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 CURRENT
OPINION Skeletal muscle mitophagy in chronic disease:

implications for muscle oxidative capacity?

Pieter A. Leermakers and Harry R. Gosker

Purpose of review

Loss of skeletal muscle oxidative capacity is a common feature of chronic diseases such as chronic
obstructive pulmonary disease, type 2 diabetes, and congestive heart failure. It may lead to physical
impairments and has been suggested to contribute to metabolic inflexibility-induced cardiometabolic risk.
The mechanism underlying loss of muscle oxidative capacity is incompletely understood. This review
discusses the role of mitophagy as a driving force behind the loss of skeletal muscle oxidative capacity in
these patients.

Recent findings

Mitophagy has been studied to a very limited extent in human skeletal muscle. There are, however, clear
indications that disease-related factors, including hypoxia, systemic inflammation, muscle inactivity, and
iron deficiency are able to induce mitophagy, and that these factors trigger mitophagy via different
regulatory mechanisms. Although mitophagy may lead to mitochondrial loss, it is also required to maintain
homeostasis through clearance of damaged mitochondria.

Summary

Based on available evidence, we propose that enhanced mitophagy is involved in chronic disease-induced
loss of muscle oxidative capacity. Clearly more research is required to confirm this role and to establish to
what extent mitophagy is pathological or a part of physiological adaptation to maintain muscle health.
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INTRODUCTION

Loss of lower limb skeletal muscle oxidative
capacity, defined by the ability to oxidize nutrients
to obtain energy, is a common feature of chronic
diseases such as chronic obstructive pulmonary dis-
ease (COPD) [1], type 2 diabetes (T2D) [2,3], and
congestive heart failure (CHF) [4,5]. Functional
impairments, such as muscle dysfunction and
decreased exercise capacity, are associated with
reduced muscle oxidative capacity [1–5], and even-
tually may lead to disability or even handicaps.
Moreover, impaired muscle oxidative capacity has
been proposed to accelerate muscle wasting [6

&&

,7]
and may lead to metabolic inflexibility and
increased cardiometabolic risk [8].

Oxidative capacity is defined by the maximal
rate at which oxidative phosphorylation, a mito-
chondrial-based process in which energy is obtained
by splitting nutritional substrates into CO2 and
water, can be performed. In short, an energy-rich
proton gradient is created over the inner mitochon-
drial membrane (IMM) by pumping protons into the

intermembrane space using energy derived from
splitting substrates. This proton gradient then drives
the production of ATP from ADP and inorganic
phosphate. Oxidative phosphorylation was
traditionally considered to be the only major func-
tion of mitochondria, but recent studies have
revealed highly regulated roles for mitochondrial
quality and quantity in key cellular regulatory path-
ways like apoptosis and autophagy [6

&&

].
As skeletal muscle mitochondrial quantity and

as such oxidative capacity are clearly affected in
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chronic diseases, it is likely that mitochondrial
homeostasis is altered in such a way that mitochon-
drial degradation, which is mainly mediated
through mitophagy, is favored above mitochondrial
biogenesis. The main focus has been on impaired
skeletal muscle mitochondrial biogenesis in patients
with chronic disease in the past decades [9–13], but
remarkably, the role of mitochondrial breakdown
remains understudied. This review aims to examine
current evidence of skeletal muscle mitophagy in
different chronic diseases, and to examine evidence
linking common denominators of these diseases to
increased mitophagy and the loss of skeletal muscle
oxidative capacity. Finally, the putative role of
skeletal muscle mitophagy in maintenance of
muscle health will be discussed.

MITOCHONDRIAL DYNAMICS

According to popular belief, the mitochondrion
used to be a prokaryote, which was engulfed by
endocytosis in early eukaryotes millions of years
ago. Today, mitochondria still contain their own
DNA (mtDNA), which consists of 37 genes which are
coding for several different mitochondrial proteins,
protein subunits, or supporting molecules required
for mitochondrial function. The remaining mito-
chondrial proteins and subunits are encoded by
nuclear DNA. To ensure coordinated transcription
of both the mtDNA and nuclear DNA, the perox-
isome proliferator-activated receptor-g coactivator
family acts as mitochondrial biogenesis master reg-
ulator [14].

