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• Joint decision making in two neighboring countries about the location of public bads is considered.
• The main requirement on decision rules is strategy-proofness with respect to single-dipped preference profiles.
• Admissible rules turn out to assign border locations, and in general decisions in the two countries are not independent.
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a b s t r a c t

Weconsider the joint decision of placingpublic bads in eachof twoneighboring countries,modeledby two
adjacent line segments. Residents of the two countries have single-dipped preferences, determined by the
distance of their dips to the nearer public bad (myopic preferences) or, lexicographically, by the distance to
the nearer and the other public bad (lexmin preferences). A (social choice) rule takes a profile of reported
preferences as input and assigns the location of the public bad in each country. For the case of myopic
preferences, all rules satisfying strategy-proofness, country-wise Pareto optimality, non-corruptibility,
and the far away condition are characterized. These rules pick only border locations. The same holds for
lexmin preferences under strategy-proofness and country-wise Pareto optimality alone.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

We consider two neighboring countries which jointly decide on
where to locate two public bads, i.e., public provisions that are ben-
eficial for the countries but that no one likes to have in his back-
yard.We assume that these countriesmaintain their independence
to a large extent: one public badwill be located in each country, but
the purpose of deciding jointly is to take also the preferences of the
residents of the other country into account. As an example specific
for what we do in this paper, one could think of Belgium and the
Netherlands each placing a windmill park: the two central govern-
ments jointly decide on where to locate the Dutch and the Belgian
windmill park while taking the preferences of the residents over
the locations of both parks into account.

In our analysis joint decision making will be based on voting
by the residents, who report their preferences. The emphasis is
on strategy-proofness, which means that the joint decision rule
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should provide no incentives to report insincere preferences. We
assume that each preference is characterized by a single dip, repre-
senting theworst location of the public bad in the resident country.
This could be the placewhere the resident is living, but it could also
be some natural resort, or place of historical interest; so it makes
sense to assume that preferences are private knowledge and,
moreover, each person should be free in expressing a preference.

In our stylized model for this situation we assume that the two
countries are representedby the real intervalsA = [−1, 0] andB =

[0, 1]. A (social choice) rule then assigns a location in country A and
one in country B, based on the reported dips of the (finitely many)
residents or agents in each country. Apart from strategy-proofness,
we impose that the rule is country-wise Pareto optimal: for each
country the location of the public bad should be Pareto optimal
given the reported preferences and the location of the public bad
in the other country. Since the agents will report truthfully, this
means that the assigned locations will be country-wise Pareto
optimal ex post. Country-wise Pareto optimality is amodification of
the usual Pareto optimality condition, and reflects the assumption
that countries keep their sovereignty in the decision making
process.

We consider two specifications of the single-dipped prefer-
ences. A preference is myopic if it is completely determined by
the distance between the dip and the nearer public bad (thus,

http://dx.doi.org/10.1016/j.mathsocsci.2016.07.001
http://www.elsevier.com/locate/mss
http://www.elsevier.com/locate/mss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mathsocsci.2016.07.001&domain=pdf
mailto:a.lahiri@maastrichtuniversity.nl
mailto:h.peters@maastrichtuniversity.nl
mailto:t.storcken@maastrichtuniversity.nl
http://dx.doi.org/10.1016/j.mathsocsci.2016.07.001


A. Lahiri et al. / Mathematical Social Sciences 90 (2017) 150–159 151
preference increases with this distance). In this case, the location
of the other public bad plays no role as long as it is farther away,
and therefore myopic preferences allow for many indifferences.
To break some of those indifferences we impose two further con-
ditions on rules. Non-corruptibility (cf. Ritz, 1985) says that if an
agent both before and after a change of preference is indifferent
between the location pairs, then the locations themselves should
not change. The ‘far away’ condition says that if all agents in a coun-
try, given the location in the other country, weakly prefer the non-
shared border as location (i.e., −1 in country A and 1 in country
B) then this should be assigned. Under these two additional condi-
tions on rules we show that only border locations can be chosen,
i.e., one of the pairs (−1, 1), (−1, 0), (0, 1), and (0, 0).

The second preference specificationwe consider is lexmin: pref-
erence is determined by the distance to the nearer public bad
and, in case of a tie, by the distance to the other public bad. We
show that in this case, where there are much fewer indifferences,
strategy-proofness and country-wise Pareto optimality are suffi-
cient for a rule to pick only from the four border pairs.

For the case of myopic preferences we characterize all rules
satisfying the four mentioned conditions by so-called decisive
pairs of coalitions. Within this class of rules (which range from
majority voting to almost dictatorial rules), we identify those that
are strategy-proof and country-wise Pareto optimal for lexmin
preferences, but also show that there are such rules outside of this
class.

Our results can be seen as positive results compared to the
seminal impossibility theorem of Gibbard (1973) and Satterth-
waite (1975) which says that if there are three or more alterna-
tives, then it is impossible to find a non-dictatorial social choice
function which is also strategy-proof and Pareto optimal. One way
out from this impossibility result is to consider restricted prefer-
ence domains. A well-known example of this is the single-peaked
preference domain (Moulin, 1980). Another example is the single-
dipped preference domain. Peremans and Storcken (1999) have
shown the equivalence between individual and group strategy
proofness in subdomains of single-dipped preferences. Manjunath
(2014) has characterized the class of all nondictatorial, strategy-
proof and Pareto optimal social choice functions when prefer-
ences are single-dipped on an interval. Barbera et al. (2012) have
characterized the class of all nondictatorial, group strategy-proof
and Pareto optimal social choice functions when preferences are
single-dipped on a line. The rules in the present paper bear simi-
larities to the rules in the last two papers.

But there are impossibility results in this domain as well.
Öztürk et al. (2013, 2014) have shown that there does not exist
a nondictatorial social choice function that is strategy-proof and
Pareto optimal when preferences are single-dipped on a disk, and
on some, but not all, convex polytopes in the plane. Chatterjee et al.
(2016) have extended these results to social choice functions on a
sphere, when preferences are single-dipped or, equivalently in this
case, single-peaked.

All these results are about strategy-proof location of one public
bad. As far aswe know, the present paper is the first one to consider
the location of public bads in neighboring regions or countries,
apart from an analysis of the one agent per country case in Öztürk
(2013). There is also a literature adopting a mechanism design
approach to the location of public bads, that is, includingmonetary
side payments: e.g., recently, Lescop (2007) and Sakai (2012), but
we are not aware of results in this area addressing the location in
more than one region.

This paper is organized as follows. Section 2 introduces the
model and some preliminary results. Section 3 shows that internal
locations are excluded, and Section 4 provides the characterization
of all rules satisfying our conditions. Section 5 concludes.
2. The two country model

2.1. Preliminaries

Let countryAbe represented by the interval [−1, 0] and country
B by [0, 1]. The set of possible alternatives is denoted by A =

[−1, 0]× [0, 1]. The set of agents N is partitioned into the set NA of
inhabitants of country A and the set NB of inhabitants of country B.
Let the cardinalities of N, NA and NB be natural numbers n, nA, nB,
with n = nA + nB.

Each agent i ∈ N has a preference Rz(i) over A, characterized by
its dip z(i) ∈ [−1, 1]. Below,we introduce the two specifications of
these preferences that are considered in this paper, both based on
distance. For now, it is sufficient tomention that each preference is
completely determined by its dip. Therefore, preferenceswill often
be identified with their dips and denoted by z(i) instead of Rz(i).

As usual, Pz(i) denotes the strict or asymmetric part of Rz(i) and
Iz(i) denotes the indifference or symmetric part.

A (preference) profile z assigns to each agent i ∈ N a preference
z(i) such that z(i) ∈ [−1, 0] if i ∈ NA and z(i) ∈ [0, 1] if i ∈ NB.
The set of all profiles is denoted by R, where it is understood that
this set will depend on the further specification of the preferences
under consideration.

For a profile z and a non-empty set S ⊆ N , let zS = (z(i))i∈S .
For i ∈ N , profile z ′ is an i-deviation of z if zN\{i} = z ′

N\{i}. For a ∈ A
and S ⊆ NA, (aS, zN\S) denotes the profile where all i ∈ N\S have
preference z(i) and all i ∈ S have preference a.

A rule ϕ assigns to each profile z an alternative ϕ(z) =

(α(z), β(z)) ∈ A.1
For x, y ∈ R, µ(x, y) =

x+y
2 denotes the midpoint of x and

y. In case there is no confusion, for a profile z we write µ(z)
instead of µ(α(z), β(z)) to indicate the midpoint of the interval
with endpoints given by ϕ(z).2

The main properties of a rule ϕ considered in this paper are the
following.

Strategy-Proofness (SP) ϕ is strategy-proof if ϕ(z)Rz(i)ϕ(z ′) for
every z ∈ R, every i ∈ N , and every i-deviation z ′ of
z.

