

Approximation Algorithms in Allocation, Scheduling
and Pricing
Citation for published version (APA):

Oosterwijk, T. (2018). Approximation Algorithms in Allocation, Scheduling and Pricing. [Doctoral Thesis,
Maastricht University]. Universitaire Pers Maastricht. https://doi.org/10.26481/dis.20180119to

Document status and date:
Published: 01/01/2018

DOI:
10.26481/dis.20180119to

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 25 Apr. 2024

https://doi.org/10.26481/dis.20180119to
https://doi.org/10.26481/dis.20180119to
https://cris.maastrichtuniversity.nl/en/publications/9ebedbe9-ee84-42ff-be31-11414a5e11dd

A P P R O X I M AT I O N A L G O R I T H M S I N A L L O C AT I O N ,
S C H E D U L I N G A N D P R I C I N G

tim oosterwijk

© Tim Oosterwijk, Maastricht 2017.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form, or by any means, elec-
tronic, mechanical, photocopying, recording or otherwise, without the prior
permission in writing from the author.

Cover design by Patrique Mordant. Part of it is the cover of the Nightwish
album Endless Forms Most Beautiful, whose artwork is by Janne Pitkänen.

This book was typeset by the author using LATEX and the classicthesis pack-
age.

Published by Universitaire Pers Maastricht
ISBN: 978 94 6159 783 0

Printed in The Netherlands by Datawyse Maastricht

A P P R O X I M AT I O N A L G O R I T H M S I N A L L O C AT I O N ,
S C H E D U L I N G A N D P R I C I N G

D I S S E RTAT I O N

to obtain the degree of Doctor at Maastricht University,
on the authority of the Rector Magnificus,

Prof. dr. Rianne M. Letschert,
in accordance with the decision of the Board of Deans,

to be defended in public
on Friday, 19th of January 2018, at 16.00 hours

by

Tim Oosterwijk

Promotor:
Prof. dr. R.J. Müller

Co-Promotor:
Dr. T. Vredeveld

Assessment Committee:
Prof. dr. ir. C.P.M. van Hoesel (chair)
Dr. A. Berger
Prof. dr. B. Peis
Prof. dr. G. Schäfer

This research was financially supported by the Graduate School of Business
and Economics (GSBE).

To my family and friends.

A C K N O W L E D G E M E N T S

This thesis represents the culmination of my research effors during the
years of my PhD, and it would not be in its current shape had it not been
for the help of many people. Though words cannot express the gratitude I
feel towards some of you, I thank everyone who contributed to any part of
this journey. In this section, I will thank some people in particular.

First of all I want to express my huge appreciation for my supervisor
Tjark Vredeveld. Where to start? Thank you for offering me this PhD track.
You made sure I expanded my academic network, attended nice confer-
ences, and collaborated with numerous researchers. You were so under-
standing and helpful when my private life hindered my work life. We coop-
erated very well in both research and teaching. I have come to see you more
as a friend than as my supervisor and I thank you for everything. I hope
we spend more time together, doing research or drinking wine; introducing
me to that is, as you say yourself, perhaps your greatest achievement.

I would like to thank my promotor Rudolf Müller for having me as his
PhD student, giving me freedom in my research, and of course for reading
and approving the thesis. I would also like to thank the members of my as-
sessment committee: Stan van Hoesel, André Berger, Britta Peis and Guido
Schäfer. Thank you for taking the time to read and approve my thesis. An
extra thank you for Stan and André for the nice teaching we did together
and to Guido Schäfer for the great course on Algorithmic Game Theory.

Also I would like to thank my co-authors. I am very grateful to Tobias
Harks for introducing me to the field of congestion games, and of course
for the nice years as a direct colleague and the research visit in Augsburg.
A big thank you to José Correa for the great time I had during my research
visit in Chile; it was really inspiring to work with you and I hope we will
collaborate more in the future. A huge thanks to Nikhil Bansal for our nice
cooperation and of course for your supervision of my Master thesis. Vin-
cent Kreuzen, thank you so much for being a great friend all these years
and of course for being one of my paranymphs during the official ceremony.
Also Alexander Grigoriev, thanks for being such a nice colleague and of
course for the teaching. A thank you to Ruben Hoeksma and Patricio Fon-
cea Araneda for your contributions to my nice stay in Chile. And thanks
Judith Keijsper, Ruben van der Zwaan and Michaël Gabay for everything.

vii

A big thank you also to all other senior staff members in our department.
I would like to start by thanking Karin van den Boorn and Yolanda Paulis-
sen for being the most professional and fun secretaries I could have hoped
for. Also, I want to thank János Flesch and Hans Peters for your contribu-
tions to my training Grants for Individuals. Thank you, Aida Abiad, for
your nice company and encouraging me to speak Spanish. A big thank you
to Dries Vermeulen for your nice company during all those lunches, and to
Matthias Mnich for being such a nice colleague.

Let me turn my attention to my fellow PhD students over these years.
Of course I want to thank my office mate, great friend and paranymph
Veerle Timmermans for all the good times we had at the office and our
homes, and for dragging me to the gym every time. Thank you, Andrej
Winokurow, for being a cool office mate. A big thank you to Anna Zsel-
eva for your constant energy and great company, you were the best office
neighbour I could wish for. A huge thanks to Abhinaba Lahiri, Alexander
Heinemann, Andrey Kateshov, Anne Balter, Artem Duplinskiy, Caterina
Schiavoni, Etiënne Wijler, Gergely Csapó, Hanno Reuvers, Jan Lohmeyer,
Martijn van Brink, Marc Schröder, Oksana Balabay, Rasmus Lönn, Roland
Vincze, Sean Telg, Shashwat Khare, Swarnendu Chatterjee and Verena Jung
for the nice lunches, good atmosphere and awesome activities we did out-
side of work. Thanks to all other PhDs for being great colleagues.

A big thank you to Marc Uetz, Anupam Gupta and Viswanath Nagara-
jan for your interesting lectures during the autumn school, and to Nicole
Megow for the organiation. I want to thank Johann Hurink, Andreas Wierz,
Annette Ficker, Bart de Keijzer, Bart Kamphorst, Denise Tönissen, Jannik
Matuschke, Jasper de Jong, Kevin Schewior, Loe Schlicher, Martijn van Ee,
Pieter Kleer, Suzanne van der Ster and Thijs van der Klauw and many oth-
ers for their nice company during many conferences. Thanks, Anja Huber
and Manuel Surek, for the cocktails in Augsburg. Thanks, José Verschae, for
your company in Chile and the invitation to speak at the (cake) seminar.

Last but not least, I would like to express an enormous amount of grat-
itude towards all people outside of my academic circles whom I did not
thank yet. A huge thanks to Patrique Mordant for your great support dur-
ing these years and the cover you designed. A big thanks to my best friends
Hans van den Hurk, Max Vroomen, Milou Vroomen-Bettings and Pascal
Lardinois, and to all other friends for the awesome times we had. And of
course a big thank you to my mother, father, brother and sister for every-
thing you did in all the years leading to this moment. I cannot express how
deeply grateful I am for everything you have done. Thank you.

viii

C O N T E N T S

1 introduction 1

1.1 Optimization . 1

1.2 Computational complexity theory 2

1.3 Approximation algorithms . 3

1.4 Outline of this thesis . 4

1.4.1 Polymatroid congestion models 4

1.4.2 High multiplicity scheduling 5

1.4.3 Vector scheduling . 6

1.4.4 Optimal stopping and posted prices 7

1.5 Publications . 9

2 polymatroid congestion models 11

2.1 Introduction . 11

2.1.1 Applications in Optimization 11

2.1.2 Applications in Game Theory 12

2.1.3 Our Results . 13

2.1.4 Literature Review . 14

2.2 The Model . 16

2.2.1 Congestion Models . 16

2.2.2 Polymatroids . 17

2.2.3 Polymatroid Congestion Models 19

2.3 A logarithmic approximation 20

2.4 Concluding remarks . 26

3 high multiplicity scheduling 29

3.1 Introduction . 29

3.2 The model . 32

3.3 Structural properties of optimal solutions 33

3.3.1 Problem complexity . 34

3.3.2 Feasibility condition . 36

3.3.3 Characterizing optimal production schedules 37

3.3.4 Bounding the average costs 42

3.4 Optimal solutions for few products 48

3.4.1 Fixed case with one product 48

ix

x contents

3.4.2 Continuous case with two products 49

3.5 Approximation algorithms . 52

3.6 Concluding remarks . 59

4 vector scheduling 61

4.1 Introduction . 61

4.1.1 Previous work . 62

4.1.2 Our contribution . 63

4.2 Preliminaries . 65

4.3 Lower bounds on the running time 66

4.3.1 Lower bound assuming the ETH 67

4.3.2 Lower bound assuming NP has no subexponential
time algorithms . 71

4.3.3 Lower bound with resource augmentation 71

4.4 Linear time approximation algorithm 74

4.4.1 Preprocessing . 74

4.4.2 The mixed-integer linear program 76

4.4.3 Randomized algorithm 78

4.4.4 Deterministic algorithm 82

4.5 Concluding remarks . 88

5 optimal stopping and posted prices 91

5.1 Introduction . 91

5.1.1 Optimal stopping theory 91

5.1.2 Problem description . 93

5.1.3 Our results . 94

5.1.4 Posted price mechanisms 96

5.2 The Bernoulli selection Lemma 98

5.2.1 The proof . 98

5.2.2 Tightness . 110

5.2.3 Prophet inequality . 111

5.3 Adaptive threshold rule . 113

5.4 Posted price mechanisms . 122

5.4.1 Problem description . 122

5.4.2 Reduction . 123

5.4.3 Non-adaptive posted price mechanism 125

5.4.4 Tight instance with i.i.d. valuations 127

5.4.5 Adaptive posted price mechanism 128

5.5 Concluding remarks . 132

contents xi

bibliography 133

nederlandse samenvatting 143

valorisation 147

curriculum vitae 153

1
I N T R O D U C T I O N

1.1 optimization

This thesis concerns itself with four optimization problems stemming from
the fields of algorithmic game theory, scheduling and mechanism design.
In these optimization problems, the objective is to select the best element
from a given set of alternatives. An optimization problem is determined by
its collection of instances, defined as follows.

Definition 1.1. An instance I of an optimization problem P is defined by
a set of feasible solutions S and a cost function f : S → R mapping each
feasible solution to a real value.

The goal is to select a feasible solution s∗ ∈ S such that f(s∗) 6 f(s) for
all s ∈ S in case P is a minimization problem, or such that f(s∗) > f(s) for
all s ∈ S in case P is a maximization problem.

Usually, both the set of feasible solutions S and the cost function f are
given implicitly.

There is an important subfield within mathematical optimization that
concerns itself with optimization problems with the additional requirement
that the set of feasible solutions S is either finite or countably infinite. Such
problems are called combinatorial optimization problems. Let us look at the
following famous combinatorial optimization problem.

Problem 1.2 (Travelling Salesperson Problem (TSP)). Let a list of n cities
1, 2, . . . ,n be given, and the distances between every pair of cities. What is
the shortest possible route that starts in city 1, visits all other cities exactly
once and returns to city 1?

The initial goal of researchers studying this kind of problems was to find
optimal solutions in the least possible amount of time. This amount of time
usually grows with the size of the input of the instance at hand. Formally,
the input size |I| of an instance I is the number of bits needed to succinctly
encode the instance. To quantify the time efficiency of an algorithm de-
pending on the input size, the notion of the running time of an algorithm
was introduced. Roughly speaking, the running time of an algorithm is the

1

2 introduction

worst-case number of elementary operations the algorithm performs before
terminating, expressed as a function of the input size.

For some problems, researchers succeeded in developing algorithms that
find an optimal solution and have an efficient running time, while other
problems, like Problem 1.2, seem to be notoriously hard. The distinction
between these two types of problems is one of the topics of the field of
computational complexity theory.

1.2 computational complexity theory

Computational complexity theory is the branch of computer science that
tries to classify computational problems according to their difficulty. For
easy problems we can find an algorithm that solves the problem to opti-
mality and whose running time is bounded by a polynomial in the size of
the input.

Definition 1.3 (Polynomial time algorithm). Consider a problem P. An al-
gorithm A is said to run in polynomial time if there exists a polynomial p
such that for every instance I of size |I| the running time of A is bounded
from above by p(|I|).

Consider Problem 1.2, the TSP. In spite of immense efforts, no researcher
has yet been able to find a polynomial time algorithm solving this problem.
In fact, it is generally believed that there does not exist a polynomial time
algorithm that solves the TSP, although no one has been able to prove or
disprove this despite decades of research. Formally, the TSP belongs to a
class of problems called NP-hard problems; we refer to Garey and Johnson
[43] for an extensive treatment of this topic. Problems that are NP-hard are
commonly believed to be unsolvable in polynomial time.

This notion of the difficulty of a problem is widely used. There is a whole
zoo of other complexity classes and assumptions, some of which will be
used throughout the different chapters of this thesis. These hardness as-
sumptions allow us to prove that other problems are also likely to be hard,
by means of a reduction. Consider a problem P and suppose it is possible
to transform any instance I ′ of the TSP into some instance I of P and to
transform a solution of I back into the corresponding solution of I ′. Now
assume that there exists a polynomial time algorithm that solves any in-
stance of P. Then we could solve any instance I ′ of the TSP by formulating
it as an instance I of P, solving I and translating its solution back to a so-
lution of I ′. If both transformations can be done in polynomial time, we

1.3 approximation algorithms 3

could solve any instance of the TSP in polynomial time by reducing it to an
instance of P that we can solve and translate back. Hence, P is at least as
hard as TSP, since a polynomial time algorithm for P implies a polynomial
time algorithm for TSP.

Using these kind of reductions, thousands of problems have been shown
to be NP-hard or to belong to another complexity class of problems that
are believed to be hard. No one has been able to formally prove whether or
not there exist polynomial time algorithms solving NP-hard problems, but
this is deemed highly unlikely by most scientists. Although it seems the
structures underlying NP-hard problems do not offer sufficient support
to find optimal solutions efficiently, it is often the case that they do offer
sufficient support to find near-optimal solutions efficiently. This is the topic
of the field of approximation algorithms.

1.3 approximation algorithms

One of the directions researchers can take to deal with hard problems, is to
search for polynomial time algorithms that find solutions whose values are
not too far off from the optimal value.

Definition 1.4. Let P be a minimization problem. An algorithm is called an
approximation algorithm for P with approximation guarantee α > 1 if for any
instance of the given problem, the value of the output of the algorithm is
at most a factor α times the optimum value for that instance.

In case P is a maximization problem, the value of the output of the algo-
rithm needs to be at least a factor α < 1 times the optimum value for that
instance.

The closer α is to 1, the closer the solution value of the approximation al-
gorithm is to the optimal solution value. α is also called the approximation
factor, approximation ratio or performance guarantee, and the algorithm
is an α-approximation algorithm. In the literature, sometimes the definition
of an approximation algorithm requires a polynomial running time; in this
thesis we do not make this assumption and state the running time explicitly
when necessary.

An extension of an approximation algorithm is an approximation scheme.

Definition 1.5. An approximation scheme is a family of approximation algo-
rithms, such that for every ε > 0 there is an algorithm in this family that

4 introduction

returns a (1 + ε)-approximation in case of a minimization problem, or a
(1− ε)-approximation in case of a maximization problem.

A polynomial time approximation scheme (PTAS) is an approximation scheme
for which each algorithm in this family has a running time bounded by a
polynomial in the input size |I| for every fixed ε.

An efficient polynomial time approximation scheme (EPTAS) is a PTAS where
the running time of each algorithm is bounded by f(1/ε)poly(|I|), where f
is some not necessarily polynomial function and poly(|I|) is a polynomial
function in the input size |I|.

If the function f is also a polynomial, we refer to the approximation
scheme as a fully polynomial time approximation scheme (FPTAS).

Choosing ε close to 0 yields a solution whose value is close to the op-
timum, but this comes at the expense of extra running time of the algo-
rithm. The goal in approximation algorithms is to find approximation al-
gorithms with the approximation guarantee as close to 1 as possible, or
approximation schemes with the lowest possible running time. Some opti-
mization problems, however, are also hard to approximate, meaning that
under some complexity assumption there does not exist a polynomial time
approximation algorithm achieving a performance guarantee better than
some value, or there does not exist a PTAS, EPTAS or FPTAS. The ultimate
goal for researchers is to develop an approximation algorithm with a cer-
tain approximation ratio, or an approximation scheme, that matches the
inapproximability of the problem. For an extensive treatment of approxi-
mation algorithms we refer to Williamson and Shmoys [99] and Vazirani
[97].

1.4 outline of this thesis

1.4.1 Polymatroid congestion models

Chapter 2 is based on Harks, Oosterwijk, and Vredeveld [54]. It is dedicated
to minimizing a monotone separable function over an integral polymatroid.
A polymatroid is an abstract structure that incorporates many other struc-
tures, such as spanning trees in a graph. Roughly speaking, it is a poly-
hedron P whose boundaries are defined by a function that is monotone,
normalized and submodular (cf. Section 2.2.2). The corresponding integral
polymatroid base polyhedron is then comprised of the set of integer points

1.4 outline of this thesis 5

in P with maximum L1-norm. This maximum value is referred to as the
rank of the polymatroid.

The problem we consider stems from polymatroid congestion games.
Congestion games are a widely used model to represent a situation in which
different players compete over a set of exhaustible resources. In these games,
every resource has a load-dependent cost function. We assume these to be
non-decreasing, meaning costs can go up with higher resource utilization.
In this chapter we consider polymatroid congestion games, in which the strat-
egy space of every player consists of a player-specific integral polymatroid
base polyhedron on the ground set of resources. A simultaneous choice
of the strategies of all players induces a strategy profile, whose social cost
is defined as the sum of the costs of the resources given the loads of the
strategy profile. In this chapter, our objective is to find a strategy profile
minimizing its social costs.

For convex cost functions, it was already known that an optimal strat-
egy profile can be found in polynomial time in spanning tree congestion
games [98], matroid congestion games [2] and even polymatroid congestion
games [40, 47]. For fixed resource costs, Wolsey [100] proves that the greedy
algorithm yields a logarithmic approximation of the optimal social costs.
Contrary to these results, we consider general non-decreasing cost functions.
For these cost functions, Harks and Falkenhausen [52] give a logarithmic
approximation for singleton congestion games.

In this chapter, we extend the greedy algorithm for optimization over
polymatroids to the setting of general non-decreasing cost functions, by
devising an Hρ-approximation algorithm, where ρ is the sum of the ranks
of the polymatroids and Hρ denotes the ρ-th harmonic number. Since we
show this problem is as hard as Set Cover, the approximation guarantee
is best possible up to a constant factor.

1.4.2 High multiplicity scheduling

Parts of Chapter 3 are based on Gabay, Grigoriev, Kreuzen, and Ooster-
wijk [41]. It studies the single machine capacitated lot-sizing problem,
where n types of products need to be scheduled on one machine. Each
product is associated with a constant demand rate, maximum production
rate and holding costs per time unit. Every time the machine switches pro-
duction, a sequencing cost is incurred. The goal is to find a cyclic schedule

6 introduction

minimizing total average costs, subject to the condition that all demands
are satisfied.

This problem is a high multiplicity scheduling problem, as its input
is succinctly encoded: all product attributes are specified per product type,
and the multiplicities of the products to be produced are implicitly given
through the demand rates.

For our problem with fixed production rates, Haase [48] gives a heuristic,
and Haase and Kimms [49] solve it to optimality by making some addi-
tional assumptions on the problem instances.

For a fixed time horizon and sequence-independent sequencing costs and
product-independent holding costs, Goyal [46] solves the problem to op-
timality. Madigan [78] gives a heuristic for this problem including setup
times. When both the sequencing costs and the holding costs are product-
dependent, Boctor [14] gives an exact algorithm for the case of two prod-
ucts.

In contrast to this last work, our sequencing costs do not only depend on
the last produced product, but also on the new product to be produced. We
prove a number of structural properties largely characterizing optimal solu-
tions to the problem. We use these properties to optimally solve instances
with few products. Then we present two algorithms approximating optimal
schedules for an arbitrary number of products by augmenting the problem
input.

It is known that high multiplicity scheduling problems, even without se-
quencing costs, become highly non-trivial with respect to the output sizes
and computational complexity. Particularly, the length of an optimal solu-
tion can be exponential in the input size of the problem. Nevertheless, our
algorithms produce good quality polynomial length schedules compared
to the exponential length optimal schedules.

1.4.3 Vector scheduling

Chapter 4 is based on Bansal, Oosterwijk, Vredeveld, and van der Zwaan [10].
It considers the Vector Scheduling problem, a natural generalization of
the classical makespan minimization problem to multiple resources. In that
problem, a set of jobs needs to be scheduled on a set of machines. Every
job has a processing time and needs to be processed by one machine, and
every machine can process at most one job at a time. The goal is to find a
schedule in which the machine that finishes last, finishes as early as possi-

1.4 outline of this thesis 7

ble. This problem is strongly NP-hard [43] and therefore does not admit an
FPTAS unless P=NP. The best known EPTAS is due to Jansen [65] with a
running time of O(2Õ(1/ε2) +nO(1)) (Õ suppresses polylogarithmic terms).

In the Vector Scheduling problem, a job’s processing time is no longer
measured by a single parameter but involves multiple aspects. As an ex-
ample, consider computer tasks that require a certain amount of both CPU
and memory, which we need to schedule on a set of computers that we do
not want to overload in either way. Formally, we are given n jobs, repre-
sented as d-dimensional vectors in [0, 1]d, and m identical machines, and
the goal is to assign the jobs to machines such that the maximum load of
each machine over all the coordinates is at most 1.

In this context, an approximation algorithm with performance guarantee
α is understood to return an assignment with maximum load at most α
whenever there exists a feasible schedule of maximum load at most 1. For
fixed d, the problem admits an approximation scheme, and the best known
running time is nf(ε,d) where f(ε,d) = (1/ε)Õ(d) [23]. In particular, the
dependence on d is double exponential.

In this chapter we show that a double exponential dependence on d is
necessary, and give an improved algorithm with essentially optimal run-
ning time. Specifically, we show that for any ε < 1, there is no (1 + ε)-
approximation with running time exp(o(b1/εcd/3)), where exp(x) denotes
2x, unless the Exponential Time Hypothesis (ETH) fails. The ETH is a com-
plexity assumption that states that a certain problem (3-SAT) cannot be
solved in a certain amount of time (cf. Hypothesis 4.6 for the details). Like
the assumption that P 6= NP, the ETH has yet to be proved or disproved.

Moreover, we prove that there exists no (1+ ε)-approximation with run-
ning time exp(b1/εco(d)), unless NP has subexponential time algorithms.
This is a more standard complexity-theoretic assumption than the ETH.
We prove that similar lower bounds also hold even if εm extra machines
are allowed (i.e. with resource augmentation), for sufficiently small ε > 0.
Finally, we complement these lower bounds with a (1+ ε)-approximation
that runs in time exp((1/ε)O(d log logd)) + nd. This gives the first efficient
approximation scheme (EPTAS) for the problem.

1.4.4 Optimal stopping and posted prices

Chapter 5 is based on Correa, Foncea, Hoeksma, Oosterwijk, and Vredeveld
[28]. It concerns itself with optimal stopping theory and posted price mech-

8 introduction

anisms, and in particular the classic prophet inequality. In optimal stopping
theory, we consider a gambler facing a finite sequence of non-negative in-
dependent random variables. These random variables arrive in an iterative
fashion and upon arrival a prize is drawn from the distribution underlying
the random variable. The gambler is allowed to stop the sequence at any
time to obtain the drawn prize he currently faces. The question is which
strategy he should employ to maximize his expected reward. A classical
example is the secretary problem, in which the possible candidates arrive
one by one and the hiring committee only learns the true value of each
candidate upon arrival.

The classic prophet inequality states that the gambler can obtain, in ex-
pectation, at least half as much reward as a prophet who knows the values
of each random variable and can choose the largest one. The fraction 1/2 is
also best possible [73, 74].

In this chapter we consider both a non-adaptive and an adaptive version of
this setting. In the former case the gambler sets a threshold for every ran-
dom variable a priori, so the thresholds can only depend on the underlying
distribution of the random variable. In the latter case, the thresholds are
set when a random variable arrives, thus enabling the gambler to include
information about previously rejected random variables in the new thresh-
old he needs to set. The gambler then receives a reward equal to the first
arriving random variables with a realization exceeding the threshold. We
assume the random variables arrive uniformly at random.

For the non-adaptive case, we obtain an algorithm computing thresholds
achieving an expected reward within at least a 1− 1/e fraction of the ex-
pected maximum and prove this constant is optimal. For the adaptive case
with independent and identically distributed (i.i.d.) random variables, we
obtain a tight 0.745-approximation, proving a conjecture of Hill and Kertz
[58] from 1982. They characterize a sequence an, the best possible factor us-
ing a threshold rule when faced with n i.i.d. random variables. They prove
an is at least 1− 1/e for all n, conjecture that the sequence is monotone
and leave open the existence and computation of its limit. Very recently,
Abolhassani et al. [1] improved the bound to 0.738. We prove the sequence
is monotone and prove its limit is 0.745, thereby establishing a tight bound
for all n on the performance of the best stopping rule for i.i.d. random
variables.

We continue by revealing a reduction from optimal stopping theory to
posted price mechanisms. In this setting, a seller wants to sell a single item to
a set of n potential customers in order to maximize his expected revenue.

1.5 publications 9

Since the optimal auction from Myerson [83] is quite involved, it is rarely
used in practice and researchers started to look for simple mechanisms that
approximate the optimal expected revenue well. One of these simple mech-
anisms is a posted price mechanism, in which the customers arrive one by
one and the seller sets a take-it-or-leave-it price for everyone. If the cus-
tomer accepts, he makes a profit equal to the price he charged. Otherwise,
the customer leaves the system and he makes an offer to the next customer.

Also here, we consider both a non-adaptive and an adaptive setting. In
the non-adaptive setting, the seller sets the prices a priori, so they only
depend on the underlying distribution from which the valuation of the
customer is drawn upon arrival. Previously, it was known that if the seller
is allowed to choose the order of the customers himself, it is possible to
achieve an expected reward of at least a 1 − 1/e-fraction of the optimal
expected revenue [22]. Using the reduction we provide in this chapter, we
prove that the same bound can be obtained in the random arrival setting.
As is the case in the corresponding result in the optimal stopping theory
setting, this result is tight.

On the other hand, in the adaptive setting, the seller is allowed to set
the prices upon arrival of the customers. With this more powerful pricing
scheme, we prove he can obtain an expected revenue of at least a 0.745

fraction of the optimal expected revenue. The previously best known result
for this adaptive setting was a 1 − 1/e-fraction [34] and the best known
upper bound was 0.79 [13]. We believe the tight instances of Hill and Kertz
[58] can be transformed from the optimal stopping theory setting to the
posted price mechanisms setting, which would make this bound also tight
in this setting.

1.5 publications

The chapters in this dissertation are based upon the following publications.

Published

• T. Harks, T. Oosterwijk, and T. Vredeveld. “A Logarithmic Approx-
imation for Polymatroid Congestion Games”. In: Operations Research
Letters 44.6 (2016), pp. 712–717.

• M. Gabay, A. Grigoriev, V. J. C. Kreuzen and T. Oosterwijk. “High
Multiplicity Scheduling with Switching Costs for Few Products”. In:

10 introduction

Operations Research Proceedings 2014, Selected Papers of the Annual In-
ternational Conference of the German Operations Research Society (GOR),
RWTH Aachen University, Germany, September 2-5, 2014. 2014, pp. 437–
443.

• N. Bansal, T. Oosterwijk, T. Vredeveld, and R. van der Zwaan. “Ap-
proximating Vector Scheduling: Almost Matching Upper and Lower
Bounds”. In: Algorithmica 76.4 (2016), pp. 1077–1096.

• J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld.
“Posted Price Mechanisms for a Random Stream of Customers”. In:
Proceedings of the 2017 ACM Conference on Economics and Computation.
EC ’17. Cambridge, Massachusetts, USA: ACM, 2017, pp.169–186.

Submitted for publication

• A. Grigoriev, V. J. C. Kreuzen and T. Oosterwijk. “High Multiplicity
Scheduling with Sequencing Costs”. Submitted for publication in: In-
stitute for Industrial and Systems Engineers (IISE) Transactions.

• J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld.
“Optimal Threshold Strategies and Posted Price Mechanisms for Ran-
dom Arrivals”. Submitted for publication in: Journal of the ACM.

2
P O LY M AT R O I D C O N G E S T I O N M O D E L S

2.1 introduction

Congestion games have become a standard game-theoretic model describ-
ing the allocation of exhaustible resources by selfish players. In the basic
model of Rosenthal [86], there is a finite set of players and resources and
each player is associated with a set of allowable subsets of resources. A
pure strategy of a player consists of an allowable subset. Congestion on a
resource is modelled by a load-dependent cost function which is usually
non-decreasing and solely depends on the number of players using the re-
source. In the context of network games, the resources may correspond to
edges of a graph, the allowable subsets correspond to the simple paths
connecting a source and a sink and players choose minimum cost paths.
Rosenthal proved in his seminal paper that congestion games always ad-
mit a pure Nash equilibrium.

