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Abstract

Context: The analysis of requirements for business-related software systems is often supported by using

business process models. However, the final requirements are typically still specified in natural language.

This means that the knowledge captured in process models must be consistently transferred to the specified

requirements. Possible inconsistencies between process models and requirements represent a serious threat

for the successful development of the software system and may require the repetition of process analysis

activities.

Objective: The objective of this paper is to address the problem of inconsistency between process models

and natural language requirements in the context of software development.

Method: We define a semi-automated approach that consists of a process model-based procedure for

capturing execution-related data in requirements models and an algorithm that takes these models as input

for generating natural language requirements. We evaluated our approach in the context of a multiple case

study with three organizations and a total of 13 software development projects.

Results: We found that our approach can successfully generate well-readable requirements, which do not

only positively contribute to consistency, but also to the completeness and maintainability of requirements.

The practical use of our approach to identify a suitable subcontractor on the market in 11 of the 13 projects

further highlights the practical value of our approach.

Conclusion: Our approach provides a structured way to obtain high-quality requirements documents from

process models and to maintain textual and visual representations of requirements in a consistent way.
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Preprint submitted to Information and Software Technology August 19, 2017



1. Introduction

Business process modeling is an established method for documenting, analyzing, and improving organi-

zational operations. What is more, it has become a widely accepted practice in software engineering [1, 2, 3].

In particular for analyzing requirements of business-related software systems business process modeling has

proven to be an effective means [4]. Process models do not only provide an overview of the operations that

must be supported by the to-be developed software systems, but also show how these operations are related

to the different organizational roles and systems.

Despite this prominent role of business process modeling for requirements analysis, the actual specifi-

cation of requirements is commonly conducted using natural language [5, 6, 7, 8]. This means that the

knowledge captured in process models must be consistently transferred to natural language requirements.

On the one hand, this is a complex and time-consuming task [9, 10]. On the other hand, updates at later

stages in either the textual or the model-based requirements come with the risk of inconsistencies [11, 12, 13].

Such inconsistencies between the process model and the resulting requirements represent a serious threat for

the successful development of the respective software system throughout the Software Development Lifecycle

(SDLC). More specifically, they may result in a system that does not fully reflect the functionality defined

in the process models.

To address this problem, we propose a semi-automated approach whose final output are generated

requirements documents that integrate process model and execution-related data in an understandable

fashion. As a result, organizations can systematically transfer the knowledge captured in their process

models to other SDLC activities and create consistent and maintainable artifacts. Our proposed approach

consists of three main steps. In the first step, we analyze the process models that are relevant for the system to

be developed and identify the set of automatable activities. In the second step, we capture execution-related

data, such as responsibilities, application systems, data needs, and additional constraints in a requirements

model. In the third step, we automatically generate requirements documents from the created models via

a template-based natural language generation algorithm. The consistency between the processes and the

requirements is by definition guaranteed by the generation feature of the approach. To evaluate the impact

of our approach on other key characteristics of high-quality requirements –readability, completeness and

maintainability– , we conducted a multiple case study that involved 3 different organizations and a total of

13 software development projects. We found that the requirements documents generated by our approach

were considered to be well-readable, almost perfectly complete, and beneficial for improving consistency as

well as maintainability. Meeting these key requirement characteristics was found to be essential to enhance

the usability of the requirements by domain experts, analysts, project managers, and software developers.

In 11 of the projects, the generated artifacts were used for identifying a suitable subcontractor on the market

for developing the respective systems, which confirmed the usability of the approach in practical settings.
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The remainder of this paper is structured as follows. In Section 2 we elaborate on the background of our

research and identify the research gap that we will address. In Section 3, we introduce our semi-automatic

approach for generating requirements documents. In Section 4, we present and discuss the findings of our

multiple case study. In Section 5, we elaborate on the steps required for adapting the presented approach

to languages other than English. In Section 6 we discuss the implications of our work before concluding the

paper in Section 7.

2. Background

In this section, we discuss the background of our paper. In Section 2.1, we first clarify the relevance

and the value of generating natural language requirements. In Section 2.2, we then elaborate on the use of

process models in requirements engineering. We close the section by pointing out what is still missing to

define an approach for automatically generating high quality requirements from process models.

2.1. The Value of Requirements Generation

While many would argue that models are the preferred means to foster communication, others favor

requirements in textual format. At its heart, the question about the value of generating natural language

requirements relates to the debate whether textual or visual representations are superior in terms of com-

munication effectiveness. Interestingly, this debate is neither new nor limited to the field of requirements

engineering. The first studies addressing this controversy date back to the seventies. At this time, psycholo-

gists empirically compared the expressive power of natural language texts with matrices, spatial maps, and

tree representations [14, 15, 16, 17]. Later, many studies from the field of computer science contributed to

the debate. Among others, authors compared the comprehension performance of code-based representations

and flow diagrams [18, 19, 20]. The conclusions of these and other works remain, however, contradictory.

Some argue in favor of text-based other argue in favor of visual representations.

A satisfying explanation for these opposing views is provided by the Cognitive Theory of Multime-

dia Learning (CTML) [21], which has been developed through more than a decade of empirical research.

Among others, it discusses the concept of learning preference, which suggests that both textual and visual

representations should be presented at the same time. The rationale behind this concept is that people

with different backgrounds may simply have different preferences and cognitive abilities. By providing both

representations, they are provided with a choice.

Transferred to the field of requirements engineering, the CTML suggests that both models and natural

language requirements should be used for capturing and discussing requirements. In fact, this view is

supported by many researchers. For instance, Weber and Weisbrod discuss the importance of natural

language requirements for communication, but also highlight that the sole use of natural language is hardly
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Table 1: Work combining process models and requirements engineering

Approach Authors

Manual use of process models

Elicitation of textual requirements
Requirements engineering based on business process models Cardoso et al. [4]
Business process modeling and requirements modeling Mayr et al. [28]
Process-oriented information system requirements engineering Ma and Jiang [7]
A business process-driven approach for requirements dependency analysis Li et al. [8]
Utilizing business process models for requirements elicitation Demirörs et al. [29]
Requirements elicitation using BPM notations Monsalve et al. [30]

Elicitation of model-based requirements
A goal-based approach on business process-driven requirements engineering González and Dı́az [31]
Deriving requirements from process models via the problem frames approach Cox et al. [32]

Automated use of process models

Transformation of business process models to business rules Malik and Bajwa [33]
Supporting process model validation through natural language generation Leopold et al. [9]
Generating functional requirements from process models Türetken et al. [34]
Bridging the gap between business process modeling and software
requirements analysis Coşkunçay et al. [35]

feasible for complex projects [22]. They propose the additional use of so-called requirements management

information models (RMIs). In a similar way, Schatz et al. [23] and Davis [24] propose to combine text-

based and model-based requirements. Nicolás and Toval even explicitly discuss the value of generation in

this context [25]. They argue that generation reduces the effort and, at the same time, increases the quality

and traceability of the requirements.