Country-Wise Pareto Optimality (CPO) ϕ is Pareto optimal for
country A (resp. B) if for every profile z there does not
exist an a ∈ [−1, 0] (resp. b ∈ [0, 1]) such that
(a, β(z))Rz(i)ϕ(z) for all i ∈ NA and (a, β(z)) Pz(k) ϕ(z) for
at least one k ∈ NA (resp. (α(z), b)Rz(i)ϕ(z) for all i ∈ NB
and (α(z), b)Pz(i)ϕ(z) for at least one k ∈ NB). Rule ϕ is
country-wise Pareto optimal if it is both Pareto optimal for
country A and Pareto optimal for country B.

Strategy-proofness says that truth-telling is a weakly dominant
strategy. Country-wise Pareto optimality is a modification of the
usual Pareto optimality and reflects the fact that although the
countries make a joint decision they still keep their sovereignty to
some extent.

2.2. Myopic preferences

A preference Rz(i) of agent i ∈ N is amyopic preference if for all
(a1, b1), (a2, b2) ∈ A, (a1, b1) is at least as good as (a2, b2) at Rz(i),
with the usual notation (a1, b1)Rz(i)(a2, b2), if

min{|a1 − z(i)|, |b1 − z(i)|} ≥ min{|a2 − z(i)|, |b2 − z(i)|}.

1 Of course, α(·) and β(·) depend on ϕ, but this is suppressed from the notation.
2 Observe that if α(z) = β(z) then α(z) = β(z) = 0. In practice, this means that

the two public bads are located on or very close to the border, on either side.
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Thus, an agent with a myopic preference cares only about the
position of the nearer public bad, and is indifferent as to the
position of the more distant one. Myopic preferences allow for
many indifferences. In order to achieve some tie-breaking we will
consider the following condition on a rule ϕ, introduced by Ritz
(1985).

Non-Corruptibility (NC) ϕ is non-corruptible if ϕ(z) = ϕ(z ′) for
every z ∈ R, i ∈ N , and i-deviation z ′ of z such that
ϕ(z)Iz(i)ϕ(z ′) and ϕ(z)Iz′(i)ϕ(z ′).

At a non-corruptible rule a unilateral deviation either affects the
deviator’s preference somewhere or has no effect at all. The lemma
below shows that strategy-proofness and non-corruptibility imply
the following monotonicity condition if preferences are myopic.

Monotonicity (MON) ϕ is monotone if ϕ(z) = ϕ(z ′) for all z, z ′
∈

R such that for all agents i ∈ N:

• z ′(i) ≤ z(i) ≤ α(z) or
• α(z) ≤ z(i) ≤ z ′(i) ≤ µ(z) or
• µ(z) ≤ z ′(i) ≤ z(i) ≤ β(z) or
• β(z) ≤ z(i) ≤ z ′(i).

Monotonicity is a familiar consequence in the presence of
strategy-proofness: in this case it says, roughly, that if the
preference of an agent changes such that the chosen pair becomes
better when evaluated according to the new preference, then it
remains to be chosen. As an aside, it can be shown that this
monotonicity condition is weaker than what MaskinMonotonicity
would demand in this framework.

Lemma 2.1. Let R be the set of all profiles of myopic preferences. Let
ϕ : R → A satisfy SP and NC. Then ϕ satisfies MON.

Proof. It is sufficient to prove monotonicity for an i-deviation z ′
∈

R of z ∈ R for an agent i ∈ NA. There are three cases.
(a) z ′(i) < z(i) ≤ α(z).

SP implies

|z(i)− α(z)| ≥ |z(i)− α(z ′)| (1)

and

|z ′(i)− α(z ′)| ≥ |z ′(i)− α(z)|. (2)

Let x ∈ R such that z(i) = µ(x, α(z)). Then by (1): α(z ′) ∈

[max{x,−1}, α(z)], hence by (2): α(z ′) = α(z). By NC, ϕ(z) =

ϕ(z ′).
(b) α(z) ≤ z(i) < z ′(i) ≤ µ(z).

SP implies

|z(i)− α(z)| ≥ |z(i)− α(z ′)| or

|z(i)− α(z)| ≥ |z(i)− β(z ′)| (3)

and

|z ′(i)− α(z ′)| ≥ |z ′(i)− α(z)| and

|z ′(i)− β(z ′)| ≥ |z ′(i)− α(z)|. (4)

If the first inequality in (3) holds then the first inequality in (4)
implies α(z ′) = α(z). By the second inequality in (4), α(z) = α(z ′)
is closer to both z(i) and z ′(i) than β ′(z) is, so by NC, ϕ(z) = ϕ(z ′).
If the second inequality in (3) holds then the second inequality in
(4) is violated, a contradiction.
(c) α(z) ≤ µ(z) ≤ z ′(i) < z(i).

SP implies

|z(i)− β(z)| ≥ |z(i)− α(z ′)| or

|z(i)− β(z)| ≥ |z(i)− β(z ′)| (5)

and

|z ′(i)− α(z ′)| ≥ |z ′(i)− β(z)| and

|z ′(i)− β(z ′)| ≥ |z ′(i)− β(z)|. (6)

If the first inequality in (5) holds then the first inequality in (6)
implies α(z ′) = β(z), hence α(z ′) = β(z) = 0. Hence by NC,
ϕ(z) = ϕ(z ′). If the second inequality in (5) holds then the second
inequality in (6) implies β(z) = β(z ′). Then both at z(i) and
z ′(i) agent i is indifferent between ϕ(z) and ϕ(z ′), so that by NC,
ϕ(z) = ϕ(z ′). �

2.3. Lexmin preferences

A preference Rx(i) of agent i ∈ N is a lexmin preference if for all
(a1, b1), (a2, b2) ∈ A, (a1, b1) is at least as good as (a2, b2) at Rx(i),
with the usual notation (a1, b1)Rx(i)(a2, b2), if

min{|a1 − x(i)|, |b1 − x(i)|} > min{|a2 − x(i)|, |b2 − x(i)|}, or
min{|a1 − x(i)|, |b1 − x(i)|} = min{|a2 − x(i)|, |b2 − x(i)|} and
max{|a1 − x(i)|, |b1 − x(i)|} ≥ max{|a2 − x(i)|, |b2 − x(i)|}.

Lexmin preferences allow for fewer indifferences as myopic
preferences, and it turns out that strategy-proofness alone is
sufficient to obtain the following, slightly weaker version of
monotonicity.

Weak Monotonicity (WMON) ϕ is weakly monotone if ϕ(z) =

ϕ(z ′) for all z, z ′
∈ R such that for all agents i ∈ N:

• z ′(i) ≤ z(i) ≤ α(z), or
• α(z) ≤ z(i) ≤ z ′(i) ≤ µ(z) and α(z) < 0, or
• µ(z) ≤ z ′(i) ≤ z(i) ≤ β(z) and β(z) > 0, or
• β(z) ≤ z(i) ≤ z ′(i).

Lemma 2.2. Let R be the set of all profiles of lexmin preferences. Let
ϕ : R → A satisfy SP. Then ϕ satisfies WMON.

Proof. It is sufficient to prove weak monotonicity for an i-
deviation from z ∈ R to z ′

∈ R for an agent i ∈ N . We consider
the following two cases (the remaining two cases are analogous).
(a) z ′(i) ≤ z(i) ≤ α(z).

(i) If α(z) < α(z ′) ≤ 0, then agent i manipulates from z(i) to
z ′(i). (ii) Now suppose −1 ≤ α(z ′) < α(z). Then we must have
α(z ′) ≤ z ′(i)− r , where r = α(z)− z ′(i), otherwise imanipulates
from z ′(i) to z(i). In turn this implies |z(i)−α(z ′)| > |z(i)−α(z)|, so
wemust haveα(z) = β(z ′) = 0, otherwise imanipulates from z(i)
to z ′(i). Now β(z) ≤ z ′(i)+(z ′(i)−α(z ′)), otherwise imanipulates
from z ′(i) to z(i); and β(z) ≥ z(i) + (z(i) − α(z ′)), otherwise i
manipulates from z(i) to z ′(i). These two inequalities combined,
however, contradict the assumption that z(i) > z ′(i). (iii) The only
remaining possibility is α(z) = α(z ′), and by strategy-proofness
this implies β(z) = β(z ′).
(b) α(z) ≤ z(i) ≤ z ′(i) ≤ µ(z) and α(z) < 0. We consider two
subcases.
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(b1) i ∈ NA.