In this chapter, we focus on so-called polymatroid congestion games, where
the strategy space of every player consists of the set of vectors in a player-
specific integral polymatroid base polyhedron defined on the ground set of
resources. This can be viewed as a game in which every player chooses a
multiset of the resources rather than a subset. These games have numerous
applications as they include for instance matroid congestion games, single-
ton congestion games (rank-1 matroids) or spanning tree congestion games,
where every player selects a spanning tree of a player-specific subgraph of
a given graph. We consider the problem of computing a minimum cost
solution in polymatroid congestion games.

2.1.1 Applications in Optimization

Computing a minimum cost solution over an integral polymatroid base
polytope is a core problem in combinatorial optimization that has received
considerable attention in the past, cf. [40, 47, 100]. These works pose quite
restrictive assumptions on the used cost functions, namely, that they either
have fixed-cost structure ([100]), or are separable convex ([40, 47]).

11

12 polymatroid congestion models

Load

Cost

Load

Cost

Figure 2.1: Cost functions with non-concave/convex cost functions.

For several practical applications, however, these assumptions do not ap-
ply. Consider the tree packing problem in network design, where there is an
undirected graph G = (V ,E) with non-negative and non-decreasing edge
cost functions ce(`), e ∈ E. The goal is to compute integral capacities on
edges so that we can serve n minimum spanning trees in G with minimum
cost. In contrast to previous works, by allowing arbitrary non-decreasing
cost functions we are able to model more realistic cost functions occurring
in practice. Typical cost functions are step functions (see Fig. 2.1 (left)),
where every cost level corresponds to a different cable type that can be
installed (cf. [6]). Andrews et al. [5], for instance, discussed telecommuni-
cation network design problems, where cost functions with “diseconomies
of scale” are used to model the cost of energy consumption when routers
apply speed scaling to process packets. The used cost function has the form
cr(`) = σ+ δ · `α,α > 1,σ, δ > 0, if ` > 0 and cr(0) = 0. See Fig. 2.1 (right)
for an illustration. Clearly, this function and also the previous function are
neither concave nor convex.

2.1.2 Applications in Game Theory

The problem of computing minimum cost solutions in polymatroid con-
gestion games is important for scenarios where a central planner can im-
plement a solution or when players collaborate. Additionally, minimum
cost solutions serve as building blocks for other cost-efficient solutions,
e.g., as in [36], where a minimum cost solution is used for defining cost
sharing protocols with low price of stability/anarchy. In fact, Ackermann
et al. [2, Section 2.2.] as well as von Falkenhausen and Harks [36, Section
5] state as an open problem to characterize the computational complexity

2.1 introduction 13

of computing a minimum cost solution in matroid congestion games with
non-decreasing cost functions, which is a special case of the problem we
consider in this chapter (cf. Section 2.4). However, in the case computing
an optimal solution is NP-hard, one of the common approaches is to find
approximation algorithms. Meyers and Schulz [80] investigated the limita-
tions of such an approach by studying the inapproximability of several of
these problems. We complement this type of research by showing a loga-
rithmic approximation that is best possible up to a constant factor.

2.1.3 Our Results

We devise an Hρ-approximation algorithm, where ρ is the sum of the ranks
of the player-specific polymatroids (the value of the polymatroid function
on the entire set of resources) and Hρ denotes the ρ-th harmonic number.
This approximation guarantee is best possible (up to a constant factor) for
algorithms with polynomial running time, unless NP ⊆ TIME(nO(log logn)).
As a by-product we show that matroid congestion games are also Hρ-
approximable in polynomial time, a result that partially settles an open
problem of [2, 36]. For matroid congestion games, we only leave a gap if ρ
is not polynomially bounded in the number of players.

Our algorithm maintains data structures for target loads and preliminary
cost-per-unit values for every resource and its respective load. The algorithm
iteratively increases the target loads on the resources by selecting the re-
source (with corresponding target load) having the lowest cost per unit.
After this greedy choice, a covering oracle is invoked that checks whether
or not there exists a feasible strategy profile (a vector in the sum of the
player-specific integral polymatroid base polyhedra) covering the currently
computed target loads. If the covering oracle returns a feasible strategy pro-
file, we update target loads and preliminary cost-per-unit values and pro-
ceed. If the oracle returns infeasibility, we reduce the maximum target load
for the selected resource and proceed. Denoting the number of resources
by m, pseudopolynomial running time in terms of oracle calls follows as
there are only mρ possible target loads and in each iteration a target load
is increased or a maximum target load is decreased. If ρ is polynomial in
the input size (as is the case for matroids, arborescences, etc.) the algorithm
runs in polynomial time. The oracle itself can also be implemented in linear
oracle time using an adaptation of the polymatroid greedy algorithm.

14 polymatroid congestion models

2.1.4 Literature Review

computing social optima Werneck et al. [98] studied the complex-
ity of computing a social optimum in spanning tree congestion games. For
convex cost functions they devised an efficient algorithm computing an
optimal solution. Essentially, convex cost functions allow to linearize the
cost function and then to apply a greedy algorithm. Ackermann et al. [2]
extended the work of [98] by observing that the same idea is applicable
to matroid congestion games still requiring that cost functions are convex.
For spanning tree games with non-monotonic cost functions, they showed
that computing a social optimum is NP-hard. The case of matroid conges-
tion games with general non-decreasing cost functions is posed as an open
problem [2, Section 2.2.].

It should be noted that the positive results for convex cost functions were
already implied by previous works, perhaps not so obvious. Groenevelt [47]
and Fujishige [40] presented polynomial time algorithms to minimize a con-
vex separable function over an integral polymatroid base polyhedron. Since
the matroid rank function is submodular, the strategy space for every player
can equivalently be represented as an integral polymatroid base polyhe-
dron. Using that the sum of polymatroid base polyhedra is again a poly-
matroid base polyhedron, the results of Groenevelt [47] and Fujishige [40]
thus already imply a polynomial time algorithm for computing a social op-
timum for matroid congestion games with convex cost functions. For poly-
matroids with fixed costs for all resources, Wolsey [100] showed that the
greedy algorithm gives a logarithmic approximation. In contrast to these
works, we consider the case of arbitrary non-decreasing cost functions.

A special case of polymatroid congestion games is that of singleton con-
gestion games with arbitrary non-decreasing cost functions. Harks and von
Falkenhausen [52] devised an Hn-approximation approximation algorithm
for the social cost, where n is the number of players. Their algorithm is
based on successive network flow computations on a suitably defined ca-
pacitated graph. Moreover, they showed this result is essentially best possi-
ble up to a constant factor, as they show that this optimization problem is
hard to approximate within a factor of c logn for any c < 1, a reduction we
will extend for our hardness result (cf. Lemma 2.8).

Meyers and Schulz [80] classified the complexity of computing a so-
cial optimum for general congestion games as well as network conges-
tion games and differentiated between asymmetric and symmetric strat-
egy spaces. In the case of network congestion games, they also distin-

2.1 introduction 15

guished the case in which all players share a common source. Regarding
the cost functions, they differentiated between five types: non-decreasing,
convex non-decreasing, non-increasing, concave non-increasing, and non-
monotonic cost functions. For all combinations of strategy spaces and cost
functions they established the complexity of finding the social optimum.
Most of the resulting problems are inapproximable to any finite factor. In
particular, the asymmetric case with non-decreasing costs is not approx-
imable to any finite factor. Very recently, Roughgarden [89] studied the
impact of the computational complexity of computing socially optimal so-
lutions on the price of anarchy. He derived a reduction that translates inap-
proximability results to corresponding lower bounds on the price of anar-
chy. In the context of congestion games, he derived stronger inapproxima-
bility bounds for Rosenthal’s congestion model involving polynomial cost
functions with non-negative coefficients.

Computing a socially optimal profile has also been studied in the con-
gestion model of Milchtaich [82], where resource costs are player-specific.
Chakrabarty et al. [20] proved that the social optimum is inapproximable
within any finite factor, unless P = NP. They exhibited some special cases in
which a minimum cost solution can be found in polynomial time, e.g. when
the number of strategies is bounded. Blumrosen and Dobzinski [12] consid-
ered the problem of maximizing welfare instead of minimizing costs and
presented an 18-approximation for this problem. Assuming non-decreasing
cost functions, they improved the approximation guarantee to e

e−1 . In an-
other study, De Keijzer and Schäfer [69] studied congestion games with
positive externalities, where players benefit from other players choosing
the same resource. They showed even very special cases of the problem are
NP-hard and provided several approximation algorithms.

computing equilibria In the past decade the computational com-
plexity to find a pure Nash equilibrium (PNE) in congestion games has
been studied extensively. Ackermann et al. [2] proved that for congestion
games with non-decreasing cost functions, matroids are the maximal prop-
erty on the strategy space of every player that guarantees that best re-
sponses for players converge to a PNE in polynomial time. Fabrikant et
al. [35] showed that a PNE can be found in polynomial time in symmetric
network congestion games with non-decreasing cost functions. However,
for general network games with non-decreasing cost functions, finding a
PNE is PLS-complete [35]. These results have been strengthened to hold
even when the cost functions are non-decreasing and linear [2]. It is also

16 polymatroid congestion models

PLS-complete, for any α > 1, to find α-approximate PNEs in congestion
games [95], in which no player can unilaterally improve his cost by more
than a factor α.

In singleton congestion games where all players have the same strategy
space, the best Nash equilibrium can be found in polynomial time for any
cost function [63]. Sperber [96] showed that both the best and the worst PNE
can be found in polynomial time for non-decreasing cost functions with a
greedy algorithm. However, she proved that in series-parallel graphs this
is NP-hard, except in the case of finding the best PNE in a 2-player game.
Also the setting in which the social cost is not determined by the sum of
the costs but by the maximum cost (makespan social cost) has been stud-
ied. In this setting, the worst PNE can be found in series-parallel graphs,
however, finding the best PNE is NP-complete [44]. Another related class
of games are so-called bottleneck congestion games, in which the total cost of
a player is not the sum but the maximum of the costs of the resources he
chose. Harks et al. [55] devised an algorithm computing PNEs and strong
equilibria which relies on the idea of a strategy packing oracle, which is simi-
lar to the strategy covering oracle in this chapter. They also maintain target
loads that are iteratively updated, and they also use that for matroids, this
strategy packing oracle can be implemented in polynomial time.

2.2 the model

2.2.1 Congestion Models

A congestion model is given by the tuple M = (N,R, (Bi)i∈N, (cr)r∈R), where
N = {1, . . . ,n} is a non-empty, finite set of players and R = {1, . . . ,m} is a
non-empty, finite set of resources. Every player i ∈ N chooses a pure strategy
bi ∈NR from a non-empty bounded integral polyhedron Bi ⊆NR (which
can be seen as a non-empty, finite collection of multisets). In this chapter,
we consider an integral polyhedron P ⊆ Nm to be the intersection of the
lattice Nm with the polyhedron in Rm. We denote the set of joint strategy
profiles by the Minkowski sum of the integral polyhedra B = B1+ . . .+Bn.
Given a strategy profile b ∈ B, we define the load on a resource r ∈ R as br,
which is the r-th component of the vector b. All resources r ∈ R have a load-
dependent cost function cr : N → N. Abusing notation, we write cr(b) =

cr(br) for all b ∈ B. We assume for all r ∈ R that cr(0) = 0 and cr(i) > cr(j)
whenever i > j. We denote the social cost by C(b) =

∑
r∈R cr(b).

2.2 the model 17

Example 2.1. In spanning tree congestion games, the resources R are the
edges of a given graph G = (V ,R). Players choose a spanning tree bi ∈ 2Ri
of the set of possible spanning trees Bi on a player-specific subgraph Gi =
(Vi,Ri). The simultaneous choice b of n spanning trees induces a load br
on every edge r defined as the number of chosen spanning trees containing
r.

2.2.2 Polymatroids

A function f : 2R → N is called submodular if f(U) + f(V) > f(U ∪ V) +
f(U ∩ V) for all U,V ⊆ R. It is called monotone if f(U) 6 f(V) for all
U ⊆ V , and normalized if f(∅) = 0. A pair (R, f) is an integral polymatroid if
f : 2R → N is submodular, monotone and normalized. f is then called an
integral polymatroid rank function and the associated integral polyhedron is
defined as

Pf :=
{

b ∈NR | b(U) 6 f(U) ∀U ⊆ R
}

,

where we define the load on a set U of resources as b(U) =
∑
r∈U br (note

that b(∅) = 0). Given the integral polyhedron Pf and the integer ρ = f(R),
which we refer to as the rank of the polymatroid, the corresponding integral
polymatroid base polyhedron is

Bf(ρ) :=
{

b ∈NR | b(U) 6 f(U) ∀U ⊆ R, b(R) = ρ
}

.

For an extensive treatment of polymatroids and submodular functions, see
Schrijver [93, Chapters 44–49].

Example 2.2. Fig. 2.2 depicts a graphical example of a polymatroid.

Example 2.3. Matroids are special cases of polymatroids. For an extensive
treatment of matroid theory, see Schrijver [93, Chapters 39–43]. There are
several equivalent definitions, and in this thesis we will work with the fol-
lowing.

Definition 2.4. A matroid is a tuple (R, I) where R is a ground set and I ⊆ 2R
is a family of subsets of R, that satisfies the following properties:

1. Non-empty: ∅ ∈ I.

2. Hereditary: For each A ⊆ B ⊆ R it holds that B ∈ I implies A ∈ I.

3. Augmentation: For each A,B ∈ I with |A| > |B|, there exists an r ∈ A
such that B∪ {r} ∈ I.

18 polymatroid congestion models

r1

r2

r3

0 10

10

10

Figure 2.2: A graphical representation of the polymatroid over R = {r1, r2, r3}
determined by the function f : 2R → NR defined by f(∅) = 0 and
f(S) = 5|S|+ 5 otherwise. This depicts the convex hull of all points in
Pf and the black dots are the elements of Bf(ρ), where ρ = f(R) = 20.

The elements of I are called the independent sets of the resources. An
inclusionwise maximal independent set is called a basis. Because of the
augmentation property, all bases have the same cardinality, which is called
the rank of the matroid. Every matroid has a rank function f : 2R → N

that maps every subset S to the maximum size of an independent set in
S. Like for polymatroids, this rank function is submodular, monotone and
normalized.

An example of a matroid is the graphic matroid, which consists of all
forests in an undirected graph. Formally, let G = (V ,E) be a given undi-
rected graph. The ground set of the matroid is the set of edges E. A subset
A of the edges is called independent if and only if A does not contain
any cycles. The bases of this matroid are all full spanning forests of G (if
G consists of only one connected component, these are all spanning trees)
and the rank of this matroid is |V |− c, where c is the number of connected
components of G.

2.2 the model 19

Two other examples are the k-uniform matroid, whose independent sets
are simply all sets of cardinality at most k, and the vector matroid, whose
independent sets are all linearly independent subsets of a given subset of
some vector space. The properties of Definition 2.4 are easy to verify.

Matroids are special cases of polymatroids in the following sense. Let
(R, f) be an integral polymatroid. If f is 1-Lipschitz, it is the rank function
of a matroid over R and the elements of Pf are its independent sets.

2.2.3 Polymatroid Congestion Models

To obtain a polymatroid congestion model, we associate an integral poly-
matroid rank function fi with every player i ∈ N, we denote fi(R) = ρi
and let ρ =

∑
i∈N ρi. We denote the Minkowski sum of the polyhedra

by Bf(ρ) :=
∑
i∈NBfi(ρi) and from [93, Theorem 44.6] we know that

this is also an integral polymatroid base polyhedron with rank function
f =
∑
i∈N fi.

We define a polymatroid congestion model M = (N,R, (Bfi(ρi))i∈N, (cr)r∈R)
as a congestion model, where every player i ∈ N chooses an element
bi ∈ Bfi(ρi). We study the problem of computing an optimal strategy profile
minimizing the social cost., i.e., in this polymatroid congestion model we
want to find a vector b = b1 + . . .+ bn ∈ Bf(ρ) that minimizes the normal-
ized monotone cost function C(b) =

∑
r∈R cr(b). Formally, we arrive at the

following combinatorial optimization problem.

Problem 2.5. Find Optimal Strategy Profile

input : A polymatroid congestion model M = (N,R, (Bfi(ρi))i∈N, (cr)r∈R).

objective : Find minb∈Bf(ρ)C(b).

Example 2.6. In spanning tree congestion games, for all i ∈ N, fi(U) equals
the maximum amount of edges from U ⊆ Ri such that these edges do not
constitute a cycle. Note that fi(Ri) = |Vi|− 1. Furthermore, f(U) equals the
maximum amount of copies of edges from U ⊆ R such that these copies
can be decomposed into n forests on G[U], the graph induced by U, im-
plying ρ = f(R) =

∑n
i=1 |Vi|− n. Pfi and Bfi are the integral polyhedra

corresponding to the incidence vectors of all forests respectively all span-
ning trees in Gi for all i ∈ N. Pf and Bf correspond to the collection of
all sets of edges that can be decomposed into n forests respectively into n
spanning trees, one in each Gi.

20 polymatroid congestion models

Example 2.7. If players choose subsets rather than multisets of the resources,
we obtain a matroid congestion model in which every player has a player-
specific matroid Mi = (Ri, Ii) and needs to select a basis Bi from the set
of bases Bi, which is the set of the elements of Ii ⊆ 2R with maximal
cardinality.

We remark that polymatroid congestion games were recently introduced
by Harks et al. [53]. In contrast to their model, we do not allow that cost
functions are player-specific, but we do allow general non-decreasing cost
functions instead of convex cost functions.

2.3 a logarithmic approximation

Before we present our approximation algorithm, we derive the following
hardness result. The reduction is based on [52, Theorem 7.1], where the
hardness of computing an optimal strategy profile for singleton congestion
games is shown.

Lemma 2.8. Problem 2.5 is strongly NP-complete and there are no c log ρ approx-
imation algorithms for any c < 1, unless NP ⊆ TIME(nO(log logn)).

Proof. We reduce from the Hitting Set problem. An instance of Hitting

Set consists of a set C of n subsets (Ci)i∈N over a finite ground set of
elements E. A hitting set is a subset F ⊆ E such that F contains at least one
element of every Ci ∈ C. The goal is to select a minimum cardinality hitting
set.

Given an instance (E,C) of Hitting Set, we construct a polymatroid con-
gestion game M as follows. First construct the game M ′ by identifying E
with R, and defining the submodular, monotone, normalized function fi for
all i ∈ N as follows: fi(S) = 1 if S∩Ci 6= ∅ and fi(S) = 0 otherwise. We let
cr(0) = 0 and cr(j) = 1 for all r ∈ R and j ∈ N.

From this game M ′, we construct another polymatroid congestion game
M with one player, whose integral polymatroid base polyhedron is the
Minkowski sum of the polyhedra in M ′, i.e. Bf(ρ) =

∑
i∈NBfi(ρi). Note

that ρ1 = ρ = n.
By construction, there is a hitting set of cardinality k if and only if there

is a vector b ∈ Bf(ρ) with C(b) 6 k in M. Therefore, if we can approximate
the social optimum in M within a factor of c log(ρ) for some constant c,
we can approximate the Hitting Set instance within c log(n). The lemma
now follows from the fact that the Hitting Set problem is equivalent to

2.3 a logarithmic approximation 21

the Set Cover problem [8], for which there are no polynomial time c logn-
approximation algorithm for any c < 1 unless NP ⊆ TIME(nO(log logn)) [37].

�

Now we present our algorithm (see Algorithm 2.1). Intuitively, for every
player i we want to distribute ρi units over the resources such that the
resulting multiset of resources corresponds to a vector bi ∈ Bfi(ρi). Overall,
this leads to a distribution of ρ units over the resources such that b =

b1 + . . .+ bn ∈ Bf(ρ). The idea is to incrementally increase the number of
units distributed over the resources in a greedy fashion. Initially, we start
with an empty distribution, i.e., the load on every resource is zero. Then,
we will iteratively increase the load on some resource r ∈ R to some desired
target load denoted by tr ∈ N (initially tr = 0 for all r ∈ R). To make sure
that the sum of the target loads does not exceed ρ, we set upper bounds
tmax
r on the target loads that are initially set to tmax

r = ρ for all r ∈ R. In
every iteration, we select a resource r ∈ R and a target load between tr + 1
and tmax

r minimizing the cost per unit, which is defined via the following
function:

h : R× ([tr + 1, tmax
r]∩N)→ R; h (r, j) =

cr (j) − cr (tr)

j− tr
. (2.1)

Let (r∗, j∗) be a minimizer of h. To check whether or not it is possible
to distribute j∗ − tr∗ additional units on resource r∗, or equivalently, to
increase the target load tr∗ to j∗, we call a strategy covering oracle denoted
by O (R, Bf(ρ), (tr)r∈R) (cf. Definition 2.9). This oracle checks if there is
a strategy profile covering the current target loads, that is, if there is a
b = b1+ . . .+bn ∈ Bf(ρ) satisfying br > tr for all r ∈ R. It is similar to the
strategy packing oracle from [55].

Throughout this chapter, for two vectors x, y ∈ Nm, we use x > y in the
sense xi > yi for all i, and for convenience we write x({1, . . . , i}) =

∑i
j=1 xj.

Definition 2.9. Strategy covering oracle O (R, Bf(ρ), (tr)r∈R)

input : A finite set R with target loads tr ∈N for all r ∈ R and an integral
polyhedron Bf(ρ) ⊆NR.

output : A vector b ∈ Bf(ρ) such that b > t, or the information that no
such vector exists.

If the answer of the oracle is negative, it is not possible to increase the
load on resource r∗ to j∗. We set tr∗ back to its old value and update tmax

r∗

22 polymatroid congestion models

to j∗ − 1, because this target load j∗ was too high for this resource. On the
other hand, if the answer is affirmative, we keep the increased target load
j∗ on r∗, and for all r ∈ R we update tmax

r to min
{
tmax
r , tr + ρ−

∑
r ′∈R tr ′

}
to avoid target loads whose sum exceeds ρ. We also update the values for
h according to Eq. (2.1). We then continue this procedure by finding a new
minimizer of h and calling the oracle again. Note that in every iteration we
increase the lower bound tr∗ or decrease the upper bound tmax

r∗ , thus, the do-
main of h becomes strictly smaller in every iteration. Indeed, once we have∑
r∈R tr = ρ and the oracle outputs a vector b ∈ Bf(ρ) that meets these tar-

get loads, the algorithm terminates. The vector b can be decomposed into a
vector for every player. For a formal description see Algorithm 2.1. For an
illustration see Fig. 2.3.

Algorithm 2.1: Algorithm for the polymatroid congestion model and
game
Input: A polymatroid congestion model

M = (N,R, (Bfi(ρi))i∈N, (cr)r∈R)
Output: A vector b ∈ Bf(ρ)

1 b← 0;
2 tr ← 0 and tmax

r ← ρ for all r ∈ R;
3 while

∑
r∈R tr < ρ do

4 Choose (r∗, j∗) ∈ argminr∈R,j∈[tr+1,tmax
r] h(r, j);

5 temp← tr∗ ;
6 tr∗ ← j∗;
7 if O (R, Bf(ρ), (tr)r∈R) = b ′ then
8 b← b ′;
9 tmax

r ← min
{
tmax
r , tr + ρ−

∑
r ′∈R tr ′

}
for all r ∈ R;

10 Update h(r∗, j) for all j ∈ [tr∗ + 1, tmax
r∗] as in Eq. (2.1);

11 else
12 tr∗ ← temp;
13 tmax

r∗ ← j∗ − 1;

14 return b;

The following lemma shows that the strategy covering oracle can be im-
plemented in linear oracle time for our polymatroid congestion model.

2.3 a logarithmic approximation 23

· · ·

1

1

1

1

2

2

3

3

3

4

· · ·
n

n

n

?

?

?

?

?

tr1 = 2 tr2 = 0 tr3 = 0 trm = 0

tmax
r1

= n tmax
r2

= n tmax
r3

= 2 tmax
rm

= n

Figure 2.3: An illustration of a possible iteration of Algorithm 2.1. The squares are
units each player needs to distribute over the resources represented by
the rectangles. In this iteration, (r3, 3) was the chosen minimum cost
per unit, but the oracle returns that these target loads are infeasible.
Hence, tmax

r3
is set to 2 and tr3 is reset to its previous value 0.

Lemma 2.10. If Bf(ρ) is an integral polymatroid base polyhedron, then the strat-
egy covering oracle can be implemented in time O(mQ), whereQ is the complexity
of the value giving oracle that returns f(U) for any U ⊆ R.

Proof. See Algorithm 2.2 for a formal description, which is an adaptation
of the polymatroid greedy algorithm (see e.g. [93, Theorem 44.3]).

There exists a vector b ∈ Bf(ρ) such that b > t if and only if t ∈ Pf(ρ) =∑n
i=1Pfi(ρi). To check this membership, we start at y = 0 ∈ Pf(ρ) and iter-

atively increase yi to tri . Following the proof of [93, Theorem 44.3] we know
that after iteration i, y ∈ Pf(ρ) if and only if y({1, . . . , i}) 6 f({1, . . . , i}). Af-
ter m iterations y = t, hence t ∈ Pf(ρ) and the target loads are feasible. If
at some point y({1, . . . , i}) > f({1, . . . , i}), the target loads are infeasible.

To extend the target loads to a strategy profile (i.e. a vector b ∈ Bf(ρ)),
we define the function g(U) = f(U) − t(U) for all U ⊆ R (for the imple-
mentation of the algorithm we only need g({1, . . . , i}) for all i). We claim,
and this is easy to check, that g is an integral polymatroid rank func-
tion with g(R) = ρ − t(R). Hence we can find a vector z ∈ Bg(g(R)) us-
ing the polymatroid greedy algorithm. Define b = t + z. By construction

24 polymatroid congestion models

b(U) = t(U)+ z(U) 6 t(U)+ f(U)− t(U) = f(U) for all U ⊆ R, so b ∈ Pf(ρ).
Similarly, b(R) = ρ and hence b ∈ Bf(ρ). As z > 0 we have b > t and the
proof is complete.

Denoting the complexity of the value giving oracle for the function f by
Q, the running time of both the membership check and the extension is
O(mQ). �

Algorithm 2.2: Strategy covering oracle for polymatroid congestion
games
Input: An integral polymatroid base polyhedron Bf(ρ) and a vector t
Output: A vector b ∈ Bf(ρ) such that b > t, or the information that no

such vector exists.
1 y← 0;
2 for i = 1 to m do
3 yi ← tri ;
4 if y({1, . . . , i}) > f({1, . . . , i}) then
5 return “Infeasible target loads”

6 z← 0 and g(∅)← 0;
7 for i = 1 to m do
8 g({1, . . . , i})← f({1, . . . , i}) − t({1, . . . , i});
9 zi ← g({1, . . . , i}) − g({1, . . . , i− 1});

10 return t + z;

We now prove the following theorem.

Theorem 2.11. Algorithm 2.1 is an Hρ-approximation algorithm for Problem 2.5
that runs in time O(m2 ρ2Q), whereQ is the complexity of the value giving oracle
that returns f(U) for any U ⊆ R.

We show this using the following two lemmata. For the proof of the next
lemma, we need the following well-known property of polymatroids (cf.
[40, Theorem 3.27] and the text following [93, Theorem 44.6]).

Property 2.12. Let Pf(ρ) be an integral polymatroid polyhedron. For any two
vectors b, b ′ ∈ Pf(ρ) and any element r ∈ R with br > b ′r, there exists an
element r ′ ∈ R with b ′r ′ > br ′ such that b − χr + χr ′ ∈ Pf(ρ). Here, χr is the
m-dimensional unit vector corresponding to resource r ∈ R.

2.3 a logarithmic approximation 25

Lemma 2.13. Let b be the output of Algorithm 2.1 and let b∗ be the set of bases
minimizing C(b∗). Then C(b) 6 HρC(b∗).

Proof. Consider iteration k of Algorithm 2.1, indexed by the while loop. We
denote the target load on a resource r at the start of this iteration by tkr . In
this iteration, we update every target load to tk+1r , which is only different
from tkr for one resource r∗ (in our analysis we may disregard iterations in
which we do not increase tr∗ but decrease tmax

r∗). Denote the increase in the
target loads in iteration j by nj =

∑
r∈R t

j+1
r − tjr and denote the remaining

units to distribute over the resources at the beginning of iteration k by
n̄k = ρ−

∑k−1
j=1 nj. Denote the strategy profile at the start of this iteration,

returned by the oracle in the previous iteration, by b̄k = b̄1k + . . . + b̄nk
(initially b̄i0 = 0 for all i).

Claim 2.14. There exists a vector b̂ = b̂1 + . . . + b̂n such that tkr 6 b̂r 6
max{b∗r, tkr } for all r ∈ R.

Before proving this claim, we show how the lemma follows from it. The
analysis is based on the cost-effectiveness of our greedy choice in the al-
gorithm, e.g. as in [97, Chapter 2]. Consider the quantity ∆k = C(b̂) −∑
r∈R cr(t

k
r). Using monotonicity of the cr, we obtain

∆k 6
∑
r∈R

(
max

{
cr(b∗), cr(tkr)

}
− cr(t

k
r)
)
6 C(b∗) .

Note that (r∗, tk+1r∗) is a minimizer of the preliminary cost-per-unit in it-
eration k, and in particular, the sequence of per-unit cost of the load in-
crements in Algorithm 2.1 is non-decreasing. Also note that ∆k is the cost
of one possible extension from the target loads in iteration k to a strategy
profile. Hence, the average cost of one resource in ∆k is at least the average
increase in cost of one resource in iteration k, and we have∑

r∈R cr(t
k+1
r) − cr(t

k
r)

nk
=
cr∗(t

k+1
r∗) − cr∗(t

k
r∗)

nk
6
∆k
n̄k
6
C(b∗)
n̄k

.