Mitochondria are highly dynamic organelles,
which are constantly changing in size and shape.
These changes are mediated through mitochondrial
fission and fusion events [6

&&

]. Dynamin-related

protein 1 is master regulator for mitochondrial fis-
sion, and works together with proteins like mito-
chondrial fission 1 and mitochondrial fission
process 18. Mitochondrial fusion is mainly regu-
lated on the level of the IMM by optic atrophy 1,
and on the outer mitochondrial membrane (OMM)
by mitofusin (MFN)-1, and MFN-2 [6

&&

]. Due to the
selective regulation of these processes, mitochondria
in one cell can be highly heterogeneous in size,
function, and morphology, and mtDNA copy num-
ber.

One of the functions of fusion is to ‘dilute’
damaged mtDNA or proteins in large mitochondrial
networks to enable mitochondrial damage repair.
However, because of their exposure to high concen-
trations of reactive oxygen species (ROS), mitochon-
dria are highly susceptible for protein and mtDNA
damage, which can easily become very extensive
[15]. To ensure overall mitochondrial health, the
mitochondrial network is able to direct damaged
mtDNA and proteins into a specific mitochondrial
area, which can then be separated from the main
mitochondrial network via mitochondrial fission
and broken down via mitophagy [6

&&

].
There are three different levels for clearance of

mitochondrial content. The first is the mitochon-
drial ubiquitin-proteasome system, where specific
(damaged) proteins are targeted for destruction
without influencing the function of the mitochon-
dria [6

&&

]. Second, there is the formation and off-
budding of small mitochondrial-derived vesicles,
which are subsequently cleared via lysosomal break-
down [6

&&

]. Finally, mitochondrial autophagy
(mitophagy) clears complete or large pieces of mito-
chondria, and is therefore an important regulator of
mitochondrial quantity.

MITOPHAGY

Mitophagy initiation is generally divided in, but
is not exclusive to, two main pathways which are
extensively reviewed in other studies [14,16

&

,17,18].
Although these pathways are often described separ-
ately, crosstalk between these pathways has been
shown. Figure 1 depicts a short summary of the
different mitophagy pathways, and their most
important players, as described below.

The first pathway is the receptor-based mitoph-
agy pathway. This pathway selectively targets
specific mitochondria by post-translational acti-
vation of OMM bound mitophagy receptor proteins.
By activation of these receptor proteins [i.e., BCL2/
adenovirus E1B 19 kDa protein-interacting protein
(BNIP)3, BNIP3L, FUN14 domain-containing
protein 1 (FUNDC1)], their binding to an autopha-
gosomal-specific protein of the microtubule-

KEY POINTS

� Skeletal muscle oxidative capacity loss is a common
feature of chronic diseases such as COPD, T2D,
and CHF.

� Mitochondrial homeostasis is regulated by the balance
between mitochondrial biogenesis and
mitochondrial breakdown.

� Disease-related factors such as hypoxia, inflammation,
muscle disuse, and iron deficiency each in itself have
mitophagy-inducing potential, although data in skeletal
muscle are lacking.

� Mitophagy targets both healthy and dysfunctional
mitochondria and future research should reveal whether
skeletal muscle mitophagy is a pathological feature of
chronic disease or merely a physiological adaptation.

Nutrition and physiological function
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associated protein 1A/1B-light chain 3 (LC3) or
g-aminobutyric acid receptor-associated protein
(GABARAP) family is facilitated, and subsequent
autophagosomal engulfment and lysosomal degra-
dation is initiated. The selection of mitochondria
which are targeted for mitophagy via this pathway is
based on the activation of these receptors and not
directly related to mitochondrial health [14,17,18].