(i) Suppose α(z ′) < α(z). Then β(z ′) < z(i) + (z(i) − α(z))
otherwise i manipulates from z(i) to z ′(i). In turn, this implies
β(z ′) − z ′(i) < β(z ′) − z(i) < z(i) − α(z) < z ′(i) − α(z ′) and
therefore, z ′(i) − α(z) ≤ β(z ′) − z ′(i), otherwise i manipulates
from z ′(i) to z(i). These two inequalities imply z(i) > z ′(i),
contradicting our assumption. (ii) Suppose α(z ′) > α(z). Then
α(z) < α(z ′) ≤ z(i) + (z(i) − α(z)), otherwise i manipulates
from z(i) to z ′(i). Thus, |z ′(i)−α(z ′)| < z ′(i)−α(z), hence β(z) <
z ′(i) + |z ′(i) − α(z)|, otherwise i manipulates from z ′(i) to z(i).
This, however, contradicts the assumption that z ′(i) ≤ µ(z). (iii)
The only remaining possibility is α(z) = α(z ′), and by strategy-
proofness this implies β(z) = β(z ′).
(b2) i ∈ NB.

(i) Suppose α(z ′) < α(z). Then β(z ′) < z(i) + (z(i) − α(z))
otherwise i manipulates from z(i) to z ′(i). In turn, this implies
z ′(i) − α(z) ≤ |β(z ′) − z ′(i)|, otherwise i manipulates from z ′(i)
to z(i). If β(z ′) ≥ z ′(i) then z(i) + (z(i) − α(z)) > β(z ′) ≥

z ′(i)+(z ′(i)−α(z)), which contradicts the assumption z(i) < z ′(i).
If β(z) < z ′(i) then β(z ′) ≤ α(z), which implies α(z) = β(z ′) =

0, a contradiction since α(z) < 0. (ii) If α(z ′) > α(z) then i
manipulates from z ′(i) to z(i). (iii) The only remaining possibility
is α(z) = α(z ′), and by strategy-proofness this implies β(z) =

β(z ′). �

3. No internal locations

In this sectionwe show that under certain assumptions internal
locations for public bads are excluded. For myopic preferences it
turns out that next to strategy-proofness, country-wise Pareto op-
timality and non-corruptibility we need an additional tie-breaking
condition on a rule to achieve this. For lexmin preferences we find
that strategy-proofness and country-wise Pareto optimality are
sufficient. In both cases, the (weak) monotonicity condition is an
important tool to derive the result.

3.1. Myopic preferences

Throughout this subsection R is the set of all profiles of myopic
preferences. We introduce the following condition for a rule ϕ :

R → A.

Far Away Condition (FA) ϕ satisfies the far away condition if for
every profile z ∈ R:

• if (α(z), 1)Rz(i)ϕ(z) for all i ∈ N , then β(z) = 1, and
• if (−1, β(z))Rz(i)ϕ(z) for all i ∈ N , then α(z) = −1.

The far away condition says that if all agents weakly prefer an
extreme location then the rule should assign that. Throughout this
subsection, ϕ is a rule satisfying SP, CPO, NC, and FA.

Theorem 3.1. ϕ(z) ∈ {(−1, 1), (0, 0), (−1, 0), (0, 1)} for every
z ∈ R.

The proof of this theorem uses the two lemmas below. For a profile
z ∈ R we define S(z) = {i ∈ NA : z(i) ≥ α(z)} and T (z) = {i ∈

NB : z(i) ≤ β(z)}. By Lemma 2.1, ϕ is monotone. Thereforewemay
assume that

(a) z = (−1NA\S(z), 0S(z), µ(z)T (z), 1NB\T (z)) if µ(z) ∈ [0, 1], and
(b) z = (−1NA\S(z), µ(z)S(z), 0T (z), 1NB\T (z)) if µ(z) ∈ [−1, 0].
The following lemma shows that if one of the two bads is located
at 0, then the other one cannot be located at an interior point of its
country.

Lemma 3.2. Let z ∈ R.

(a) If α(z) = 0 < β(z), then z(i) ≤
1
2 for all i ∈ N, and β(z) = 1.

(b) If α(z) < 0 = β(z), then z(i) ≥ −
1
2 for all i ∈ N, and

α(z) = −1.

Proof. We only prove part (a), part (b) is analogous. Let α(z) =

0 < β(z). Then µ(z) ∈ [0, 1], so z = (−1NA\S(z), 0S(z), µ(z)T (z),
1NB\T (z)). Since all agents i ∈ T (z) are indifferent between (0, 0)
and (0, β(z)) and all agents i ∈ NB\T (z) strictly prefer (0, 0) to
(0, β(z)), CPO implies that T (z) = NB. From this, β(z) = 1 follows
by FA, and thus z(i) ≤ µ(z) =

1
2 for all i ∈ N . �

The next lemma shows that if one of the two bads is located at the
border, then the other is located at the border as well.

Lemma 3.3. Let z ∈ R. Then α(z) ∈ {−1, 0} if and only if β(z) ∈

{0, 1}.

Proof. We show the if-direction, the other direction is analogous.
By Lemma 3.2(b) it is sufficient to prove that α(z) ∈ {−1, 0} if
β(z) = 1. To the contrary suppose −1 < α(z) < 0 and β(z) = 1.
Then 0 < µ(z) < 1

2 and T (z) = NB by definition of T (z), so that
z = (−1NA\S(z), 0S(z), µ(z)NB). By FA, β(z ′) = 1 for all profiles
z ′

∈ R with z ′(i) = µ(z) for all i ∈ NB. We will compare the
four profiles in the following table:

NA\S(z) S(z) NB α β
z −1 0 µ(z) α(z) 1

z−
α(z)− 1

2
0 µ(z) α(z−) 1

z∗
α(z)− 1

2
α(z)
2

µ(z) α(z∗) 1

z+
−1

α(z)
2

µ(z) α(z+) 1.

(For instance, the first line of this table means that z = (−1NA\S(z),
0S(z), µ(z)NB) and that β(z) = 1. Note that to all these profiles β
assigns location 1 by FA.) Consider profiles z and z−. SP implies
that α(z−) ∈ {α(z),−1}, and then CPO implies that α(z−) =

−1. Applying SP at profiles z− and z∗ now yields that α(z∗) =

−1. Considering SP at the profiles z and z+ yields that α(z+) ∈

{α(z), 0}, and then CPO implies α(z+) = 0. Finally, comparing
profiles z+ and z∗ yields a contradiction with SP since (0, 1) =

ϕ(z+) is better for dip α(z)−1
2 than (−1, 1) = ϕ(z∗). �

Proof of Theorem 3.1. Let z ∈ R and suppose that −1 < α(z) <
0 and 0 < β(z) < 1.Wewill derive a contradiction: then the proof
is complete by Lemma 3.3. We assume without loss of generality
that µ(z) ∈ [0, 1], so that z = (−1NA\S(z), 0S(z), µ(z)T (z), 1NB\T (z)).

First note that S(z) ≠ ∅,NA and T (z) ≠ ∅,NB by CPO. Consider
the following profiles, where t ∈ N:

NA\S(z) S(z) T (z) NB\T (z)
z0 = z −1 0 µ(z) 1

zt (t ≥ 1) −1
α(zt−1)

2
µ(z) 1

v1
α(z0)− 1

2
0 µ(z) 1

vt (t ≥ 2)
α(zt−1)− 1

2
α(zt−2)

2
µ(z) 1

wt (t ≥ 1)
α(zt−1)− 1

2
α(zt−1)

2
µ(z) 1.
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The proof proceeds in a few steps.

Step 1. Let t ≥ 1 and suppose that −1 < α(zt−1) < 0. Then
ϕ(vt) = ϕ(wt) = (−1, 1).

Proof. Comparing zt−1 and vt , SP implies α(vt) ≤ α(zt−1) since
otherwise NA\S(z) can manipulate from zt−1 to vt , and therefore
α(vt) ∈ {−1, α(zt−1)} since otherwise NA\S(z) can manipulate
from vt to zt−1. By CPO, this implies α(vt) = −1. Therefore,
by Lemma 3.3, β(vt) ∈ {0, 1}. Now Lemma 3.2(b) implies that
β(vt) ≠ 0. Thus,β(vt) = 1 andϕ(vt) = (−1, 1). By SP, going from
wt to vt , we obtain α(wt) = −1. By Lemma 3.3, β(wt) ∈ {0, 1}.
Since α(zt−1)−1

2 < −
1
2 , Lemma3.2(b) then impliesβ(wt) = 1. Thus,

ϕ(wt) = (−1, 1).

Step 2. For all t ≥ 1:

−1 < α(zt) < α(zt−1) < 0 ≤ 2µ(z) < β(zt) ≤ −α(zt−1) < 1.