Using that b̄0 = 0 and cr(0) = 0 for all r ∈ R, this yields

C(b) =
∑
k

(∑
r∈R

cr(t
k+1
r) − cr(t

k
r)

)
6
∑
k

nk
n̄k
C(b∗)

=
∑
k

nk∑
l>k nl

C(b∗) =
∑
k

nk∑
j=1

1∑
l>k nl

C(b∗)

26 polymatroid congestion models

6
∑
k

nk∑
j=1

1∑
l>k nl − j+ 1

C(b∗) = HρC(b∗) .

It remains to prove Claim 2.14.

Proof of Claim 2.14. Set b̂ = b̄k and consider a resource r such that b̂r >
max{b∗r, tkr }. We call such a resource overloaded. Then by Property 2.12 for
Pf(ρ) there exists a resource r ′ with b∗r ′ > b̂r ′ such that b̂ ′ = b̂− χr + χr ′ ∈
Pf(ρ). Replace b̂ by b̂ ′.

We continue this procedure until there is no overloaded resource any-
more. Indeed, as b∗r ′ > b̂r ′ we know r ′ is not overloaded in b̂ ′. Hence, the to-
tal overload

∑
r∈Rmax{b̂r−max{b∗r, tkr }, 0} becomes strictly smaller after ev-

ery replacement. As this quantity is non-negative, this procedure ends and
at some point there will not be an overloaded resource anymore. Because it
is possible to cover the target loads tkr , we know tkr 6 b̂r 6 max{b∗r, tkr } for
all r ∈ R. �

Lemma 2.15. Algorithm 2.1 runs in time O(m2 ρ2Q), whereQ is the complexity
of the value giving oracle that returns f(U) for any U ⊆ R.

Proof. The number of iterations is upper bounded bymρ. In every iteration
we find the minimizer of at most mρ values and then we call the strategy
covering oracle, which runs in time O(mQ) by Lemma 2.10. So the total
running time of Algorithm 2.1 is O(m2 ρ2Q+m2ρQ) = O(m2 ρ2Q). �

This concludes the proof of Theorem 2.11.

2.4 concluding remarks

This chapter presents an Hρ-approximation algorithm for polymatroid con-
gestion models. This approximation guarantee is best possible up to a con-
stant factor. The algorithm runs in polynomial time if we assume that ρ
is polynomial in the input size, which is the case for special cases such as
matroids and graphical polymatroids (arborescences). In particular, for ar-
borescences, the oracle can be implemented in time O(|V |2m log(|V |2/m))

[42, Theorem 7.1] (where |V | is the number of vertices in the graph un-
derlying this graphical polymatroid), and we obtain a running time of
O(m3 ρ2 |V |2 log(|V |2/m)). However, for general polymatroids, the running
time is pseudopolynomial.

2.4 concluding remarks 27

Consider the special case of matroid congestion games as introduced in
Example 2.7. In these games, players choose subsets rather than multisets
of the resources and therefore ρ 6 nm. The number of iterations is upper-
bounded by nm and in every iteration we find the minimizer of at most
nm values. Using the idea of Cunningham [29], Harks et al [55] proved
that their strategy packing oracle can be implemented in time O(n1.5 ρQ),
whereQ is the maximum complexity of the independence oracles of the ma-
troids. A similar proof also works for our strategy covering oracle. The run-
ning time of the algorithm for matroid congestion games is thus O(n2m2+
n2.5mρQ) = O(n3.5m2Q).

However, a comment on the tightness of our approximation guarantee
for matroid congestion games is in order. By a reformulation of [52, The-
orem 7.1], these games are c logn-inapproximable for any c < 1, but this
cannot be strengthened to a c log ρ hardness result as in Lemma 2.8. Thus,
as log ρ 6 logn+ logm, the gap between our approximation guarantee and
the hardness result is a constant factor and an additive error of logm. This
is a constant gap if m = poly(n). However, if m 6= poly(n), the approxima-
tion complexity of the problem is yet to be settled exactly.

3
H I G H M U LT I P L I C I T Y S C H E D U L I N G

3.1 introduction

In the current competitive economy, companies need to be aware of mul-
tiple objectives such as decreasing costs and enhancing customer service.
Among the core activities of many companies and supply chains are mech-
anisms to match supply with demand, to prevent stock-outs and to cut back
unnecessary overhead costs. Production companies are required to conduct
extensive research into cost reduction to remain competitive within the mar-
ket. Consequently, a lot of interest has been shown in problems within the
area of operations management.

One of these well-studied problems in operations management is the ca-
pacitated lot-sizing problem, where one machine needs to produce a set
of products to minimize average holding and setup costs. In this problem,
the ongoing production of a product can be represented as the repeated
scheduling of a single job on the machine, enabling a highly compact en-
coding of the input of the problem known as high multiplicity scheduling.
Jobs in the high multiplicity setting are represented by a single job descrip-
tion with a multiplicity, representing the number of individual jobs. It is
different from the conventional scheduling setting where every single job,
even though identical to many others, is given as part of the problem input.
Obviously, the input length of the traditional setting can be exponentially
larger than the length of the high multiplicity input, allowing for exponen-
tially slower algorithms. Furthermore, due to the compact encoding of the
input, the optimal schedule can have a superpolynomial length, even for
very restricted cases e.g. with only 1 or 2 products. Consequently, finding
a polynomially sized certificate for these types of problems can be hard in
itself.

Not only from the computational complexity point of view, the reason-
ability of conventional encoding is questionable for practical high multi-
plicity problems. For many companies, the high multiplicity encoding is a
natural way to provide input from real-world data, especially if thousands
of jobs are identical. The high multiplicity scheduling setting is found in nu-
merous practical applications. The research in this chapter was inspired by

29

30 high multiplicity scheduling

one of these practical applications; a multinational textile company posed
the problem of finding the optimal cycle length for their production, of only
three types of lycra in extremely large quantities on a single machine.

In this chapter we study an extended version of the aforementioned real-
life problem, the capacitated lot-sizing problem with sequence-dependent
setup costs. In this problem we have a single machine that is capable of pro-
ducing a single product at any given time and a set of products that need to
be produced. Each product is associated with a demand rate, a maximum
production rate and inventory holding costs per unit. The objective is to
find a cyclic schedule such that the demand of every product is met, mini-
mizing the average costs per cycle. For any schedule, sequence-dependent
setup costs referred to as sequencing costs are incurred each time the ma-
chine switches production between two different products. Moreover, input
is provided under high multiplicity encoding.

We show NP-hardness of the problem and largely characterize optimal
solutions by proving a number of structural properties which will be of
great use for the design of algorithms for the problem. Furthermore, assum-
ing a fixed number of products, we develop an approximation algorithm
which slightly perturbs the input instance to get a polynomial running time
and polynomial size of the output schedule.

related work The earliest research on problems with high multiplic-
ity encoding dates back to the sixties; see e.g. Rothkopf [87] who considers
the travelling salesperson problem with multiple visits to cities. Madi-
gan [78] studies a variant of our problem where setup times are introduced,
setup costs do not depend on the sequence, and holding costs are product-
independent. He proposes an elegant heuristic for the problem and com-
pares it to the results previously published in the literature. Goyal [46] stud-
ies the variant of the problem posed by Madigan where no setup times are
involved, and solves the problem to optimality for a fixed time horizon. Boc-
tor [14] extends the model to incorporate product-dependent holding costs
and setup times, and considers an infinite time horizon. He presents an
exact algorithm for the case of two products.

Only in 1991, Hochbaum and Shamir [60] coined the term high multiplic-
ity and underlined the added complexity of such encodings. They study
single machine high multiplicity scheduling problems with different objec-
tive functions, and construct algorithms that are strongly polynomial in the
number of types of jobs. At the same time, Narro Lopez and Kingsman [84]

3.1 introduction 31

discuss basic solution approaches to high multiplicity scheduling problems
and assess their quality and use in practice.

Most papers on high multiplicity scheduling consider discrete variants,
in which time and/or quantities are discretized into units. There has also
been some work considering the continuous setting, in which production
can start and stop at any time, e.g. with fluids. Bertsimas, Gamarnik, and
Sethuraman [11] consider the high multiplicity job-shop problem without
sequencing costs, and use this continuous setting as a relaxation for the
original discrete job-shop problem. They round an optimal solution for
the fluid problem to an asymptotically optimal solution for the discrete
problem, and provide some computational experiments. In another work
on the continuous setting, Haase [48] discusses a problem very closely re-
lated to ours, where production rates are fixed. He proposes a local-search
heuristic and evaluates it by comparing it to optimal solutions for small in-
stances. Haase and Kimms [49] consider the same problem and, by making
additional assumptions on the input instances, solve the problem to opti-
mality. They present a Mixed Integer Programming formulation for their
model and a fast enumeration scheme, which they evaluate by a computa-
tional study.

Incorporating sequencing costs substantially adds complexity akin to the
travelling salesperson problem. The techniques we are using in this
chapter are closely related to the techniques used in classical single mul-
tiplicity scheduling. For instance, Clifford and Posner [25] provide lower
bounds and use these to develop heuristics for minimizing tardiness. They
extend the problem to parallel, uniform and unrelated machines in Clifford
and Posner [26], where their objective is to minimize the makespan or the
sum of completion times in either the preemptive, or the non-preemptive
variant of the problem. They prove NP-hardness, develop polynomial time
and pseudopolynomial time algorithms for special cases, and present heuris-
tics. Filippi and Romanin-Jacur [38] continue their work and present a two-
stage approach, in which they first fix most jobs in partial schedules and
then solve the residual problem.

Brauner et al. [16] provide a detailed framework for the complexity anal-
ysis of high multiplicity scheduling problems. We refer the reader to this
paper for an excellent survey of related work in this field. They extend their
framework in Brauner et al. [17].

32 high multiplicity scheduling

3.2 the model

We model the general problem for multiple products as follows. We have
a single machine that can produce a single type of product at any given
time and we are given a set of products J = {1, . . . ,n}. For each product
i ∈ J, let pi be its maximum production rate, i.e., the maximum number
of units produced per time unit. Similarly, let di be its demand rate and
hi its holding costs per time unit. Furthermore, we are given sequencing
costs si,j that need to be paid when we switch from producing product i to
producing product j. The problem we consider is to find an optimal cyclic
schedule S∗ that minimizes the average costs per unit of time c̄(S∗). Note
that for each product i, the rates di and pi and costs hi are assumed to
be constant over time and positive. Observe that the input is very compact.
Let m be the largest number in the input, then the input size is O(n logm),
where n is typically a small number, or even a constant.

We distinguish three variants of the problem: The continuous case, in
which the machine can switch production at any time; the discrete case, in
which the machine can switch production only at the end of a fixed unit of
time (e.g. a day) and produces some product i at a single rate ri 6 pi dur-
ing each unit of time; and the fixed case, in which the machine can switch
production only at the end of a fixed unit of time, and when the machine
produces some product i, a full amount of pi needs to be produced (in the
former two cases, we can lower production rates). Furthermore, in the fixed
case we assume integrality of the production and demand rates. Without
loss of generality, in all variants we assume di,pi,hi, sij > 1 for all i, j ∈ J.

We denote by LSP(A,n) with A ∈ {C,D, F},n ∈ N the lot-sizing problem
of scheduling n products in the continuous, discrete or fixed setting re-
spectively. Let π[a,b]

i denote the produced amount of product i during time
interval [a,b]. Let πti = π

[t,t+1]
i . Let xti be an indicator function denoting

whether product i is produced during time interval [t, t+ 1]. Let qti denote
the stock level for product i at time t. We explicitly refer to the stock of
product i at time t in a schedule S as qti(S).

Finally, let H(S) denote the total holding costs and W(S) the total switch-
ing costs of a schedule S, and c(S) = H(S) +W(S) denote the total costs
of S. Denote the average costs of a cyclic schedule S of cycle length ` by
c̄(S) = H̄(S) + W̄(S), where H̄(S) = H(S)/` and W̄(S) =W(S)/`.

Formally, we arrive at the following problem.

3.3 structural properties of optimal solutions 33

Problem 3.1. High Multiplicity Scheduling problem

input. For each product i, a demand rate di > 1, a maximum production
rate pi > 1, and inventory holding costs hi > 1 are given. Sequencing
costs si,j > 1 are given for every pair of products.

task . Find a cyclic schedule S which minimizes the average costs per unit
of time, c̄(S).

We represent a cyclic schedule of length ` as a sequence

[t0, t1]
r0
i0

, [t1, t2]
r1
i1

, . . . , [ts, `]rsis ,

where rϕ 6 piϕ is a production rate of phase ϕ = 0, . . . , s, iϕ is the product
produced in that phase, and [tϕ, tϕ+1] is the time interval such that no
two consecutive phases share the same rϕ and iϕ. A maximal sequence
of consecutive phases of the same product iϕ ∈ J is called a production
period, denoted by [tϕ, tϕ+1]iϕ . The complete sequence of phases is called
the (cyclic) schedule, and we call a schedule a simple cycle if there is exactly
one production period for each product.

Example 3.2. Consider the following instance of LSP(D,2). Product 1 has a
maximum production rate of p1 = 5 and a damand rate of d1 = 2, and
product 2 has a maximum production rate of p2 = 7 and a demand rate of
d2 = 3. Fig. 3.1 depicts a feasible cyclical schedule S for this instance, which
we denote as S = [0, 2]51, [2, 3]12, [3, 5]72. Product 1 has one production period
from time 0 to 2, consisting of one phase during which it is produced at
rate 5. Product 2 has one production period from time 2 to 5, consisting of
two phases. During the first phase from time 2 to 3, it is produced at rate
1, and during the second phase from time 3 to 5, it is produced at rate 7.
Note that S is a simple cycle.

Suppose h1 = 1, h2 = 2, s12 = 3 and s21 = 4. By computing the area
under the stock curves in Fig. 3.1 and multiplying it with the respective
holding costs per unit, we see that the total holding costs of products 1 and
2 are equal to 15 and 38 respectively. Therefore, H(S) = 53. As W(S) = 7,
we get c(S) = 60 and hence c̄(S) = 12.

3.3 structural properties of optimal solutions

We now prove some structural properties of optimal schedules of the prob-
lem. We show that all variants are NP-hard, even when we restrict ourselves

34 high multiplicity scheduling

t

q

2

4

6

8

0 1 2 3 4 5

Figure 3.1: A feasible cyclic schedule for Example 3.2. The red and blue line indi-
cate the stock level of product 1 respectively product 2 over time.

to unit demand rates and unit holding costs. Next, we derive a simple neces-
sary and sufficient condition for the existence of a feasible cyclic schedule.
Furthermore, we characterize the form of production for the continuous
and discrete cases. Also, we show that there is no idle time in an optimal
schedule and that every product has at least one point during the schedule
where its stock level is zero. Finally, in the last subsection, we present a
lower bound on the objective value for the continuous case, and an upper
bound on the objective value and the maximum stock level for the discrete
case. We use these bounds in the approximation scheme.

3.3.1 Problem complexity

The following lemma follows directly from a reduction from the travel-
ling salesperson problem (TSP), cf. Problem 1.2.

Lemma 3.3 (Complexity). All three variants of the lot-sizing problem are strongly
NP-hard.

Proof. We prove NP-hardness for both the discrete and fixed cases by a
reduction from the travelling salesperson problem (TSP). Consider a
TSP instance I = {G = (V ,E), [ci,j]V×V }. From I we construct an instance
I ′ = {J, (di,pi,hi)i∈J, [si,j]J×J} of the lot-sizing problem as follows.

Identify J with V and let si,j = ci,j for each i, j ∈ J. Let di = 1, pi =

|V | = n, and hi = h =
∑
j,k sj,k + 1 for each i ∈ J. Additionally, let Wmax =

3.3 structural properties of optimal solutions 35

∑
i,j si,j and Wmin = n×mini,j si,j. Note that for every feasible schedule

S, we have sequencing costs W(S) such that W(S) > Wmin. Moreover, for
all simple cycles S we have W(S) 6Wmax. We claim that there exists a TSP
tour of length at most B if and only if the corresponding instance of the lot
sizing problem admits a solution of total cost at most hn(n− 1)/2+B/n.

Clearly, since the total demand and production rates match each other,
the stock level is constant over time. Every simple cycle of length n, using
the same order of products, can be realised with average holding costs
H̄ = hn(n− 1)/2 and average sequencing costs Wmin/n 6 W̄ 6Wmax/n. In
fact, this schedule is minimum regarding the holding costs.

Let S ′ be a feasible non-simple cycle of length ` ′ > n with total costs
c(S ′) = H(S ′) +W(S ′). Note that there is a product of which two con-
secutive production periods are separated by at least n + 1 time units.
Hence, we need at least one additional unit of that product in stock and
thus H(S ′) > h` ′n(n − 1)/2 + h` ′. Thus, for every minimal simple cycle
S, since W(S) 6 Wmax < h, we have that the average costs of S ′ are
c̄(S ′) > H(S ′)/` ′ > c̄(S). Observe that the value of H̄(S) is the same for
every minimal simple cycle, and therefore the optimal solution to I is the
minimal simple cycle which minimizes W(S).

Let σ be a sequence of visits in the TSP instance with costs B. Producing
each product for 1 time unit with the same sequence as σ is a feasible so-
lution for the lot sizing problem with costs hn(n− 1)/2+B/n. Conversely,
let σ be a solution for the lot sizing problem with costs hn(n− 1)/2+ B/n.
This solution is a simple cycle, thus the production sequence is a tour with
costs B. This proves the NP-hardness of the discrete and the fixed case.

We prove the continuous case by a similar reduction from the Metric

TSP. For an instance I of the Metric TSP, we let J = V and si,j = ci,j for all
i, j ∈ J. Let di = 1, pi = n and hi = 1 for all i ∈ J.

Let σ be the optimal solution to I with costs c(σ). Let S be any feasible
schedule for the corresponding instance I ′ of the lot sizing problem and let
the length of the schedule be `. Let S∗ be the simple cycle of length `∗ where
the products are produced in the same order as in σ, with production time
`∗/n per product.

Since every product needs to be produced at least once in a feasible sched-
ule and the triangle inequality holds for the sequencing costs, S∗ is optimal
with respect to the sequencing costs, i.e., W(S∗) <= W(S). Note that com-
pared to the discrete and fixed cases, the continuous case has a complica-
tion: We can choose `∗ arbitrarily small. By construction, every production

36 high multiplicity scheduling

period in schedule S∗ consists of one phase of length `∗/n where the prod-
uct is produced at rate pi = n. Since hi = 1, the total holding costs for
every product i are given as∫ `∗/n

0

qti dt+
∫ `
`∗/n

qti dt =
n− 1

2n
(`∗)2 .

Thus, the total holding costs of S∗ are H(S∗) = (`∗)2(n − 1)/2 and the
average holding costs are H̄(S∗) = `∗(n− 1)/2. In particular, since holding
costs decrease with the cycle length, we can choose `∗ such that H̄(S∗) 6
H̄(S) and c̄(S∗) 6 c̄(S). Thus we have that the optimal solution to I ′ is a
simple cycle S∗ using the sequence of σ.

The total average costs c(σ)/`∗ + `∗(n − 1)/2 are minimized with `∗ =√
2c(φ)/(n− 1). Hence we have

c(σ) =W(S∗) = H(S∗) =
n− 1

2
(`∗)2 .

Now, σ is an optimal solution for I with costs c(σ), if and only if there is
an optimal solution for I ′ with average costs

√
2(n− 1)c(σ). �

3.3.2 Feasibility condition

Observe that di/pi is the fraction of time product i needs to be scheduled
on the machine, and thus with necessity

∑
i∈J di/pi should be at most 1.

The following lemma shows that this is actually also sufficient.

Lemma 3.4 (Feasibility). For all three variants of the problem, there exists a
feasible schedule if and only if ∑

i∈J

di
pi
6 1 .

Proof. Let S be a feasible cyclic schedule of length `. Then for each product
i, the total demand during S equals `di. Since we can produce at most pi
during a time unit t, we know that

`di
pi
6
∫ `
0

xti dt .

Summing over all products gives∑
i∈J

`di
pi
6
∑
i∈J

∫ `
0

xti dt 6 ` .

3.3 structural properties of optimal solutions 37

From the feasibility and the indication property of the function xi, we infer
that the right-hand side of the first inequality is at most `. Dividing by `
yields

∑
i∈J di/pi 6 1.

Next, suppose that
∑
i∈J di/pi 6 1. Following the reverse of the proof

above, we know that given some initial stock, we can now construct a fea-
sible schedule. Let S be a schedule of length ` =

∏
i∈J pi. Now, order the

products in J from 1 to n. For each product i, produce π[ti−1,ti]
i = `di, where

ti = ti−1+ `di/pi and t0 = 0. Clearly, given enough initial stock, demand is
met for each product. Since

∑
i∈J(ti − ti−1) =

∑
i∈J `di/pi 6 `, all produc-

tion fits in the cycle. Additionally, given integer demands and production
rates, `di/pi is integer, ensuring feasibility for the fixed case. �

Remark 3.5. Note that additionally for LSP(F,n), a schedule of length ` is
feasible if and only if

`di
pi

=

`−1∑
t=0

xti ∈N, and ` mod (pi − di) = 0, ∀i∈J .

3.3.3 Characterizing optimal production schedules

In this subsection we prove several properties about the production in con-
tinuous and discrete schedules. We start by showing that if there is some
idle time in a schedule, we can already start producing the next product at
demand rate during the idle time to decrease the holding costs.

Lemma 3.6 (No idle time). Let S∗ be an optimal schedule for LSP(C,n) or
LSP(D,n), with n ∈N. S∗ has no idle time.

Proof. We prove by contradiction. Let S be a counterexample, i.e., there is
at least one interval [t1, t2] of length t2 − t1 = t where the machine is idle.
Thus in this interval, each product i has a demand dit to fulfill. Therefore,
for each i there is a stock of at least dit at time t1, and thus for this interval,
we pay at least

∑
i∈J dithi.

Let i be the product produced at time t2. Produce i at the demand rate of
i during the interval, i.e., π[t1,t2]

i = dit. Consequently, reduce the produc-
tion during the rest of the schedule, i.e., reduce π[t2,`]∪[0,t1]

i by dit. Clearly,
the schedule remains feasible, the switching costs are the same as before,
and the holding costs are reduced by at least 12hidit

2. �

38 high multiplicity scheduling

We now provide a short proof for the claim that in an optimal schedule
for the continuous case, at any time the production rate is always larger
than or equal to the demand rate of the produced product.

Lemma 3.7 (Produce at least the demand rate). Let S∗ be an optimal schedule
for LSP(C,n) with n ∈N. For each phase [t, t ′]ri in S∗, we have that r > di.

Proof. We prove by contradiction. Let S be a counterexample, i.e., there is
at least one phase [t, t ′]ri with r < di. Since S∗ is feasible, we know that
qti > (di− r)(t

′− t) > 0. Now let π[t
′,`]∪[0,t]

i ← π
[t ′,`]∪[0,t]
i − (di − r) (t− t

′)

and replace [t, t ′]ri by [t, t ′]dii . Clearly the schedule is feasible and the costs
are decreased, and thus S∗ was not optimal. �

The next property ensures that the machine produces every product i
only at rates di and pi to minimize holding costs in the continuous case.

Lemma 3.8 (Two phase production). Consider LSP(C,n) for any n > 2. There
is an optimal cycle S∗ such that for every product i ∈ J, every production period
of i in S∗ consists of at most two phases. For every production period, in the first
phase the machine produces i at a rate of di. During the second (non-empty) phase
i is produced at a rate of pi.

Proof. We know from Lemma 3.7 that for each phase [t, t ′]ri , we have that
r > di. Now suppose there is a phase [t1, t3]ri such that di < r < pi
with holding costs hi 12(t3 − t1)(q

t3
i + qt1i). Now, let [t1, t2]

di
i and [t2, t3]

pi
i

where t2 =
t3(r−pi)+t1(di−r)

(di−pi)
, with

∫t2
t1
qti dt = (t2− t1)q

t1
i and qt3i remains

unchanged. The holding costs are now hi
1
2(t3 − t2)(q

t3
i + qt1i) + hi(t2 −

t1)q
t1
i < hi

1
2(t3 − t1)(q

t3
i + qt1i) and thus, [t1, t3]ri is not optimal. There-

fore, in an optimal schedule each production period consists of consecutive
phases of the form [t1, t2]

di
i , [t2, t3]

pi
i .

Now suppose that P consists of more than two such phases. In that case
there exists a time t such that there are phases [t1, t]pii , [t, t2]

di
i with holding

costs hi
(
1
2(t− t1)(q

t
i + q

t1
i) + (t2 − t)q

t
i

)
. Now swap the order of the two

phases, i.e., let [t1, t ′]dii , [t ′, t2]
pi
i with t ′ = t1 + (t2 − t), q

t2
i = qti and hold-

ing costs hi 12((t2− t1)+ (t2− t))(q
t
i +q

t1
i). Since holding costs decrease by

qt1i t, P will consist of at most two phases of the form [t1, t2]
di
i , [t2, t3]

pi
i . �

Note that in a tight schedule, i.e.,
∑
i∈J di/pi = 1, in order to meet de-

mand for each product, the machine needs to continuously produce at max-
imum speed. Therefore, in an optimal schedule S for a tight instance of the

3.3 structural properties of optimal solutions 39

problem, each production period consists of a single phase where product
i is produced at rate pi. Furthermore, the proof of Lemma 3.8 also proves
that in an optimal schedule for LSP(C,n), for each phase [t, t ′]ri , we have
that r = di or r = pi.

Following the same reasoning as in the previous lemma, we can achieve
a similar result for the discrete case of the problem and prove that in an
optimal schedule, production periods consist of at most four phases.

Lemma 3.9 (Four phase production). Consider LSP(D,n) for any n > 2. There
is an optimal cycle S∗ such that for every product i ∈ J, every production period
of i in S∗ consists of at most four phases. For every production period, in the first
phase the machine produces i at a rate of r1 < di and this phase has at most length
1. During the second phase i is produced at a rate of di. During the third phase,
i is produced at rate di < r2 < pi and this phase again has at most length 1.
Finally, during the fourth phase, i is produced at a rate of pi. Phases can be empty,
but the first and third phase cannot occur sequentially.

Proof. We prove by contradiction. We claim, and this is easy to check, that
phases within the production period can be ordered such that for every
pair of phases [tj, tj+1]

r1
i , [tj ′ , tj ′+1]

r2
i with j ′ > j we have that r1 < r2 in

order to minimize costs whilst retaining a feasible schedule.
Suppose we have an optimal schedule S with two consecutive phases

[tj, tj+1]
rj
i , [tj+1, tj+2]

rj+1
i . By definition of a phase, rj 6= rj+1. Since S is

optimal, 0 < rj < rj+1 6 pi must hold. Clearly, if tj+2 = tj+1 + 1 =

tj + 2, the lemma holds. We construct a new schedule S∗ and we start this
construction letting S∗ := S.

We split [tj, tj+1]
rj
i , [tj+1, tj+2]

rj+1
i in S∗ into five new phases as follows.

We first deplete the stock by q◦ and consecutively increase the stock by q∗,
with these values depending on the case distinction below. We introduce
the indicator function fN(x) = dxe− bxcwhich takes on the value 1 if x 6∈N

and 0 otherwise. The five new phases are

[tj, t1]0i , [t1, t2]
r1
i , [t2, t3]

di
i , [t3, t4]

r2
i , [t4, tj+2]

pi
i ,

where t1 = tj +
⌊
q◦

di

⌋
, and t2 = t1 + fN

(
q◦

di

)
,

t4 = tj+2 −

⌊
q∗

pi − di

⌋
, and t3 = t4 − fN

(
q∗

pi − di

)
,

r1 = di −
(
q
tj
i − (t1 − tj)di

)
and r2 = di +

(
q
tj+2
i − (tj+2 − t4)(pi − di)

)
.

40 high multiplicity scheduling

t

q

q
tj
i

q
tj+2
i

di

r1 r2

pi

tj t1 t2 t3 t4 tj+2

γ

Figure 3.2: A depiction of an optimal production period of schedule S∗ for
LSP(C,n) (where phases [t1, t2]

r1
i and [t3, t4]

r2
i must be empty) and

for LSP(D,n), with n > 2. Notice that the stock level during demand
production can only be positive, i.e., γ > 0, if (t3− t2) 6 1 for LSP(D,n).

We refer the reader to Fig. 3.2 for a depiction of the new set of phases.
Firstly, suppose di 6 rj < rj+1. Now let q∗ = (q

tj+2
i − q

tj
i) and q◦ = 0,

consequently producing stock, which results in a production period of at
most 3 phases.

Secondly, suppose rj < rj+1 6 di. Now let q◦ = (q
tj
i − q

tj+2
i) and q∗ = 0,

consequently depleting stock, which results in a production period of at
most 3 phases.

Lastly, suppose rj < di < rj+1. Now let q◦ = q
tj
i and q∗ = q

tj+2
i , conse-

quently first depleting and consecutively producing stock, which results in
a production period of at most 4 phases.