The second mitophagy pathway is the phospha-
tase and tensin homologue-induced kinase 1
(PINK1)/E3 ubiquitin-protein ligase parkin (Parkin)
pathway, which is specific for mitochondria with a
dysfunctional membrane potential [16

&

]. In healthy

mitochondria, PINK1 is continuously imported to
the IMM space where it is broken down by mito-
chondrial proteases and the proteasome. When the
mitochondrial membrane potential is lost however,
PINK1 import is compromised and it accumulates
on the OMM of the mitochondria. There it attracts
and activates several proteins of which Parkin has
been described best, but nuclear dot protein 52 kDa
(NDP52) and optineurin (OPTN) were found to be
recruited independently of Parkin as well [19

&&

,20].
Activated Parkin subsequently ubiquitinates several
OMM bound proteins, which can be used as docking
station for sequestosome 1 (SQSTM1). SQSTM1,
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FIGURE 1. Proposed mitophagy-initiation pathway in skeletal muscle of patients with chronic disease. Skeletal muscle is
exposed to hypoxia, inflammation, muscle disuse, and/or iron deficiency, resulting in either mitochondrial damage or simply
the need to adjust or recycle healthy mitochondrial content. Mitochondrial fission is initiated depending on mitochondrial size
and the extent of mitochondrial damage, leaving either parts of or the complete mitochondria for breakdown. Subsequently,
the mitochondria are primed for autophagosomal engulfment by LC3B/GABARAP recruitment. LC3B/GABARAP either binds
the activated receptor proteins BNIP3, BNIP3L, or FUNDC1, or in case of dysfunctional mitochondria to PINK1-recruited
Parkin/SQSTM1, NDFP52, or OPTN. LC3B/GABARAP mediates autophagosomal formation around the mitochondrion and
subsequent lysosomal breakdown.
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OPTN, and NDP52 are autophagy receptors which,
like the mitophagy receptor proteins discussed
above, are able to bind a member of the autopha-
gosomal-specific protein family, leading to sub-
sequent autophagosomal engulfment and
lysosomal degradation [14,16

&

,17].

EVIDENCE FOR SKELETAL MUSCLE
MITOPHAGY IN CHRONIC DISEASE

To date, only a selected number of studies have
investigated mitophagy in the skeletal muscle of
patients with COPD, T2D, or CHF. Guo et al. [21

&

]
reported increased presence of the mitophagy-
related proteins BNIP3 and PARK2 together with
an upregulation of general autophagy in vastus lat-
eralis muscle of COPD patients. However, whether
this was indeed associated with altered mitochon-
drial content or oxidative capacity was not assessed
in this study [21

&

]. In contrast, Kruse et al. [22]
reported no differences in autophagy-related and
mitophagy-related markers in the vastus lateralis
muscle type 2 diabetic study participants compared
with healthy volunteers. However, as no markers for
oxidative capacity or mitochondrial quantity were
reported, oxidative capacity loss in this study popu-
lation remains undetermined [22].

As mentioned earlier, fission is often associated
with mitophagy and could therefore be regarded as
an indirect indicator of mitophagy. Average mito-
chondrial size was shown to be decreased in vastus
lateralis muscle of patients with CHF [23] or T2D
[24], which is suggestive of a mitochondrial fission/
fusion balance change toward mitochondrial fis-
sion. However, decreased mitochondrial size was
not found in COPD patients [25]. Bach et al. [26]
reported decreased MFN-2 gene expression in the
skeletal muscle of T2D patients, whereas Garnier
et al. [27] reported no significant differences in
skeletal muscle MFN-2 gene expression in CHF
patients compared with sedentary controls. Despite
this unchanged gene expression, Molina et al. [4]
reported that the skeletal muscle protein expression
of MFN-2 was decreased in CHF patients compared
with sedentary controls. Taken together, these data
point toward enhanced muscle mitophagy in
chronic diseases.

TRIGGERS OF MITOPHAGY IN CHRONIC
DISEASE

Disease-related factors already known for their abil-
ity to impair muscle oxidative capacity and hence
putative mitophagy initiators include hypoxia,
systemic inflammation, muscle inactivity, and iron
deficiency [1,3,5,28,29].