Recognizing the potential of automatically generating natural language requirements, we define a re-

spective approach for process models in this paper. To highlight what is specifically missing to define

such an approach, the next section reviews related work on process models in the context of requirements

engineering.

2.2. Process Models and Requirements Engineering

Many authors have emphasized the important role of process models in the context of specifying require-

ments of software systems [26, 27, 28]. Some authors even go so far as considering their use as mandatory

[1, 3]. However, the specific role of process models differs considerably among available approaches. Table 1

gives an overview of the most relevant works using process models in the context of requirements engineer-

ing. As Table 1 illustrates, we differentiate between works that use process models in a manual and in an

automated way.

The related work that discusses the manual use of process models in the context of requirements engi-

neering can be further categorized into works that elicit textual and that elicit model-based requirements

from process models.

The main insight of the works from the first subcategory that elicit textual requirements from process

models is that process models represent an effective way of steering the activity of requirements elicitation

4



and enhance the completeness, correctness, and traceability of the final requirement statements [4]. Cardoso

et al. analyze the level of automation for each activity in the process models and then define a set of

textual requirements for the activities to be automated [4]. In a similar manner, Ma and Jiang define a

set of textual requirements for each activity of a process [7]. Mayr et al. discuss that detailed notions

for requirements should be specified based on process models and they also map requirements in sentence

form to the process models [28]. Li et al. propose a method to link textual requirements to activities in

the process model [8]. Such links help to identify dependencies between requirements consecutively being

used for discovering missing and ambiguous text-based requirements. Demirörs et al. analyze and define

not only functional requirements, but also non-functional, security, and hardware requirements based on

process models. Lastly, Monsalve et al. elaborate on the usage of process modeling notations for eliciting

and expressing user requirements on a strategic level. They find Qualigram more helpful in this respect than

BPMN [30]. What all these works have in common is that they exemplify how process models can support

requirements elicitation. What is more, they show that process models are also useful for identifying gaps

and problems, thus for validating requirements with end users.

The second subcategory of works that elicit model-based requirements from process models illustrates

that process models are also useful for deriving model-based requirements. For instance, González and Dı́az

suggest to build a goal model using the activities from process models [31]. They subsequently use the goal

model to establish the use cases and their relations. However, the specification remains on the use case

diagram level and the usage of the suggested role and resource models in the context of the requirements

definition is left open. Cox et al. discuss that the framing of real-world problems for capturing and classifying

software development problems is a difficult task in reality. They define a set of steps to manually develop

problem frame diagrams together with textual requirements using role activity diagrams. Rather than

being an elicitation and validation tool between domain experts and modelers, the problem frames approach

enables the formal analysis of requirements for verification. What both approaches have in common is that

they enhance the representational capabilities of process models for requirements elicitation. However, they

do not consider automated support.

Related work on the automated use of process models in the context of requirements engineering consider

process models as the final requirements artifact and focus on the benefits of verbalizing the models in the

requirements elicitation and validation phases. For instance, Leopold et al. analyze the activity labels and

the control flow of process models to automatically generate corresponding natural language descriptions

of the models [9]. Malik and Bajwa provide a sentence generation algorithm for requirements using a

template-based approach [33]. Though their approach does not include clear text structuring techniques, the

consideration of the message flow between parties is an important feature to reveal requirements on system

interactions. Türetken et al. include a broader set of process elements in the generated sentences, including

roles, input and output data, events, and systems [34]. Consideration of such elements is important to be
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Figure 1: Overview of our approach

able to express requirements that concern other aspects than control flow. However, they rely on a certain

process structure, do not consider all execution-related aspects, and only generate rudimentary sentences.

The work of Coşkunçay et al. specifies the need for analyzing additional data for process automation in

a separate set of models, though it lacks a description of requirements analysis approach and a formal

generation technique. The studies in this group commonly express the need for the automation of natural

language requirement specification based on process models.

This literature review showed that process models play an important role in the context of analyzing and

representing system requirements. What is more, it showed that first approaches considering the automated

generation of requirements based on process models have already been introduced. What is still missing is

an approach that integrates the complete set of execution-related data and provides the user with consistent,

well-readable, and also well-maintainable requirements. Recognizing this gap, we use this paper to propose

a semi-automated approach that automatically generates textual requirements documents based on process

models and execution-related data. We will show that our approach provides a structured way to obtain

consistent requirements that are well readable, complete, and easy to maintain.

3. Conceptual Approach

In this section, we introduce our approach for the semi-automated generation of requirements documents

based on process models. As illustrated by Figure 1, the approach consists of two main phases: a preparation

phase and a generation phase. In the preparation phase, we first analyze the input process model(s) and

identify automatable activities. Then, we analyze the requirements for the automated execution of these

activities and create a requirements model for each of them. In the generation phase, these requirements

models are used as the input for the automated generation of the requirements documents. In the following

subsections, we introduce the details of each phase and illustrate our concepts using a running example.
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Figure 2: Exemplary EPC Model for Daily Independent Auditor Evaluation Process

3.1. Preparation Phase

The starting point of the preparation phase is a set of process models. We manually analyze each of

the input process models to identify automatable activities. Activities that can either be supported by

the system to be developed or can be totally automated are marked and added to the list of automatable

activities. Unclear cases are discussed with the respective process owners. The result of this step is a set of

automatable activities that constitute the basis for associating the underlying business processes with the

requirements.

To illustrate this step, consider the business process shown in Figure 2. It describes the evaluation of

project proposals by independent auditors (IAs) in the context of a grant program. It is depicted using the

Event Driven Process Chain (EPC) notation, a modeling language widely used in industry [36]. In this paper,

we use the EPC notation as an example to illustrate our approach. Note, however, that our approach can

be applied to other process modeling notations such as the Business Process Model and Notation (BPMN)

without adaptations. The example process from Figure 2 is triggered when evaluations for proposals are

required. The first activity is to assign the proposals to IAs. Once the proposals have been assigned to IAs,
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they are evaluated. Then, the proposal score is registered and the evaluation status is reviewed. In case the

evaluations are not yet finished, they are evaluated by other IAs. Otherwise, the evaluation plan is updated

and a status report is prepared. Upon closer inspection of the process model from Figure 2, it becomes clear

that it contains four automation candidates: “Assign proposals to IAs”, “Register proposal score”, “Update

evaluation plan”, and “Prepare IA status report”. The other activities must be performed manually and

are outside the scope of the system to be developed. These activities are “Evaluate proposal” and “Review

evaluation status”.

