all s ∈ S

P(s,x∗,y)[lim inf
t→∞

r(st ) ≥ lim inf
t→∞

v∗(st )] = 1,

which establishes the claim of step 4.

Conclusion of the proof of Lemma 8: Let x∗ be a stationary strategy as in step 4, and let y ∈ Y be a best response for player
2 against x∗. Then, by step 4, we have for all s ∈ S that

u(s, x∗, y) = E(s,x∗,y)[lim inf
t→∞

r(st )] ≥ E(s,x∗,y)[lim inf
t→∞

v∗(st )].

In view of Lemma 7 and step 2, we have for every state w ∈ S that

v∗(w) = sup
π∈Π∗

inf
σ∈Σ

u(w, π, σ ) ≥ v(w).

Hence, for all s ∈ S

u(s, x∗, y) ≥ E(s,x∗,y)[lim inf
t→∞

v(st )]. (14)

7 By using the mapping ρ1 from the proof of Lemma 7, we have x∗
= ρ1 (̃e).
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Then, step 3 implies for all s ∈ S that

u(s, x∗, y) ≥ v(s).

Since y is a best response to x∗, we conclude that x∗ is a stationary optimal strategy for player 1 in the game G. □

In the proof above, the conditions on π in step 3 and x∗ in (14) are two-person versions of the conditions [10]
called ’’thrifty’’ and ’’equalizing’’ in their study of one-person gambling problems with a limsup payoff. The corresponding
conditions for gambling problems with a liminf payoff are in [25].

Proof of Theorem 2. Consider a zero-sum stochastic game Gwith the liminf payoff.
Now we construct another zero-sum stochastic game GE , which can be seen as the game G on an extended state space.

The state space of GE is

SE = {(s, a, b, w) | s, w ∈ S, a ∈ A(s), b ∈ B(s)}.

The idea is that state (s, a, b, w) describes the situation in the original game Gwhen, at the previous period, the play was in
state s and the players chose actions a and b, and then w became the current state. Thus, the game GE is just like the game G
with the modification that the players can conclude from the current state what the previous state was and which actions
the players chose there.

We describe the game GE more formally. In state sE = (s, a, b, w) ∈ SE , the action spaces are AE(sE) = A(w) for player 1
and BE(sE) = B(w) for player 2, and the reward is equal to rE(sE, a′, b′) = r(s, a, b) for all actions a′

∈ AE(sE) and b′
∈ BE(sE).

Intuitively, in the game GE the reward is equal to the reward in G at the previous period. In state sE = (s, a, b, w) ∈ SE , the
transition for actions a′

∈ AE(sE) and b′
∈ BE(sE) is as follows: for states of the form wE

= (w, a′, b′, w′), where w′
∈ S,

pE(wE
|sE, a′, b′) = p(w′

|w, a′, b′),

and the transition probabilities are zero for all other states in SE .
Note that by construction, the game GE satisfies Conditions C1 and C2.
Assume that the game G starts in initial state s ∈ S. Choose an initial state (w, a, b, s) for GE , where w ∈ S, a ∈ A(w) and

b ∈ B(w) are arbitrary. Given these initial states, there is a bijection between the histories in G and GE , where a history

h = (s0, a0, b0, s1, a1, b1, . . . , st−1, at−1, bt−1, st )

in the game G, where s0 = s, corresponds to the history

hE
= ((w, a, b, s0), a0, b0, (s0, a0, b0, s1), a1, b1, . . . , (st−2, at−2, bt−2, st−1), at−1, bt−1, (st−1, at−1, bt−1, st ))

in the game GE . Let rk = r(sk, ak, bk) for k ∈ {0, . . . , t − 1}. Then, h induces rewards (r0, . . . , rt−1), whereas hE induces
rewards (r(w, a, b), r0, . . . , rt−2). That is, in the game GE , there is a one period delay in the rewards.

Given the bijection between histories, there is also a bijection between strategies in G and GE . Furthermore, for any
strategies π and σ in G and corresponding strategies πE and σ E in GE , we have u(s, π, σ ) = uE((w, a, b, s), πE, σ E).
Consequently, the liminf values of the games G and GE satisfy

vE(w, a, b, s) = v(s).