Hypoxia

As recently reviewed, hypoxia was consistently
shown to result in decreased skeletal muscle mito-
chondrial density and oxidative capacity, in both
rodents and humans [30]. Increased BNIP3-medi-
ated mitophagy was found during hypoxia in several
nonmuscle in-vitro cell lines [31], and increases in
BNIP3 gene expression were reported in both mur-
ine skeletal muscle tissue and in-vitro cells exposed
to hypoxia [32

&

]. Transcriptional initiation of
mitophagy receptors BNIP3 and BNIP3L by hypoxia
is the result of increased ROS production, and sub-
sequent hypoxia-inducible factor 1-a (HIF-1a)
stabilization [33,34

&

].
In addition to BNIP3(L)-mediated mitophagy,

activation of mitophagy receptor FUNDC1 was
reported during hypoxia. Interestingly, hypoxia
does not seem to affect FUNDC1 transcription,
which is in contrast with hypoxia-induced BNIP3(L)
transcription, but activates FUNDC1 on a post-
transcriptional level by phosphorylation or inhi-
bition of dephosphorylation [35,36

&

,37]. Whether
crosstalk between the BNIP3(L) and FUNDC1 path-
ways is present during hypoxia-induced mitophagy
remains to be studied.

Although it is thought that human skeletal
muscle is quite resistant to chronic hypoxia-induced
HIF-1a stabilization, HIF-1a-specific muscle adap-
tions have been reported [38]. For mitophagy-
specific signaling, however, a study comparing gene
expression of BNIP3, GABARAPL, LC3, and Beclin in
the vastus lateralis of hypoxemic COPD patients to
normoxemic COPD patients reported no differences
[39], although this study only reported gene expres-
sion and only for a limited number of mitophagy-
related proteins. To date, it remains to be deter-
mined whether chronic disease-induced skeletal
muscle hypoxia results in mitophagy, and whether
this mitophagy targets healthy or dysfunctional
mitochondria.

Inflammation

Systemic inflammation results in a decreased
skeletal muscle oxidative capacity in mice [40],
and skeletal muscle inflammatory signaling is
associated with decreased skeletal muscle oxidative
phenotype in chronic disease [41]. Like with
hypoxia, systemic inflammation is associated with
increased ROS production in skeletal muscle mito-
chondria [42]. However, whether inflammation
induced ROS production also results in HIF-1a

stabilization and subsequent BNIP3L-mediated
mitophagy remains undetermined. ROS also
initiates the NF-kB signaling pathway [42], which
was indeed shown to causally induce LC3B and

Nutrition and physiological function
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GABARAPL1 gene expression in the skeletal muscle
of a systemic inflammation mouse model [43]. How-
ever, increased GABARAPL1 gene expression was
still found upon NF-kB signaling inhibition, and
increased BNIP3 gene expression was found to be
completely NF-kB independent in this model [43]. It
is therefore assumable that BNIP3-mediated
mitophagy is present during systemic inflam-
mation, but the regulatory mechanisms still need
to be unraveled.

Interestingly, inflammation-induced mitoph-
agy was found to be regulated through the PINK1/
Parkin pathway as well. It has been shown that
increased ROS production leads to opening of the
mitochondrial permeability transition pore, a large
IMM and OMM spanning channel that upon open-
ing disrupts the mitochondrial membrane potential
and leads to mitochondrial dysfunction [44]. These
dysfunctional mitochondria stabilize PINK1 and
subsequently recruit Parkin, making this a pathway
that selectively targets dysfunctional mitochondria.
Alongside this pathway however, NF-kB was found
to be able to stabilize cytosolic PINK1 as well, and is
therefore able to target healthy mitochondria for
nonselective mitophagy [45

&

]. In inflammation sub-
jected cardiac muscle, PINK1/Parkin-mediated
mitophagy was indeed found to be increased, but
Parkin was found to be dispensable for mitochon-
drial clearance in this model [46

&

]. In line with this,
Parkin was found to be unessential in other models
as well, as NDP52 and OPTN were identified as
alternative receptor-proteins [19

&&

,20]. In con-
clusion, it is feasible that mitophagy is enhanced
in skeletal muscle of patients suffering from (low-
grade) systemic inflammation, and is hence under-
lying loss of oxidative capacity.