The second step of the preparation phase is the requirements analysis. The main goal of this step is to

specify how the activities are to be executed. This requires the identification of execution-related data for

activities. Building on the insights from [3, 37, 38, 39], we investigate the following four execution-related

aspect for each automatable activity:

• Responsibilities: To specify the responsibilities associated with an activity, we adopt the so-called

RASCI matrix [40, 41]. This means that we do not only capture the different roles that are involved

in the execution of the activity, but also capture their specific responsibilities, such as “carries out” or

“approves”. In conformance with the RASCI concept [42], we also capture whether multiple roles share

the specified responsibility (e.g. whether multiple roles may “carry out” or “approve” the activity) or

whether the role has the exclusive responsibility (e.g. only that role can “carry out” or “approve” the

activity).

• Data needs: As for the data needs, we specify how data entities are used by the activity [43, 44].

Therefore, we adopt the CRUDL approach and capture manipulation operations (create, update,

delete) and usage operations (read, use, view, list).

• System interactions: During the execution of an activity, interactions with multiple systems may take

place. We identify both internal applications that are to be developed as part of the system and

external applications that the system communicates with (e.g., web services). In this way, not only

internal entity operations, but also data interface requirements are revealed.

• Execution constraints: In addition to the later three aspects, we also capture constraints of the ap-

plication system during the execution of the considered activity. As categorized by Goedertier and

Vanthienen, possible business constraints can, for instance, emerge from business regulations, business

policies, costs and benefits, time, information prerequisites, and technical circumstances [45].

Typically, the information about these aspects must be obtained from domain experts who are part

of the respective business processes. We propose the use of the following questions to infer the required

information:
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• (Q1) Who will be responsible to perform this activity and what will be the responsibility types involved?

• (Q2) What are the data entities needed to execute this activity and how are they used?

• (Q3) Which internal and external systems are interacted with for the execution of this activity?

• (Q4) What constraints and rules need to be taken into account during the execution of this activity?

Based on these questions, we elicit the relevant functional requirements from the domain experts and

capture the results for each activity in a requirements model. More specifically, we use a customized version

of the so-called Function Allocation Diagram (FAD) introduced as part of the ARIS method [36]. FADs are

used to focus on the details of an individual activity by depicting the process elements related to that activity.

For complete requirements, we need to represent the aforementioned four execution-related aspects in the

requirements model. The FAD is a conceptual model that allows us to do so by adding respective model

elements for the execution-related aspects. Figure 3 shows an exemplary FAD for the activity “Register

proposal score”. It shows that the activity is associated with three roles. The “Project Officer” and the

“Evaluation Committee Member” are responsible for carrying it out while the “Independent Auditor” is

responsible for its approval. Note that the marker ”+” indicates that a responsibility can be exercised by

either of the associated roles. A responsibility without a marker, therefore, represents a responsibility that

is jointly exercised by all associated roles. The FAD also specifies the data needs of the activity. Among

others, we can see that the “Project proposal” is read and the “Proposal status” is viewed and updated. We

can also see the two systems that are relevant for the activity –the “Grant Management System and the “IA

Registration System”– and how they are connected with the data needs and operations. Lastly, we observe

two constraints that are associated with the two systems. They are expressed using natural language and

specify that (1) a third evaluation is requested in case two evaluations differ to a certain degree and that

(2) IAs might be dropped if they continuously submit contradicting evaluations.

In the next section, we explain how such a requirements model can be used for the automated generation

of a requirements document.

3.2. Requirements Document Generation

This section defines our approach for generating textual requirements documents from the requirements

models defined in the preparation phase. In line with other natural language generation systems, we adopt

the traditional pipeline concept [46]. In particular, as outlined by Figure 1, we follow a three step procedure.

First, we generate the sentences from the requirements models. Then, we refine the generated sentences by

aggregating them in a way that appeals to the user. Finally, we organize the generated sentences in the

context of a document structure. In the sub sections 3.2.1 through 3.2.3, we explain the details of each step.
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3.2.1. Sentence Generation

To adequately reflect the information captured in the requirements model, we generate three types of

sentences. First, we generate sentences describing which roles are involved in the execution of the activity

(responsibility sentences). Second, we generate sentences specifying the usage and manipulation of the

data entities (data need sentences). Third, we generate sentences describing the constraints (constraint

sentences). Note that there is no dedicated sentence type for system interactions. They are either covered

by data need sentences (if the system interaction relates to a data need) or constraint sentences.

To implement the generation of these different sentence types, we adopt the so-called template filling

approach [47]. The rationale behind this approach is to define sentence templates which contain well-defined

gaps. By filling a template with the respective information (in our case the information from a requirements

model), proper sentences are constructed in an automated fashion. The advantages of such template filling

approaches are their speed, the consistency of the produced sentences, and the high linguistic quality of the

output. What is more, it does not require any specific knowledge related to natural language generation to

adapt the system [47]. Hence, they are often considered as a viable choice for natural language generation

[48]. Table 2 gives an overview of the sentence templates we defined for the three sentence types. The

first three templates (R1 to R3) are used to generate sentences about the responsibilities associated with

the activity and, therefore, answer question Q1. The templates on data needs (D1 and D2) serve the

purpose of generating sentences with respect to questions Q2 and Q3. Lastly, the answer to the question

Q4 is provided by means of the sentences generated by template C1. The gaps in the templates that need

to be filled with information from the requirements model are indicated by terms between “<” and “>”.

While the terms for roles, responsibilities, entities, operations, and systems are directly obtained from the

10



Table 2: Sentence templates for requirements generation

Type No. Sentence template

Responsibility
R1 The <Role> shall <Action> <Object>.
R2 The <Role> shall <Responsibility> the operation of <ActionGerund> <Object>.
R3 The <System> shall automatically <Action> <Object>.

Data need
D1 While <ActionGerund> and by using the <Entity>, operations shall be performed on the

<System>.
D2 While <ActionGerund>, the <Entity> shall be <OperationParticiple> on/from the <System>.

Constraint C1 <ConstraintCondition> while <ActionGerund> on the <System>, <ConstraintConsequence>.

labels of the model, the activity is split into an action (i.e., the verb) and an object, and the constraint is

split into a condition and a consequence. Both operations can be automatically performed using available

tools. Deriving action and object from activity labels is possible with the technique introduced in [49] and

splitting conditional sentences can be implemented using the Stanford Parser [50]. Note that verbs may

occur in different grammatical forms (i.e., base form, gerund, and participle).