By assumption, player 1 has a subgame-optimal strategy π in G. Due to construction, player 1 has a subgame-optimal
strategy πE in GE . As the game GE satisfies Conditions C1 and C2, we can conclude by Lemma 8 that player 1 has a (subgame-
optimal) stationary optimal strategy xE in GE . This strategy in turn induces in the game G a subgame-optimal strategy for
player 1 under which the prescribedmixed actions only depend on the current state and on the state and the actions chosen
at the previous period. This completes the proof of Theorem 2. □

Example 7. To illustrate the construction of the game GE , let G be the Big Match (cf. Example 1). By having the payoff and
the transition in each cell, the game G can be represented as

L R
T 1, s 0, s
B 0, ℓ 1, w

state s

b
a 0, ℓ

state ℓ

b
a 1, w

state w

The extended game GE is then

L R
T 1, (s, T , L, s) 1, (s, T , R, s)
B 1, (s, B, L, ℓ) 1, (s, B, R, w)

state (s, T , L, s)

L R
T 0, (s, T , L, s) 0, (s, T , R, s)
B 0, (s, B, L, ℓ) 0, (s, B, R, w)

state (s, T , R, s)

b
a 0, (ℓ, a, b, ℓ)

state (s, B, L, ℓ)

b
a 0, (ℓ, a, b, ℓ)

state (ℓ, a, b, ℓ)
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b
a 1, (w, a, b, w)

state (s, B, R, w)

b
a 1, (w, a, b, w)

state (w, a, b, w)

Let s be the initial state in the game G, and let (s, T , L, s) be the initial state in the game GE (the arguments below are similar
if (s, T , R, s) is the initial state in the game GE). Suppose that the history in G is

h = (s, T , R, s, T , R, s, T , L, s, T , R, s, B, R, w, a, b, w, a, b, w).

Then, the sequence of rewards is r(h) = (0, 0, 1, 0, 1, 1, 1). The corresponding history in the game GE is

hE
= ((s, T , L, s), T , R, (s, T , R, s), T , R, (s, T , R, s), T , L, (s, T , L, s), T , R,

(s, T , R, s), B, R, (s, B, R, w), a, b, (w, a, b), a, b, (w, a, b)),

with sequence of rewards rE(hE) = (1, 0, 0, 1, 0, 1, 1). This sequence rE(hE) starts with reward 1 due to the choice of
(s, T , L, s) as the initial state ((s, T , R, s) would induce reward 0), and then coordinate t + 1 of rE(hE) is equal to coordinate t
of r(h). So, in the game GE , as we mentioned earlier, the rewards are received one period later than in G.

7. Extensions

In this section, we discuss extensions of the main results.

7.1. Games with countably infinite state spaces

The following example demonstrates that, if the state space is countably infinite, then the existence of an optimal strategy
does not imply the existence of a subgame-optimal strategy, neither for the limsup nor for the liminf payoff. In particular,
Theorem1 cannot be extended to gameswith countably infinite state spaces. It remains an openquestionwhether Theorem2
is valid in games with a countably infinite state space.

Example 8. Consider the following game. The state space is N × {c, s}. The states can be described as follows:

• In each state (n, c), where n is even, player 1 has two actions c and s and player 2 has only one action. If player 1 chooses
action c , then the payoff is 0 and the play moves to state (n+ 1, c). If player 1 chooses action s, then the payoff is 0 and
the play moves to state (n, s).

• In each state (n, c), where n is odd, player 2 has two actions c and s and player 1 has only one action. If player 2 chooses
action c , then the payoff is 0 and the play moves to state (n+ 1, c). If player 2 chooses action s, then the payoff is 0 and
the play moves to state (n, s).

• Each state (n, s) is absorbing, and the payoff is n
n+1 .

Notice that this game has perfect information, i.e., in every state only one player has more than one action (we can assume
that each player has only one action in the absorbing states). Moreover, the limsup and the liminf payoffs are equal to each
other, for any pair of strategies. In fact, this game with either payoff is equivalent to the following centipede game:

p1

0

p2

1
2

p1

2
3

p2

3
4

p1

4
5

· · · 0

s

c

s

c

s

c

s

c

s

c

Take an initial state (n, c), where n is even. Player 1 is the active player at this state. One can easily verify for this initial
state that (1) the value is n+1

n+2 , (2) it is optimal for player 1 to play action c in state (n, c) and action s in state (n + 2, c), (3) it
is optimal for player 2 to play action s in state (n + 1, c). Note that any optimal strategy of player 1 requires to play action c
in state (n, c).

Consequently, player 1 has an optimal strategy in the game. However, player 1 has no subgame-optimal strategy, as
playing action c in every state (n, c), where n is even, only gives payoff 0 against the strategy of player 2 that always chooses
action c. ⋄

The next example is motivated by a game in [10, example 3 in section 3.9].
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Example 9. Consider the following game with the limsup payoff. The state space is N. Player 2 is a dummy, i.e., he has only
one action in each state. In state n ∈ N, player 1 has two actions. One action gives reward 0 and leads to state n+ 1, whereas
the other action gives reward n

n+1 and keeps the play in state n. The game can be represented as follows:

p1

0

p1

1
2

p1

2
3

p1

3
4

· · ·
0 0 0 0

In this game, player 1 has a subgame-optimal strategy. Indeed, staying in every state for exactly 2 periods constitutes a
pure subgame-optimal strategy, and choosing each actionwithprobability 0.5 in each state constitutes a stationary subgame-
optimal strategy. However, player 1 does not possess a pure stationary optimal strategy, which might be surprising given
the fact that this is essentially a one-player game (Markov Decision Problem).