If completely depleting and consecutively producing the stock takes longer
than the production period, we get t2 > t3. In this case, denote the to-
tal amount of stock which was produced in this production period by
q = (tj+2− tj)di+(q

tj+2
i −q

tj
i) = rj(tj+1− tj)+ rj+1(tj+2− tj+1). Then let

t4 = tj+2 −
⌊
q
pi

⌋
and t1 = t2 = t3 = tj+2 −

⌈
q
pi

⌉
and r2 = di + q− pi

⌊
q
pi

⌋
,

resulting in a production period of at most 3 phases.
Clearly, in all cases S∗ is feasible. If S∗ is different from S then H(S∗) <

H(S), and thus S is not optimal. Note that the phase [tj, t1]0i is idle and
can be removed as in the proof of Lemma 3.6 by extending or introduc-
ing demand production for some other product, thereby delaying its stock

3.3 structural properties of optimal solutions 41

production, leaving a production period of four phases and proving the
lemma. �

Note that the proof of Lemma 3.9 also shows that in an optimal schedule
for LSP(D,n), for each phase [t, t ′]ri with t ′ > t+ 1, we have that r = di or
r = pi.

We now show that in the continuous case, the machine produces product
i at rate di only if the stock for i is empty.

Lemma 3.10 (Level production for continuous case). In an optimal schedule
S∗ for an instance of LSP(C,n), for any product i ∈ J there exists a non-empty
phase [tj, tj+1]

di
i (i.e., with tj+1 > tj) only if qtji = 0.

Proof. We prove by contradiction. Suppose we have an optimal schedule S
with a phase [tj, tj+1]

di
i with tj+1 > tj and qtji > 0. Again, we construct a

new schedule S∗ starting with S∗ := S. We split [tj, tj+1]
di
i in S∗ into three

new phases:

[tj, t1]0i , [t1, t2]
di
i , [t2, tj+1]

pi
i ,

where t1 = tj +
q
tj
i

di
and t2 = tj+1 −

q
tj+1
i

pi − di
.

If the length of the phase is too short to completely deplete the stock, and
consecutively completely rebuild the stock, i.e., t1 > t2, then we reduce
the stock as much as possible. In this case, let t1 = t2 = tj+1 − t

◦, where
t◦ = (tj+1− tj)

di
pi

denotes the time required to produce when producing at
rate pi in order to meet demand during the original phase.

Clearly, S∗ is feasible and now we have that H(S∗) < H(S) and thus S is
not optimal. �

We now show a similar result for the discrete case, where the machine
produces product i at rate di only if the stock for i is empty or if the pro-
duction phase has length 1.

Lemma 3.11 (Level production for discrete case). In an optimal schedule S∗

for an instance of LSP(D,n), for any product i ∈ J there exists a non-empty phase
[tj, tj+1]

di
i only if qtji = 0 or tj+1 = tj + 1.

Proof. We prove by contradiction. Suppose we have an optimal schedule
S with a phase [tj, tj+1]

di
i with tj+1 = tj + 2 and q

tj
i > 0. Once again,

42 high multiplicity scheduling

we construct a new schedule S∗ starting with S∗ := S. We can now split
[tj, tj+1]

di
i in S∗ into two new phases:

[tj, tj + 1]
r1
i , [tj + 1, tj+1]

r2
i .

If qtji < di, let r1 = di − q
tj
i and r2 = di + q

tj
i . Otherwise, let r1 =

max{2di − pi, 0} and r2 = min{pi, 2di}. Clearly, S∗ is feasible and we have
that H(S∗) < H(S) and thus S is not optimal.

Next, suppose tj+1 > tj+ 2. Now split [tj, tj+1]
di
i into the phases [tj, tj+

1]r1i [tj+ 1, tj+1− 1]
di
i [tj+1− 1, tj+1]

r2
i , where r1 and r2 are defined as above.

Clearly this process can be iteratively repeated upon the schedule S∗ until
either the stock level reaches 0, or there is at most one phase left of length
1. �

We can now show that in an optimal schedule, for every product there is
a time where its stock level is zero.

Lemma 3.12 (Zero stock level). Let S∗ be an optimal schedule for an instance of
LSP(C,n) or LSP(D,n). Then for each i ∈ J there exists a time t such that qti = 0.

Proof. The proof is by contradiction. Let S be an optimal schedule of length
` with at least one product i such that qti > 0 for all t. Let t∗ be such
that qt

∗
i = min06t6` qti . Now let S∗ be a copy of S, where we decrease the

stock level for the entire schedule of this product, i.e., qti ← qti − q
t∗
i for all

0 6 t 6 `. Since qt
∗
i 6 q

t
i for all t in S, we know that S∗ is feasible. Clearly,

H(S∗) < H(S), and thus S is not optimal. Note that the stock level can be
decreased by producing at a rate lower than required by the schedule until
the desired level is attained. �

3.3.4 Bounding the average costs

We conclude the basic properties with a lower bound on the average costs
of an optimal continuous schedule, and an upper bound on the average
costs and maximum stock level of an optimal discrete schedule. To obtain
these, we first derive optimality conditions for both cases.

Lemma 3.13 (Continuous cost balancing). An optimal schedule S for an in-
stance of LSP(C,n) has the property that H(S) =W(S).

Proof. We prove by contradiction. Let S be an optimal schedule s.t. H(S) 6=
W(S). Scale the length of each phase in S by a positive factor δ 6= 1, such

3.3 structural properties of optimal solutions 43

that for the resulting feasible schedule S ′ it holds that W(S ′) = H(S ′). The
holding costs for product i in S during a phase [t1, t2]ri are given as

H(i, [t1, t2]ri) = (t2 − t1)qmin +
(t2 − t1)

2

2
r ,

where qmin is the minimum stock level of i during the phase. Thus for the
corresponding phase [t ′1, t ′2]

r
i of the scaled schedule S ′ we have

H(i, [t ′1, t ′2]
r
i) = (t ′2 − t

′
1)q
′
min +

(t ′2 − t
′
1)
2

2
r

6 (t2 − t1)δ
2qmin +

(t2 − t1)
2δ2

2
r

= H(i, [t1, t2]ri)δ
2 .

Summing over all phases and products we get

H(S ′) =
∑

[t ′1,t ′2]
r
i∈S ′

∑
i∈J

H(i, [t ′1, t ′2]
r
i) 6 H(S)δ

2 .

Observe that due to scaling the schedule, we have that W(S) = W(S ′) =

H(S ′) 6 H(S)δ2. Rewriting gives us δ >
√
W(S)/H(S). We now choose δ

such that√
W(S)

H(S)
6 δ <

1

2
+
W(S)

2H(S)
. (3.1)

Observe that for any values of H(S) and W(S) s.t. H(S) 6=W(S), there exists
a δ satisfying (3.1). Because of this particular choice of δ, we have that

c̄(S ′) =
1

` ′
H(S ′) +

1

` ′
W(S ′) =

1

`δ
H(S ′) +

1

`δ
W(S) 6

δ

`
H(S) +

δ

`
H(S)

=
2δ

`
H(S) <

1

`
H(S) +

1

`
W(S) = c̄(S) ,

and thus S was not optimal, proving the lemma. �

We now prove a similar result for the discrete case, taking into account
that low values of δ might create infeasible schedules.

Lemma 3.14 (Discrete cost balancing). A schedule S for an instance of LSP(D,n)
is optimal only if W(S) < 4 ·H(S).

44 high multiplicity scheduling

Proof. The lemma follows almost entirely from the proof of Lemma 3.13.
The difference is that in the discrete case, we might introduce infeasible
schedules S ′ by stretching with any factor δ. Therefore, we restrict ourselves
to factors δ ∈ N, δ > 2. The first inequality in (3.1) now holds only if
W(S) < 4 ·H(S). �

Remark 3.15. Note that instead of simply scaling by δ > 2, we can also scale
by a multiple of (1+ 1

α), where α is the length of the shortest production
period in S. The first inequality in (3.1) now holds only if W(S) < (1+ 1

α)
2 ·

H(S).

To obtain a lower bound on the average costs, we first fully character-
ize the optimal continuous schedule for instances where all products are
identical.

Lemma 3.16 (Identical products). For LSP(C,n) with n identical products, i.e.,
di = d, pi = p, hi = h and si,j = s for all i, j ∈ J, the optimal schedule S∗ is a
simple cycle of average costs c̄(S∗) and length `, where

c̄ = nα

√
2s(p− d)dh

p
and ` =

1

α

√
2sp

(p− d)dh
,

whereα =

(
1−

1

n
+
d

p

)
.

Proof. Since all products are identical, the optimal schedule is defined by a
simple cycle where all products are produced for the same period of time
and H(S) =W(S), see Lemma 3.13.

We first look at a single product block [t1, t2, t3]i, which denotes the period
for a single item i from the moment it starts a production period, until
it starts another production period. Here, [t1, t2] denotes the production
period for product i, and [t2, t3] denotes the period during which i is not
produced. Note that qt1i = qt3i = 0. See Fig. 3.3.

The holding costs for a single product i are given as xq2 , where q is the
maximum stock level and x is the time where product i is produced at rate
p plus the time it is not produced, during the product block. Given a slope
of p− d during production, and a slope of −d during non-production, we
have a = dx

p , b = x− a = x(1− d
p) and q = a(p− d), resulting in total

holding costs of

xq

2
h = x

a(p− d)

2
h = x2

(p− d)d

2p
h .

3.3 structural properties of optimal solutions 45

t

qti

pi − di

q

−di

a b

x

single product block

Figure 3.3: An example of a single minimum product block.

For each product, the length of the product block is given as the total
length `. Note that 1− dn

p is the fraction of time during which the machine
produces any product at rate d. Since all products are produced for an
equal amount of time, the fraction of time during which one product is
produced at rate d is 1

n − d
p . Define α :=

(
1− 1

n − d
p

)
, yielding x = `α.

Note that in a tight schedule, α = 1.
The optimal schedule S has total sequencing costs ns and total holding

costs x2 (p−d)d2p hn = `2α2
(p−d)d
2p hn. Thus the average costs are given as

ns

`
+ `α2

(p− d)d

2p
hn .

Again, note the similarities with the classical EOQ formula. We now find
the optimal cycle length ` using that W(S) = H(S). Given the optimal
length, we can calculate the average total costs c̄(S), yielding

` =
1

α

√
2sp

(p− d)dh
and c̄(S) = nα

√
2s(p− d)dh

p
. �

Using the characterization for identical products, we can construct a
lower bound on the average costs of a schedule.

46 high multiplicity scheduling

Lemma 3.17 (Lower bound on average costs). Consider LSP(C,n) for n > 1.
Let S∗ be the optimal schedule. Let i be the product minimizing (pi−di)di

2pi
hi and

let smin = mini,j∈J si,j be the minimum switching costs. Then

c̄(S∗) > nα

√
2smin(pi − di)dihi

pi
, where α =

(
1−

1

n
+
di
pi

)
.

Proof. Intuitively, we construct a schedule for n identical products with d,
p and h equal to the corresponding value of the least costly product i.

In order to lower bound the holding costs, assume that the stock-level
is zero at the beginning and end of the product block, i.e., qt1i = qt3i = 0.
Furthermore, assume that we produce n times a certain dummy product i,
such that hi 6 hj and di

pi
6 dj
pj

for all j ∈ J. From Lemma 3.16, we know
that the holding costs of a single product block for i are equal to

xq

2
hi = x

2 (pi − di)di
2pi

hi ,

where x and q are defined as in Lemma 3.16. Now, let x2hmin denote
the minimum holding costs for each product during the block [t1, t2, t3]i,
where

hmin = min
i∈J

(pi − di)di
2pi

hi .

Choosing i as the product minimizing hmin and smin = mini,j6=i∈J sij, we
can now use Lemma 3.16 to prove the lemma. �

The following lemma bounds the length of a specific class of feasible
instances, which is used to create an upper bound on the average costs in
Lemma 3.19.

Lemma 3.18 (Upper bound on schedule length for discrete case). Consider
LSP(D,n) for n > 2. Let S be any minimum length feasible simple cycle such that
c(S) =W(S) +H(S) < 5 H(S). The length of S is bounded by

`max =

(∏
i∈J

p−i

)√√√√ ∑
i,j∈J sij

2
∑
i∈J

(p−
i −di)di
p−
i

hi

, where p−i = pi
∑
j∈J

dj

pj
.

Proof. Since we are interested in a minimum length feasible schedule, we
can assume the schedule is tight by limiting the maximum production rates.
To be precise, for each product i ∈ J we limit production to

p−i = pi
∑
j∈J

dj

pj
,

3.3 structural properties of optimal solutions 47

yielding
∑
i∈J di/p

−
i = 1, which constitutes a tight schedule.

Now, since S is a simple cycle, we can calculate the total holding costs
H(S) as

H(S) =
∑
i∈J

hi

∫ `
0

qti dt =
∑
i∈J

`2
(p−i − di)di

2p−i
hi ,

where ` is the length of S. Furthermore, we have that W(S) 6
∑
i,j∈J sij.

Combining the above with the requirement that c(S) = W(S) + H(S) <

5H(S), we get

` > `min =

√√√√ ∑
i,j∈J sij

2
∑
i∈J

(p−
i −di)di
p−
i

hi

.

Observe that in a feasible tight schedule for the discrete case, it must be that
` di
p−
i

∈ N+ for each product i ∈ J. Note that if ` is a multiple of
∏
i∈J p

−
i ,

this condition is satisfied. Any feasible schedule of length at least `min now
constitutes an upper bound on the length of S. Combining this condition
with the above inequality yields an upper bound for ` of

` 6 `max =

(∏
i∈J

p−i

)√√√√ ∑
i,j∈J sij

2
∑
i∈J

(p−
i −di)di
p−
i

hi

,

proving the lemma. �

We now present an upper bound on the average costs of an optimal
discrete schedule.

Lemma 3.19 (Upper bound on average costs). Consider LSP(D,n) for n > 2.
The average costs of an optimal schedule c̄(S∗) are bounded by

c̄(S∗) 6
5

2

∑
i∈J

hi
(pi − di)di

pi
`max .

Proof. Let S be any minimum length feasible simple cycle such that c(S) =
W(S) +H(S) < 5 H(S). Because of Lemma 3.18, we know that H(S) 6∑
i∈J `

2 (pi−di)di
2pi

hi 6
∑
i∈J `

max (pi−di)di
2pi

hi`. Recall that by assumption,
c(S) = W(S) +H(S) < 5H(S) and S has length ` > n. Let S∗ denote an
optimal schedule. Now observe that

c̄(S∗) 6 c̄(S) =
W(S) +H(S)

`
<
5H(S)

`
.

Substituting H(S) by its upper bound proves the lemma. �

48 high multiplicity scheduling

Using the previous lemma, we can now bound the maximum stock level.

Lemma 3.20 (Maximum Stock level). Consider LSP(D,n) for n > 2. The maxi-
mum stock level in an optimal schedule S∗ is bounded by

Q = 5

(∑
i∈J

hi
(pi − di)di

pi

)(∏
i∈J

pi

)
`max .

Proof. Observe that Q2 > c̄(S
∗) =

H(S∗)+W(S∗)
` > H(S∗)

` > 1
2 maxt∈S,i∈J q

t
i .
�

3.4 optimal solutions for few products

In this section, we use the previous results to derive optimal solutions for
the fixed case with one product and the continuous case with two prod-
ucts. We can be very short about the discrete and continuous case with one
product: it is clear that in these cases it is optimal to deplete any remaining
stock and then to produce at demand rate.

3.4.1 Fixed case with one product

We first characterize the minimum cycle length for LSP(F,1), followed by the
costs of an optimal schedule. The proof shows that for an optimal schedule
S∗, the inventory levels for the time units in the schedule are the multiples
of gcd(p1,d1) smaller than p1.

Lemma 3.21. The minimum cycle length for LSP(F,1) is

l∗ =
p1

gcd(p1,d1)
. (3.2)

Proof. Denote G = gcd(p1,d1). Assume without loss of generality that q01 <
p1. Since the cycle must be feasible, we have that d1 6 p1.

Producing p1 provides stock for bp1/d1c time units, with a leftover stock
of p1 mod d1. Let stock at time t be qt1 = qt−11 + πt1 − d1. The schedule
is cyclic when qt1 = q01 for t > 0. For a minimum cycle length, we want to
minimize over t such that qt1 = q

0
1 +
∑t
u=1 π

u
1 − d1t = q

0
1. Rewriting gives

t =

∑t
u=1 π

u
1

d1
=

t∑
u=1

xu1
p1
d1

.

Clearly, t is minimized when
∑t
u=1 x

u
1 = d1

G
, and thus t = p1

G
= l∗. �

3.4 optimal solutions for few products 49

Using this lemma we compute the costs of an optimal schedule.

Lemma 3.22. The shortest optimal cyclic schedule S∗ for LSP(F,1) has unit costs
of

c̄(S∗) =
h1
2

(p1 − gcd(p1,d1)) . (3.3)

Proof. Denote G = gcd(p1,d1). Using the reasoning from Lemma 3.12, we
can assume without loss of generality that the initial stock q01 = 0. Let S∗ be
the optimal cyclic schedule with length l∗. Since S∗ is cyclic, qt1 has unique
values for t = 0, . . . , l∗ − 1. Suppose l∗ > p1/G. Then each qt1 is a multiple
of G. Since l∗ > p1/G and each qt1 has a unique value, there exists at least
one t such that qt1 > p1, and thus the schedule is not optimal. Thus the
length of the shortest optimal schedule is l∗ = p1/G.

Since the total demand during the cycle is d1l∗ and each time unit of
production produces p1, we know that we produce during d1l∗/p1 = d1/G
time units. Since qt1 has a unique value for each t < l∗ and q01 = 0, the stock
values are all multiples of G. Hence, the values of qt1 are the multiples
of G smaller than p1. Since p1 = l∗G, the total stock for the cycle equals∑l∗−1
j=0 jG.
Thus the total costs of S∗ are

h1

l∗−1∑
j=0

jG = h1
1

2
Gl∗(l∗ − 1) =

h1p1
2

(
p1
G

− 1

)
. �

We can summarize the optimal schedule for this case in the following
theorem.

Theorem 3.23. In an optimal schedule S∗ for LSP(F,1), πt1 > 0 if and only if
qt−11 < d1.

The optimal schedule S∗ has length l∗ as in (3.2), and total costs l∗c̄ as in
(3.3)). The length of the cycle is linear in p1/gcd(p1,d1), and Theorem 3.23

yields a polynomial delay list-generating algorithm.

3.4.2 Continuous case with two products

We start with the following lemma.

Lemma 3.24. There exists an optimal schedule for LSP(C,2) that is a simple cycle.

50 high multiplicity scheduling

Proof. Consider a minimal counterexample S∗ consisting of the production
periods [0, t1]1, [t1, t2]2, [t2, t3]1, [t3,C]2, where t1 6= (t3 − t2). Now denote
A1 = (t1 + t3 − t2)/2 and consider the schedule

S = [0,A1]1, [A1,C/2]2, [C/2,C/2+A1]1, [C/2+A1,C]2 ,

which is obtained from S∗ by replacing the two production periods of each
product by two production periods with averaged length. Since S∗ is fea-
sible, we have that π[0,t1]

1 + π
[t2,t3]
1 > Cd1 and π[t1,t2]

2 + π
[t3,C]
2 > Cd2. Let

π
[0,A1]
1 = d1C/2 in S to cover the demand for product 1 during the first

two production periods. Let the production during the other production
periods be similar. Clearly, S is feasible. Note that (t2 − t1) + (C − t3) =

(C/2−A1) + (C−C/2−A1), i.e., the sum of the lengths of the production
periods for product i in S, is equal to that in S∗.

Now suppose there is in S∗ a production period [a,b] for product 1 with
qa1 (S

∗) > 0. Then during the production period [x,a]2, holding costs in-
crease by qa1 (S

∗)h1(x− a) compared to S and thus c̄(S) < c̄(S∗).
Next, suppose qai (S

∗) = 0 for every production period [a,b]i. It is easy
to see that holding costs for product 1 are only paid during production
periods for 2 and during the non-empty phase where product 1 is produced
at rate p1. The same result holds for product 2. Note that the sum of the
lengths of the production periods for product i in S, is equal to that in S∗

and holding costs are linear. Hence, the area under the curve of the function
of the holding costs over time, is the same in S as in S∗, thus c̄(S) 6 c̄(S∗).

Observe that S consists of two simple cycles S ′ and S ′′ with S ′ = S ′′.
Thus S ′ is a feasible simple cycle with the same unit costs as S. �

For the rest of this section we assume without loss of generality that
h1 < h2, and we only consider simple cycles. Next we show that an optimal
schedule for LSP(C,2) consists of at most three phases.

Lemma 3.25. There exists an optimal schedule for any LSP(C,2) instance of the
form

S∗ = [0, t1]
p1
1 , [t1, t2]

d2
2 , [t2,C]p22 , (3.4)

where the second phase is empty if and only if d1/p1 + d2/p2 = 1.

Proof. Let S be an optimal cycle with four non-empty phases, i.e.,

S = [0, t1]
p1
1 , [t1, t2]

d2
2 , [t2,C]p22 , [C, t3]

d1
1 .

3.4 optimal solutions for few products 51

Consider the schedule consisting of only the first three phases, i.e., we re-
move [C, t3]

d1
1 . Note that π[t2,C]

2 = d2 (t1 + (t3 −C)) > d2t1. Hence the
total amount of production for product 2 can be lowered by (t3 −C)d2, by
decreasing the length of phase [t2,C]p22 . Let α = (t3 −C)d2/p2 and let

S∗ = [0, t1]
p1
1 , [t1, t2 +α]

d2
2 , [t2 +α,C]p22 .

Clearly S∗ is feasible and c̄(S∗) < c̄(S).
If d1/p1 + d2/p2 = 1 the schedule is tight and demand can only be met

by producing at maximum rate, which implies [t1, t2 +α]
d2
2 is empty.

If d1/p1 + d2/p2 < 1, there has to be a phase in which the machine does
not produce at maximum rate, to avoid overproduction. By Lemma 3.24

there are at most two phases of production at rate d1 and d2 respectively.
Since h1 < h2, by the above reasoning we introduce only one phase where
we produce d2 in order to minimize costs. �

Using this result we calculate the optimal cycle length and corresponding
costs. Define

c̄(t) =

(
h1(p1 − d1)

2
+
h2d1d2
2p1

(
1+

d2
p2 − d2

))
t+

(
(s1,2 + s2,1)

d1
p1

)
1

t
,

and

t∗ =

√√√√ 2(s1,2 + s2,1)d1

h1p1(p1 − d1) + h2d1d2

(
1+ d2

p2−d2

) . (3.5)

Then we can prove the following theorem.

Theorem 3.26. For LSP(C,2) there exists an optimal schedule of length t∗p1/d1
with average costs c̄(t∗).

Proof. We denote the optimal schedule by S∗ = [0, t]p11 , [t, t ′]d22 , [t ′,C]p22 .
We parametrize on t. Split the schedule in sub-schedules S1 = [0, t]p11 ,

S2 = [t, t ′]d22 and S3 = [t ′,C]p22 . Let ci(S) denote the cost of (sub-)schedule
S for product i. Note that qC1 = q01 = qt2 = qt

′
2 = 0, qC2 = q02 = d2t and

52 high multiplicity scheduling

qt1 = t(p1 − d1) and qt
′
1 = qt1 − d1(t

′ − t). We calculate the average cost
c̄(t) of S∗ as follows.

c̄(t) =
1

C
(c1(S

∗) + c2(S
∗) + s1,2 + s2,1)

=
1

C
(c1(S1) + c1(S2 + S3)) +

1

C
(c2(S1) + c2(S3)) +

s1,2 + s2,1

C

=
1

C

(
h1
1

2
t2(p1 − d1) + h1

1

2
t(p1 − d1)(C− t)

)
+
1

C

(
h2
1

2
t2d2 + h2

1

2

d2t

p2 − d2
d2t

)
+
s1,2 + s2,1

C

=
h1t(p1 − d1)

2
+
h2t

2d2
2C

(
1+

d2
p2 − d2

)
+
s1,2 + s2,1

C

=

(
h1(p1 − d1)

2
+
h2d1d2
2p1

(
1+

d2
p2 − d2

))
t1

+

(
(s1,2 + s2,1)

d1
p1

)
1

t1
.

Since c(t1) is convex this expression is minimized when dc(t1)
dt1

= 0. We
find Eq. (3.5) and thus the optimal average costs are equal to c̄(t∗). �

3.5 approximation algorithms

Note that already for two products the optimal schedule can have pseu-
dopolynomial length. This poses an inherent problem in processing the
problem in polynomial time, particularly in outputting the schedule in
polynomial time.

In this section, we overcome these difficulties and present two approxi-
mation algorithms: First, we augment the problem and solve this to optimal-
ity, yielding an augmented polynomial time approximation scheme (PTAS,
cf. Definition 1.5) for the discrete case (cf. Remark 3.29). Next, we convert
the augmented discrete solution into a feasible solution for the continuous
case, yielding a polynomial time approximation algorithm. In both cases,
the schedule produced has polynomial length. The algorithm constructs so-
lutions in polynomial time given a constant number of products. Observe
that the latter is a reasonable assumption: in real-life instances the number
of products is relatively small. Throughout this section we assume S∗ is an
optimal cyclic schedule of length ` and qti for i ∈ J and t = 0, . . . , ` − 1
denotes the optimal stock level in S∗.

3.5 approximation algorithms 53

The general idea is to augment the production and demand rates, i.e., we
allow for slightly higher production rates and modestly adjusted demand
rates. For a given δ > 0, we lift the stock levels qti for all i and t to powers
of (1+ δ), and use augmentation to keep the schedule feasible. For every
time unit t we generate states, which are defined by stock levels qti for each
product i ∈ J and the product being produced. By Lemma 3.20, the maxi-
mum stock level is bounded by Q, yielding a polynomial number of states.
With these states, we create a state-graph and find a minimum mean cycle
using Karp’s algorithm [68], in order to get an optimal schedule for the
augmented version of LSP(D,n). Finally, we balance the resulting schedule
such that it becomes a close to optimal solution for LSP(D,n) and a fea-
sible schedule for LSP(C,n). See Algorithm 3.1 for the pseudocode of the
algorithm.

Let a state Si = (q1, . . . ,qn) be defined as an ordered set of stock levels
qj for each product j ∈ J, where subscript i ∈ J denotes the last product
which has been produced before reaching the current state. Let dti denote
the augmented demand for a product i ∈ J in time unit t. For each time unit
t and a product i which is produced, we allow for augmented production
rates rti such that the total augmented production is no more than (1+ δ)

times the total production in a feasible schedule. Specifically, we require
that augmented production satisfies the following two conditions.

rti < pi + δ(q
t
i + pi − di) , (3.6)

`−1∑
t=0

rti − d
t
i < `(pi − di)(1+ δ) . (3.7)

The first equation ensures for each time unit an upper bound on the aug-
mented production rate, such that the next power of (1+ δ) can be reached
for the stock level. Note that this actually augments the stock level rather
than the production rates. In order to limit the total augmentation in terms
of the production rates, the latter equation ensures that the total production
in the augmented schedule is not more than (1+ δ) times the maximum
possible production in the non-augmented schedule. This is to ensure that
in practice we get an augmented schedule which is reasonably achievable
with respect to the original input data.

Additionally, for each time-unit t with product i that is not produced
during t, for augmented demand rates dti > 0 it must hold that

qti − di
qti − d

t
i

6 1+ δ . (3.8)

54 high multiplicity scheduling

Algorithm 3.1: Augmentation Algorithm AugAlg
Input: A set P of n products with demand rates di, maximum

production rate pi and holding costs hi for all i ∈ P.
Output: Augmented schedule SD and schedule SC.

1 Create the set S of all states Si = (q1, . . . ,qn) Let E = ∅ be the set of
state-edges

2 foreach pair of states Si,Sj ∈ S do
3 if Si(qj) − dj < Sj(qj) 6 (Si(qj) + pj − dj)(1+ δ) then
4 if (Si(qk) − dk)/(1+ δ) 6 Sj(qk) 6 (Si(qk) − dk)for every

k 6= j ∈ P then
5 Create directed edge e = (Si,Sj) with cost

ce = sij +
1
2

∑
k∈J

(
Si(qk) + Sj(qk)

)
6 Find the minimum mean cycle C∗ in S using Karp’s algorithm, cf. [68],

discarding edge progressions which do not admit Eqs. (3.6) to (3.9)
Extract augmented schedule SD from C∗

7 Let all demands dti ← di and decrease production rates such that
rti 6 pi and

∑`−1
t=0 r

t
i − di 6 0 For each product i with

∑`−1
t=0 r

t
i < `di,

uniformly increase production rates rti < pi until
∑`−1
t=0 r

t
i = `di or

rti ← pi for all t Let SC ← SD be a Continuous schedule with xt the
length of time slot t

8 foreach i ∈ J such that
∑`−1
t=0 r

t
i < `di do

9 Simultaneously increase all xt in SC where rti > 0 and decrease all
xt
′

where rtj > 0 for all j 6= j ∈ J such that
∑`−1
t=0 r

t
j > `dj remains

true, until
∑`−1
t=0 r

t
i = `di

10 return SD,SC

3.5 approximation algorithms 55

This equation ensures that demand rates are not increased more than nec-
essary in order to retain stock levels within a factor of (1+ δ). Moreover, for
all time units t and products i, we require the following to ensure that the
total demand in the augmented schedule is not more than (1+ δ) times the
total demand in the non-augmented schedule, i.e.,

`di 6
`−1∑
k=0

dki . (3.9)

Note that transgressing from one state to the next is equivalent to a single
time-unit in a schedule for the discrete case. Let each edge (Si,Sj) have
costs sij + 1

2

∑
k∈J hk

(
Si(qk) + Sj(qk)

)
. Note that here sii = 0.