Proof. By assumption we have −1 < α(z0) = α(z) < 0 ≤

2µ(z) < β(z0) = β(z) < 1. We prove the statement in
Step 2 by induction. Assume it is true for all s < t , where t ≥

1. By going from zt to zt−1, SP implies α(zt) ∈ [−1, α(zt−1)]

or α(zt) = 0. If α(zt) = 0, then NA\S(z) could manipulate
from wt to zt since ϕ(wt) = (−1, 1), as established in Step 1.
Hence, α(zt) ∈ [−1, α(zt−1)]. Now CPO applied to the profile zt
implies α(zt) ≠ α(zt−1), so α(zt) ∈ [−1, α(zt−1)). In turn, this
and the induction hypothesis imply by SP, going from zt−1 to zt ,
that β(zt) ≤ −α(zt−1). Then α(zt) > −1, since otherwise by
Lemma 3.3, β(zt) = 0, contradicting Lemma 3.2(b), or β(zt) = 1,
contradicting that −α(zt−1) < 1 by the induction hypothesis.
Finally, 2µ(z) < β(zt) follows since otherwise CPO would imply
that β(zt) = 0.

Step 3. µ(z) = 0.

Proof. First suppose that for some t > 1, µ(zt) ≥
α(zt−2)

2 . Then,

by Step 2, for all i ∈ S(z) we have α(zt) < α(zt−1)
2 = zt(i) <

zt−1(i) =
α(zt−2)

2 ≤ µ(zt), so that by MON we have ϕ(zt−1) =

ϕ(zt), a contradiction. Thus, µ(zt) < α(zt−2)
2 for all t > 1. Hence,

α(zt) + β(zt) < α(zt−2) for all t > 1. By Step 2 this implies
2µ(z) < β(zt) < α(zt−2) − α(zt), which implies that µ(z) = 0
since α(zt−2)− α(zt) converges to 0 for t going to infinity.

Step 4. If µ(z) = 0 then µ(z1) < 0.

Proof. Follows from Step 2 by taking t = 1.

We can now complete the proof of the theorem. Step 3 implies that
µ(z) = 0 for any profile z with α(z) ∈ (−1, 0) and β(z) ∈ (0, 1)—
observe that this indeed does not depend on our initial assumption
µ(z) ≥ 0. This contradicts Step 4 since z1 is also such a profile. �

3.2. Lexmin preferences

Let nowR be the set of all profiles of lexmin preferences and let
ϕ : R → A be a rule satisfying strategy-proofness and country-
wise Pareto optimality. We now have the following result, the
proof of which follows similar lines as the proof of Theorem 3.1
but differs in some details—see the Appendix to the paper.

Theorem 3.4. ϕ(z) ∈ {(−1, 1), (0, 0), (−1, 0), (0, 1)} for every
z ∈ R.
This theorem is quite similar to Theorem 3.1 for myopic
preferences, but in this case it is sufficient to require only strategy-
proofness and country-wise Pareto optimality to obtain the result,
due to the fact that there are only few indifferences in the case of
lexmin preferences.

In fact, for all (a, b), (a′, b′) ∈ A, if an agent prefers (a, b) over
(a′, b′) at a lexmin preference, then that agent also prefers (a, b)
over (a′, b′) at a myopic preference with the same dip. From this, it
is easy to deduce that strategy-proofness under lexmin preference
profiles implies strategy-proofness under myopic preference
profiles; and that country-wise Pareto optimality under lexmin
preference profiles implies both country-wise Pareto optimality
and the far away condition under myopic preference profiles.
Non-corruptibility under lexmin preferences is always satisfied
but non-corruptibility under myopic preference profiles is not
implied by strategy-proofness under lexmin preference profiles.
The following example exhibits a rule that satisfies all relevant
properties except non-corruptibility under myopic preference
profiles.

Example 3.5. Let R be either the set of all profiles of myopic
preferences or the set of all profiles of lexmin preferences. We
define the rule ϕ on R as follows. Let z ∈ R then ϕ(z) =

(α(z), β(z)), where

α(z) =


−1 if

i ∈ NA : z(i) > −
1
2


≥

i ∈ NA : z(i) < −
1
2


0 otherwise

and

β(z) =

1 if
i ∈ NB : z(i) <

1
2

 ≥

i ∈ NB : z(i) >
1
2


0 otherwise.

Note that this rule means that each country, independently of the
other country, makes a majority decision.

Consider a profile w such that |{i ∈ NA : w(i) < −
1
2 }| = |{i ∈

NA : w(i) > −
1
2 }| + 1, and such that |{i ∈ NB : z(i) < 1

2 }| < |{i ∈

NB : z(i) > 1
2 }|. Then ϕ(w) = 00. If, for some i ∈ NA, w(i) = −

1
2

andw′ is an i-deviation ofw withw′(i) > −
1
2 , then ϕ(w

′) = −10.
Now at both w(i) and w′(i), agent i is indifferent between 00 and
−10. Hence ϕ is corruptible (undermyopic preferences). However,
ϕ is strategy-proof and country-wise Pareto optimal.

We conclude this section with an example of a rule that admits
internal locations but is still strategy-proof and unanimous for
myopic preferences.

Example 3.6. For every z ∈ R define

f (z) = (α(z), β(z)) = (−1,max{0, 2min{z(i) : i ∈ NA} + 1}).

Hence, this rule always assigns−1 in country A, and in B either 0 or
the point that has the samedistance to theminimumdip in country
A as this minimum dip has to −1. This rule is strategy-proof
and non-corruptible for myopic preferences. It is also unanimous,
which here boils down to the requirement that f (z) = −11 if
z(i) = 0 for all i ∈ N; and anonymous, which means that it
is independent of a permutation of the residents of A and of the
residents of B. Clearly, it is not country-wise Pareto optimal and
does not satisfy the FA condition.
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4. The rules

In this section we completely characterize the class of rules
satisfying the conditions in Theorem 3.1 for myopic preferences.
For the case of lexmin preferences we do not present the complete
characterization but highlight some similarities and differences
with the class of rules under myopic preferences.

4.1. Rules under myopic preferences

Throughout this subsection we assume that R is the set of
all profiles of myopic preferences. If ϕ is a rule satisfying CPO,
SP, NC, and FA, then Theorem 3.1 says that the range of ϕ is
B = {−11,−10, 01, 00}, where −11 denotes (−1, 1), etc. We
first show that for such rules ϕ only the preferences restricted to
B matter.

Lemma 4.1. Let rule ϕ satisfy CPO, SP, NC, and FA, and let z, z ′
∈ R

such that z and z ′ coincide on B . Then ϕ(z) = ϕ(z ′).

Proof. Without loss of generality we may assume that z and z ′ are
i-deviations. Theorem3.1 implies thatϕ(z) andϕ(z ′) are both inB.
Since z and z ′ coincide onB, agent i has at z(i) the same preference
betweenϕ(z) andϕ(z ′) as at z ′(i). By SP, agent imust be indifferent
between ϕ(z) and ϕ(z ′) both at z(i) and z ′(i). Hence ϕ(z) = ϕ(z ′)
by NC. �

OnB there are just four different single-dipped preferences. These
preferences,with dip x and symmetric and asymmetric parts∼ and
≻, are the following:

• If −1 ≤ x < 1
2 , then 00 ∼ 01 ≻ −11 ∼ −10.

• If x ∈ {−
1
2 ,

1
2 }, then 00 ∼ 01 ∼ −11 ∼ −10.

• If − 1
2 < x < 1

2 , then −11 ≻ −10 ∼ 00 ∼ 01.
• If 1

2 < x ≤ 1, then −10 ∼ 00 ≻ −11 ∼ 01.

We will show that set of rules satisfying CPO, SP, NC, and FA,
consists of monotonic voting between −11 and 00, except for
cases where −11 and 00 cannot be selected because of FA or CPO.
These voting rules are characterized by families of decisive pairs
of coalitions of agents. The first coalition of such a pair contains
the agents with dip strictly between −

1
2 and 1

2 : these agents
strictly prefer outcome−11 over outcome 00. The second coalition
contains the agents with dip either −

1
2 or 1

2 : these agents are
indifferent between −11 and 00. We will now make this more
precise.

Definition 4.2. W ⊆ 2N
× 2N is a family of decisive pairs if

(d1) (U, V ) ∈ W for all U, V ⊆ N with U ∪ V = N ,
(d2) (U ′, V ′) ∈ W for all U ′, V ′

⊆ N for which there is (U, V ) ∈ W
with U ⊆ U ′ and U ∪ V ⊆ U ′

∪ V ′.
(d3) U ∩ NA ≠ ∅ or NA ⊆ V for all (U, V ) ∈ W .
(d4) U ∩ NB ≠ ∅ or NB ⊆ V for all (U, V ) ∈ W .

With a rule ϕ that has the properties CPO, SP, NC, and FA, we will
associate a family of decisive pairs, as follows. For a profile z ∈ R
letU(z) = {i ∈ N : −

1
2 < z(i) < 1

2 }, which is the set of agentswho
strictly prefer −11 to 00; and let V (z) = {i ∈ N : z(i) ∈ {−

1
2 ,

1
2 }},

which is the set of agentswho are indifferent between−11 and 00.
We define

Wϕ = {(U, V ) ∈ 2N
× 2N

: there exists z ∈ R with (U, V )
= (U(z), V (z)) and ϕ(z) = −11}.