Algorithm 1 formalizes the steps of our template-based sentence generation approach. The algorithm

requires a requirements model (e.g. an FAD) as input. As a result, it returns a list of sentences.

The algorithm starts with the creation of a list s for the generated sentences (line 1). The first part of the

algorithm is then concerned with generating the responsibility sentences (lines 2-17). It begins by checking

whether the considered requirements model contains roles (line 2). If that is the case, it is checked whether

all roles exclusively perform “carry out”-operations (line 3). If yes, a responsibility sentence using template

R1 is created for each role (lines 4-7). To this end, the required information (role, action, and object) are

derived from the requirements model. If the roles also perform other operations, a responsibility sentence

using template R2 is created for each role (lines 9-12). Since this template requires the action in the gerund

form (e.g. “defining” instead of “define”), we use the lexical database WordNet to derive the gerund form

from the base form. In case the considered responsibility model does not contain any roles, a responsibility

sentence using template R3 is created (lines 15-16). Instead of using a role description, this sentence uses

the name of the main system.

The second part of the algorithm handles the generation of the data need and constraint sentences

(lines 18-34). For this purpose each system from the requirements model is analyzed separately. For each

system, the algorithm then analyzes the respective operations that are associated with this system (lines

19-27). If a considered operation is of type “use”, a sentence using template D1 is created (lines 20-22).

For other operations than “use”, a sentence using template D2 is created (lines 23-25). This requires the

placement of the participle form of that operation name. Finally, respective sentences for the constraints are

11



Algorithm 1: generateSentences(RequirementsModel rm)

1: List sentences = new List();
2: if rm.getRoles() 6= ∅ then
3: if rm.getResponsibilities().containsOnly(”carry out”) = true then
4: for all Role r ∈ rm.getRoles() do
5: Sentence s = fillTemplateR1(r,rm.getAction(),rm.getObject());
6: sentences.add(s);
7: end for
8: else
9: for all Role r ∈ rm.getRoles() do

10: Sentence s = fillTemplateR2(r,transformToGerund(rm.getAction()),rm.getObject());
11: sentences.add(s);
12: end for
13: end if
14: else
15: Sentence s = fillTemplateR3(rm.getMainSystem(),rm.getAction(),rm.getObject());
16: sentences.add(s);
17: end if
18: for all System sys ∈ rm.getSystems() do
19: for all Operation o ∈ sys.getOperations() do
20: if o = ”use” then
21: Sentence s = fillTemplateD1(o.getEntity(),sys,transformToParticiple(rm.getAction()));
22: sentences.add(s);
23: else
24: Sentence s = fillTemplateD2(o.getEntity(),sys,transformToGerund(rm.getAction()));
25: sentences.add(s);
26: end if
27: end for
28: if rm.getConstraints() 6= ∅ then
29: for all Constraint c ∈ sys.getConstraints() do
30: Sentence s = fillTemplateC1(c.getCondition(),c.getConsequence(),sys,transformToGerund(rm.getAction()));
31: sentences.add(s);
32: end for
33: end if
34: end for
35: return s;

generated (lines 28-33). In case the considered system is associated with one or more constraints, a sentence

following the template C1 is created for each of these (lines 30-31). Once all available components from the

requirements model are verbalized, the list of sentences s is returned and the algorithm has completed.

To illustrate the effect of Algorithm 1, Table 3 provides examples for sentences generated based on the

requirements model from Figure 3.

3.2.2. Sentence Refinement

In this step, we refine the generated responsibility and data need sentences to enhance their readability.

We apply one aggregation technique for responsibility sentences and three aggregation techniques for data

need sentences as described below.

• Role aggregation: If the same responsibility type is applicable for multiple roles, we merge the respective

sentences. For instance, instead of keeping the two sentences “The Project Officer shall register the
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Table 3: Exemplary sentences generated from the requirements model from Figure 3

Type No. Example

Responsibility
R1 The Project Officer shall carry out the operation of registering the proposal score.
R2 The Independent Auditor shall approve the operation of registering the proposal score.

Data need
D1

While registering the proposal score, the project proposal shall be read from the Grant
Management System.

D2
While registering the proposal score and by using the proposal IA score, operations shall be
performed on the IA Registration System.

Constraint C1
If the score differences of the two IAs are more than 15 while registering the proposal score
on the Grant Management System, a third IA shall be assigned to the proposal.

proposal score” and “The Committee Member shall register the proposal score”, we generate the refined

sentence “The Project Officer or the Committee shall register the proposal score”. Note that depending

on the specific connection (as indicated by the presence of a marker), we insert the correct conjunction

to express a shared or exclusive responsibility among multiple roles. In case of a marker, we respectively

insert the conjunction “or”, otherwise we insert the conjunction “and”. If more than one responsibility

type is used, the sentences are combined to include those types. For instance, we generate “The Project

Officer shall register, and the Independent Auditor shall approve the operation of registering the project

score”.

• Object aggregation: If the model contains multiple entities with the same operations, we merge the

sentences. For instance, instead of keeping “While registering the proposal score, the proposal status

shall be updated on the Grant Management System” and “While registering the proposal score, the

assigned IA list shall be updated on the Grant Management System”, we generate the refined sentence

“While registering the proposal score, the proposal status and the assigned IA list shall be updated on

the Grant Management System”.

• Operation aggregation: If the model contains multiple operations for the same entity, we apply the

same procedure as for the object aggregation. For instance, we generate “the IA repository shall be

listed and updated” instead of discussing these aspects in different sentences.

• System aggregation: If the model contains multiple systems, we further merge the previously refined

sentences into a single one. For instance, we merge the sentences for two systems as “While registering

the proposal score, the project proposal shall be read on the Grant Management System, and the proposal

evaluation shall be created on the IA Registration System” instead of having two different sentences for

each system. This is an optional refinement step and it is only applied when the requirements model
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includes a small number of entities.

As a result of applying four aggregation techniques on the sentences generated in the example require-

ments model in Figure 3, the following refined sentences are obtained:

1. “The Project Officer or the Evaluation Committee Member shall carry out, and the Independent Auditor

shall approve the operation of registering the proposal score.”

2. “While registering the proposal score, the project proposal shall be read, the proposal status shall be

viewed and updated, the proposal IA score shall be created, and the assigned IA list shall be updated on

the Grant Management System.”