We now describe the algorithm (cf. Algorithm 3.1). In the first step of
AugAlg, an augmented state-graph is constructed, with a state for each
combination of stock levels qi for each product i, such that qi 6 Q(1+ δ)

and qi is a power of (1 + δ), where Q is the maximum stock level as in
Lemma 3.20. Let Si be a state in the optimal schedule with Si(qj) the stock
level for product j in Si.

An edge is added from state Si to Sj if and only if Si(qj) − dj < Sj(qj) 6
(Si(qj)+pj−dj)(1+ δ) and (Si(qk)−dk)/(1+ δ) 6 Sj(qk) 6 (Si(qk)−dk)

for all k 6= j ∈ J.
Recall Karp’s algorithm for finding a minimum mean cycle in a digraph.

The algorithm uses a dynamic program to compute values Fk(v) for each
vertex v and each 0 6 k 6 n, where Fk(v) denotes the minimum weight of
an edge progression of length k from some arbitrarily chosen vertex s to v.
Using these values the algorithm computes the minimum mean cycle. We
slightly adjust the dynamic program in Karp’s algorithm: Upon evaluating
the computed values Fk(v), discard any of these edge progressions which
do not admit Eqs. (3.6) to (3.9), ensuring that these conditions hold for the
minimum mean cycle returned by the algorithm.

Observe that the minimum mean cycle returned by Karp’s algorithm
constitutes a feasible augmented schedule to the problem.

Lemma 3.27. Let S be a schedule for LSP(D,n) and let ε > 0. There exists an
augmented schedule S ′ such that c̄(S ′) 6 (1+ ε)c̄(S).

Proof. Let S be a schedule for LSP(D,n) and let qtj(δ) > q
t
j(S) be the nearest

power of (1+ δ) greater than qtj(S). Note that by Lemma 3.12, each product
i in both the augmented and the non-augmented solution must have at
least one point where its stock level is zero. Denote this point as time-unit

56 high multiplicity scheduling

0i with q0ii (S ′) = q0ii (S) = 0. For each product i ∈ J, starting at zero stock
level q0ii (S) successively change rates rti(S) and di to rti(S

′) and dti(S
′) for

each time-unit t as follows.

• If qti(δ) = q
t
i(S) then let rti(S

′) remain the same as in S.

• Otherwise, if product i is produced, let the production rate be rti(S
′)←

rti(S) + q
t
i(δ) − q

t
i(S). However, since we want to bound the increase

of the costs of the augmented schedule, we bound the stock level
throughout the augmented schedule. For every product, for each of
its production periods, we ensure that the cumulative amount of
stock up to that point is no more than (1+ δ) times the correspond-
ing original stock. Thus, if

∑t−1
k=0

(
rki (S

′) − di
)
+ (qti(δ) − q

t
i(S)) >

t(pi − di)(1 + δ), then choose rti(S
′) such that qti(S

′) becomes the
largest power of (1+ δ) such that qti(S

′) < qti(δ).

• If i is not produced, choose the smallest dti(S
′) > di such that qti(S

′)

is a power of (1+ δ).

Observe that every stock level in S is a power of (1+ δ) and the schedule
is feasible. Since every stock level increased by at most (1+δ), the total costs
for the schedule are increased by at most c(S)δ. Choosing ε = δ proves the
lemma. �

Applying the above lemma to an optimal schedule and bounding the
running time of AugAlg yields the following result.

Theorem 3.28. Let S∗ be an optimal schedule for LSP(D,n) and let ε > 0. AugAlg
finds an augmented schedule SD for LSP(D,n) such that c(SD) 6 (1+ ε)c(S∗)

in time O
((

log1+δ(Q)
)n
n2
)
.

Proof. Consider AugAlg and observe that the algorithm finds a schedule
SD such that c̄(SD) 6 (1+ ε)c̄(S∗), where S∗ is the optimal schedule, as in
Lemma 3.27.

Note that there are O((log1+δ(Q))nn) states in S, and thus there are at
most O((log1+δ(Q))nn2) edges. Karp’s algorithm runs in O(m+ n) time,
where m is the number of edges in the graph, proving the theorem. �

Remark 3.29. Although formally the running time is not polynomial, recall
that n is typically a small constant in instances of this problem. Therefore,
for all practical purposes, the running time can nevertheless be considered
to be polynomial in the input size.

3.5 approximation algorithms 57

Using AugAlg, we construct a polynomial time approximation algorithm
for the continuous problem. To this end, we need to bound the costs of an
optimal discrete schedule in terms of an optimal continuous schedule.

Lemma 3.30 (Pseudopolynomial ratio). Given an instance of the lot sizing
problem, let SD and SC be the optimal schedules for LSP(D,n) and LSP(C,n)
respectively. Then, there is a polynomial ξ([pi]J, [di]J, [hi]J, [sij]J×J), such that
c̄(SD) 6 ξ · c̄(SC).

Proof. From Lemma 3.17 and Lemma 3.19 we know that c̄(SC) > ϕ1 and
c̄(SD) 6 ϕ2 for given polynomials ϕ1 and ϕ2. Hence c̄(SD)

c̄(SC)
6 ϕ2
ϕ1

, which is
bounded by a polynomial ξ in [pi]J, [di]J, [hi]J, and [sij]J×J. �

We can now formulate the following theorem.

Theorem 3.31. Let S∗ be an optimal schedule for LSP(C,n) and let ε > 0. AugAlg
finds a feasible schedule SC for LSP(C,n) of polynomial length such that c(SC) 6
(1+ ε)ξc(S∗) in time O

((
log1+δ(Q)

)n
n2
)
.

Proof. Ensure that
∑
i∈J

di
pi
6 1, otherwise there exists no feasible sched-

ule. Run AugAlg to get an augmented schedule SD for the corresponding
instance of LSP(D,n). Observe that the schedule is a feasible augmented
schedule for LSP(C,n).

First, lower the demand and production rates to feasible values, i.e., let
all demands dti ← di and decrease production rates such that rti 6 pi.
Next, for each product i for which total production does not cover total
demand, i.e., for which

∑`−1
t=0 r

t
i < `di, uniformly increase production rates

rti < pi until demand is satisfied, i.e.,
∑`−1
t=0 r

t
i = `di, or until rti = pi for

all t. Denote the schedule obtained after this transformation by S ′D. Since
demand and production rates are decreased by at most a factor of (1+ δ),
overproduction in S ′D is no more than (1+ δ)`(pi − di), therefore the costs
are bounded as c(S ′D) 6 (1+ δ)c(SD).

Note that if
∑`−1
t=0 r

t
i < `di, we cannot satisfy total demand for product i

and the lengths of production periods will need to be adjusted. Let xt de-
note the length of time slot t. Clearly, there are ` time slots. For each product
i ∈ J such that

∑`−1
t=0 r

t
i < `di, we will increase all production lengths xt

where rti > 0 to meet the demand of product i. To retain feasibility for all
products j 6= i ∈ J, we increase production rates and shorten production
periods where possible, whilst keeping the schedule length constant. For
each product j ∈ J such that

∑`−1
t=0 r

t
j > `dj, we consider the following

three numbered categories:

58 high multiplicity scheduling

1 For all t where 0 < rtj < pj, we will increase rtj and decrease xt

such that total production in xt remains unchanged, at most up to
the point where rtj = pj.

2 If
∑`−1
t=0 r

t
j > `dj and rtj ∈ {0,pj} for all t, we will decrease lengths

of production periods xt with rtj > 0, at most up to the point where∑`−1
t=0 r

t
j = `dj.

3 If
∑`−1
t=0 r

t
j = `dj and rtj ∈ {0,pj} for all t, the schedule is tight for this

product.

For each i ∈ J such that
∑`−1
t=0 r

t
i < `di, simultaneously increase all xt

where rti > 0, increase rtj and decrease xt for all products j as in Cate-
gory 1, and decrease xt for all products j as in Category 2, while keeping the
schedule length ` constant. Note that the category number of a production
period can only be increased by applying the transformation. Hence, since∑
i∈J

di
pi
6 1, and each production period can be categorised as above, this

transformation terminates successfully. Finally, for any product which is
produced more than the total demand throughout the cycle, we uniformly
decrease production rates for this product - without altering the length of
the production period - until demand is met exactly. We denote the result-
ing schedule by SC. For the remainder of this proof we assess the quality
of SC.

First look at a single increment of length α 6 δ for a time-unit t where
i is produced and

∑`−1
t=0 r

t
i(S
′
D) < `di. Let ctj(S) denote the costs for a

product j ∈ J during time slot t in a schedule S. Since the production rate
is increased in the transformation by a factor (1+ α), the costs for product
i at time slot t are bounded by (1+ α)cti(S

′
D). Similarly, the cost for each

product j 6= i ∈ J is increased to at most (1+α)ctj(S
′
D). At the end of every

production period, stock levels in SC are not increased compared to stock
levels in SD.

Secondly, look at a single decrement of α for a time-unit t where i is
produced. Clearly, the costs cti(SC) do not increase. Furthermore, the costs
ctj(S) for each product j 6= i ∈ J are neither increased. Since the production
period is shortened, the stock level for each product j 6= i at the end of the
production period is increased. In a worst case scenario, this extra stock
needs to be carried throughout the entire schedule. Hence, for each decre-
ment of α, for each product j 6= i, total costs for the product in the entire
schedule can be increased by at most αdjhj`. Observe that αdjhj` 6 δcj(S).

3.6 concluding remarks 59

Recall that the maximum increment for a single time-unit is at most δ.
Each product for which time units are increased, increases total costs for all
products by at most δc(S ′D). Furthermore, for each product for which time-
units are decreased, costs increase by at most δc(S ′D) in total. Thus AugAlg
produces a feasible schedule S for LSP(C,n) of costs at most (1+nδ)c(S ′D).
From Lemma 3.30 we know that c̄(SD) 6 ξc̄(S∗).

Hence, c(SC) 6 (1 + nδ)c(S ′D) 6 (1 + nδ)(1 + δ)c(SD) 6 (1 + nδ)(1 +

δ)2ξc(S∗). Choosing ε such that (1+ ε) = (1+ nδ)(1+ δ)2 proves the theo-
rem. �

Like in Remark 3.29, we remark that although the running time is not
polynomial in the input size, for all practical purposes it can be considered
to be polynomial nonetheless.

3.6 concluding remarks

This chapter combines the hardness of high multiplicity encoding with
sequence-dependent setup costs, both of which are natural properties of
real-life problems. Not only does this introduce hardness akin to the Trav-
elling Salesperson Problem, but due to the compact encoding it is not
clear whether or not a polynomially sized certificate can be constructed,
even for very restricted cases. We discussed the complexity of the problem
and presented structural properties largely characterizing optimal sched-
ules, which can be used for future algorithms and computational experi-
ments. We presented a polynomial time augmented approximation scheme,
which finds (1+ ε)-approximate augmented solutions for the discrete vari-
ant of the problem, and ξ-approximate solutions for the continuous case.
In contrast to the known complexity of the problem, the algorithm runs in
polynomial time and yields schedules of polynomial length.

It is unclear whether it can be guaranteed that an optimal schedule exists
at all. Consider the case of LSP(C,2), where the optimal schedule is already
irrational even under rational input values. Is it possible that due to the
irrationality of the cost-balance, the optimal schedule for LSP(C,3) has in-
finite length? Can it nevertheless be approximated with a finite schedule?
Considering instances with 2 products, can we characterize the optimal so-
lutions for the discrete and the fixed case? We conjecture this is possible to
achieve using techniques similar to the ones used in this chapter.

Alternatively, consider the settings where we explicitly make assump-
tions concerning the input instances. For instance, if the sequence is given,

60 high multiplicity scheduling

e.g. using a TSP-oracle, is it possible to find an (approximately) optimal
solution for all cases in polynomial time? Or if the sequencing costs have a
lexicographical ordering (e.g. when the products only differ in colour and
setting up the machine when switching between two similar colours costs
less), can we obtain stronger results?

Regarding the complexity of the problem, we conjecture that this prob-
lem is contained in a higher complexity class than NP: Already for LSP(F,1)
and LSP(C,2), the optimal schedule can be of non-polynomial length. Al-
though the schedule for these cases can still be represented in polynomial
time, it is uncertain if this can be done for arbitrary numbers of products.
Furthermore, consider the following decision problem: Does there exist an
optimal cyclic schedule of average costs k? It is unclear whether this deci-
sion problem is contained in NP, and how an adequate polynomial certifi-
cate for a NO-instance can be constructed.

4
V E C T O R S C H E D U L I N G

4.1 introduction

We consider the Vector Scheduling problem defined as follows. The in-
put consists of a collection J of n jobs p1, . . . , pn, viewed as d-dimensional
vectors from [0, 1]d, and m identical machines. The goal is to find an as-
signment of the jobs to the machines that minimizes

∥∥∥∑p∈Pi p
∥∥∥∞ for each

machine i ∈ {1, 2, . . . ,m}, where Pi is the set of jobs assigned to machine
i. By a scaling argument we can assume without loss of generality that∥∥∥∑p∈Pi p

∥∥∥∞ 6 1, that is, the maximum load on any machine in any coor-
dinate is at most 1.

Vector Scheduling is the natural multi-dimensional generalization of
the classic Multiprocessor Scheduling problem (also known as makespan
minimization, P||Cmax, or load balancing). In the latter problem, the goal
is to assign n jobs with arbitrary processing times to m machines in or-
der to minimize the maximum sum of processing times (load) over all the
machines. However, for many applications, the jobs may use different re-
sources and the load of a job cannot be described by a single aggregate
measure. For example, if jobs have both CPU and memory requirements,
their processing requirement is best modelled as a two-dimensional vector,
where the value in each coordinate corresponds to each of the requirements.
Note that the assumption that the maximum load of a machine in any co-
ordinate is 1 is without loss of generality, as the different coordinates can
be scaled independently.

In this chapter we are again concerned with approximation algorithms.
In this context, we say that an algorithm is an α-approximation for some
α > 1 if it finds an assignment with maximum load at most α times the
maximum load of an assignment with minimum maximum load. Again by
a scaling argument, we can assume this is the case if the algorithm finds an
assignment with maximum load at most α whenever there exists a feasible
schedule with maximum load 1.

61

62 vector scheduling

4.1.1 Previous work

Multiprocessor Scheduling and the related Bin Packing problem are
two of the most fundamental problems in combinatorial optimization with
a long and rich history. We only describe the work on Multiprocessor

Scheduling in the setting where the number of machines m is part of the
input. It is well-known that Multiprocessor Scheduling is strongly NP-
hard [43].

The first polynomial time approximation scheme (PTAS, cf. Definition 1.5)
was obtained by Hochbaum and Shmoys [61]. The running time of their
algorithm is O(nO(1/ε2)). Note that by the strong NP-Hardness of the prob-
lem one cannot hope to have a running time with polynomial dependence
in ε (i.e. an FPTAS), unless P=NP.

An efficient polynomial time approximation scheme (EPTAS) was im-
plicit in [61] by replacing the dynamic program by an integer linear pro-
gram and using fast integer programming algorithms in fixed dimensions.
Alon et al. [4] developed a more general framework to obtain EPTASes for
parallel machine scheduling that runs in f(ε) +O(n) time, where f(ε) is a
double exponential function in 1/ε.

Recently, this running time was substantially improved by Jansen [65]
to O(2Õ(1/ε2) + nO(1)). His main idea is to use fast integer programming
in fixed dimensions, together with an elegant result of Eisenbrand and
Shmonin [31] about the existence of optimum integer solutions with small
support. Most of these results also extend to the setting of uniform ma-
chines, i.e. a setting where the machine speeds differs (see e.g. [62, 65]).

Fewer results are known for the case when the number of dimensions ex-
ceeds one. Chekuri and Khanna [23] gave the first polynomial-time approx-
imation scheme for a fixed number of dimensions. They gave an algorithm
with running time ng(ε,d), where g(ε,d) = (1/ε)d log logd+o(d) and hence
the running time is n(1/ε)Õ(d)

. This seems to be the currently best known
running time for this problem. PTASes for several other generalizations are
also known [15, 32, 33].

When d is part of the input, Chekuri and Khanna [23] gave a polynomial
time O(ln2 d)-approximation and proved that it is NP-hard to approximate
the problem within any constant factor. This approximation factor has been
recently improved to O(logd) by Meyerson et al. [81]. The latter result even
holds in the online setting.

4.1 introduction 63

4.1.2 Our contribution

A natural question is whether there exists an approximation scheme for
Vector Scheduling with a single exponential running time in 1/ε and d,
e.g. exp(poly(1/ε,d)). We rule out this possibility by showing the following
strong lower bound.

Theorem 4.1. For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is no
(1 + ε)-approximation algorithm with running time O

(
2o((1/ε)

d/3)(nd)O(1)
)

for Vector Scheduling in d > d(ε) dimensions, unless the Exponential Time
Hypothesis (ETH) fails.

This follows from a relatively simple reduction from the 3-Dimensional

Matching problem. The same reduction also implies the following hard-
ness under a more standard complexity assumption.

Theorem 4.2. For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is
no (1+ ε)-approximation algorithm with running time O

(
2(1/ε)

o(d)
(nd)O(1)

)
for Vector Scheduling in d > d(ε) dimensions, unless NP has subexponential
time algorithms, i.e. NP ⊆ ∩ε>0DTIME(2n

ε
).

One may wonder whether these lower bounds are robust or whether they
crucially exploit the fact that no additional machines are allowed. It is in-
structive to consider the case of d = 1 (i.e. Multiprocessor Scheduling).
Recall that no FPTAS is possible for the problem. However, if one allows
some extra machines (say dεme of them), then the running time depen-
dence on ε reduces dramatically and in particular, an FPTAS is possible. In
fact, the known FPTASes for Bin Packing imply that even very few extra
machines (poly-logarithmic in m) suffice [67, 88], and in fact one does not
even need to violate the capacity of any machine.

Somewhat surprisingly, we show that extra machines do not help for
Vector scheduling, provided that the desired approximation ratio is suf-
ficiently small.

Theorem 4.3. For any ε < ε0 with 1/ε ∈N, there is a d(ε) such that there is no
(1+ ε)-approximation algorithm with running time O

(
2(1/ε)

o(d)
(nd)O(1)

)
for

Vector Scheduling in d > d(ε) dimensions, even with dεme extra machines,
unless NP has subexponential time algorithms, i.e. NP ⊆ ∩ε>0DTIME(2n

ε
),

where ε0 < 1 is a universal constant. Assuming the ETH, no such algorithm
can run in time O

(
2(o(1/ε)

d/6)(nd)O(1)
)

.

64 vector scheduling

To complement the lower bounds above, we show the following algorith-
mic result.

Theorem 4.4. For any ε > 0 and d > 1, there is a deterministic (1 + ε)-
approximation algorithm for d-dimensional Vector scheduling that runs in
time O

(
2(1/ε)

O(d log logd)
+nd

)
.

By the lower bounds above, the running time is essentially the best pos-
sible (modulo the O(log logd) factor in the exponent), and the nd term
is simply the time required to read the input. Theorem 4.4 gives the first
EPTAS for Vector Scheduling.

Techniques

At a high level, the algorithm is similar to that of [65], and relies on integer
programming in fixed dimensions and the existence of optimum integer so-
lutions with small support. However, there are some important differences
between d = 1 and d > 1. In particular, for d = 1 the small jobs (with
size 6 ε) do not cause any problems and can later be assigned greedily in
the remaining space, after solving the problem for just big jobs. However,
for d > 2, the big and small jobs (by small we mean jobs that are small in
every dimension) interact in more complex ways and must be considered
together. The following example illustrates this difficulty.

Example 4.5. Consider the following instance in d = 2 dimensions, with
m = 2 machines and the following jobs: p1 =

(
1
2 , 0
)

, p2 =
(
1
2 , 0
)

and
pi =

(
ε
2 , ε
)

for 3 6 i 6 2/ε. Clearly, these jobs can be scheduled on two ma-
chines by assigning the first two jobs to separate machines and splitting the
small jobs evenly, see Fig. 4.1. However, if the two large jobs are assigned
to the same machine, there is no assignment of the small jobs such that the
maximum load of the machines is exceeded by a constant factor dependent
on ε. The two large jobs have total load (1, 0). As the small jobs have total
load (1, 2), no matter how these are assigned to the two machines, one ma-
chine will have load at least min {max{1+ x, 2x}, max{1− x, 2(1− x)}}, which
is 4/3 (attained for x = 1/3).

Chekuri and Khanna [23] overcame this problem by ‘guessing’ the divi-
sion between small and large jobs for each machine. This allows them to
decouple the assignment of small and big vectors. However, as there are
roughly m(1/ε)d different possible divisions, with ε precision, this is not
useful to obtain an efficient polynomial time approximation scheme.

4.2 preliminaries 65

v1 v2 vi

for 3 ≤ i ≤ 14

Figure 4.1: A feasible schedule for the instance of Example 4.5.

To get around this, we incorporate both large and small vectors in our
mixed integer linear program (MILP), but ensure that it has only few con-
straints by tracking only some coarse-grained information for the small
jobs. We find an optimum solution to this MILP, which gives an integral
assignment of large jobs, but small jobs might be assigned fractionally. We
then show how to assign the small jobs to machines without overloading
them. To do this, we first assign the jobs greedily guided by a potential func-
tion, which guarantees that the aggregate amount of overload on machines
is small. This load is small enough to ensure that the jobs on overloaded
machines can be redistributed in a round-robin manner. A naive implemen-
tation of the greedy assignment requires O(mn) time (as for each job, we
need to determine which machine causes the least increase in potential), so
we also present some additional ideas to show how everything can be done
in linear time.

Organization

In Section 4.2 we state our notation and the hypotheses on which our lower
bounds are based, and we describe the relevant background on integer pro-
gramming. In Section 4.3 we prove our lower bounds for Vector Schedul-
ing and we present our algorithm in Section 4.4.

4.2 preliminaries

Let [n] denote the set of positive integers 1 to n, i.e. [n] := {1, . . . ,n}. Let
1 be the all-ones vector. For a d-dimensional vector v = (v1, . . . , vd), let vj
denote its j-th coordinate. For two vectors a, b we say that a 6 b if ai 6 bi

66 vector scheduling

for all i. Throughout the chapter the logarithm log is taken with base 2 and
we let exp(x) denote 2x. We say that a function f(n) is sub-exponential if
f(n) ∈ O(2O(no(1))). Without loss of generality we assume that the number
of machines is less than the number of jobs (otherwise assign one job per
machine or conclude infeasibility).

In the 3-CNF-Sat problem, we are given a Boolean expression in conjunc-
tive normal form, consisting of N variables and M clauses that each consist
of 3 literals. The question is whether or not there exists an assignment of
logical values to the variables such that the expression evaluates to TRUE.
Impagliazzo, Paturi, and Zane [64] formulated the Exponential Time Hy-
pothesis, which in combination with the sparsification lemma [19] can be
stated as follows.

Hypothesis 4.6 (Exponential Time Hypothesis (ETH) [64]). There is a positive
real s such that 3-CNF-Sat with N variables and M clauses cannot be solved in
time O(2sM(N+M)O(1)).

We will use the following well-known result for fast integer linear pro-
grams with few integer variables.

Theorem 4.7 (Lenstra [75], Kannan [66], Frank and Tardos [39]). Consider
a mixed-integer linear program min{cTx | Ax > b and ∀i ∈ I : xi ∈ Z} with
n variables and m constraints, and where I ⊆ [n] denotes the set of indices of
integer variables. Let s denote the binary encoding length of the input. There is an
algorithm that finds a feasible solution or decides that there is no feasible solution
in O(n2.5n+o(n) · s) arithmetic operations.

Relatively recently, based on an elegant pigeonhole argument, Eisenbrand
and Shmonin [31] showed that every feasible integer linear program has an
optimum solution with small support.

Theorem 4.8 (Eisenbrand and Shmonin [31]). Let min{cTy|Ay = b, y >
0, y ∈ Zn} be an integer program, where A ∈ Zm×n and c ∈ Zn. If this integer
program has a finite optimum, then there exists an optimal solution y∗ ∈ Zn>0 in
which the number of non-zero components is at most 2(m+ 1)(log(m+ 1) + s+

2), where s is the largest size in binary representation of any coefficient of A and c.

4.3 lower bounds on the running time

We prove our lower bounds by a reduction from 3-Dimensional Matching

(3-DM) to Vector Scheduling. In Section 4.3.1 we prove Theorem 4.1 by

4.3 lower bounds on the running time 67

describing the reduction and proving that an approximate solution to the
Vector Scheduling instance implies an exact solution for 3-DM and hence
3-CNF-Sat. In Section 4.3.2 we outline how the same reduction implies
Theorem 4.2. Finally, in Section 4.3.3 we give the proof for Theorem 4.3
concerning resource augmentation.

Before we give our reduction, we first define the 3-Dimensional Match-
ing problem. An instance of 3-DM consists of three disjoint sets X, Y, and
Z, satisfying |X| = |Y| = |Z| := q, and a set T ⊂ X× Y ×Z of triples. The goal
is to find a subset of triples T ′ ⊂ T such that each element of X, Y, and Z
occurs in exactly one triple of T ′.

In [43], a reduction from 3-CNF-Sat to 3-DM is given, that transforms
instances of 3-CNF-SAT with N variables and M clauses into instances for
3-DM with q = 6M and |T | = 17M. Therefore, the ETH (Hypothesis 4.6)
implies there is no O(2o(q)|T |O(1)) time algorithm for 3-DM.

4.3.1 Lower bound assuming the ETH

The construction

The main idea of the reduction is the following construction of a Vector

Scheduling instance from 3-DM. For each triple in T we construct a job
(that we call a triple-job), and for each element in X, Y or Z we construct as
many jobs as the number of times this element occurs in the triples (we call
such jobs element-jobs). We explicitly refer to X-jobs, Y-jobs and Z-jobs if we
want to distinguish the element-jobs of the three sets. For each element i,
we designate exactly one of its jobs as the real element-job corresponding
to i, and refer to the other element-jobs of i as dummy jobs. The number of
machines is equal to the number of triples. We will assign sizes to these jobs
such that to obtain a schedule where the maximum load in any coordinate
is at most 1, we need to schedule each triple together with its corresponding
three element-jobs, and moreover these element-jobs are either all real or all
dummy element-jobs.

Let ε > 0 be such that 1/ε is integer. Let b = 1/ε− 1 and let b denote
the vector that has b in every coordinate. By 〈i〉 we denote the (b+ 1)-ary
encoding of the integer i and by 〈i〉 we denote its complement, that is,
〈i〉 := b − 〈i〉. Let 〈i〉j denote the j-th digit from the right of 〈i〉. For ease
of notation, we scale the jobs by a factor b. That is, all jobs are vectors in
[0,b]d and we want to know whether we can schedule the jobs such that the
maximum load in each coordinate is at most b. To make the proofs easier

68 vector scheduling

to read, we rename the elements in the sets X, Y and Z by assuming that
X = Y = Z = {1, . . . ,q}.

The formal reduction

Given an instance (X, Y,Z; T) of 3-DM, let nX(i) denote the number of
triples (x,y, z) for which x = i; in a similar way, we define nY(i) and
nZ(i). For each element i ∈ X, we create nX(i) jobs, one real X-job i and
nX(i) − 1 dummy X-jobs. In a similar way, we create nY(j) Y-jobs for each
element j ∈ Y and nZ(k) Z-jobs for each element k ∈ Z. Finally, we have |T |

triple-jobs, one for each triple l ∈ T . The number of machines is equal to
m := |T |. Note that the total number of jobs is

∑
i∈X nX(i) +

∑
j∈Y nY(j) +∑

k∈Z nZ(k) + |T | = 4|T |.
Recall that |X| = |Y| = |Z| = q, and let ` := dlog(1/ε) qe. We associate a

vector to each of the jobs as in Table 4.1. These vectors are d-dimensional,
where d := 7+ 3`. In particular, the first four coordinates of a job indicate
whether the job corresponds to an element in X, Y, Z or to a triple in T . The
following three coordinates encode for each X, Y, or Z-job whether it is a
real job or a dummy job. The last part of each job encodes the element to
which the job corresponds.

Proof of the reduction

We now show that the reduction has the desired properties.

Lemma 4.9. (Completeness) If the 3-DM instance has a solution, then there exists
an assignment of the jobs to the m machines such that the load on every machine
in each coordinate is at most b.

Proof. Consider the collection T ′ of disjoint triples that cover X, Y and Z.
For each triple (i, j,k) ∈ T ′ we assign the corresponding triple-job and the
real element-jobs corresponding to i, j and k to a single machine. Clearly,
every coordinate on every such machine has load at most b. We place each
of the remaining triples (i, j,k) on a machine with a dummy job for i, for j
and for k. It is easily verified that this is a feasible assignment. �

Lemma 4.10. If the Vector Scheduling instance has a solution with load at
most (1+ ε)b, then there is a solution to the corresponding 3-DM instance.

Proof. Consider any solution with load at most (1 + ε)b. We begin with
various properties of such a solution.