Observe that, by Lemma 4.1, ϕ(z) = −11 for all z ∈ R such that
(U(z), V (z)) ∈ Wϕ . We now have:
Lemma 4.3. Let ϕ satisfy SP, CPO, NC, and FA. Then Wϕ is a family of
decisive pairs.

Proof. For condition (d1), let U, V ⊆ N with U ∪ V = N . Take
a profile z with z(i) ∈ (− 1

2 ,
1
2 ) for all i ∈ U and z(i) ∈ {−

1
2 ,

1
2 }

for all i ∈ V . Then ϕ(z) = −11 by FA (or CPO), hence (U, V ) =

(U(z), V (z)) ∈ Wϕ .
For condition (d2), let z ∈ R with ϕ(z) = −11. Consider a

j-deviation z ′ of z such that U(z) ⊆ U(z ′) and U(z) ∪ V (z) ⊆

U(z ′) ∪ V (z ′). It is sufficient to prove that ϕ(z ′) = −11. Without
loss of generality assume that j ∈ NA. Assume U(z) ≠ U(z ′)
or V (z) ≠ V (z ′), otherwise we are done by Lemma 4.1. Since
U(z) ⊆ U(z ′) and U(z) ∪ V (z) ⊆ U(z ′) ∪ V (z ′) it follows that
z(j) < z ′(j) ≤ 0. So by MON, ϕ(z ′) = ϕ(z) = −11.

For condition (d3), let (U, V ) ∈ 2N
× 2N and suppose that

U ∩ NA = ∅ and NA ⊈ V (the other case is similar). Let z be
any profile with (U(z), V (z)) = (U, V ). Then z(i) ≤ −

1
2 for all

i ∈ NA and z(i) < −
1
2 for some i ∈ NA. By CPO, α(z) = 0. Hence,

(U, V ) ∉ Wϕ . �

Conversely, for a family of decisive pairs W we define a rule ϕW as
follows. For every z ∈ R:

ϕW (z) =


−11 if (U(z), V (z)) ∈ W
−10 if (U(z), V (z)) ∉ W and NA ⊆ U(z) ∪ V (z)
01 if (U(z), V (z)) ∉ W and NB ⊆ U(z) ∪ V (z)
00 otherwise.

In words, ϕW assigns −11 to a profile z if the pair (U(z), V (z)) is
decisive. Otherwise, it assigns 00 unless FA demands otherwise,
that is, −10 or 01. Next, we prove that ϕW satisfies our four
conditions.

Lemma 4.4. Let W be a family of decisive pairs. Then ϕW satisfies SP,
CPO, NC, and FA.

Proof. We first prove SP of ϕW . Consider z ∈ R and an i-deviation
z ′ of z for i ∈ NA. It is sufficient to prove that i weakly prefers
ϕW (z) to ϕW (z ′). This is evidently the case if ϕW (z) = ϕW (z ′) or
if z(i) = −

1
2 . Therefore assume that ϕW (z) ≠ ϕW (z ′) and that

z(i) ≠ −
1
2 . We distinguish the following two cases.

• −1 ≤ z(i) < −
1
2 . Then U(z) ⊆ U(z ′) and U(z) ∪ V (z) ⊆

U(z ′) ∪ V (z ′) and because of ϕW (z) ≠ ϕW (z ′) at least one of
these inclusions is strict. Hence, (d2) andϕW (z) ≠ ϕW (z ′) imply
(U(z), V (z)) ∉ W and ϕW (z) ≠ −11. Since NA ⊈ U(z) ∪ V (z),
we have ϕW (z) ≠ −10. Hence, ϕW (z) ∈ {00, 01}, so that i at
z(i)weakly prefers ϕW (z) to ϕW (z ′).

• −
1
2 < z(i) ≤ 0. Then U(z ′) ⊆ U(z) and U(z ′) ∪ V (z ′) ⊆

U(z)∪V (z), and because ofϕW (z) ≠ ϕW (z ′) at least one of these
inclusions is strict. If ϕW (z) ∈ {00, 01}, then by (d2) of W and
the definition of ϕW we have ϕW (z) = ϕW (z ′), a contradiction.
If ϕW (z) = −10 and z ′(i) < −

1
2 , then ϕW (z ′) = 00 and in that

case agent i does not manipulate. Otherwise, ϕW (z) = −11,
which is the single best outcome at z(i).

We next prove CPO of ϕW . It is sufficient to prove this for country
A. To the contrary, suppose that all agents in NA weakly prefer
(a, βW (z)) to ϕW (z) = (αW (z), βW (z)) and some j in NA strictly.
We distinguish three cases.

• αW (z) = 0. Then (U(z), V (z)) ∉ W and all agents in NA
have their dip equal to or greater than a

2 ≥ −
1
2 . Hence NA ⊆

U(z) ∪ V (z), which implies αW (z) = −1, a contradiction.
• βW (z) = 0 and αW (z) = −1. Then (U(z), V (z)) ∉ W and

NA ⊆ U(z)∪V (z). But then all agents inNA have their dip greater
than or equal to −

1
2 , which contradicts the existence of agents

j who strictly prefer (a, 0) to −10.
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• βW (z) = 1 and αW (z) = −1. Then (U(z), V (z)) ∈ W . So,
by condition (d3) of W there are agents i ∈ NA ∩ U(z) or all
agents in NA have their dip at −

1
2 . Since agents in NA ∩ U(z)

strictly prefer−11 to every other outcome (a, 1), wemust have
that all agents in NA have their dip at −

1
2 . At dip −

1
2 , however,

outcome −11 is weakly preferred to every outcome (a, 1) for
−1 ≤ a ≤ 0. This contradicts the existence of agents j who
strictly prefer (a, 1) to −11.

Third, we next prove NC of ϕW . Consider z ∈ R and an i-deviation
z ′ of z for i ∈ NA, and suppose that i is indifferent between ϕW (z)
and ϕW (z ′) both at z(i) and at z ′(i). It is sufficient to prove that
ϕW (z) = ϕW (z ′). We may assume that z(i) < z ′(i) and the
ordering at z(i) of B is different from that of z ′(i). We distinguish
two cases.
• −1 ≤ z(i) < −

1
2 . Then ϕW (z) ≠ −10 since NA ⊈ U(z) ∪ V (z).

If ϕW (z) = −11 then by z(i) < z ′(i) and (d2) of W we have
ϕW (z ′) = −11 and we are done. Suppose ϕW (z) ∈ {00, 01}.
Then since at z(i) outcomes ϕW (z) and ϕW (z ′) are indifferent
we have ϕW (z ′) ∈ {00, 01}. Then, since NB ⊆ U(z)∪V (z) if and
only if NB ⊆ U(z ′) ∪ V (z ′), it follows that ϕW (z) = 01 if and
only if ϕW (z ′) = 01.

• z(i) = −
1
2 and −

1
2 < z ′(i) ≤ 0. If ϕW (z ′) = −11, then

the indifference between ϕW (z) and ϕW (z ′) at z ′(i) yields that
ϕW (z) = ϕW (z ′) = −11. Since NA ⊆ U(z ′) ∪ V (z ′) if and
only if NA ⊆ U(z) ∪ V (z), it follows that ϕW (z) = −10 if and
only if ϕW (z ′) = −10. Further, since NB ⊆ U(z) ∪ V (z) if and
only if NB ⊆ U(z ′) ∪ V (z ′), it follows that ϕW (z) = 01 if and
only if ϕW (z ′) = 01. Hence, we also have ϕW (z) = 00 if and
only if ϕW (z ′) = 00 since that is the only remaining case. Thus,
ϕW (z) = ϕW (z ′).

Finally, we prove FA of ϕ. Suppose that all agents weakly prefer
(αW (z), 1) toϕW (z) = (αW (z), βW (z)). It is sufficient to prove that
βW (z) = 1. To the contrary suppose βW (z) = 0. Then all agents
in NB have their dip smaller than or equal to 1

2 . So, NB ⊆ U(z) ∪

V (z). As βW (z) = 0, we have (U(z), V (z)) ∉ W . This however
contradicts the definition of ϕW because if (U(z), V (z)) ∉ W and
NB ⊆ U(z) ∪ V (z), then ϕW (z) = 01. �

We can now formulate the main result of this section, which is a
corollary to the preceding two lemmas.

Corollary 4.5. Let ϕ be a rule. Then ϕ satisfies SP, CPO, NC, and FA, if
and only if there is a family W of decisive pairs such that ϕ = ϕW .