3. “While registering the proposal score and by using the proposal IA score, the IA repository shall be

listed and updated, the IA proposal evaluation shall be created, and the IA status shall be updated on

the IA Registration System.”

3.2.3. Structuring of the Document

Upon completion of the two phases of the generation, the requirements sentences need to be organized in

the context of a document. For this purpose, we assign unique IDs to the aggregated requirements sentences.

The requirements document can then be organized in two different ways as explained below.

Process-based document. In this way of organizing the document, we exploit the hierarchy of the considered

process models to structure the document. Thus, the application of this type requires a hierarchical organi-

zation of the process models. Table 4 illustrates the resulting document structure. The first level heading is

derived from the process model on top of the process hierarchy. Then, the requirements sentences generated

for the top-level process model are listed. Afterwards, we create a subheading for each of the process models

from the levels underneath and list the requirements under the respective subheading. All sentences are

organized in the same way by recursively processing all models. The order of the requirements for a specific

process is derived from the order of the respective activities.

System-based document. In this document style, we use the systems to be developed to organize the require-

ments sentences. That is, we list the requirement sentences under the respective headings of the systems.

Responsibility sentences are placed under the heading for the main system. In case this style is used, the

system aggregation technique is not applied on data need sentences in the sentence refinement phase.

Once all these steps have been completed, users are provided with automatically generated requirements

documents, organized in their preferred style. In the next section, we apply our semi-automated approach

14



Table 4: Process-based requirements document structure

1 <Top-level process name> Process

REQ11 <Responsibility sentence for activity 1>
REQ21 <Data need sentence for activity 1 and system 1>
REQ31 <Data need sentence for activity 1 and system 2>
... (all data need sentences)
REQX1 <Constraint sentence for activity 1>
... (all constraint sentences)

REQ1N <Responsibility sentence for activity N>
REQ2N <Data need sentence for activity N and system 1>
REQ3N <Data need sentence for activity N and system 2>
.. (all data need sentences)
REQXN <Constraint sentence for activity N>
... (all constraint sentences)

1.1 <First-level process name> Process

REQ1M <Responsibility sentence for activity M>
REQ2M <Data need sentence for activity M and system 1>
...

in the context of a case study to demonstrate the improvements in obtaining higher-quality requirements in

terms of key requirement characteristics.

4. Evaluation

In order to show the feasibility of our approach in practice, we applied it in a real-world setting [51]. More

specifically, we conducted a multiple case study using a set of three different organizations and 13 projects

with varying characteristics [52]. In this way, we were able to improve the generalizability of the findings

and to demonstrate the value of our approach [53]. The overall goal of the evaluation is to learn whether

the project teams from our case study perceive the generated requirements documents as well-readable,

complete, consistent, and easy to maintain. In Section 4.1, we explain the rationale for the selection of the

cases and introduce them in detail. In Section 4.2, we briefly describe our implementation of the approach

in the context of a prototype tool. In Section 4.3, we provide details on how we conducted the case study.

In Section 4.4, we present the findings of our case study. In Section 4.5, we compare the manually created

and generated requirements documents. In Section 4.6, we discuss the limitations of our evaluation.

4.1. Overview of Cases

Process modeling and requirements analysis activities are performed in a wide spectrum of industry

fields. This diversity required us to get involved in cases with varying characteristics. While assembling a

suitable set of cases, we considered two main goals. First, we wanted to show the value of our approach

in a practical setting. Thus, we required one or more organizations that were willing to perform business
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Table 5: Overview of the case set characteristics

Case set Case type Project #PM #ACT

(1) e-Government New project
e-Company 18 125
e-Trademark 9 47

Total 27 172

(2) Public Services New project

Auditing 4 53
Budget Management. 69 470
Archive Management 12 638
Human Resource Management 24 218
Investment 20 123
Performance Management 6 26
Program Management 8 953
Project Support 91 662
Stakeholder Management 18 729

Total 252 1782

(3) Campus System Retrospective
Announcement 3 25
Research Program Management 13 42

Total 16 67

Legend: #PM = Number of process models, #ACT = Number of activities

process and requirements analysis as part of a system development project. Second, we wanted to compare

our approach to traditional requirements engineering. Therefore, we sought at least one organization that

was interested in applying our approach after the actual development project, allowing us to retrospectively

compare the results.

As a result of these considerations, we selected three case sets. Each of these case sets consisted of a pro-

gram covering multiple projects. Projects in a program were managed by the same integrator organization,

which used similar principles and practices. The integrator organization was in charge of subcontracting

the projects. Altogether, the case sets included 13 projects pertaining to different process areas. The large

number of projects allowed us to receive comprehensive feedback and to make wide-ranging observations.

Furthermore, we were able to implement the approach in a wide variety of process areas. In line with our

case selection goals, two of the case sets represented new development projects and one was a retrospective

set. Table 5 gives an overview of the most important characteristics of the case sets. It shows the types of

the projects belonging to each case set as well as the number of involved process models and activities. In

the paragraphs below, we describe the details of each case set.

Case Set 1 e-Government. The e-Government case set was managed by the leading integrator organization

for e-government projects in Turkey. The case set consists of a program comprising two projects. The

program was initiated to develop two online systems for managing all processes related to the life cycle

of companies (e-Company) and trademarks (e-Trademark) registered in North Cyprus. A team of three
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external analysts worked on two projects in parallel, together with three internal analysts and two domain

experts. In addition, 15 domain experts were occasionally involved in the workshops to provide domain-

specific knowledge, but did not take part in the preparation and evaluation of the outputs. The internal

analysts were experienced in different modeling notations, while the domain experts had only used natural

language before and had no experience with process modeling notations.

Case Set 2 Public Services. The Public Services case set was managed by the Turkish Ministry of Develop-

ment, the responsible institution for regional development agencies. In total, this case set consists of nine

different projects. Among others, they cover the automation of public service processes provided by the

development agencies, such as grant programs and investment support, but also internal processes such as

human resource management. The team included three external and four internal analysts, together with

four domain experts who took part in the preparation of the outputs, and 66 domain experts that were

occasionally involved in analysis activities. The domain experts were not experienced in modeling notations

and the internal analysts had only used flowcharts before.

Case Set 3 Campus System. The Campus System case set was managed by the Computer Center of the Mid-

dle East Technical University (METU), which is the top-ranked university in Turkey. The whole program

consists of the automation of over 90 business processes, which concern the areas of research, education,

campus services, and support. From this set, we selected two representative projects for this evaluation

(Announcement and Research Program Management). The involved internal analysts were experienced in

BPMN and other notations. In contrast the former two cases, this study took place shortly after the com-

pletion of the projects. With this retrospective case set, we specifically aimed to evaluate the completeness

of the requirements generated via our approach in comparison to the requirements already defined with

traditional approaches.