4.3 lower bounds on the running time 69

Job name
Values of the coordinates

T/X/Y/Z Real/dummy Encoding of element(s)

real X-job i: 0,b, 0, 0 b, 0, 0 〈i〉1, . . . , 〈i〉` 0, . . . , 0 0, . . . , 0

dummy X-job i: 0,b, 0, 0 0,b, 0 〈i〉1, . . . , 〈i〉` 0, . . . , 0 0, . . . , 0

real Y-job j: 0, 0,b, 0 0,b, 0 0, . . . , 0 〈j〉1, . . . , 〈j〉` 0, . . . , 0

dummy Y-job j: 0, 0,b, 0 0, 0,b 0, . . . , 0 〈j〉1, . . . , 〈j〉` 0, . . . , 0

real Z-job k: 0, 0, 0,b 0, 0,b 0, . . . , 0 0, . . . , 0 〈k〉1, . . . , 〈k〉`

dummy Z-job k: 0, 0, 0,b b, 0, 0 0, . . . , 0 0, . . . , 0 〈k〉1, . . . , 〈k〉`

triple (i, j,k): b, 0, 0, 0 0, 0, 0 〈i〉1, . . . , 〈i〉` 〈j〉1, . . . , 〈j〉` 〈k〉1, . . . , 〈k〉`

Table 4.1: Construction of the jobs from elements and triples of the 3-DM problem.

Property 4.11. The load is exactly b in each coordinate on each machine.

Proof. The load of each machine is at most (1+ ε)b = b+ b/(b+ 1) < b+ 1.
As all jobs have integer coordinates, the load of each machine is at most b.

Moreover, since
∑
i∈X nX(i) =

∑
j∈Y nY(j) =

∑
k∈Z nZ(k) = |T | = m,

observe that the total amount of work in the i-th coordinate summed over
all jobs is mb. As all jobs are scheduled and the load is at most b, it is
exactly b. �

Property 4.12. Each machine processes exactly one triple-job, one X-job, one
Y-job, and one Z-job.

Proof. This follows immediately from the values in the first four coordinates
and the previous property. �

Property 4.13. Element-jobs assigned to the same machine are either all real
jobs or all dummy jobs.

70 vector scheduling

Proof. From Property 4.11 and the values in the fifth, sixth and seventh
coordinate we see that the following three statements are simultaneously
true:

1. There is exactly one real X-job or dummy Z-job (coordinate 5);

2. There is exactly one real Y-job or dummy X-job (coordinate 6);

3. There is exactly one real Z-job or dummy Y-job (coordinate 7).

The claim now follows by combining this with the fact that by Property 4.12

there is exactly one (real or dummy) job of each of the types X, Y and Z. �

Property 4.14. If a machine processes the triple-job (i, j,k) and a (real or
dummy) element-job a, then a is equal to i, j or k, depending on whether
a is an X, Y or Z-job.

Proof. We only consider the case that a is an X-element; the other cases are
similar. By Property 4.11 and Property 4.12, we know that 〈i〉 + 〈a〉 = b.
Therefore, 〈a〉 = b − 〈i〉 = b − (b − 〈i〉) = 〈i〉 and thus a = i. �

If a machine processes three real element-jobs, then by the last property
the corresponding three elements form a triple in the 3-DM instance. Let
T ′ consist of all triples corresponding to the triple-jobs that are scheduled
together with real elements. Then, the triples in T ′ have no overlap as there
is only one real element-job corresponding to an element. Moreover, T ′

covers all elements, because all jobs, and therefore also all real element-
jobs, need to be scheduled. �

Therefore we have the following lemma.

Lemma 4.15. Given an instance of 3-Dimensional Matching with |X| = |Y| =

|Z| = q, T ⊆ X× Y × Z, b ∈ N+, b > 2 and ε = 1/(b + 1). Then, there is
a polynomial time reduction to an instance of Vector Scheduling with 4|T |
vectors in dimension d := 3

⌈
log(1/ε) q

⌉
+ 7. Moreover, a (1+ ε)-approximate

solution to the Vector Scheduling instance defines a solution to the 3-DM
problem.

Thus, Lemma 4.15 in combination with the ETH and the reduction from
3-CNF-Sat to 3-Dimensional Matching yields the following theorem.

4.3 lower bounds on the running time 71

Theorem 4.1. For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is no
(1 + ε)-approximation algorithm with running time O

(
2o((1/ε)

d/3)(nd)O(1)
)

for Vector Scheduling in d > d(ε) dimensions, unless the Exponential Time
Hypothesis (ETH) fails.

Proof. Suppose that there exists a (1+ε)-approximation for Vector Schedul-
ing that runs in time O

(
exp

(
o((1/ε)d/3)

)
(nd)O(1)

)
. By Lemma 4.15 we

get an O
(
2o(q)|T |O(1)

)
time algorithm for 3-DM, which in turn implies

an O
(
2o(M)MO(1)

)
time algorithm for 3-CNF-Sat, which contradicts the

ETH. �

4.3.2 Lower bound assuming NP has no subexponential time algorithms

Lemma 4.15 also implies the following.

Theorem 4.2. For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is
no (1+ ε)-approximation algorithm with running time O

(
2(1/ε)

o(d)
(nd)O(1)

)
for Vector Scheduling in d > d(ε) dimensions, unless NP has subexponential
time algorithms, i.e. NP ⊆ ∩ε>0DTIME(2n

ε
).

Proof. Any problem in NP of size n can be reduced to an NP-complete
problem of size nO(1) in polynomial time. In particular, any problem P in
NP can be formulated as a 3-DM problem with at most nc elements and
triples, for some constant c.

Suppose, by contradiction, that there exists a (1+ ε)-approximation for
Vector Scheduling that runs in time O

(
exp

(
(1/ε)o(d)

)
(nd)O(1)

)
. Then

setting d equal to log(1/ε)(n
c) + 7 6 c log(1/ε) n+ 7 gives an algorithm for

P with running time O
(

exp
(
(1/ε)o(log(1/ε)(n))

)
nO(1)

)
= O

(
exp

(
no(1)

))
,

which is subexponential. �

4.3.3 Lower bound with resource augmentation

In this subsection we show a lower bound on the running time of (1+ ε)-
approximation algorithms for Vector Scheduling that are allowed resource
augmentation, i.e. besides exceeding the optimal load by a factor (1+ ε), it
is also allowed to use εm extra machines.

To show this, we reduce from a stricter version of 3-Dimensional Match-
ing, namely 3-Dimensional Matching-B, abbreviated as 3-DM-B. In this
problem we are given a set of triples T ⊆ X× Y × Z, where X, Y and Z are

72 vector scheduling

Job name
Values of the coordinates

T/X/Y/Z Real/dummy Encoding of element(s)

real X-job i: 0,b, 0, 0 b, 0, 0 〈i〉1, . . . , 〈i〉`, 〈i〉1, . . . , 〈i〉` 0, . . . , 0 0, . . . , 0

dummy X-job i: 0,b, 0, 0 0,b, 0 〈i〉1, . . . , 〈i〉`, 〈i〉1, . . . , 〈i〉` 0, . . . , 0 0, . . . , 0

triple (i, j,k): b, 0, 0, 0 0, 0, 0 〈i〉1, . . . , 〈i〉`, 〈i〉1, . . . , 〈i〉` 〈j〉 〈k〉

Table 4.2: New construction of the X-jobs and triple-jobs of the 3-DM-3 problem.

disjoint finite sets and each element in X∪ Y ∪Z appears at most B times in
the triples of T . The goal is to find a subset of triples T ′ that maximizes the
number of elements in X∪ Y ∪Z that appear exactly once in T ′.

Theorem 4.16 (Petrank, [85]). For 3-Dimensional Matching-3 it is NP-hard
to distinguish between instances where all elements can be covered by disjoint
triples and those instances where at most a (1− ε3-DM) fraction of the elements
can be covered by disjoint triples, where ε3-DM < 1 is some universal constant.

Using this result we prove the following lemma.

Lemma 4.17. For Vector Scheduling in d > d0 dimensions it is NP-hard to
distinguish between instances where all jobs can be scheduled on m machines with
maximum load 1 and those instances where all jobs can be scheduled on (1+ ε0)m

machines with maximum load 1+ ε0, where 0 < ε0 < 1 and d0 > 1 are some
universal constants and 1/ε0 is integer.

Proof. Construct a Vector Scheduling instance from the 3-DM-3 problem
in almost the same way as for 3-DM. The only difference is that for every
(real or dummy) X-job i and triple (i, j,k), instead of only encoding 〈i〉
respectively 〈i〉, we append this by encoding 〈i〉 respectively 〈i〉 (all other
jobs get extra zero-entries). See Table 4.2. Consequently, if a triple (i, j,k)
is scheduled on a machine where also an X-job x is scheduled, then i =
x. Previously we established this through the fact that the load in each
coordinate is exactly b. However, here we do not have this property because
of the extra machines.

There are at most 3q triples, where q = |X| = |Y| = |Z|. One direction
is clear, if all 3q elements can be covered by disjoint triples then there is a

4.3 lower bounds on the running time 73

schedule of height at most b on m = 3q machines. For the other direction,
suppose we found a (1+ ε)-approximate solution with ε3q extra machines.
Using the same reasoning as before, we now have the following properties:

• The maximum load is b;

• On each machine there is at most one triple, one X-, one Y-, and one
Z-job;

• On each machine, if there are three element-jobs, then all three are
real jobs or all three are dummy jobs;

• If a triple (i, j,k) and an X-job x, Y-job y and Z-job z are scheduled on
the same machine, then i = x, j = y and k = z.

Therefore, every machine on which a triple and three real elements are
scheduled, corresponds to a triple in the solution to the 3-DM-3 problem.

We will now show that there is a universal constant such that it is hard
to distinguish between instances where everything fits on m machines with
maximum load 1 and instances where everything fits on (1+ ε)m machines
with maximum load 1 + ε. Consider the ε3q machines without a triple.
These ε3q machines contain at most ε9q element-jobs. Considering that
there are 3q machines on which 9q− ε9q element-jobs must be scheduled
together with triples, there are at most ε9q machines with a triple but with
at most two elements. Hence, there are at most ε9q+ 2(ε9q) real elements
that are scheduled on either a machine without a triple, or with a triple but
with only one other element. Therefore, at least 3q − ε27q real elements
are scheduled together with triples, which corresponds to q− 9εq disjoint
triples that cover 3q− 27εq elements. If 27ε < ε3-DM, we found a solution
where more than a (1− ε3-DM) fraction of the elements are covered in the
3-DM-3 instance, which is NP-hard. �

Following the proof of Theorem 4.2, this immediately implies the follow-
ing.

Theorem 4.3. For any ε < ε0 with 1/ε ∈N, there is a d(ε) such that there is no
(1+ ε)-approximation algorithm with running time O

(
2(1/ε)

o(d)
(nd)O(1)

)
for

Vector Scheduling in d > d(ε) dimensions, even with dεme extra machines,
unless NP has subexponential time algorithms, i.e. NP ⊆ ∩ε>0DTIME(2n

ε
),

where ε0 < 1 is a universal constant. Assuming the ETH, no such algorithm
can run in time O

(
2(o(1/ε)

d/6)(nd)O(1)
)

.

74 vector scheduling

4.4 linear time approximation algorithm

In this section we describe our linear time algorithm, see Algorithm 4.1.
Roughly, it works as follows. First, we preprocess the instance such that
there are relatively few different types of large jobs at the cost of a small fac-
tor in the approximation guarantee. Next, we formulate and solve a mixed-
integer linear program that assigns large jobs integrally to machines and
small jobs fractionally. In the randomized algorithm, we assign the small
jobs according to the probabilities obtained from the MILP and redistribute
the small jobs on the overloaded machines over the other machines in such
a way that no machine is overloaded. In the deterministic algorithm, we
derandomize this step by assigning the small jobs integrally to machines in
a greedy manner guided by a potential function that tracks the aggregate
overload on the machines. Finally, we distribute this overload evenly over
all machines ensuring the final loads of all machines is at most 1+ ε.

Algorithm 4.1: Linear time algorithm for Vector Scheduling.

1 Preprocess the instance ;
2 Solve the (MILP), and assign big jobs according to this solution ;
3 Assign small jobs to machines randomly according to the probabilities

obtained from the (MILP) solution ;
4 Remove small jobs from the overloaded machines and evenly

distribute them over all machines ;

4.4.1 Preprocessing

The preprocessing uses the same ideas used before in the design of approxi-
mation schemes. Typically, it is much easier to work with a few distinct jobs
as we will see in the the formulation of our mixed-integer linear program.
See Algorithm 4.2.

Algorithm 4.2: Preprocessing for Algorithm 4.1.

1 Round each coordinate of every job down to the nearest power of
(1+ ε) times ε4/d2 (Lemma 4.18) ;

2 Set coordinates of jobs that are small in comparison to the biggest
coordinate to zero (Lemma 4.19) ;

4.4 linear time approximation algorithm 75

The first step is to round all coordinates of each job down to the nearest
power of (1+ ε) times a small polynomial in ε and 1/d.

Lemma 4.18 ([23]). Given a set V of jobs and ε > 0, let W be a modified set of V
where we replace each job v in V with a job w as follows:

wj :=


ε4/d2 · (1+ ε)k if ∃k ∈N :

ε4/d2 · (1+ ε)k 6 vj < ε4/d2 · (1+ ε)k+1 ,

0 otherwise.

Then, for any subset of jobs V ′ ⊆ V with corresponding subset W ′ ⊆W, we have∑
v∈V ′ v 6 (1+ ε)

∑
w∈W ′ w.

Next, we ensure that the non-zero values of coordinates of a job are not
too small compared to the largest coordinate of a job.

Lemma 4.19 ([23]). Given a set V of jobs and η > 0, let W be a modified set of V
where we replace each job v in V with a job w as follows:

wj :=

0 if vj < η ‖v‖∞ ,

vj otherwise.

Then, for any subset of jobs V ′ ⊆ V with corresponding subset W ′ ⊆W, we have∑
v∈V ′ v 6

∑
w∈W ′ w +

(
η
∑

w∈W ′ ‖w‖∞) 1.

The following lemma states that the error due to the preprocessing of any
schedule is small, and follows from the previous lemmata, setting η := ε/d.

Lemma 4.20. Let V be the original set of jobs and W be the preprocessed set of
jobs and ε > 0. Then for any w ∈W and coordinate i ∈ [d],

• if wi 6= 0 then there exists a k ∈N such that wi = ε4/d2 · (1+ ε)k,

• if wi 6= 0 then wi/‖w‖∞ > ε/d.

Moreover, for any subset of jobs V ′ ⊂ V such that
∑

v∈V ′ v 6 1 with corre-
sponding modified subset W ′ ⊆ W, we have

∑
w∈W ′ w 6

∑
v∈V ′ v 6 (1 +

ε)
∑

w∈W ′ w + ε1.

From now on, by job we mean the preprocessed, rounded job.

76 vector scheduling

4.4.2 The mixed-integer linear program

In this subsection we describe our mixed-integer linear program and how
to solve it fast. We distinguish between small and big jobs and treat them
differently. A job p is small if ‖p‖∞ < ε3/d and otherwise the job is big.

As all non-zero coordinates are at most a factor d/ε apart by Lemma 4.20,
the smallest possible coordinate of any big job is ε4/d2. Let Tbig be the set
of all types of big jobs, Tbig := {0, ε4/d2, (1+ ε)ε4/d2, (1+ ε)2ε4/d2, . . . , 1}d.
A big job p has type t ∈ Tbig if and only if p = t. Every big job has a
corresponding type, since the rounding procedure rounded these jobs to
exactly these values.

Similarly, we define a set Tsmall of all types of small jobs. We define the
type of a small job based on its relative size in each coordinate, that is, a
small job p has type t = (t1, . . . , td) ∈ Tsmall if and only if pj/ ‖p‖∞ = tj for
all coordinates j ∈ [d]. As the smallest non-zero coordinate in p/ ‖p‖∞ is
at least ε/d, we define Tsmall := {0, (1+ ε)−`, (1+ ε)−`+1, . . . , (1+ ε)−1, 1}d,
where ` :=

⌈
log(1+ε)(d/ε)

⌉
is such that (1+ ε)−` is the smallest power of

1+ ε that is at least ε/d. Note that each small job has exactly one type in

Tsmall and that there are at most T :=
⌈
4 log(1+ε)(d/ε) + 2

⌉d
types of big

and small jobs.
The mixed-integer linear programming has a variable for every config-

uration, which is a collection of big jobs together with available space for
small jobs. We will call the (rounded) space for small jobs a profile, which
is a vector from F := {0, ε, (1+ ε)ε, (1+ ε)2ε, . . . , 1}d. A configuration C is a
tuple C = (B, f), where B is a multiset of rounded processing times of big
jobs and f is a profile for small jobs such that the big jobs and the profile
fit together on one machine, exceeding the maximum load by only a little,
i.e. (

∑
p∈B pj) + fj 6 (1 + ε) for all coordinates j. As each big job has a

coordinate of at least ε3/d, there can be no more than d2/ε3 big jobs on a
machine. As there at most T types of big jobs, this implies that there are at
most N 6 Tdd2/ε3e · T different configurations.

We now describe our mixed-integer linear program. Let C be the set of
all configurations and let xC denote the number of machines that have jobs
assigned to them according to configuration C ∈ C. Let n(C, t) denote the
number of big jobs of type t in configuration C, and let n(t) denote the total
number of big jobs of type t in the instance. Denote the set of small jobs
of type t assigned to configurations having profile f by J(f, t), and define
the variables yf,t =

∑
p∈J(f,t) ‖p‖∞ as the sum of their largest coordinates,

4.4 linear time approximation algorithm 77

their amount. Let a(t) :=
∑

p:p is of small type t ‖p‖∞ denote the total amount
of small jobs of type t in the instance. Consider the following program.

min
∑
C∈C

xC (MILP)

s.t.
∑
C∈C

xC ·n(C, t) > n(t) ∀t ∈ Tbig (C1)∑
f∈F

yf,t > a(t) ∀t ∈ Tsmall (C2)∑
t∈Tsmall

yf,t · ti/ ‖t‖∞ 6 fi · ∑
C:C=(B,f)

xC ∀i ∈ [d], f ∈ F (C3)

x ∈ ZC

y, x > 0

The first and second constraint ensure that the big and the small jobs
are covered integrally respectively fractionally. The third constraint ensures
that small jobs fit in the machine profiles, as it requires that for each profile
f, the cumulative amount of small jobs of type t that are assigned to f is
at most the total amount of f. These are valid constraints for any feasible
solution.

Lemma 4.21. An optimal solution to (MILP) can be found in time
O
(
exp

(
(1/ε)O(d log logd)

)
· log(nd)

)
.

Proof. First, we bound the number of choices for non-zero integer variables.
To do that, suppose that there is a finite solution and suppose that the
continuous variables yf,t are fixed: this allows us to disregard constraints
(C2), only containing continuous variables. Then introduce slack variables
such that all constraints are equality constraints and the (MILP) matches
the form of Theorem 4.8. For the application of this theorem we can dis-
regard the non-negativity constraints [31]. Thus, we are left with at most
|Tbig|+d|F| 6 (d+ 1)T constraints. The largest size of the coefficients are the
constants n(C, t), ti, ‖t‖∞ and fi, all of which require at most d2/ε3 bits to
describe. By Theorem 4.8 there is an optimal solution such that there are at
most 2 ((d+ 1)T + 1)

(
log ((d+ 1)T + 1) + d2/ε3 + 2

)
non-zero integer vari-

ables. As

log((d+ 1)T + 1) = log
(
(d+ 1)

⌈
4 log(1+ε)(d/ε) + 2

⌉d
+ 1

)
6 d log

(
4 log(1+ε)(d/ε)

)
6 d2/ε3 ,

78 vector scheduling

the number of non-zero integer variables is at most

2 ((d+ 1)T + 1)
(
2d2/ε3 + 2

)
= 4

((
(d3 + d2)/ε3 + d+ 1

)
T + d2/ε3 + 1

)
6 8

((
d3/ε3 + d

)
T + d2/ε3

)
6 16Td3/ε3 .

Therefore, we can bound the number of choices for non-zero variables by

N16Td
3/ε3 6

(
Td

2/ε3+2
)16Td3/ε3

= 2(d
2/ε3+2)16T logTd3/ε3 .

Using that T log T 6 T2 and plugging in the definition of T , we bound this
by

2(16d
6/ε6)T2 = exp

(
16d6/ε6

⌈
3 log(1+ε)(d/ε) + 2

⌉2d)
.

As the first part is (1/ε)O(log(d)) and the second part is (1/ε)O(d log logd), the
number of choices for non-zero variables is at most exp

(
(1/ε)O(d log logd)

)
.

Now we ‘guess’ the non-zero variables by enumerating all their possi-
ble choices, and solve the (MILP) for only those variables. Since there are
at most 16Td3/ε3 variables, by Theorem 4.7 solving the (MILP) takes time
O
(
(16Td3/ε3)40Td

3/ε3 · s
)

, where s denotes the maximum length of the bi-
nary encoding of the mixed-integer linear program. Using the same rewrit-
ing as above, we can rewrite this to O

(
exp

(
(1/ε)O(d log logd)

)
· s
)
. As the

mixed-integer linear program can be described using s = TN log(nd) bits,
the proof is complete. �

4.4.3 Randomized algorithm

In this subsection we sketch step 3 and 4 of Algorithm 4.1, the integral
assignment of small jobs to machines using the solution to (MILP).

For step 3, recall that yf,t is the amount of small jobs of type t that are
assigned to profile f. For each small job type t, let β(f, t) denote the fraction
of type t assigned to profile f:

β(f, t) :=
yf,t∑

g∈F yg,t
.

For each small job p of type t, pick a profile f randomly with probability
βf,t and then pick a machine uniformly at random among the ones with
profile f. Assign job p to this machine.

4.4 linear time approximation algorithm 79

For step 4, we call a machine with profile f overloaded if the load of small
jobs exceeds f + ε in some coordinate. We take all the small jobs on over-
loaded machines and distribute them among all machines using a linear
time simple sequential assignment. We will prove that the probability that
the load on a machine in a coordinate exceeds the profile by more than
ε is exponentially small. This implies that the expected overload on each
machine is small, hence, the total overload over all the machines is small.

For the following proofs we fix a machine. Define for each small job p
and coordinate j the random variables Xjp with µjp as its mean, which is the
contribution of job p to the j-th coordinate of the machine:

Xjp =

{
pj, if job p is assigned to the machine,

0, otherwise.

Let Xj denote the load of small jobs coordinate j on the machine i.e. Xj :=∑
small job p X

j
p. We need the following Bernstein’s inequality.

Theorem 4.22. Let X1, . . . ,Xn be independent random variables with E[Xi] = µi
and |Xi − µi| 6 M for all i. Let µ =

∑
iE[Xi] and σ2i = E

[
(Xi − µi)

2
]
. Then

for any t > 0, it holds that

P

(∑
i

Xi > µ+ t

)
6 exp

(
−

t2/2

(
∑
i σ
2
i) +Mt/3

)
.

We first show that the probability that the load of small jobs exceeds the
profile in a coordinate is small.

Lemma 4.23. For any machine with profile f and 0 < ε < 1 we have

P
(
Xj > fj + ε

)
6 e−ε

2/4δ for all coordinates j ∈ [d] ,

where δ is the maximum coordinate of any small job.

Proof. Let m(f) denote the number of machines with profile f. Since a job
p of type t is assigned to this machine with probability β(f, t)/m(f), the
expected load on coordinate j on that machine is∑

t∈Tsmall

∑
p:p of type t

pj
β(f, t)
m(f)

=
∑

t∈Tsmall

∑
p:p of type t

pj
yf,t

m(f)(
∑

g∈F yg,t)
.

80 vector scheduling

Recall that fj is the space available for small jobs in coordinate j of profile f
and a(t) is the amount of small jobs of type t. Therefore,

∑
p:p of type t pj =

a(t)tj/‖t‖∞, and hence the expected load is at most

∑
t∈Tsmall

a(t)yf,ttj

‖t‖∞m(f)
∑

g∈F yg,t
6
∑

t∈Tsmall

tjyf,t

‖t‖∞m(f)
6 fj .

Both inequalities follow from the (MILP) constraints: the first follows as∑
f∈F yf,t > a(t) and the second follows as

∑
t∈Tsmall

yf,ttj/‖t‖∞ 6 m(f)fj.
We now apply Bernstein’s inequality to our setting. We have that

(σjp)
2 := E

[(
Xjp − µjp

)2]
=

(
pj − pj

β(f, t)
m(f)

)2
β(f, t)
m(f)

+

(
0− pj

β(f, t)
m(f)

)2(
1−

β(f, t)
m(f)

)
= p2j

(
1−

β(f, t)
m(f)

)
β(f, t)
m(f)

6 (pj)
2β(f, t)
mf

.

Thus, ∑
small job p

(σjp)
2 6

(
max

small job p
pj

) ∑
small job p

β(f, t)
m(f)

pj 6 δfj 6 δ .

Moreover |Xjp − µjp| 6 δ, so choose M = δ. Then

P
(
Xj > fj + x

)
6 exp

(
−x2/2

δ+ δx/3

)
.

For x 6 3, we bound this by exp(−x2/(4δ)). For x > 3, we bound this by

exp
(
−
x2/2

2δx/3

)
= exp(−3x/4δ) .

So, for any ε 6 1, P
(
Xj > fi + ε

)
6 e−ε

2/4δ. �

We now bound E
[
Xj|Xj > fi + ε

]
P
(
Xj > fi + ε

)
, i.e. the average load on

overloaded machines.

Lemma 4.24. For any machine with profile f and 0 < ε < 1/5 we have

E
[
Xj|Xj > fj + ε

]
P
(
Xj > fj + ε

)
6 2ε3/d3 for all coordinates j .

4.4 linear time approximation algorithm 81

Proof. Recall that for any non-negative random variable Y with finite mean,

E [Y] =

∫∞
0

yP (Y = y)dy =

∫∞
0

P (Y > y)dy .

where the last equality follows from integration by parts. This implies that

E [Y|(Y > t)] = t+
1

P (Y > t)

∫∞
y=0

P (Y > t+ y)dy .

Applying this to our setting, we get

E
[
Xj|Xj > (fj + ε)

]
P
(
Xj > fj + ε

)
6

(fj + ε)P
(
Xj > fj + ε

)
+

∫∞
x=0

P
(
Xj > fi + ε+ x

)
dx.

As fi 6 1 and by the proof of Lemma 4.23, this is at most

(1+ ε)P
(
Xj > fi + ε

)
+

∫3
ε

exp(−x2/4δ)dx+
∫∞
3

exp(−3x/4δ)dx , (4.1)

where δ := maxp:p small job |p‖∞ is the maximum coordinate of any small job.
The last term is (4δ/3) exp(−9/4δ). The second term can be upper bounded
by
∫∞
ε exp(−x2/4δ)dx. Let f(x) = 1√

2π
exp(−x2/2) denote the pdf of the

standard gaussian N(0, 1). Let Φ(x) =
∫∞
x f(x)dx. Using that Φ(x) 6 f(x)/x

for any x > 0, it follows that∫∞
ε

exp(−x2/4δ)dx =
√
2δ

∫∞
ε/
√
2δ

e−y
2/2 dy 6 (2δ

√
2π/ε) exp(−ε2/4δ) .

We plug this in Eq. (4.1), bounding δ by ε2/(4 ln(d/ε)), which is larger than
ε3/d if d/ε > 9. As d > 2 and ε < 1/5 this is a valid upper bound for all
small jobs. This yields that the total expected load on overloaded machines
is at most(

1+ ε+ 2δ
√
2π/ε

)
exp(−ε2/4δ) + (4δ/3) exp(−9/4δ) =(

1+ ε+
ε
√
2π

2 ln(d/ε)

)
ε/d+

ε2

3 ln(d/ε)
(ε/d)9/ε

2

.

This is at most 2ε/d. �

We can now prove the following theorem.

82 vector scheduling

Theorem 4.25. There is an algorithm that runs in O
(
2(1/ε)

O(d log logd)
+nd

)
time

and finds a schedule such that the load on each machine is at most 1+ ε with high
probability.

Proof. Let ε ′ := ε/9. First we prove the approximation ratio. For an over-
loaded machine k, let Lk be the sum of the `1-norm of all small jobs as-
signed to k, and let L be the sum of the `1-norm of all small jobs on
all overloaded machines. By Lemma 4.24 we know that E[Lk] 6 2ε ′ for
all machines k and thus, by linearity of expectation, E[L] 6 2mε ′. There-
fore P (L > 4mε ′) < 1/2 by Markov’s inequality. Remove all small jobs
assigned from the overloaded machines and order them arbitrarily. Greed-
ily group them together until the `1-norm exceeds 4ε ′ and then start a
new group. Every group has size at most 4ε ′ + δ. Now assign every group
to a non-overloaded machine. The small jobs on the overloaded machines
have now been redistributed such that the extra load on every machine
is in expectation at most the average plus the largest small job size, i.e.
4ε ′ + δ 6 4ε ′ + ε ′3/d 6 5ε ′. All other machines exceeded their profile
in each coordinate by at most ε ′. Additionally, from the mixed-integer
linear program we lost another ε ′ since we only required that the big
jobs and the profile add up to at most 1 + ε ′. This gives a total of 7ε ′

on the preprocessed instance and factoring in the preprocessing we get
(1+ ε ′)(7ε ′) + ε ′ 6 9ε ′ = ε.