Proof. If W is a family of decisive pairs, then ϕW satisfies SP, CPO,
NC, and FA by Lemma 4.4. Conversely, let ϕ satisfy these four
conditions. We show that ϕ = ϕWϕ , which completes the proof
by Lemma 4.3. Let z ∈ R. Then ϕ(z) = −11 ⇔ (U(z), V (z)) ∈

Wϕ ⇔ ϕWϕ (z) = −11. If ϕWϕ (z) = 01 then (by the previous step)
ϕ(z) ≠ −11 and moreover, NB ⊆ U(z) ∪ V (z), so that ϕ(z) = 01
by FA. Similarly, ϕWϕ (z) = −10 implies ϕ(z) = −10. Hence, we
also have ϕWϕ (z) = 00 if and only if ϕ(z) = 00. �

4.2. Rules under lexmin preferences

Rather than characterizing the set of all rules when agents
have lexmin preferences we will show that this set is neither
contained in nor contains the set of rules in Corollary 4.5 formyopic
preferences. We start with identifying the rules in the latter class
that are strategy-proof and country-wise Pareto optimal on the
class of profiles with lexmin preferences.

Corollary 4.6. Let R be the set of all profiles of lexmin preferences
and let W be a family of decisive pairs. Then rule ϕW : R → A
is country-wise Pareto optimal. Rule ϕW is strategy-proof if and only
if W satisfies the following condition: for all (U, V ) ∈ W , if i ∈

NA ∩ U and NB ⊈ U ∪ V or if i ∈ NB ∩ U and NA ⊈ U ∪ V , then
(U\{i}, V ∪ {i}) ∈ W .
Proof. CPO of ϕW follows by exactly the same arguments as in the
proof of Lemma 4.4.

For the only-if direction concerning strategy-proofness, sup-
pose without loss of generality that there are (U, V ) ∈ W and
i ∈ NA ∩ U such that NB ⊈ U ∪ V and (U\{i}, V ∪ {i}) ∉ W .
Consider a profile z with U(z) = U\{i}, V (z) = V ∪ {i}, and
z(j) > 1

2 for some j ∈ NB. Then NB ⊈ (U\{i}) ∪ V ∪ {i}, so that
ϕW (z) ∈ {−10, 00}. Consider an i-deviation z ′ with z ′(i) > −

1
2 .

Then (U(z ′), V (z ′)) = (U, V ) ∈ W , so that ϕW (z ′) = −11, which
implies that i manipulates from z to z ′.

For the if-direction concerning strategy-proofness, again the
same arguments as in the proof of Lemma 4.4 apply, with one
exception, namely the case where z(i) = −

1
2 : this case follows

by using the additional condition on W in the corollary. �

See Example 3.5 for a rule which is not of the form ϕW for some
family of decisive pairs W , but which is nevertheless strategy-
proof and country-wise Pareto optimal both for myopic and for
lexmin preferences. According to that rule the countriesmake their
decisions independently. An example of a rule where countries
decide independently but corresponding to a family of decisive
pairs is the following.

Example 4.7. Let W = {(U, V ) ∈ 2N
× 2N

: U ∪ V = N}, then W
satisfies (d1)–d(4) and therefore is a family of decisive pairs. Then
ϕW (z) = (α(z), β(z)), whereα(z) = −1 if z(i) ≥ −

1
2 for all i ∈ NA

and α(z) = 0 otherwise; and β(z) = 1 if z(i) ≤
1
2 for all i ∈ NB

and β(z) = 0 otherwise. This rule satisfies SP, CPO, NC, and FA for
both myopic and lexmin preferences.

Remark 4.8. By carefully considering the rules in Corollary 4.5, it
is not hard to show that the rule in Example 4.7 is in fact the only
rule in the corollary in which the countries decide independently,
as follows. Let W be a family of decisive pairs and let ϕW be the
corresponding rule. Suppose that there is a pair (U, V ) ∈ W such
that U ∪ V ≠ N , without loss of generality i ∉ U ∪ V for some
i ∈ NA. Let z be a profile with z(i) = −1, U(z) = U , and
V (z) = V . Then ϕW (z) = −11. Now consider a profile z ′ with
z ′(j) = z(j) for all j ∈ NA and z ′(j) = −1 for all j ∈ NB. Then,
since U(z ′)∩NB = ∅ and NB ⊈ V (z ′), we have (U(z ′), V (z ′)) ∉ W .
Hence, since NA ⊈ U(z ′) ∪ V (z ′), we obtain ϕ(z ′) = 00. Thus,
α(z ′) = 0 ≠ −1 = α(z) although z(j) = z ′(j) for all j ∈ NA. We
conclude that the countries do not decide independently.

An example of a rule satisfying all conditions both for myopic
and lexmin preferences, but in which the countries do not decide
independently, is as follows.

Example 4.9. For convenience suppose that nA = nB ≥ 2, and
let W be the set of all (U, V ) ∈ 2N

× 2N satisfying at least one of
the following three conditions: (i) U ∪ V = N , (ii) NA ⊆ U ∪ V
and NB ∩ U ≠ ∅, (iii) NB ⊆ U ∪ V and NA ∩ U ≠ ∅. Then W
satisfies (d1)–(d4) as well as the condition in Corollary 4.6, so that
ϕW satisfies SP, CPO, NC, and FA for myopic preferences as well
as lexmin preferences. Let z be a profile of preferences such that
z(i) ≥ −

1
2 for all i ∈ NA, z(j) < 1

2 for some agent j ∈ NB, and
z(k) > 1

2 for some k ∈ NB. Then ϕW (z) = −11. Pick an agent
i1 ∈ NA and consider the profile ẑ equal to z except that ẑ(i1) < −

1
2 .

ThenϕW (ẑ) = 00, so that the decision in countryBhas been altered
by an agent in country A.

4.3. Further examples

The class of rules ϕW for families W of decisive pairs contains
many different rules, ranging from majority voting to almost
dictatorial rules, as the following examples show.



A. Lahiri et al. / Mathematical Social Sciences 90 (2017) 150–159 157
Example 4.10. Let W consist of all pairs (U, V ) ∈ 2N
× 2N such

that |U| ≥ |N\(U ∪ V )| and (d3) and (d4) are satisfied. Then W
is a family of decisive pairs. The associated rule ϕW assigns to a
preference profile z the outcome −11 if there is a weak majority
with strict preference for −11. If not, then it assigns −10 if all
agents in country Aweakly prefer −1 and it assigns 01 if all agents
in Bweakly prefer 1. In all other cases it assigns 00. By Corollary 4.5
this rule satisfies SP, CPO, NC, and FA for myopic preferences. By
Corollary 4.6 it is not strategy-proof for lexmin preferences.

Example 4.11. Fix agents iA ∈ NA and iB ∈ NB. Let W consist of
all pairs (U, V ) ∈ 2N

× 2N such that both iA and iB are in U or
N = U ∪ V . Then W is a family of decisive pairs. The associated
rule ϕW assigns to a preference profile z the outcome −11 if all
agents weakly prefer this outcome or if iA and iB strictly prefer it. If
not, then it assigns −10 if all agents in country Aweakly prefer −1
and it assigns 01 if all agents in Bweakly prefer 1. In all other cases
it assigns 00. By Corollary 4.5 this rule satisfies SP, CPO, NC, and
FA for myopic preferences. By Corollary 4.6 again it is not strategy-
proof for lexmin preferences. In this rule, iA and iB exercise a kind
of joint dictatorship. Observe that we cannot have dictatorial rules
since these would violate CPO, both under myopic and leximin
preferences.

The following example shows that profitable deviations by
coalitions are not necessarily excluded by strategy-proofness.

Example 4.12. Consider the rule of Example 4.11, which is
strategy-proof for myopic preferences. Let z be a profile such that
z(iA) = −

1
2 , z(iB) =

1
4 , z(j) = −

3
4 for some j ∈ NA\{iA}, and z(k) =

3
4 for some k ∈ NB\{iB}. Then ϕW (z) = 00. Let S = {iA, iB}, and
let z ′ be the profile with z ′(iA) = −

1
4 , z

′(iB) =
1
8 , and z ′(j) = z(j)

for all j ∈ N\{iA, iB}. Then ϕW (z ′) = −11. Since −11Pz(iB)00 and
−11Iz(iA)00, S has profitably deviated.

An example of a strategy-proof (and country-wise Pareto optimal)
but not coalitionally strategy-proof rule for lexmin preferences can
be found in the Appendix of the paper.

4.4. Independence of the axioms

We show that the main conditions imposed on rules in this
paper are logically independent.

If R is the set of profiles with lexmin preferences, then any
constant rule would be strategy-proof but not country-wise Pareto
optimal. Examples 4.10 and 4.11 present rules which are country-
wise Pareto optimal but not strategy-proof.

Now let R be the set of profiles with myopic preferences. We
show that SP, CPO, NC, and FA are independent.