7.2. Games with countably infinite action spaces

In this section we consider games with a finite state space but possibly infinite action spaces in which player 2 is dummy,
i.e. he has only one action in each state. As mentioned above, these games can be seen as one-player games.

For the limsup payoff, Dubins and Savage [10, theorem 3, p. 59] showed that, if the player has an optimal strategy, then
he also has a stationary optimal strategy.

The example below shows that this is not true for the liminf payoff even if there is a subgame-optimal strategy. It is
true however that in the example there is an optimal strategy for which the action chosen at each period depends only on
the current state together with the state and action of the previous period. Thus there is an optimal strategy of the type
introduced in Theorem 2.

We remark that if both the state and action spaces are finite, there is always a stationary optimal strategy in both the
limsup and liminf cases, cf. [10, theorem 1, p. 58] and [25].

Example 10. Consider the following one-player game with the liminf payoff. The state space is S = {0, 1}. In state 0, there
is only one action, which gives reward 0 and induces transition to state 1 with probability 1. In state 1, the action space is
{an | n = 2, 3, . . .}, where the action an, for each n, gives reward 1 and induces transition probabilities p(0|1, an) =

1
n and

p(1|1, an) = 1 −
1
n . Let W denote the set of all sequences in S that are eventually equal to 1, i.e. in which 0 only appears

finitely many times. Thus, the player receives a liminf payoff of 1 if the sequence of states visited during the course of the
play is inW , and receives a liminf payoff of 0 otherwise.

For simplicity, assume that state 1 is the initial state. To construct an optimal strategy, first choose a sequence of integers
n1, n2, . . . , each at least 2, such that q = Π∞

k=1(1−
1
nk
) is strictly positive. Then let π be the strategy that uses an1 , an2 , . . . in

order until and if ever state 0 is reached, and upon each return to state 1 starts over again using an1 , an2 , . . . as before. With
respect to π , the probability of staying at state 1 forever is q, and the probability of inducing a sequence of states inW is

q + (1 − q) · q + (1 − q)2 · q + · · · = 1.

It follows that the liminf value is equal to 1 and that π is optimal. It is not difficult to see that π induces payoff 1 in every
subgame and thus π is even subgame-optimal.

Further notice that no stationary strategy can be optimal, whether pure or randomized. Indeed, the probability under any
stationary strategy of staying at state 1 forever is zero, and it follows that the probability of inducing a sequence of states in
W is also 0.

Here is another description of the optimal strategy defined above:

• If the current state is 1 and the previous state was 0, play the action an1 .
• If the current state is 1, the previous state was 1 and the previous action was ank , play the action ank+1 .
• If the current state is 0, play the only action available.

Thus, the example shows that there may exist an optimal strategy as in Theorem 2, even though there does not exist a
stationary optimal strategy. ⋄

7.3. Limsup and liminf of the expected rewards

Under our definition of the evaluation u(s, π, σ ) of the pair of strategies (π, σ ) in the initial state s, one computes the
expectation of the limit superior of the sequence of rewards. In this section we briefly examine another evaluation criterion
thereby one takes the limit superior of the expectation of the rewards.
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For an initial state s and pair of strategies (π, σ ), we define

u(s, π, σ ) = lim sup
t→∞

E(s,π,σ )(rt ),

where E(s,π,σ )(rt ) denotes the expectation of the reward at period t under (s, π, σ ). Fatou’s lemma implies that u(s, π, σ ) ≤

u(s, π, σ ).8 Similarly, we define

u(s, π, σ ) = lim inf
t→∞

E(s,π,σ )(rt ).

The following example shows that Theorem 1 does not extend to the case of the payoff u. It remains an open question
whether Theorem 2 could be extended to u.

Example 11. Consider the following game, with the notation similar to those of the previous examples:

L R
T 1 0
B 0 1∗

With respect to the payoff u, player 1 has a Markov optimal strategy, but no stationary optimal strategy. Thus, Theorem 1
does not extend to the payoff u.

As before, let s denote the non-absorbing state. Let π be the Markov strategy which prescribes to play action T with
probability t

t+1 and action B with probability 1
t+1 when in state s in period t . The idea behind this strategy is that if player 2

tries to play action L infinitely often, then u gives payoff 1, whereas if player 2 tries to play action R at each period t ≥ T , for
some T ∈ N, then play will absorb in entry (B, R) with probability 1, and u gives payoff 1 again. Thus, one can show9 that
π guarantees a payoff of 1 under u and is thus optimal. However, it is easy to see that player 1 has no stationary optimal
strategy for u. ⋄
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