Muscle disuse

Physical inactivity and muscle disuse are associated
with decreased muscle oxidative capacity [47]. In
addition, increased mitophagy was shown in different
immobilization studies. Kang et al. [48

&

] recently
showed increased Parkin, decreased BNIP3, and
increased general autophagy-related protein expres-
sion in unloaded tibialis anterior muscle of mice, and
Vainshtein et al. [49

&

] found an increase in BNIP3L,
Parkin, LC3BII, and SQSTM1 protein expression in the
tibialis anterior after denervation. Although no litera-
ture is available on mitophagy in human immobilized
muscle, the occurrence of mitophagy is feasible as
Gram et al. [50] found increased ROS production in
human immobilized skeletal muscle. In contradic-
tion, Drummond et al. [51

&

] found that inactive frail
women had both decreased BNIP3 and Parkin gene
expression in their vastus lateralis, which the authors

explained as a possible adapted homeostasis to low
muscle mass and physical function. Taken together, it
is likely that muscledisuse is an important early trigger
of mitophagy, probably as part of a normal physio-
logical adaptation to adjust mitochondrial content to
the reduced energy demand associated with lower
physical activity levels. Whether this mitophagy tar-
gets healthy unused mitochondria, dysfunctional
mitochondria, or both is unknown.

Iron deficiency

Iron deficiency has been linked to impaired exercise
capacity and decreased mitochondrial activity in
animal models [28]. In addition, iron deficiency
in CHF patients is correlated with impaired exercise
capacity [52]. Moreover, iron therapy resulted in
increased physical performance in iron-deficient
CHF patients [28], suggestive of improved oxidative
capacity. Although no studies have been performed
to link iron deficiency to increased mitophagy in the
skeletal muscle, iron deficiency was shown to
induce BNIP3(L) and PINK1/Parkin-mediated
mitophagy in C. elegans and several nonmuscular
human cell-lines [53,54

&&

]. As mitochondria contain
high amounts of iron, it could be speculated that
mitophagy is required during episodes of iron
deficiency to mobilize iron for other essential
iron-dependent processes.

MITOPHAGY: FRIEND OR FOE?

The question arises whether skeletal muscle mitoph-
agy is a good or a bad process. On the one hand,
mitophagy may serve to clear healthy mitochondria
in case they are either redundant or contain essen-
tial components required elsewhere. On the other
hand, mitophagy is essential for mitochondrial
quality control and attenuated mitophagy could
result in extensive mitochondrial damage, dysfunc-
tion, and even cell death.

Although the knowledge about skeletal muscle
mitophagy is still limited, many studies have been
performed in heart muscle, which have been exten-
sively reviewed [55

&&

]. Indeed, it has been well estab-
lished that both insufficient and exacerbated
mitophagy in the heart leads to cardiomyopathy,
and should, therefore, be tightly regulated [55

&&

].
Such a safeguarding function for mitophagy has also
been found in human vascular smooth muscle cells
[56]. Interventions to combat the loss of muscle
oxidative capacity targeted directly at mitophagy-
signaling should, therefore, be approached with the
highest caution.

A reduction in mitophagy will not only rescue
healthy mitochondria but result in an increased

Skeletal muscle mitophagy in chronic disease Leermakers and Gosker
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number of dysfunctional mitochondria as well,
which could aggravate the decrease in muscular
health even more. Therefore, it is instrumental
to obtain additional knowledge concerning the
disease-related mitophagy inducing triggers and
the mitophagy signaling pathways. Moreover, it
could be argued that interventions should be aimed
at the prevention of mitochondrial damage, mito-
chondrial disuse, and nutrient shortage, rather
than the pharmacological inhibition of mitophagy
pathways itself.

CONCLUSION

The balance between mitophagy and mitochondrial
biogenesis is a tightly regulated process, which can
be affected by many different factors. We identified
several factors which are shared between different
chronic diseases, each able to initiate mitophagy
independently. We propose that these factors work
together as a complex combination of synergistic
mitophagy triggers (Fig. 1), resulting in the loss of
skeletal muscle oxidative capacity in patients with
chronic disease. To prevent the loss of oxidative
capacity, it could be argued that therapies should
focus on these mitophagy-inducing triggers rather
than mitophagy itself, to prevent aggravation of
mitochondrial damage and subsequent muscle dis-
order.
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