The constant rule that assigns −11 to every profile satisfies SP,
NC, and FA, but not CPO. The rule in Example 3.5 satisfies SP, CPO,
and FA, but not NC. For the independence of strategy-proofness
consider the following example.

Example 4.13. Consider a family of decisive pairs W with
associated rule ϕW . Let iA, jA be two different agents in NA and let
iB, jB be two different agents in NB. Define the rule ϕ equal to ϕW

for all profiles except for profiles q at which q(iA) = −1, q(iB) = 1,
and q(jA) = q(jB) = 0: then letϕ(q) = (− 1

2 ,
1
2 ). Ruleϕ satisfies FA

and CPO, as is not difficult to see. Non-corruptibility can be seen
by considering the preferences of the agents iA, jA, iB, jB at such a
profile q, as given in the following table.

iA : 00 ∼ 01 ≻ −
1
2
1
2

≻ −11 ∼ −10

jA, jB : −11 ≻ −
1
2
1
2

≻ 00 ∼ −10 ∼ 01

iB : 00 ∼ −10 ≻ −
1
2
1
2

≻ −11 ∼ 01.
Thus, these four agents are not indifferent between the outcome atϕ(q) and any ϕW (z) ∈ {−11,−10, 00, 01} for profile z not of the
form q. It is not difficult to see thatϕ is not strategy-proof.

The final example exhibits a rule which satisfies SP, CPO, and NC,
but not FA.

Example 4.14. Consider a family of decisive pairs W with
associated rule ϕW . Let rule ϕ be equal to ϕW except thatϕ((− 1

2 )
NA , ( 12 )

NB) = −10. Thenϕ violates the far away condition
at profile ((− 1

2 )
NA , ( 12 )

NB) for country B. Clearly,ϕ satisfies CPO. For
SP and NC consider a unilateral deviation z from ((− 1

2 )
NA , ( 12 )

NB)

by agent i. First suppose z(i) < −
1
2 . Then CPO implies that, with

ϕW (z) = (α(z), β(z)), α(z) = 0, so that (U(z), V (z)) ∉ W . Since
NB ⊆ U(z) ∪ V (z), it follows that ϕ(z) = 01. At ((− 1

2 )
NA , ( 12 )

NB)
agent i is indifferent between −10 and 01, but at z(i) agent i
strictly prefers 01 to −10. It follows that at these deviations the
requirements of SP and NC hold.

Next consider the case that 0 ≥ z(i) > −
1
2 . Then (NA ∪ NB) ⊆

(U(z) ∪ V (z)) and (U(z), V (z)) ∈ W , which implies that ϕ(z) =

−11. At ((− 1
2 )

NA , ( 12 )
NB) agent i is indifferent between −10 and

−11 and at z(i) agent i strictly prefers outcome−11 to−10. Hence,
also at these deviations the requirements of SP and NC hold.

Now consider the case that 0 ≤ z(i) < 1
2 . Then (NA ∪ NB) ⊆

(U(z) ∪ V (z)) and (U(z), V (z)) ∈ W , which implies that ϕ(z) =

−11. At ((− 1
2 )

NA , ( 12 )
NB) agent i is indifferent between −10 and

−11 and at z(i) agent i strictly prefers−11 to−10. Hence, at these
deviations again the requirements of SP and NC hold.

Finally, consider z(i) > 1
2 . CPO implies β(z) = 0. Hence,

(U(z), V (z)) ∉ W . Since NA ⊆ U(z) ∪ V (z), it follows thatϕ(z) =

−10. Again the requirements of SP andNC hold at these deviations.

5. Conclusion

We have studied strategy-proof and country-wise Pareto
optimal rules for the joint placement of two public bads in
two neighboring countries. For myopic preferences, which are
completely determined by the location of the nearer public bad,
we have characterized all rules which satisfy two additional tie-
breaking conditions. In particular, such rules always assign border
locations—in agreement with early findings about single-dipped
preferences in the one country case (Peremans and Storcken,
1999). For lexmin preferences, where also the location of the less
near public bad is taken into account, we find, similarly that only
border locations are assigned under the conditions of strategy-
proofness and country-wise Pareto optimality, but the class of
associated rules is different.

Appendix. Remaining proofs

A.1. Proof of Theorem 3.4

We prove this theorem with the help of the following two
lemmas. Throughout, R is the set of all profiles of lexmin
preferences and ϕ is a rule satisfying SP and CPO. Let z ∈ R. The
first lemma shows that if one of the two bads is located at 0, then
the other one cannot be located at an interior point of its country.

Lemma A.1. α(z) = 0 implies β(z) ∈ {0, 1} and β(z) = 0 implies
α(z) ∈ {−1, 0}.

Proof. We prove that α(z) = 0 implies β(z) ∈ {0, 1}, the other
part of the lemma is analogous. Suppose α(z) = 0 but to the
contrary β(z) ∈ (0, 1). By Pareto optimality for country B, it
follows that T1 := {i ∈ NB : z(i) ≥ β(z)} ≠ ∅ and T2 := {i ∈

NB : z(i) ≤ µ(z)} ≠ ∅. By weak monotonicity (Lemma 2.2), we
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may assume that z(i) = 1 for all i ∈ T1 and z(i) = −1 for all
i ∈ NA. Without loss of generality, assume that T2 := {1, . . . ,m}

wherem < nB. Consider the following profiles for all j = 1, . . . ,m:

z1 = (zN\T1 , µ(β(z), 1)
T1)

z j2 = (zN\{1,...,j}, µ(z){1,...,j})

z j3 = (zN\(T1∪{1,...,j}), µ(β(z), 1)T1 , µ(z){1,...,j}).

By Pareto optimality for country A, it follows that α(z1) = α(z j2) =

α(z j3) = 0 for every j ∈ T2.
First, consider the deviation from z to z1. Since α(z1) =

0, strategy-proofness implies that β(z1) ∈ {β(z), 1}. Pareto
optimality for country B then implies β(z1) = 1. So ϕ(z1) = (0, 1).
Now consider the deviation from z1 to z13 . As µ(z) <

1
2 , strategy-

proofness implies thatϕ(z13) = (0, 1). Now supposeϕ(z j3) = (0, 1)
for some j < m. Consider the deviation from z j3 to z j+1

3 . Since
µ(z) < 1

2 , strategy-proofness implies thatϕ(z j+1
3 ) = (0, 1). Hence,

ϕ(zm3 ) = (0, 1).
Next, consider the deviation from z to z12 . Since α(z

1
2) = 0,

strategy-proofness implies that β(z12) ∈ {0, β(z)}. So ϕ(z12) ∈

{f (z), (0, 0)}. Consider the deviation from z12 to z
2
2 . Sinceα(z

2
2) = 0,

we have that f (z22) = (0, 0) if ϕ(z12) = (0, 0) and f (z22) ∈

{ϕ(z), (0, 0)} if ϕ(z12) = ϕ(z). Continuing this way, we conclude
that ϕ(zm2 ) ∈ {(0, 0), ϕ(z)}. Then Pareto optimality for country
B implies that ϕ(zm2 ) = (0, 0). Consider the deviation from zm2
to zm3 . Since µ(β(z), 1) > 1

2 , strategy-proofness implies that
ϕ(zm3 ) = (0, 0), which contradicts the fact that ϕ(zm3 ) = (0, 1)
and concludes the proof of the lemma. �

The second lemma shows that if one of the two bads is located at
the noncommon border of a country, then the other one cannot be
located at an interior point of the other country.

Lemma A.2. α(z) = −1 impliesβ(z) ∉ (0, 1) andβ(z) = 1 implies
α(z) ∉ (−1, 0).

Proof. We prove that α(z) = −1 implies β(z) ∉ (0, 1), the other
part of the lemma is analogous. Suppose α(z) = −1 but to the
contrary β(z) ∈ (0, 1). So, in this case −

1
2 < µ(z) < 0. By Pareto

optimality for country B, it follows that T := {i ∈ NB : z(i) ≥

β(z)} ≠ ∅ and NB\T ≠ ∅. By weak monotonicity (Lemma 2.2), we
may assume that z(i) = µ(z) for all i ∈ NA, z(i) = 1 for all i ∈ T
and z(i) = 0 for all i ∈ NB\T . Consider now the following three
profiles.

NA T NB\T
z1 µ(z) µ(β(z), 1) 0
z2 µ(z) 1 µ(0, β(z))
z3 µ(z) µ(β(z), 1) µ(0, β(z)).

Since−
1
2 < µ(z) < 0, Pareto optimality for country A implies that

α(z1) = α(z2) = α(z3) = −1.
First, consider the deviation from z to z1. Since α(z1) = −1,

strategy-proofness impliesβ(z1) ∈ {β(z), 1}. Pareto optimality for
country B impliesβ(z1) = 1. Soϕ(z1) = (−1, 1). Now consider the
deviation from z1 to z3. Since µ(0, β(z)) < 1

2 , strategy-proofness
implies that ϕ(z3) = (−1, 1).