4.2. Implementation

We developed a prototype tool to facilitate the implementation of our approach in the case study. It

is available as a plug-in for the integrated development environment Eclipse and based on the Eclipse

Modeling Framework (EMF) and the Eclipse Graphical Modeling Framework (GMF).1 The tool supports

the development of process model diagrams in the EPC notation, the identification of automatable activities,

the development of related requirements models in conformance with the exemplified FAD notation, and,

1The tool can be obtained from http:www.aysolmaz.com.
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Figure 4: A screenshot of the prototype tool and the generated requirements document

lastly, the generation of textual requirements documents in conformance with the approach explained in

Section 3. As all the cases were conducted in Turkey, we implemented the generation for the Turkish

language. A snapshot of the (English) tool and the generated requirements document can be seen in Figure

4.

4.3. Conduct of the Case Study

Our case study consisted of three main steps: (1) the application of our semi-automated approach, (2)

the analysis of the outputs, and (3) a set of feedback interviews.

The starting point of our case study was the application of our semi-automated approach by the project

teams in the context of the cases. To make sure the teams could apply our approach in an effective and

efficient way, we provided respective training to the teams before the start of the project. During the

execution, we mainly acted as observers on how the teams applied the approach, but were also available

for questions. Upon completion of the application and the generation of the requirements documents,

we analzyed which changes were manually applied to the documents. After the completion of all project

activities, we conducted a set of interviews with the internal and external analysts as well as with the domain

experts who were involved in the projects. We chose interviews because they are the most prominent

qualitative data collection method for obtaining in-depth insights [53]. Considering the number of team

members involved in the case sets, interviews enabled us to develop a comprehensive understanding of the

participant’s experiences related to the use of our approach in a practical setting. The interviews followed
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Table 6: Interviews for cases

Case set Internal Analyst External Analyst Domain Expert
e-Government 2 3 2
Public Services 2 2 2
Campus System 3 1

Table 7: Key figures of case study conduct

Case set Project #WS EFF #RM #REQ

(1) e-Government
e-Company 10 76 82 363
e-Trademark 6 41 36 177

Total 16 117 118 540

(2) Public Services

Auditing 2 10 24 61
Budget Management 28 154 339 822
Archive Management 4 28 52 110
Human Resource Management 12 46 159 336
Investment 6 36 103 218
Performance Management 14 67 18 36
Program Management 3 23 72 154
Project Support 41 148 457 1038
Stakeholder Management 27 9 54 129

Total 119 539 1278 2904

(3) Campus System
Announcement 3 6 18 65
Research Program. Management 3 8 18 60

Total 6 14 36 125

Legend: #WS = Number of workshops performed, EFF = Analysis effort in person-days, #RM =
Number of requirements models, #REQ = Number of requirements sentences generated

a semi-structured style, taking around 45 minutes per interviewee. The interviews covered questions about

the participants’ background as well as the evaluation of our approach including the quality of the generated

requirements documents. Table 6 shows the number of interviewees for each case set. We transcribed, coded,

and analyzed the interviews to maintain a chain of evidence [52]. Table 7 summarizes the key figures of the

case study performance. It shows the number of workshops performed (#WS), the total analysis effort spent

(EFF), the number of requirements models developed (#RM), and the number of requirements generated

based on these models (#REQ). In the following section, we discuss the findings of our case study.

4.4. Findings

In this section, we discuss how our semi-automated approach for requirements generation was assessed

by the project teams of the three case sets. More specifically, we discuss how they evaluated four key

characteristics that have been found to contribute to high-quality requirements [6, 39, 54, 55]: readability,

completeness, consistency, and maintainability. We present our findings for each key characteristic separately

for domain experts and analysts.
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4.4.1. Readability

The readability (sometimes also referred to as unambiguousness) of a requirements document is one of

its most important features [54].

Overall, all four domain experts found the documents informative and understandable. The domain

experts who became familiar with process modeling through the training session and the workshops found

the joint presentation of the process models and requirements sentences to further improve readability.

For instance, one domain expert from case set 1 stated that “Studying a model and the related statements

together helped me to easily understand the requirements”. Other domain experts supported this with

similar statements. Despite the generally positive feedback, some domain experts also mentioned aspects

for improvement. For instance, one domain expert from case set 2 stated that the fixed structure of the

sentences sometimes felt mechanical. At the same time, however, he also pointed out that such a generation

facilitates a standardized and mature requirements structure.

All of the analysts mentioned that the generated documents were clear and understandable. Overall,

they personally preferred to examine the models instead of the documents, but they found the generated

documents to fit the purpose. An internal analyst from case set 2 stated: “We needed to explain the system

to various experts and the documents certainly helped us for this”. Some analysts also suggested specific

changes to enhance readability. For instance, the team from case set 1 suggested to merge short responsibility

and data need sentences into a single sentence. The same team also asked for removing the first part of the

data need sentences (“While <ActionGerund>”). We implemented the suggested changes by updating the

generation algorithm respectively.

Altogether, we found that our approach generated well-readable requirements documents. In fact, all

requested changes could be implemented by straightforward adaptations of the generation algorithm.

4.4.2. Completeness

The completeness of requirements is an important characteristic because it indicates the additional effort

that has to be invested beyond the application of our approach [6].

The domain experts from case set 2 stated that the approach supported them to “recognize whether the

requirements are complete”. Overall, all domain experts agreed that the final set of requirements appeared

complete. Besides that, they did not have further comments on completeness.

The analysts provided further comments on completeness. One internal analyst from case set 1, for

instance, pointed out she “would not be able to define such detailed requirements” in another way. An analyst

from case set 2 said that “the approach was adequate to express what is required”. Emphasizing the support
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Figure 5: Generated requirements per process models and requirements coverage per case

provided by the approach, analysts also mentioned that our approach helped “to collect the functional

requirements with respect to the architectural components effectively”. Being asked for a comparison with

traditional approaches, an analyst of case set 2 indicated that “it would be harder to make a complete set like

this if we wrote down the requirements textually in the first place”. He explained that “we would miss a lot

of aspects of the system if we didn’t see the complete picture by means of the models”. Another analyst from

case set 2 stated that the completeness was achieved as “we were able to anticipate how the system should

work as a whole and see the relations between different parts by means of the process-based requirements

analysis”.