The preprocessing and randomized rounding steps can be implemented
in O(nd) time. To bound the time of solving (MILP), we use the fact that
ab 6 a2 + b2. Choosing a = 2(1/ε

′)O(d log logd)
and b = log(nd), we get

O
(
2(1/ε

′)O(d log logd)
log(nd)

)
6 O

(
22(1/ε

′)O(d log logd)
+ log2(nd)

)
, so the total

running time is at most O
(
2(1/ε

′)O(d log logd)
+nd

)
. �

By simply repeating the rounding and grouping step until a solution is
found, we get an O(nd) time algorithm for assigning small jobs that returns
a (1+ ε)-approximation with high probability.

4.4.4 Deterministic algorithm

Recall that the (MILP) only gives an assignment of small job types to pro-
files, while we need an assignment of individual jobs to machines for a
deterministic algorithm. This can be done in three steps using standard
techniques. First, small job types are assigned integrally to profiles. Then,

4.4 linear time approximation algorithm 83

using a pessimistic estimator, small jobs are integrally assigned to machines
having a fixed profile. Finally, a direct calculation shows that the total load
on overloaded machines is at most O(εm/d), so the small jobs from these
machines can be redistributed over all machines in a round-robin fashion
without increasing the loads too much. We will now describe every step in
more detail and prove its correctness.

(step 1) We first assign small job types to profiles. To this end, observe
that as there are few constraints involving y variables, by standard poly-
hedral arguments there are few non-zero y variables, that are distributed
over many profiles. By greedily assigning small jobs to profiles as long as
they fit with respect to yf,t, only few small jobs remain, which can then be
evenly divided over the profiles only causing an O(ε) increase in the loads.

Lemma 4.26 (Step 1). Given the LP solution, we can integrally assign small jobs
to profiles such that the total load of each machine on each coordinate is increased
by at most O(ε).

Proof. Without loss of generality assume that for every profile there is a
configuration that uses that profile and that there is at least one small job
of each type, i.e. ∀t ∈ Tsmall : a(t) > 0. Furthermore, let T ′small denote the set
of types where the jobs are assigned to multiple machines.

There are |F|d + |Tsmall| constraints involving variables y. By fixing the
integer variables xC, we note that at most d|F|+ |Tsmall| variables y are non-
zero by classical polyhedral theory and further that the number of variables
y that are between zero and a(t) is bounded by d|F|+ |T ′small|.

Let q(t) be the number of variables yf,t between zero and the maximum
a(t), i.e., q(t) := |{yf,t : 0 < yf,t < a(t)}|. Since at least each constraint (C2)
has two non-zero y variables we have

2|T ′small| 6
∑

t∈T ′small

q(t) 6 d|F|+ |T ′small| 6 2d|F| .

Let t be a type, for convenient notation let 1 < q = q(t) and let f1, ..., fq

be profiles such that 0 < yfk,t for all k ∈ [q]. Let S be the set of all small
vectors of type t.

The goal is to assign jobs S to the q profiles and have a small left-over
set of jobs L. Let Tk be the set of small jobs that we assign to profile fk in
this procedure. Initially set L := S and T1 = T2 = ... = Tq = ∅. We move a
job a ∈ L to a set Tk if that job fits together with the other jobs in Tk, i.e., if

84 vector scheduling

‖a‖∞ +
∑

p∈Tk ‖p‖∞ 6 yfk,t. When this procedure terminates we claim that
|L| 6 q− 1.

Claim 4.27. |L| 6 q− 1.

Proof. Suppose by contradiction that |L| > q, then for all k ∈ [q] we have
that yfk,t −

∑
p∈Tk ‖p‖∞ < minp∈L ‖p‖∞. By summing over this inequality

we have that

∑
k∈[q]

yFk,t −
∑

p∈Tk

‖p‖∞
 < qmin

p∈L
‖p‖∞ .

By rearranging and noticing that
∑
k∈[q]

(
yfk,t

)
> a(t) by constraints (C2)

and that the sum over the infinity norm of all small jobs in S equals a(t),
we reach a contradiction since

a(t) =
∑
k∈[q]

(
yfk,t

)
< qmin

p∈L
‖p‖∞ +

∑
k∈[q]

∑
p∈Pk

‖p‖∞
6
∑
p∈L
‖p‖∞ +

∑
p∈S\L

‖p‖∞ = a(t) . �

After repeating this procedure for every type of small jobs, there are at
most 2|F|d small jobs in the left-over set and the rest is integrally assigned
to profiles. Since there are at least |F| profiles for which a configurations is
chosen (by the guessing phase in Step 1) we can assign 2d small vectors to
each profile which leads to an increase of at most 2d · ε ′/d = 2ε ′. �

(step 2) By step 1, small jobs are integrally assigned to profiles and thus
we can restrict our attention to machines using a fixed profile. The small
jobs are now assigned to the machine minimizing a potential function φ.
Let p1, . . . , pn be small jobs assigned to the same profile and let λ > 0 be
some parameter. Define

φt :=
∑
k∈[d]

∑
i∈[m]

eλ(L
t
i,k−µ

t
k) ,

where Lt,ik is the load of small jobs p1, . . . , pt assigned to machine i on
coordinate k, and µtk is the expected load of the first t jobs in coordinate k,
which is at most the free space reserved for small jobs by the solution for
(MILP).

4.4 linear time approximation algorithm 85

The idea is that the function φ is essentially a pessimistic estimator of
the load exceeding the expectation, summed over the machines and coor-
dinates. Regardless of how p1, . . . , pt−1 are assigned, there is always an
assignment for pt that increases the potential function by a small multi-
plicative factor that is at most exp(λ2(‖pt‖∞)2/m) (cf. Lemma 4.30). By
assigning at each step the job to the machine that minimizes the potential,
we have an integral assignment and

φn 6 md exp(2λ2dpmax) ,

where pmax = maxj ‖pj‖∞ is the maximum value over all small jobs and
all coordinates.

Lemma 4.28 (Step 2). For a profile f, we can find an integral assignment of small
jobs such that φn 6 md exp(2λ2dpmax), where pmax = maxj ‖pj‖∞.

We need the following technical lemma before we prove step 2.

Lemma 4.29. For all x ∈ [0, 1] and m > 1,

(1/m)e(1−1/m)x + (1− 1/m)e−x/m 6 e2x
2/m . (4.2)

Proof. Any real function f(x) that is infinitely differentiable at a real num-
ber a can be expressed as a power series plus a remainder using Taylor
series. For any real a, f(x) = f(a) + f ′(a)(x− a) + R2 where the Lagrangian
remainder is R2 = (x− a)2/2!f ′′(α) for some α ∈ [a, x].

Applying this to the first term of the left-hand side of (4.2), we obtain

1/m+ x(1/m)(1− 1/m) + x2/2
((

(1− 1/m)2/m
)
e(1−1/m)α

)
,

and for the second term of the left-hand side we get

(1− 1/m) − x(1− 1/m)(1/m) + x2/2
((

(1− 1/m)/m2
)
e−β/m

)
.

Notice that x ∈ [0, 1], and therefore α,β ∈ [0, 1] as well. Hence, e(1−1/m)α 6
e and e−β/m 6 1, and therefore summing both functions and maximizing
over m, α and β yields

1+ x2/2
((

(1− 1/m)2/m
)
e(1−1/m)α

)
+ x2/2

((
(1− 1/m)/m2

)
e−β/m

)
6 1+ x2/2 ((e+ 1)/m) 6 e2x

2/m .

The last step is by the fact that 1+ y 6 ey for all y. �

86 vector scheduling

Recall that we have a fixed profile, and that every small job is assigned
with probability 1/m to each individual machine in the randomized algo-
rithm. The first part is to show that the expected potential slowly increases
over the course of assignment of the small jobs. This implies that for every
job there always exists a deterministic choice that increases the potential by
at most this factor.

In particular, the next lemma shows that regardless of previous choices,
the expected value of φt is at most a small factor times φt−1.

Lemma 4.30. For any λ > 0, t > 2 and φ(t− 1),

E
[
φt
]
6 exp(λ2(‖pt‖∞)2/m)φt−1 .

Proof. For job pt there are two choices per machine: with probability 1/m it
is assigned to the machine and with probability 1− 1/m it is not. Summing
over the two possibilities per machine and coordinate and noticing that
ftk = ft−1k + ptk/m we have

E [φ(t)] =
∑
k∈[d]

∑
i∈[m]

[
1

m
exp

(
λ

(
Lt−1,i
k + ptk − (ft−1k +

ptk
m

)

))

+(1−
1

m
) exp

(
λ

(
Lt−1,i
k − (ft−1k +

ptk
m

)

))]
=
∑
k∈[d]

∑
i∈[m]

[
1

m
exp

(
λ(1− 1/m)ptk

)
exp

(
λ
(
Lt−1,i
k − ft−1k

))
+(1−

1

m
) exp

(
−λptk/m

)
exp

(
λ
(
Lt−1,i
k − ft−1k

))]
6
∑
k∈[d]

∑
i∈[m]

exp
(
2λ2(ptk)

2/m
)

exp
(
λ
(
Lt−1,i
k − ft−1k

))
6
∑
k∈[d]

∑
i∈[m]

exp
(
2λ2(‖pt‖∞)2/m) exp

(
λ
(
Lt−1,i
k − ft−1k

))
.

The third line is obtained by applying Lemma 4.29 with x := λptk and the
fourth line by replacing ptk by ‖pt‖∞. Then by moving exp

(
2λ2(‖pt‖∞)2/m)

outside the summations we obtain

E [φ(t)] 6 exp
(
2λ2(‖pt‖∞)2/m)φ(t− 1) . �

Proof of Lemma 4.28. Observe that φ0 = md. Then Lemma 4.30 yields

φn 6 exp

(λ2/m) ∑
j∈[n]

(
‖pj‖∞)2

md .

4.4 linear time approximation algorithm 87

Using
∑
j∈[n](‖pj‖∞)2 6 pmax

∑
j∈[n](‖pj‖∞) 6 pmaxmd, the result fol-

lows. �

(step 3) Finally, we can prove that after steps 1 and 2, removing the
small jobs from overloaded machines and reassigning them in a round-
robin fashion over all machines, increases the load of each machine by at
most O(ε).

Lemma 4.31 (Step 3). For a profile f and integral assignment of small jobs such
that φn 6 md exp(2λ2dpmax), we can find an integral assignment of small jobs
such that the total load of each machine on each coordinate is increased by at most
O(ε).

Proof. For a given assignment of jobs such that φn 6 md exp(2λ2dpmax),
let m(x) be the number of machines with load exceeding 1+ ε+ x in some
coordinate and let L be the set of small jobs on machines with load at least
1+ ε in any coordinate.

If m(x) machines have such load, the potential is at least m(x) · eλ(ε+x).
By rewriting and setting λ := 1/ε log(d3/ε3) we obtain that

m(x) 6
md exp(2λ2dpmax)

eλ(ε+x)
=
md exp(O(1))
eλ(ε+x)

6
O(md)

(d3/ε3)1+x/ε
.

Notice that we can safely pick δ := ε4/d2, so pmax 6 ε4/d2.
The total load on machine with load at least 1 + ε is (1 + ε)dm(0) +∫∞
x=0m(x)d 6 (1+ ε)dm(0) +

∑∞
i=0m(εi)dε. This summation is a geomet-

ric series that is shrinking very fast, i.e. m(εi) > (d3/ε3)m(ε(i+ 1). There-
fore, we have that dεm(0) >

∫∞
x=0m(x)dε, and therefore that ‖∑p∈L p‖∞

is at most O(εm/d).
By removing L from their assigned machines and reassigning at most

one to each machine we increase the loads of machines by at most the
maximum size of a small job and the lemma follows. �

Implementation in linear time

While step 1 and 3 can be implemented directly in linear time, step 2 is
more complicated. The trivial implementation of trying each machine for
each job and evaluating the resulting value of φ takes O(md) time per job,
which is super-linear.

To get around this, we do the following. Let δ be the maximum value of
any coordinate of any small jobs. Greedily glue small jobs of the same type

88 vector scheduling

together, as long as the resulting small job is still small. This results in jobs B
that have their coordinates in {0}∪ [εδ/2d, δ] and at most |Tsmall| jobs S with
coordinates in [0, δ/2]. Next, round the coordinates of jobs from B down to a
multiple of γ = ε(εδ/2d), at the cost of an extra factor of (1+ ε) in the loads.
This rounding procedure ensures that during the assignment of jobs from
B, the machines have only few distinct loads, namely T := (d1/γe+ 1)d.
This in turn establishes that for each job the best machine can be found in
a greedy fashion. First order the machine loads according to their increase
in the potential function, and then for each job go through the ordered
loads and check whether there is a machine having that load. In total, at
most T loads are checked and updating the machine load takes O(d) time.
A similar strategy for S would fail, but notice that |S| is relatively small.
If |S| 6 m, then assign one job to each machine, increasing the loads by at
most O(δ). If |S| > m then the number of machines is at most |Tsmall| and the
trivial algorithm takes O(|Tsmall|

2) = O
(
(dδ/γe+ 1)2d

)
time. This results in

the following lemma.

Lemma 4.32. Step 2 can be implemented in O(nd+ (d2d/ε2e+ 1)2d) time.

From this and Theorem 4.25, we have our main theorem.

Theorem 4.4. For any ε > 0 and d > 1, there is a deterministic (1 + ε)-
approximation algorithm for d-dimensional Vector scheduling that runs in
time O

(
2(1/ε)

O(d log logd)
+nd

)
.

4.5 concluding remarks

This chapter (nearly) closes the gap between the hardness and the approx-
imability of the Vector Scheduling problem. It exhibits lower bounds on
the running time of approximation schemes under two complexity assump-
tions, and shows that even using resource augmentation, similar lower
bounds hold. It complements these lower bounds by presenting an approx-
imation scheme whose running time nearly matches the lower bounds. The
running time of our algorithm is essentially the best possible, modulo the
O(log logd) factor in the exponent. A natural theoretical question to ask is
whether this small gap can be closed completely, although the added value
for real life application seems to be small.

Perhaps a more interesting direction for further research is to search for
approximation algorithms with a constant approximation guarantee in sin-

4.5 concluding remarks 89

gle exponential time. Is it possible to obtain e.g. a 2-approximation with
running time O(2d)?

Another research direction that is still open, is the Vector Scheduling

problem on non-identical machines. In the problem this chapter consid-
ers, the load on every coordinate of every machine needs to be at most 1.
One could investigate the setting where these upper bounds on the loads
can vary between machines. Obviously the lower bounds presented in this
chapter immediately transfer to this setting, but algorithmic results on the
positive side would be interesting to see.

5
O P T I M A L S T O P P I N G A N D P O S T E D P R I C E S

5.1 introduction

5.1.1 Optimal stopping theory

Optimal stopping theory has been extensively studied in many different
areas and concerns itself with maximizing the expected reward in problems
in which a time needs to be chosen to take a particular action. The famous
prophet inequalities, introduced in the sixties by Gilbert and Mosteller [45],
are a key example of an optimal stopping problem. Here, a gambler faces a
finite sequence of non-negative independent random variables that arrive
in some order, with known distributions from which iteratively a prize is
drawn. After seeing a prize, the gambler can either accept the prize and end
the game, or reject the prize and await the next prize. The classical result
of Krengel and Sucheston [73, 74], also attributed to Garling, states that
the gambler can obtain at least half of the expected reward that a prophet
can make who knows the realizations of the prizes beforehand. That is,
sup{E[Xτ] : τ stopping rule } > 1

2E{sup16i6n Xi}. Moreover, Krengel and
Sucheston also showed that this bound is best possible. Samuel-Cahn [91]
showed that the bound of 2 can be obtained by a good threshold rule,
which stops as soon as a prize is above a fixed threshold. In [92], Samuel-
Cahn considers the case in which the random variables have a negative
dependence. In this setting, she proves a slightly better bound and also
shows that this bound is obtainable by the best threshold rule. Hill [57]
studies the situation in which the order in which the random variables
are presented can be chosen by the gambler. Kennedy [70] as well as Assaf,
Goldstein and Samuel-Chan [7] considered the setting in which the gambler
can select k different prizes. Whereas Kennedy looked at the situation in
which the sum of the prizes is compared to that of an all-knowing prophet,
Assaf, et al. studied the situation in which the maximum of the prizes is
given as a reward. For more results on prophet inequalities, we refer to the
survey of Hill and Kertz [59].

In this chapter we consider the setting in which the random variables
arrive uniformly at random. We examine two stopping rules, namely a non-

91

92 optimal stopping and posted prices

adaptive one and an adaptive one. In the first, the gambler accepts a prize
whenever it exceeds a threshold whose value is set beforehand and only
depends on the distribution of the random variable. While in the latter,
the value of the threshold is also allowed to depend on the history of the
previously rejected prizes. The non-adaptivity of the first stopping rule is
different from the classical prophet inequality setting. For this setting, we
provide a tight bound of the expected reward compared to the expected
maximum (cf. Theorem 5.3).

On the other hand, the adaptive stopping rule closely resembles the set-
ting above, the secretary problem and the recently introduced prophet sec-
retary problem [34]. In the adaptive setting we consider independent and
identically distributed (i.i.d.) random variables, in which case the fraction
of a half can be improved. The result for this setting can be seen as a follow
up on a result by Hill and Kertz [58]. Their main result of is a recursive
characterization of an, the best possible factor when faced with n i.i.d.
random variables. More precisely, they prove that if X1, . . . ,Xn are i.i.d.
non-negative random variables and Tn denotes the set of stopping rules for
X1, . . . ,Xn then

E(max{X1, . . . ,Xn}) 6 an sup{E(Xt) : t ∈ Tn} .

Furthermore, Hill and Kertz find instances in which it is not possible to
beat the factor an. They also prove that an 6 e/(e− 1), conjecture that the
sequence is monotone, and leave open the existence and computation of
its limit. The monotonicity together with the limit calculation would read-
ily give a universal bound (valid for all n) on the performance of the best
stopping rule. Shortly after, Samuel-Cahn [91] reports that Kertz proves ex-
istence of the limit a of the an sequence and conjectures that it equals 1.342

(obtained as the solution to
∫1
0(y−y ln(y))+a−1)−1 dy = 1). Finally, Kertz

[71, Lemma 6.2] proves the latter conjecture (for which Saint-Mont [90] de-
rives a simpler proof). However, he is unable to prove that the sequence is
monotone and therefore the best upper bound on the whole an sequence
still stood at e/(e− 1) ≈ 1.582 [71, Lemma 3.4]. Very recently, and indepen-
dently of our work, Abolhassani et al. [1] improved this upper bound to
1/0.738 ≈ 1.355. Our result (cf. Theorem 5.6) closes this gap and implies
that for all n, an 6 a ≈ 1.3415, and by the tight examples of Hill and Kertz
[58] it turns out that this constant is best possible.

We extend these results in Section 5.4 to the setting of posted price mech-
anisms. In this setting, a seller sells one item by deciding on a, potentially

5.1 introduction 93

different, non-negotiable price for every interested customer. Both the non-
adaptive and the adaptive results and algorithms described above yield
corresponding corollaries for this setting.

5.1.2 Problem description

In the optimal stopping problem we consider, a gambler faces a sequence of
n non-negative independent random variables Xi with known distributions
Fi arriving in a random order, for i ∈ N = {1, . . . ,n}. In every stage, a prize
πi ∼ Fi is drawn and the gambler needs to decide whether to accept and
keep that prize, or to reject it and wait for the next realization. The goal
is to maximize his expected reward. We consider a non-adaptive and an
adaptive scenario.

Problem 5.1 (Non-adaptive optimal stopping problem). The gambler sets
thresholds τi > 0 for all i ∈ N, with the goal of maximizing his expected
reward defined as

∑
i∈N

πτiPσ,F

[
i = argmin

j∈N
{σ(j) |πj > τj}

]
,

where the probability is taken over the arrival permutation σ and the dis-
tributions of the random variables F. Furthermore, πτi denotes the random
variable (πi |πi > τi).

Problem 5.2 (Adaptive optimal stopping problem). The gambler sets thresh-
olds upon arrival of every random variable. So, the gambler sets functions
τi : 2

N → R for each random variable Xi, such that, if S is the set of random
variables that did not exceed their threshold before, τi(S) is the threshold
for random variable Xi if this is the next random variable to arrive. For an
arrival permutation σ, we denote πi(σ) = πi({σ

−1(1), . . . ,σ−1(σ(i) − 1)})
and πτi (σ) = (πi(σ) |πi(σ) > τi), and therefore we can write the gambler’s
expected revenue as

Eσ

[∑
i∈N

πτi (σ)PF

[
i = argmin

j∈N
{σ(j) |πj > τj(σ)

]]
,

where the expectation is taken over the arrival permutation σ, and the prob-
ability is taken over the distributions of the random variables F.

94 optimal stopping and posted prices

5.1.3 Our results

We present two stopping rules: A non-adaptive stopping rule that guaran-
tees an expected reward within a factor 1 − 1/e of the expected value of
the maximum, and an adaptive stopping rule for i.i.d. prize distributions
that has a guaranteed expected reward of 0.745 of the expected value of the
maximum.

Theorem 5.3. Given n independent non-negative random variables X1, . . . ,Xn
with Xi ∼ Fi. There exist values τ1, . . . , τn such that

E

[∑n
i=1 XiYi∑n
i=1 Yi

]
>

(
1−

1

e

)
E

[
max
i=1,...,n

Xi

]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi.

Note that the quantity on the left exactly corresponds to the expected
value of the first Xi above τi, when the Xi’s are ordered uniformly at ran-
dom.

In the case of continuous distributions, the algorithm that achieves this
result becomes remarkably simple, see Algorithm 5.1. The algorithm, while
randomized, can be derandomized using standard techniques.

Algorithm 5.1: Algorithm for the non-adaptive stopping rule.

1 Compute qi = P
(
Xi = maxj∈N Xj

)
;

2 Set threshold τi =

F−1i (1− qi) w.p. 2
2+(e−2)qi

,

∞ otherwise.
;

3 Accept the first random variable having Xi > τi ;

Algorithm 5.1 may seem counterintuitive since, in step 2, the higher the
probability is that a random variable is the maximum, the higher the prob-
ability is that the algorithm rejects it a priori (by setting a threshold of ∞),
though the probability of rejecting any random variable is at most 1− 2

e .
The following example gives some intuition on why random variables need
to be rejected.

Example 5.4. Consider just two random variables: X1 who has deterministic
value equal to 1, and X2 who has a value of 100 with probability 1/10 and
0 with probability 9/10. In this situation, the optimal stopping rule chooses
X2 with probability 9/10 and the total expected reward is 10+ 9/10. Now, if

5.1 introduction 95

a non-adaptive algorithm sets finite thresholds for both random variables,
the expected reward is (1/10)(50.5) + (9/10)(1) = 5.95, which is not within
the claimed ratio of the optimal mechanism.

Another somewhat surprising element of Algorithm 5.1 is that the proba-
bility of not accepting any random variable can be computed as

∏
i∈N(1−

2qi/(2+ (e− 2)qi)) > 2/e. Again, the previous example provides intuition
to the fact that, if we shoot for an algorithm that accepts too frequently, we
risk settling for too low a prize. This intuition does not hold in the adaptive
case.

The cornerstone of our analysis is a basic result about Bernoulli random
variables which may be of independent interest. The result states that if
we are given a set of non-homogeneous independent Bernoulli random
variables with associated prizes, then there is a subset of variables so that
the expected average prize of the successes is at least a factor 1− 1/e of the
expectation of the maximum prize over all random variables.

Lemma 5.5 (Bernoulli Selection Lemma). Given a set N = {1, . . . ,n} of inde-
pendent Bernoulli random variables X1, . . . ,Xn, where Xi = 1 with probability qi
and 0 otherwise, and associated prizes b1, . . . ,bn. The following inequalities hold:

e

e− 1
max
S⊆N

E

[∑
i∈S biXi∑
i∈S Xi

]
> max
zi6qi

{∑
i∈N

bizi

∣∣∣∑ zi 6 1

}
> E[max

i∈N
{biXi}] .

Here, when evaluating the leftmost term, we define 0/0 = 0.

To prove the lemma, we consider a continuous relaxation of the maxi-
mization problem, and then guess a solution in which each random vari-
able is included in S with some instance-dependent probability. Then, we
look for the worst possible instance by applying the first order optimality
conditions of a non-linear problem. These conditions reveal some structural
insight on what a worst case instance looks like. Using this, we obtain the
desired bound. Theorem 5.3 follows from Lemma 5.5 with fairly little extra
work.

To complement our results, we provide instances that show that the
bounds in Lemma 5.5 and Theorem 5.3 are tight. In particular, we show
that even with independent identically distributed (i.i.d.) random variables the
bound of Theorem 5.3 cannot be beaten. Therefore, to go beyond 1− 1/e,
even with i.i.d. distributions, a different setting needs to be considered. We
examine the adaptive setting, for which we show the following bound of
1/β∗ ≈ 0.745. As stated before, the tight examples of Hill and Kertz [58]
show that this constant is best possible.

96 optimal stopping and posted prices

Theorem 5.6. Given non-negative i.i.d. random variables X1, . . . ,Xn, there exist
thresholds τ1, . . . , τn, such that

E(max{X1, . . . ,Xn}) 6 β∗E(Xt),

where t := min{i ∈ {1, . . . ,n} : Xi > τi} and β∗ ≈ 1.3415 is the unique value
such that∫1

0

1

y(1− ln(y)) + (β− 1)
dy = 1 . (5.1)

To achieve this result we use a quite natural idea: as less random variables
are left, the thresholds should decrease. Besides this the key ingredient of
our algorithm is to use random thresholds drawn from a well chosen dis-
tribution that mimics an expression we obtain for the expected maximum
value. See Algorithm 5.2 for our algorithm in the case of continuous distri-
butions. Like Algorithm 5.1, also Algorithm 5.2 can be derandomized using
standard techniques.

Algorithm 5.2: Algorithm for the adaptive stopping rule.

1 Partition the interval [0, 1] into intervals Ai = [ai−1,ai], s.t. a0 = 0,
an = 1 ;

2 Sample qi from Ai with an appropriately chosen distribution ;
3 When the i−th random variable comes, set threshold τi = F−1(1− qi) ;

5.1.4 Posted price mechanisms

In Section 5.4 we proceed by highlighting the connection between optimal
stopping theory and posted price mechanisms, which constitute an attrac-
tive and widely applicable way of selling items to strategic consumers. In
this context, consumers are faced with take-it-or-leave-it offers, and there-
fore strategic behaviour simply vanishes. This type of mechanism has been
vastly studied, particularly in the marketing community [18]. In recent
years, there has been a significant effort to understand the expected rev-
enue of the outcome generated by different posted price mechanisms when
compared to that of the optimal auction [3, 13, 21, 22, 51, 101]. In addi-
tion, several companies have started to apply personalized pricing to sell
their products. Under this policy, companies set different prices for differ-
ent consumers based on purchase history or other factors that may affect

5.1 introduction 97

their willingness to pay. For example, the online data provider Lexis-Nexis
sells to virtually every user at a different price [94]. In 2012, Orbitz online
travel agency found that people who use Mac computers spent as much as
30% more on hotels, so it started to show them different, and sometimes
costlier, travel options than those shown to Windows visitors [79]. Similarly,
retailers and supermarket chains such as Safeway are using data culled
from billions of purchases to offer deals tailored to specific shoppers [72].
Choudhary et al. [24] further investigated this issue, providing more exam-
ples and developing a theoretical framework to analyze equilibria between
firms that apply personalized pricing and those who do not.

In its simplest form, the problem we consider in this setting is described
as follows. A monopolist sells a single item to a set of n known potential
buyers. The seller places no value on the item, while each buyer i has a
private value vi for the item, independent of the values of the other buyers.
The seller does not know exactly how much everyone values the item, but
he has some beliefs, e.g. based on history. Therefore he assumes that every
value vi is drawn from a known distribution Fi, which might be different
for each buyer. The main question is to design a mechanism maximizing
the revenue of the seller.

This question has been answered in 1981 by Myerson [83]. He uses the
virtual valuation function of each customer i, which is defined as ci(v) =

v−
1−Fi(v)
fi(v)

, where fi is the density of Fi. If all virtual valuation functions
are monotone, the auction and its analysis become much simpler and this is
referred to as the regular case. In the general case, these virtual valuations
need to be ironed in the following sense. Let Hi(q) =

∫q
0 ci(F

−1
i (θ))dθ

be the negative revenue curve as a function of the acceptance probability
q. Then define G(q) = conv(H(q)) as the convexification of H(q), that is,
G(q) = min {γH(q1) + (1− γ)H(q2) : γq1 + (1− γ)q2 = q, γ,q1,q2 ∈ [0, 1]}.
The ironed virtual valuation function is then defined as c̄(v) = G ′(Fi(q)).
Myerson’s auction now sells the item to the buyer with the highest virtual
valuation, provided this is positive.

Though Myerson’s auction is optimal, in the general case it is involved
and therefore not as widely used in practice as one might expect from
the optimal auction format. Researchers therefore started studying formats
that might be suboptimal but are easy and simple to understand, like posted
price mechanisms. Here, the buyers arrive sequentially and the seller offers
each arriving buyer i a single take-it-or-leave-it price pi. If she accepts the
price, the seller makes a revenue of pi. If she refuses the offered price, she
leaves the system and never comes back, and the seller can set a potentially

98 optimal stopping and posted prices

different price for the next arriving customer. The natural question to ask
is what prices the seller needs to set to maximize his expected revenue. A
common example of this practice is that of direct mail campaigns, in which
the seller contacts its potential buyers directly and offers each one a certain
price for the item. The item is then sold to the first consumer who accepts
the offer [18, 27].