Next, consider the deviation from z to z2. As α(z2) = −1,
strategy-proofness implies β(z2) ∈ {0, β(z)}. Pareto optimality
for country B implies that ϕ(z2) = (−1, 0). Now consider the
deviation from z2 to z3. Since µ(β(z), 1) > 1

2 , strategy-proofness
implies that ϕ(z3) = (−1, 0), which contradicts the fact that
ϕ(z3) = (−1, 1) and concludes the proof of the lemma. �
Proof of Theorem 3.4. Let z ∈ R. In view of Lemmas A.1 and A.2
it is sufficient to show that ϕ(z) ∉ (−1, 0)×(0, 1). Suppose, to the
contrary, that ϕ(z) ∈ (−1, 0) × (0, 1). Without loss of generality
assume that µ(z) ≥ 0. Because of country-wise Pareto optimality
S(z) := {i ∈ NA : z(i) ≥ α(z)} and T (z) := {i ∈ NB : z(i) ≤ β(z)}
are nonempty strict subsets of NA and NB, respectively. Consider
the following profiles, where t ∈ N:

NA\S(z) S(z) T (z) NB\T (z)
z0 = z −1 0 µ(z) 1

zt (t ≥ 1) −1
α(zt−1)

2
µ(z) 1

v1
α(z0)− 1

2
0 µ(z) 1

vt (t ≥ 2)
α(zt−1)− 1

2
α(zt−2)

2
µ(z) 1

wt (t ≥ 1)
α(zt−1)− 1

2
α(zt−1)

2
µ(z) 1.

The proof proceeds in a few steps.
Step 1. Let t ≥ 1 and suppose that −1 < α(zt−1) < 0. Then
ϕ(vt) = ϕ(wt) = (−1, 1).

Proof. Considering strategy-proofness at zt−1 and vt yields that
α(vt) ∈ {−1, α(zt−1)}. Pareto optimality for country A now
implies that α(vt) = −1. Then strategy-proofness implies β(vt) ∈

[β(zt−1), 1]. Since 0 ∉ [β(zt−1), 1], Lemma A.2 implies β(vt) = 1.
Thus, ϕ(vt) = (−1, 1). Comparing vt and wt and noting that
−1 < α(zt−1) and therewith −

1
2 < α(zt−1)

2 , strategy-proofness
implies that ϕ(wt) = (−1, 1).

Step 2. For all t ≥ 1:

−1 < α(zt) < α(zt−1) < 0 ≤ 2µ(z) < β(zt) ≤ −α(zt−1) < 1.

Proof. By assumption we have −1 < α(z0) = α(z) < 0 ≤

2µ(z) < β(z0) = β(z) < 1. We prove the statement in Step
2 by induction. Assume it is true for all s < t , where t ≥ 1.
Consider the deviation from zt−1 to zt . Then strategy-proofness
implies at least one of α(zt) and β(zt) is in the closed interval
[α(zt−1),−α(zt−1)]. By considering the deviation from zt to zt−1

it follows that α(zt), β(zt) ∉ (α(zt−1), 0). Since α(zt−1) is not
a Pareto optimal location for country A at zt we have α(zt) ≠

α(zt−1). Further, α(zt) ≠ 0 otherwise by consideringwt wewould
have a contradiction with strategy-proofness, since (0, β(zt)) =

ϕ(zt) is better for dip α(zt−1)−1
2 than (−1, 1) = ϕ(wt) (by Step 1).

So, α(zt) < α(zt−1) and 0 ≤ β(zt) ≤ −α(zt−1). Now suppose
β(zt) = 0. Then α(zt) < α(zt−1) and Lemma A.1 imply that
α(zt) = −1. But (−1, 1) = ϕ(wt) (by Step 1) is better for dip −1
thanϕ(zt) = (−1, 0), which is a violation of strategy-proofness. So
β(zt) ≠ 0. Country-wise Pareto optimality now implies β(zt) >
2µ(z). Since 0 < β(zt) < 1, Lemma A.2 implies α(zt) ≠ −1.
Altogether we have −1 < α(zt) < α(zt−1) < 0 ≤ 2µ(z) <
β(zt) ≤ −α(zt−1) < 1. Hence Step 2 follows by induction.

Step 3. µ(z) = 0.

Proof. First suppose that for some t > 1, µ(zt) ≥
α(zt−2)

2 . Then,

by Step 2, for all i ∈ S(z) we have α(zt) < α(zt−1)
2 = zt(i) <

zt−1(i) =
α(zt−2)

2 ≤ µ(zt), so that by monotonicity we have

ϕ(zt−1) = ϕ(zt), a contradiction. Thus, µ(zt) < α(zt−2)
2 for all

t > 1. Hence, α(zt) + β(zt) < α(zt−2) for all t > 1. By Step 2
this implies 2µ(z) < β(zt) < α(zt−2)− α(zt), which implies that
µ(z) = 0 sinceα(zt−2)−α(zt) converges to 0 for t going to infinity.

Step 4. If µ(z) = 0 then µ(z1) ≠ 0.
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Proof. Follows from Step 2 by taking t = 1.

We can now complete the proof. Step 3 implies that µ(z) = 0
for any profile z with α(z) ∈ (−1, 0) and β(z) ∈ (0, 1). This
contradicts Step 3 since z1 is also such a profile. �

A.2. Further examples

Example A.3. This is an example of a strategy-proof and country-
wise Pareto optimal rule ψ on the domain of lexmin preference
profileswhich is not coalitionally strategy-proof. Fix agents iA ∈ NA
and iB ∈ NB. We define two functions α and β on preference
profiles, as follows:
α(z) = −1 if z(iA) > −

1
2 , α(z) = 0 if z(iA) < −

1
2 or if z(iA) = −

1
2

and z(j) < −
1
2 for some j ∈ NA, and α(z) = −1 otherwise;

β(z) = 1 if z(iB) < 1
2 , β(z) = 0 if z(iB) > 1

2 or if z(iB) =
1
2 and

z(j) > 1
2 for some j ∈ NB, and β(z) = −1 otherwise.

We define ψ by ψ(z) = (α(z), β(z)). Note that this rule is
decomposable: the decision about the location of the public bad
of a country depends only on the preferences of the agents in that
country. It can be seen that ψ is strategy-proof and country-wise
Pareto optimal. Now consider a profile z such that z(iA) = −

1
2 ,

z(iB) =
1
4 and z(j) = −

3
4 for some j ∈ NA\{iA}. Then ψ(z) = 01.

Let S = {iA, iB}, and consider the profile z ′ with z ′(iA) = −
1
4 ,

z ′(iB) =
1
8 , and z ′(j) = z(j) for all j ∈ N\{iA, iB}. Thenψ(z ′) = −11.

Since −11Pz(iB)01 and −11Iz(iA)01, S has a profitable deviation.

Example A.4. We show that Pareto optimality and country-wise
Pareto optimality are independent conditions.

(1) We define a rule g as follows. For every profile z ∈ R,

α(z) =


−1 if NA ⊆ U(z) ∪ V (z) and U(z) ∩ NA ≠ ∅

0 otherwise

β(z) =


1 if NB ⊆ U(z) ∪ V (z) and U(z) ∩ NB ≠ ∅

0 otherwise

and g(z) = (α(z), β(z)). Then g is strategy-proof and country-
wise Pareto optimal both for myopic and lexmin preferences.
Now consider the profile z with z(i) = 0 for all i ∈ NA and
z(i) =

1
2 for all i ∈ NB. Then g(z) = −10. Since both for

myopic and lexmin preferences we have that −11Pz(i)g(z) for
all i ∈ NA and −11Iz(j)g(z) for all j ∈ NB, this rule is Pareto
optimal neither for myopic nor for lexmin preferences.
(2) We define a dictatorial rule h1 for lexmin preferences, as
follows. Fix an agent i ∈ NA. Then h1(z) = 01 if z(i) < −

1
2 or if

z(i) = −
1
2 and z(k) < −

1
2 for some k ∈ NA, and h1(z) = −11

otherwise. It can be seen that h1 is Pareto optimal, but not
country-wise Pareto optimal.

(3) We define a dictatorial rule h2 for myopic preferences, as
follows. Fix an agent i ∈ NA. Then

h2(z)

=


(−1, 2z(i)+ 1) if 2z(i)+ 1 ≥ 0 and

µ(2z(i)+ 1, 1) < z(k) for some k ∈ N
(−1, 1) if 2z(i)+ 1 ≥ 0 and

{k ∈ N : µ(2z(i)+ 1, 1) < z(k)} = ∅

(0, 0) otherwise.

It can be seen that h2 is Pareto optimal, but not country-wise
Pareto optimal.
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