The overall completeness of the generated requirements for each project is illustrated in Figure 5. On

the left-hand side, we can see the total number of requirements per process model and project. On the

right-hand side, we see the coverage of the generated requirements for each project. For example, in the

e-Company project of case set 1 about 20 requirement sentences were generated per process model and the

generated requirements covered 91% of all requirements. The rest of the requirements were manually added

by the analysts in case set 1 and 2. Among the manually added requirements, none related to the process-

related aspects of the systems. Rather, they concerned general aspects which were not directly related to

the processes and included the architecture of the system, interfaces with external systems, system-wide

characteristics, security and quality requirements, and software development principles. Thus, they were

not expected to be covered in the generated requirements set. Case set 3, the retrospective case, posed an
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important role to evaluate the completeness. While in case sets 1 and 2 the requirements were developed

from scratch in the context of the programs, case set 3 included an existing requirements document which

was prepared in a different setting. We used the existing requirements as a benchmark and performed

a delta analysis for the generated requirements. For this, we prepared a mapping between the existing

requirement statements and the generated ones. The results showed that 95% coverage was achieved by

the approach even with respect to the requirements already developed with traditional approaches. The

unmatched requirements in the existing document related to quality aspects of the system. Moreover, six

additional requirements were identified that were not included in the existing document. Thus, the findings

of the retrospective case confirmed that a complete set of process-related requirements can be revealed by

means of our approach.

4.4.3. Consistency

Consistency is another important characteristic of a requirements set and refers to the absence of contra-

dictions within the set [55]. Our approach inherently ensures the consistency of the models and the natural

language requirements by means of the automated generation approach.

From the domain experts we received very positive feedback with respect to the consistency. In fact,

they explicitly stated that they did not observe any inconsistencies in the requirements.

The analysts were also very positive. They also had more specific comments on the achieved consistency.

One internal analyst from case set 1 mentioned that “especially if more than one person works on the

analysis, this approach supports you to get the same quality of output from everybody”. Another analyst

from case set 2 was initially critical about the usage of specific model elements for modeling the requirements,

but later found that “it was helpful for ensuring quality”. Here, it should be noted that the consistency

of the generated requirements is dependent on the consistency of the models. In this respect, although

the use of the approach does not ensure the consistency of the generated requirements, the model-based

analysis helped the analysts to avoid such problems. All external analysts emphasized that “updates would

normally introduce consistency problems”, but that our approach helped to “observe cross relations and to

prevent resulting inconsistencies”. Internal analysts from case set 2 stated that they “were able to define

the requirements consistently although there were many different processes” by means of “the holistic view

and the standardized language”.
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4.4.4. Maintainability

Maintainability, sometimes also referred to as modifiability, is particularly important when it comes to

changes [39]. All interviewees pointed out that they found the requirements easy to maintain. Among

others, this was found to be caused by the improved traceability between process models and requirements.

One surprising finding was that even the domain experts, who typically do not develop models themselves,

agreed on the improved maintenance. One domain expert from case set 1 stated that he “could better

understand the effects of a change”.

The analysts provided further discussions on how the maintainability was improved by our approach.

One internal analyst of case set 1 stated that “when a process was updated, it was also clear which require-

ments need to be changed”. While we also expected positive comments with respect to the maintainability

resulting from the automated generation, we received quite unexpected feedback. All analysts stated that

they did not find that the approach would save time to prepare the initial requirements document. One

internal analyst from case set 1 stated that, creating the process models for the requirements generation

is time-consuming: “I would be faster with traditional methods, but I wouldn’t be able to achieve the level

of completeness”. Two external analysts of case set 1 and 2, as well as the internal analysts of case set 2

emphasized the potential time gain for updates and future development phases despite the extra time spent.

Another external analyst from case set 2 stated that “it may look like we spent more time, but in the long

run, the time spent will be less”.

Overall, the interviews highlighted that domain experts were mainly interested in readability. Since

domain experts often struggled with understanding the requirements, readability was their major concern.

The analysts, by contrast, were also interested in the other three characteristics since they directly relate

them to time savings and the automated support they expect from our approach. The analysts provided

clear statements on how the approach enabled them to produce more complete, maintainable, and consistent

requirements.

4.5. Comparison of Manually Created and Generated Requirements

The results of our case study showed that the generated requirements were positively perceived with

respect to the four investigated key characteristics. An open question, however, is how exactly the manually

created and generated requirements differ. To investigate this, we made use of the retrospective use case set

Campus System. Our goal was to understand how the manually created and the generated texts compare

with respect to text structure and how they convey the requirements content.
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Table 8: Comparison of the text Structure of actual and generated requirements

Actual Generated
Project W/S V/S S/R W/R W/S V/S S/R W/R
Research Program Management 16.16 1.13 1.28 20.68 13.93 1.07 1 13.93
Announcement 14.19 1.43 1.60 22.77 13.48 1.38 1 13.48

To investigate the text structure, we computed a set of basic sentence complexity metrics [56]:

• Average number of words per sentence (W/S )

• Average number of verbs per sentence (V/S )

• Average number of sentences per requirement (S/R)

• Average number of words per requirement (W/R)

Table 8 summarizes the results of the comparison of the text structure. A general observation is that

the generated sentences follow a similar structure like the manually created sentences, as indicated by

similar values for the metrics W/S and V/S. This means that our approach generates sentences that are

structurally comparable to those created by humans. However, we also observe some differences. Most

notably, the manually created requirements contain a higher number of sentences and words per requirement

(see S/R and W/R). This raises the question whether the manually created requirements are unnecessarily

verbose or complex, which might explain the lower readability and comprehensibility perceived by users.

A detailed analysis of the manually developed requirements indeed supports this conjecture. We identified

many sentences in the manually created requirements that contained nonessential and repetitive descriptions.

Among others, we found nonessential context information, redundant descriptions of functionality, and

descriptions of of data attributes that were already defined in the data dictionary.
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Figure 6: Relationship between manually created and generated requirements
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To understand how the manually created and the generated requirements convey their content, we

mapped the manually created requirements to the corresponding generated requirements. Figure 6 visualizes

this mapping. It shows for each manually created requirement to how many generated requirements it

relates. We observe that many of the manually created requirements relate to more than a single generated

requirement. The average number of generated requirements per manually created requirement is 3.9 for the

Research Program Management project and 2.2 for the Announcement project. Against the background of

our findings from the text structure comparison, this is quite a surprising result. While the manually created

requirements tend to be more verbose and, sometimes, even provide redundant information, the generated

requirements document provides more details. We analyzed the extreme cases (i.e. where a manually created

requirement relates to 10 generated requirements) and found that the manually created document lacked

important details with respect to responsibilities and data needs.

In summary, we can say that this comparison highlighted the value of automated requirements genera-

tion. From a structural point of view, the generated requirements are very similar to the manually created

requirements. The generated requirements, however, use less words and do not provide redundant informa-

tion. From a content perspective, the comparison particularly illustrated the superiority of the generated

requirements in terms of completeness.

4.6. Limitations

Despite the positive results, our evaluation has to be reflected from the perspective of some limitations.

The first limitation relates to the conducted interviews. While the interviews allowed us to collect in-depth

insights about the use of our approach in practice, interviews are also subjective by nature [53]. Among

others, this means that the results of interviews could have been influenced by the bias of the interviewer.

To avoid such a bias as far as possible, we designed and strictly followed an interview guideline. Moreover,

an independent researcher reviewed the interview transcripts and confirmed the relevance of the answers

with respect to the interview guideline. By following this procedure, we tried to minimize the limitations of

interviews and obtain unbiased and reliable results. The second limitation relates to generalizability of the

overall case study [52]. While we carefully collected a number of differing cases, we cannot claim that the

results are representative or can be generalized to other organizations. However, since the feedback from

the evaluation was consistently positive among the three cases, we are also confident that the presented

approach can indeed provide considerable value for organizations.
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5. Adaptation to Other Languages

From a conceptual perspective, the presented approach is not bound to a specific language. However, to

use our approach for languages other than English, two main adaptations are required.

First, the templates must be translated and adapted to the target language. To illustrate the required

steps, assume we would like to adapt the system to German and Turkish (i.e. two languages from different

language families). What is more, reconsider the template “The <Role> shall <Action> <Object>” and its

instantiation “The Project Officer shall carry out the operation of registering the proposal score”. If we wish

to adapt the system to German, we need to translate this template and adapt it to the German grammar.

By replacing the word “The” with a new slot “<Article>” (in German the article depends on the gender

of the referenced noun), by translating “shall” into “soll”, and by switching the order of the action and

the object slots, we obtain the template “<Article> <Role> soll <Object> <Action>”. In a similar way,

a respective template for Turkish can be obtained. Since Turkish does not use articles, the article “the”

is omitted and the word order is adapted to the Turkish grammar. As a result, we obtain the template

“<Role> <Object> <ActionGerund> işlemini <ResponsibilityV erb>.”.

Second, respective inflection mechanisms for the target language have to be implemented. In case of

German this means that the correct article has to be determined based on the gender of the noun and that

the verb must be conjugated. Both aspects can be achieved by using publicly available language processing

tools such as SimpleNLG [57]. Based on this tool and respective German inputs for the slots, we are

therefore able to generate a German version of the sentence: “Der Projektleiter soll die Registrierung der

Angebotsbewertung vornehmen”. For Turkish, only the gerund of the verb must be obtained. This can be

achieved by looking at the last vowel of the verb and concatenating “-ma” in case of hard vowel sounds

(e.g. a, u) and “-me” in case of soft vowel sounds (e.g. e, ü) to the end of the input verb. In this way, we

are able to also generate a Turkish version of the sentence: “Proje uzmanı teklif puanını kaydetme işlemini

yürütecektir.”

These examples illustrate that the adaptation of our technique is a one-time investment that is associated

with reasonable effort. Because tools for inflecting words are available for many languages, only little

technical knowledge about natural language generation will be required for the adaptation.

6. Implications

The approach we presented in this paper has several implications for research and practice.

26



From a research perspective, our work complements existing methods for requirements elicitation based

on process models [4, 29, 30] by providing an automated way to obtain requirements documents. In contrast

to existing approaches that consider automated support to elicit requirements, such as the ones proposed

by Türetken et al [34] and Coşkunçay et al. [35], our approach was evaluated to generate requirements that

are well-readable, complete, and easy to maintain by means of the formulated requirements analysis and

formalized natural language generation techniques. The consistency is ensured via automated generation.

Our approach also informs methods for process model validation. In contrast to existing process model

verbalization approaches [9], our approach also considers execution-related data and, thus, allows to obtain

a more complete picture.

From a practical perspective, our approach helps to improve several characteristics that contribute to

high-quality requirements, thus improving their usability. Other potential benefits for practitioners include

the standardization of requirements engineering activities of analysts, enhanced testability, and improved

scoping of the project. Hence, our approach can help practitioners in achieving considerable improvements

in the software development process. While an extra effort must be spent in the initial analysis phase, the

quality of the obtained requirements might save project teams from unnecessary repetitions in the SDLC.

In the long run, our approach may, thus, also help to reduce costs. Taking these benefits into account, we

believe our approach has the potential to influence the way requirements elicitation is conducted in practice.

In fact, two organizations from our three cases, used the generated requirements document for finding a

suitable software development subcontractor.

7. Conclusion

In this paper, we addressed the problem of inconsistencies between process models and natural language

in the context of requirements specification. To cope with this problem, we introduced a semi-automated

approach, which consists of two main phases. In the manual preparation phase, users identify the automat-

able activities in the input process model(s) and specify the associated responsibilities, data needs, system

interactions, and execution constraints. The requirements model resulting from this analysis then serves

as input for a generation algorithm, which automatically provides the user with a well-organized natural

language requirements document.

We evaluated our approach by applying it in the context of a multiple case study with three organizations

and a total of 13 projects. We found that our approach could be successfully applied to generate well-

readable requirements that are complete, consistent, well maintainable, and, most importantly, of practical
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value. The interviewed analysts and domain experts pointed out that our approach positively contributed

to the completeness, consistency, and maintainability of the requirements documents. Thus, the systematic

analysis as well as the automated generation helped the studied project teams to deliver requirements

documents of higher quality. This is emphasized by the fact that the generated requirements documents

were used for finding a suitable software development subcontractor in 11 of the 13 projects. Hence, we

conclude that our approach successfully addresses the problem of inconsistency between process models and

requirements documents, and provides real value to organizations.

In future work, we aim to extend our approach with the capability to automatically reflect changes of

the generated requirements documents in the associated requirements and process models. In this way, the

consistency between the artifacts can be also assured if changes are applied to requirements. Another aspect

we wish to investigate is the specific impact of using the generated requirements. In this context, we plan

to apply our method with and without the generated requirements documents. Besides that, we also plan

to apply our approach in organizations that maintain English models. This will not only allow us to test

our generation algorithm in another language, but also to evaluate the applicability in different cultures and

settings. A final line of work we plan is to investigate the systematic transfer of the acquired requirements

knowledge to the following software development phases. In this way, the benefits of the approach may also

contribute to other phases of the SDLC.
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