First Hajiaghayi, Kleinberg, and Sandholm [51] and then Chawla et al.
[22] noted a close connection between online mechanisms in general and
posted price ones in particular and prophet inequalities. Specifically, Chawla
et al. [22] implicitly show that the problem of designing posted price mech-
anisms can be reduced to that of finding stopping rules of a related prophet
inequality. This connection opened the way for new approaches and results
and constitutes the starting point of this paper. We refer to the recent survey
of Lucier [77] for further details. Theorem 5.21 highlights this connection
by showing a new reduction.

In the non-adaptive setting, all offers have to be made simultaneously,
and customers respond in random order, akin to direct mail campaigns. In
the adaptive posted price mechanism, the seller may base the price on the
customer he is offering to, as well as the customers who already rejected
earlier offers. The reduction allows us to prove bounds for both settings,
yielding Corollary 5.22 and Corollary 5.24 as the counterparts of Theo-
rem 5.3 and Theorem 5.6 above. Like above, we also present algorithms
achieving these bounds.

5.2 the bernoulli selection lemma

In this section we prove Lemma 5.5. Actually, we prove a slightly stronger
version which will become clear at the end of the proof. Moreover, we
provide an instance showing that the bound is tight and discuss some gen-
eralizations.

5.2.1 The proof

The second inequality of Lemma 5.5 is trivial, as the expectation of the
maximum is a sum over all values bi weighed by the probability with
which that value is the maximum. Since these probabilities sum to at most
one, the inequality follows.

5.2 the bernoulli selection lemma 99

The proof for the first inequality has two main ingredients. First, we
reformulate the left hand side in an appropriate way, and lower bound it by
another function using KKT-conditions. Then, we show that this function
is bounded from below by 1− 1/e.

A simplified proof

As a warm up, we first show how to get a weaker result, that only gives us
a factor of

√
e instead of e

e−1 , with more straightforward arguments.

Proof. We start the proof by rewriting the optimization problem:

max
S⊆N

{
E

[∑
i∈S biXi∑
i∈S Xi

]}
. (P)

Instead of choosing a subset of N, we set for each i ∈ N a value χi ∈ [0, 1],
which represents the probability with which we actually choose i. Now, let
πi = χiqi denote the probability of i being picked and having Xi = 1. So we
can consider the following maximization problem, with decision variables
π, as a relaxation of (P):

max
06πi6qi

∑
S⊆N

b(S)
|S|

(∏
i∈S

πi

)∏
i/∈S

(1− πi)

 ,

where b(S) =
∑
i∈S bi. Note that the previous objective is linear in each

variable so that there is an extreme optimal solution [27]. Thus, the previous
problem is in fact equivalent to (P). Now, by changing the order of the
summations, we obtain

max
06πi6qi

∑
i∈N

biπi
∑

S⊆N\{i}

1

1+ |S|

∏
j∈S

πj
∏

j∈N\(S∪{i})

(1− πj) . (5.2)

With (P) in this equivalent form, we now proceed to guess a feasible
solution. To this end, consider an optimal solution z∗ to

max

{∑
i∈N

bizi

∣∣∣∑
i∈N

zi 6 1, zi 6 qi for all i ∈ N
}

,

and set πi = 2z∗i/(2+ z
∗
i). Note that πi 6 qi, so that, substituting this in the

objective of (5.2), we get∑
i∈N

biz
∗
i

∏
j∈N

1

1+
z∗j
2

∑
S⊆N\{i}

2|S|

1+ |S|

∏
j∈S

z∗j
2

∏
j∈N\(S∪{i})

(
1−

z∗j
2

)
.

100 optimal stopping and posted prices

It is easy to see that∑
S⊆N\{i}

2|S|

1+ |S|

∏
j∈S

z∗j
2

∏
j∈N\(S∪{i})

(
1−

z∗j
2

)
> 1 ,

since the left hand side corresponds to E[f(S)] over all S ⊆ N \ {i} under
probabilities z∗j /2 for every element i and f(S) = 2|S|/(|S|+ 1) > 1. While
for any values zi such that

∑
i zi 6 1, we have

n∏
j=1

1

1+
zj
2

> e−
∑n
j=1

zj
2 >

1√
e

,

where the first inequality follows from 1+x 6 ex, concluding the proof. �

Obtaining a bound of 1− 1/e

To obtain the improved factor 1− 1/e we do the same as in the simplified
proof, but make a subtle modification in the choice of πi. We choose πi =

2z∗i
2+(e−2)z∗i

, such that 1−πi =
2−(4−e)z∗i
2+(e−2)z∗i

. Note that this is a feasible choice of
πi for all i ∈ N, since for this choice πi 6 z∗i 6 qi. Because of the choice of
πi, we actually prove the slightly stronger bound where we maximize over
zi 6

2qi
2−(e−2)qi

. The choice of πi suggests that the random variables are not
picked deterministically, but with probability less than 1, since πi < z∗i if
z∗i > 0. However, as noted in the beginning of the proof, because of linearity
of the objective in each variable, there is always an extreme optimal solution
where the random variables are picked deterministically.

We plug this back into (5.2), and obtain that (P) is lower bounded by

∑
i∈N

2biz
∗
i

∏
j∈N

1

2+ (e− 2)z∗j

 ·
∑

S⊆N\{i}

2|S|

1+ |S|

∏
j∈S

z∗j
∏

j∈N\(S∪{i})

(2− (4− e)z∗j) .

(5.3)

We proceed to lower bound this quantity, where we use the following tech-
nical result.

Proposition 5.7. Consider the problem minx∈RM+
{fM(x) :

∑
i∈M xi 6 a}, where

a 6 1 and

gM(x) =

∏
j∈M

1

2+ (e− 2)xj

 ∑
S⊆M

2|S|

1+ |S|

∏
j∈S

xj
∏

j∈M\S

(2− (4− e)xj) .

5.2 the bernoulli selection lemma 101

In an optimal solution, all non-zero variables are equal and
∑
i∈M xi = a.

Proof. Consider an optimal solution x∗, and assume its support is M ′ ⊆
M. Let y∗ be the restriction of x∗ to M ′. Then, gM(x∗) = gM ′(y∗) and
y∗ minimizes gM ′ . Consider the function g(y1,y2) as the function gM ′

restricted to the first two variables, while the others are fixed to y∗i . Clearly,
y∗1,y∗2 minimize g(y1,y2) subject to the constraints that y1,y2 > 0, and
y1 + y2 6 a−

∑
i∈M ′\{1,2} y

∗
i . Now g(y1,y2) can be written as

g(y1,y2) =
A+By1 +By2 +Cy1y2

(2+ (e− 2)y1)(2+ (e− 2)y2)
,

where

A = 4

∏
j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|

1+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j) ,

B =
e− 4

2
A+

2

∏
j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|+1

2+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j) ,

C =
e− 4

2
B+∏

j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|+2

3+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j) ,

with N ′ = M ′ \ {1, 2}. Since the constraint y1 + y2 6 a−
∑
i∈N ′ y

∗
i is the

only active constraint and it is symmetric with respect to y1 and y2, the
KKT conditions dictate that a minimum of g(y1,y2) satisfies

∂g(z∗1, z∗2)
∂z∗1

=
∂g(z∗1, z∗2)
∂z∗2

. (5.4)

Taking the derivatives

∂g(y1,y2)
∂y1

=
2B+ 2y2C− (e− 2)A− (e− 2)y2B

(2+ (e− 2)y1)2(2+ (e− 2)y2)
,

∂g(y1,y2)
∂y2

=
2B+ 2y1C− (e− 2)A− (e− 2)y1B

(2+ (e− 2)y1)(2+ (e− 2)y2)2
,

102 optimal stopping and posted prices

we see that (5.4) holds if and only if(
(4C− (e− 2)2A) + (2(e− 2)C− (e− 2)2B)(y2 + y1)

)
(y2 − y1) = 0 .

So either y1 = y2, or at least one is strictly positive and

y1 + y2 =
(e− 2)2A− 4C

2(e− 2)C− (e− 2)2B
.

We evaluate the right-hand side of the latter, using the formulae for A, B,
and C. Note first that A > 0, and observe that

B =
e− 4

2
A+

2

∏
j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|+1

2+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j)

6
e− 4

2
A+

4

∏
j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|

2+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j)

6
e− 4

2
A+A =

e− 2

2
A .

Now we use that
2|S|+i+2

i+ 2+ |S|
>
2|S|+i

i+ |S|
for i ∈ R+ and all |S|. We can write

C =
e− 4

2
B+∏
j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|+2

3+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j)

>
e− 4

2
B+∏
j∈N ′

1

2+ (e− 2)y∗j

 ∑
S⊆N ′

2|S|+1

2+ |S|

∏
j∈S

y∗j
∏

j∈N ′\S

(2− (4− e)y∗j)

>
e− 4

2
B+

1

2
B−

(e− 4)

4
A > e−3

2 B−
(e−4)
4 A

> (e−3)(e−2)
4 A−

(e−4)
4 A = e2−6e+10

4 A .

5.2 the bernoulli selection lemma 103

Now we bound

y∗1 + y
∗
2 =

(e− 2)2A− 4C

2(e− 2)C− (e− 2)2B
6

(e− 2)2A− (e2 − 6e+ 10)A
(e−2)(e2−6e+10)

2 A−
(e−2)3

2 A

=
(2e− 6)A

(e−2)((e2−6e+10)−(e−2)2)
2 A

=
2(2e− 6)

(e− 2)(6− 2e)
,

which is negative. This contradicts the constraint y1,y2 > 0. As the choice
of the index {1, 2} is arbitrary, we conclude that all coordinates of y∗ have
to be equal.

To finish the proof, we still need to show that in an optimal solution, the
constraint

∑
i∈M x∗i =

∑
i∈M ′ y∗i 6 a is tight. As all coordinates of y∗ are

equal from the above, we know that y∗i = ȳ, for some ȳ. Let k denote the
number of non-zero variables in x∗, i.e., k = |M ′|. Abusing notation, let

gM ′(ȳ) =

∏
j∈M ′

1

2+ (e− 2)ȳ

 ∑
S⊆M ′

2|S|

1+ |S|

∏
j∈S

ȳ
∏

j∈M ′\S

(2− (4− e)ȳ)

= (2+ (e− 2)ȳ)−k
k∑
`=0

(
k

`

)
2`

1+ `
ȳ`(2− (4− e)ȳ)k−`

=
(2+ (e− 2)ȳ)k+1 − (2− (4− e)ȳ)k+1

(2+ (e− 2)ȳ)k · 2ȳ(k+ 1) .

We claim that gM ′(ȳ+ ε) 6 gM ′(ȳ), for small ε > 0 and ȳ < a
k . In order

to prove this, we take the derivative of gM ′(ȳ) with respect to ȳ, and show
that this is non-positive for ȳ > 0, from which the claim follows. Note that

∂gM ′(ȳ)

∂ȳ
=

(2+ (e− 2)ȳ)−(k+1)

(k+ 1)ȳ2
·(

(2− (4− e)ȳ)k(2+ (e− 2)ȳ+ 2kȳ) − (2+ (e− 2)ȳ)k+1
)

.

As ȳ > 0, it is easy to see that the sign of the derivative is equal to the sign
of the function (2−(4− e)ȳ)k(2+(e− 2)ȳ+ 2kȳ)− (2+(e− 2)ȳ)k+1. There-
fore, to show that the derivative is non-positive for ȳ > 0, it is sufficient to
show that

(2+ (e− 2)ȳ)k+1 > (2− (4− e)ȳ)k(2+ (e− 2)ȳ+ 2kȳ) . (5.5)

We will prove this inequality is true by induction on the value of k. For
k = 1, we have

(2+ (e− 2)ȳ)2 = (2− (4− e)ȳ)(2+ (e− 2)ȳ+ 2ȳ) + 4ȳ2

> (2− (4− e)ȳ)(2+ (e− 2)ȳ+ 2ȳ) .

104 optimal stopping and posted prices

Assume that (5.5) is true for given k. Then,

(2+(e− 2)ȳ)k+2

> (2− (4− e)ȳ)k(2+ (e− 2)ȳ+ 2kȳ)(2− (4− e)ȳ+ 2ȳ)

= (2− (4− e)ȳ)k+1(2+ (e− 2)ȳ+ 2kȳ)

+ (2− (4− e)ȳ)k(2− (4− e)ȳ+ 2(k+ 1)ȳ)2ȳ

> (2− (4− e)ȳ)k+1(2+ (e− 2)ȳ+ 2kȳ) + (2− (4− e)ȳ)k+12ȳ

= (2− (4− e)ȳ)k+1(2+ (e− 2)ȳ+ 2(k+ 1)ȳ) ,

where the first inequality is due to the induction hypothesis. Hence, (5.5) is
true. For each k > 1 and ȳ > 0, the derivative is non-positive, and gM ′(ȳ)

is minimized for ȳ as large as possible, that is,
∑
i∈M ′ ȳ = a. �

Using Proposition 5.7, we lower bound (5.3) as follows. Consider the term ∏
j∈N\{i}

1

2+ (e− 2)z∗j

 ∑
S⊆N\{i}

2|S|

1+ |S|

∏
j∈S

z∗j
∏

j∈N\(S∪{i})

(2− (4− e)z∗j) .

Note that this is equal to gN\{i}(z
∗
−i), where x−i denotes the vector x with

coordinate i eliminated. So, Proposition 5.7 can be applied with a = 1− z∗i .
Thus,

gN\{i}(z
∗
−i) > gN\{i}(x

∗) ,

with x∗ the optimal solution to min
x∈R

N\{i}
+

{gN\{i}(x) :
∑
j∈N\{i} xj 6 a}.

Proposition 5.7 states that x∗j = (1− z∗i)/k, where k 6 n− 1 is the number
of non-zero variables in x∗. Conditioning on the cardinality of the set S,
and using the Binomial Theorem, a straightforward but tedious calculation
shows that

gN\{i}(x
∗) =

2k+ (e− 2)(1− z∗i)

2(k+ 1)(1− z∗i)

(
1−

(
1−

2(1− z∗i)

2k+ (e− 2)(1− z∗i)

)k+1)
.

As this quantity only depends on k and z∗i , we may define

ϕk(z
∗
i) =

2

(2+ (e− 2)z∗i)
gN\{i}(x

∗) ,

to conclude that expression (5.3) (and in turn (P)) is lower bounded by∑
i∈N

biz
∗
iϕk(i)(z

∗
i) .

where the index k(i), denoting the number of non-zero variables in x∗, is
always at least 1, yet may vary, depending on i.

5.2 the bernoulli selection lemma 105

Bounding the function by 1− 1/e

The remainder of the proof establishes that ϕk(i)(z∗i) > 1−
1
e . Our quantity

of interest is

ϕn(y) =
2

2+ (e− 2)y

2n+ (e− 2)(1− y)

2(n+ 1)(1− y)
·(

1−

(
1−

2(1− y)

2n+ (e− 2)(1− y)

)n+1)
.

We prove that ϕn(y) > 1− 1
e for all y ∈ [0, 1] and n > 2. We start with a

lemma that rephrases this claim. Define

fn(x) :=
1

n+ 1
−

(1− x)n+1

n+ 1
−
e− 1

2
x+

(e− 1)(e− 2)n

e(2− (e− 2)x)
x2 .

Lemma 5.8. ϕn(y) > 1 − 1
e for all y ∈ [0, 1] and all n > 2 if and only if

fn(x) > 0 for all n > 1 and x ∈ [0, x̄], where x̄ = 1/(n− 1+ e/2).

Proof. Consider the variable change

x =
2(1− y)

2(n− 1) + (e− 2)(1− y)
,

so that

y =
2− (2(n− 1) + e− 2)x

2− (e− 2)x
.

As y ranges from 0 to 1, x ranges from 0 to 1
n−2+e/2 . Note that

2

2+ (e− 2)y
=

2(2− (e− 2)x)

e(2− (e− 2)x) − 2(e− 2)(n− 1)x
.

Substituting this, we see that ϕn(y) > e−1
e holds for all y ∈ [0, 1] and n > 2

if and only if

1

n
(1− (1− x)n) >

e− 1

e
x
e(2− (e− 2)x) − 2(e− 2)(n− 1)x

2(2− (e− 2)x)
,

for all x ∈ [0, 1
n−2+e/2] and n > 2. Moving the index of n by 1 and rewriting

the inequality above gives the result. �

106 optimal stopping and posted prices

Using Lemma 5.8, the new goal is to prove fn(x) > 0 for all n > 1 and
x ∈ [0, x̄]. We use the following result.

Proposition 5.9. Let c ∈ [0, 12]. Then h1(x) =
(
1− 1

x+c

)x is a non-decreasing
function of x in (1,∞).

Proof. Define h2(x) = ln(h1(x)) = x ln
(
1− 1

x+c

)
. We prove h1(x) is non-

decreasing by proving that h ′2(x) > 0. Note that

h ′2(x) = ln
(
x+ c− 1

x+ c

)
+

x

(x+ c− 1)(x+ c)
,

which is non-negative if and only if

x

(x+ c− 1)(x+ c)
> ln

(
1+

1

x+ c− 1

)
.

We substitute 1
x+c−1 = z. Then, the right-hand side is equal to ln(1+ z),

while the left-hand side is equal to

x

(x+ c− 1)(x+ c)
=
1
z − c+ 1
1
z + 1

z =
1+ z− cz

1+ z
z =

z

1+ z
(1+ (1− c)z) .

When we expand ln(1+ z) = z− z2

2 + z3

3 − z4

4 ± . . ., we see that it is sufficient
to prove

z

1+ z
(1+ (1− c)z) > z−

z2

2
+
z3

3
−
z4

4
±

We multiply both sides by 1+z
z to retrieve

1+ (1− c)z > 1+
z

2
−
z2

6
+
z3

12
−
z4

20
±

As c 6 1
2 , it suffices to prove −z

2

6 + z3

12 −
z4

20 ± . . . 6 0, i.e.,

∞∑
i=2

(−1)izi

i(i+ 1)
> 0 .

We rewrite this as
∞∑
i=2

1

z

(−1)izi+1

i(i+ 1)
=

∞∑
i=2

1

z

∫z
0

(−1)iti

i
dt =

1

z

∫z
0

∞∑
i=2

(−1)iti

i
dt .

5.2 the bernoulli selection lemma 107

The result now follows, since

∞∑
i=2

(−1)iti

i
= −

∞∑
i=1

(−1)i+1ti

i
+ t = − ln(1+ t) + t > 0 ,

where the last inequality follows from t > ln(1+ t) for t > 0. �

Now we show that fn(x) > 0 using Proposition 5.9.

Lemma 5.10. fn(x) > 0 for all n > 1 and x ∈ [0, x̄].

Proof. We split the proof into the following parts which together imply the
result. All derivatives are with respect to x.

(i) fn(0) = 0 for all n > 1,

(ii) fn(x̄) > 0 for all n > 1,

(ii) f ′n(0) > 0 for all n > 1,

(iv) f ′n(x̄) < 0 for all n > 1,

(v) f ′′′n (x) > 0 for all x ∈ [0, x̄] and n > 1.

First we show how the lemma follows from these parts, see Fig. 5.1 for an
illustration.

Assume (i)-(v) hold. We prove fn(x) > 0 by contradiction, so assume that
for some n there exists an x1 ∈ [0, x̄] such that fn(x1) < 0. Note that, by (i)
and (ii), the function decreases in a part of the interval (0, x1) and increases
in a part of the interval (x1, x̄). Hence, as fn(x) is differentiable, there exist
in particular an x1 such that not only fn(x1) < 0 but moreover f ′n(x1) = 0.
Since the function increases from a negative value in x1 to a non-negative
value in x̄, there exists some x2 ∈ (x1, x̄) such that f ′n(x2) > 0. However, as
f ′n(x1) = 0, f ′n(x2) > 0 and f ′n(x̄) < 0 from (iv), there exists an x3 ∈ (x1, x̄)
with f ′′n(x3) = 0.

Similarly, the function decreases from 0 in 0 to a negative value in x1, so
there exists some x4 ∈ (0, x1) such that f ′n(x4) < 0. Again, as f ′n(0) > 0

from (iii), f ′n(x4) < 0 and f ′n(x1) = 0, there also exists an x5 ∈ (0, x1) with
f ′′n(x5) = 0. However, from (v) we know that f ′′ is strictly increasing in x, so
there cannot be two distinct values x3 and x5 such that f ′′n(x3) = f ′′n(x5) = 0.
Contradiction.

108 optimal stopping and posted prices

0

x1

x3

x5
x

Figure 5.1: An illustration to clarify the proof of Lemma 5.10.

To prove the required statements, we compute the first three derivatives
of f with respect to x.

f ′n(x) = (1− x)n −
e− 1

2
+
n(e− 1)(e− 2)

e

(
4x− (e− 2)x2

(2− (e− 2)x)2

)
,

f ′′n(x) = n

(
−(1− x)n−1 +

8(e− 1)(e− 2)

e(2− (e− 2)x)3

)
,

f ′′′n (x) = n

(
(n− 1)(1− x)n−2 +

24(e− 1)(e− 2)2

(2− (e− 2)x)4

)
.

We finish the proof by proving the five statements.

(i) fn(0) = 0 for all n > 1 by a direct calculation.

(ii) By the proof of Lemma 5.8, fn(x̄) > 0 for all n > 1 is equivalent to
ϕn(z

∗
i) > 1− 1/e for z∗i = 0 and all n > 2. By direct evaluation, we

see the latter is true for n = 2, 3, 4. Thus, it remains to show for all
n > 5 that

n− 1+ e−2
2

n

(
1−

(
1−

1

n− 1+ e−2
2

)n)
> 1−

1

e
,

or equivalently, for all n > 4 that

n− 1+ e
2

n+ 1

(
1−

(
1−

1

n− 1+ e
2

)n+1)
> 1−

1

e
.

We write this as(
1−

1

n− 1+ e
2

)n+1
6 1−

(n+ 1)(1− 1
e)

n− 1+ e
2

=
n+1
e + e

2 − 2

n− 1+ e
2

,

5.2 the bernoulli selection lemma 109

and multiplying both sides by (1− 1/(n− 1+ e/2))(e−5)/2 yields(
1−

1

n− 1+ e
2

)n+ e
2−

3
2

6
n+1
e + e

2 − 2

n− 1+ e
2

(
1−

1

n− 1+ e
2

) e
2−

5
2

=
n+1
e + e

2 − 2

n− 1+ e
2

(
n− 2+ e

2

n− 1+ e
2

) e
2−

5
2

=
(n+1e + e

2 − 2)(n− 1+ e
2)

3−e
2

(n− 2+ e
2)

5−e
2

.

By invoking Proposition 5.9 for the left-hand side, we see that the left-
hand side is a non-decreasing function in n with limit 1/e. For the
right-hand side, note that the limit for n to infinity is also 1/e, and
the derivative with respect to n of the right-hand side is

4
3− e

e
(1− (3− e)n)

(2n+ e− 2)
1−e
2

(2n+ e− 4)
7−e
2

,

which is negative for n > 4. The proof of (ii) is complete.

(iii) f ′n(0) = 1− (e− 1)/2 > 0.

(iv) For n = 1 and n = 2, direct evaluation of f ′1(x̄) and f ′2(x̄) gives nega-
tive values. For n > 3, proving that

f ′n(x̄) =

(
1−

1

n+ e
2 − 1

)n
+

(e− 1)((e− 2)2 + 2n(e− 4))

4en
< 0 ,

is equivalent to proving that

e

(
1−

1

n+ e
2 − 1

)n
+

(e− 1)(e− 2)2

4n
<

(e− 1)(4− e)

2
.

Consider the left-hand side. By invoking Proposition 5.9 for the first
term and taking the limit of n to infinity, and using n > 3 for the
second term, we get

e

(
1−

1

n+ e
2 − 1

)n
+

(e− 1)(e− 2)2

4n
< 1+

(e− 1)(e− 2)2

12
,

which is indeed smaller than (e−1)(4−e)
2 .

110 optimal stopping and posted prices

(v) Since 0 6 x 6 x̄ < 1 for all n, f ′′′n (x) consists of sums, products, and
quotients of only strictly positive terms. �

From Lemma 5.8 and Lemma 5.10 we conclude that indeed ϕn(z
∗
i) >

1− 1
e for all z∗i ∈ [0, 1] and n > 2. This concludes the proof of the Bernoulli

Selection Lemma.

5.2.2 Tightness

We now provide a family of instances that shows that the 1− 1/e bound in
the Bernoulli Selection Lemma is actually best possible. Consider n2 inde-
pendent identically distributed Bernoulli random variables with parameter
1/n and prizes b1 = n/(e− 2) and bi = 1 for 2 6 i 6 n2. The expectation
of the maximum prize is given by

E

[
max
i∈N

{biXi}

]
=

1

e− 2
+

(
1−

1

n

)(
1−

(
1−

1

n

)n2−1)
−→ 1

e− 2
+ 1 .

In this particular setting, where the Bernoulli random variables are i.i.d.,
the best strategy is to sort by prize and take some subset with those of
higher prize. This means to choose the first random variable and a subset
of size k− 1 of the rest for some 1 6 k 6 n2. This yields an expected prize
that is equal to(

1−

(
1−

1

n

)k) n
e−2 + k− 1

k
6

(
1−

(
1−

1

n

)k)(
n

k(e− 2)
+ 1

)
.

As n→∞, the above converges to

max
06x6n

(1− e−x)

(
1

x(e− 2)
+ 1

)
,

where x = k
n . The following proposition shows that this expression is max-

imized at x = 1. Hence, this strategy yields the value (1− e−1)
(
1
e−2 + 1

)
=

(1− 1/e)E[maxi∈N{biXi}].

Proposition 5.11. The function f(x) = (1 − e−x)
(

1
x(e−2) + 1

)
has a global

maximum in x = 1.

5.2 the bernoulli selection lemma 111

Proof. We compute the first two derivatives and find

f ′(x) =
−ex + (e− 2)x2 + x+ 1

(e− 2)x2
e−x ,

f ′′(x) =
2ex −

(
(e− 2)x3 + x2 + 2x+ 2

)
(e− 2)x3

e−x .

We see that f ′(1) = 0. To show that x = 1 is a global maximum, we prove
that f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1.

To see this, first note that f ′′(x) has the same sign as the function

g(x) = 2ex −
(
(e− 2)x3 + x2 + 2x+ 2

)
.

Note further that g(0) = 0. Since this is an exponential function with a
positive coefficient minus a polynomial with only positive coefficients, g(x)
first decreases until some point because of the polynomial, after which it
is increasing because of the exponential term that starts to dominate the
polynomial. So there exists some x∗ > 0 such that g(x) < 0 for x < x∗,
g(x∗) = 0 and g(x) > 0 for x > x∗. Since g(1) = e− 3 < 0, we know x∗ > 1.
Therefore, f ′′(x) < 0 up to x∗ > 1 and f ′′(x) > 0 afterwards, and hence,
f ′(x) is decreasing up to x∗ > 1 and increasing afterwards.

Since f ′(1) = 0 and f ′(x) is decreasing for x 6 1, we know f ′(x) > 0 for
x < 1.

Furthermore, f ′(x) < 0 for 1 < x 6 x∗, since f ′(1) = 0 and f ′(x) is
decreasing for 1 < x < x∗. Since limx→∞ f ′(x) = 0 and f ′(x) is increasing
from x∗ onwards, we know f ′(x) < 0 for x > x∗, and hence, f ′(x) < 0 for all
x > 1.

Therefore, x = 1 is a global maximum. �

5.2.3 Prophet inequality

The Bernoulli Selection Lemma can be extended to more general random
variables, i.e. to the prophet inequality setting. We are now ready to prove
Theorem 5.3.

Theorem 5.3. Given n independent non-negative random variables X1, . . . ,Xn
with Xi ∼ Fi. There exist values τ1, . . . , τn such that

E

[∑n
i=1 XiYi∑n
i=1 Yi

]
>

(
1−

1

e

)
E

[
max
i=1,...,n

Xi

]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi.

112 optimal stopping and posted prices

Proof. First assume that the Fi are continuous for all i. Let qi = P(Xi >
Xj, ∀j = 1, . . . ,n) be the probability that Xi is the largest and let αi be
a value for which 1 − Fi(αi) = qi. Consider bi = E[Xi | Xi > αi] and
the Bernoulli random variables Z1, . . . ,Zn where Zi has parameter qi. We
apply the Bernoulli Selection Lemma to this instance, and thus let S ⊆
{1, . . . ,n} be a set for which the lemma holds. Now define τi = αi for i ∈ S
and τi = ∞ otherwise, and note that for i 6∈ S, we have Yi = 0 almost
surely, and for i ∈ S, we have P(Xi > αi) = P(Yi = 1) = qi. It follows that

E

[∑n
i=1 XiYi∑n
i=1 Yi

]
=
∑
i∈S

E

[
XiYi∑
j∈S Yj

]

=
∑
i∈S

E[Xi | Yi = 1]E


1+ ∑

j∈S\{i}

Yj

−1
∣∣∣∣∣∣∣Yi = 1

P(Yi = 1)

=
∑
i∈S

E[Xi | Xi > αi]E

[
Yi∑
j∈S Yj

]

= E

[∑
i∈SE[Xi | Xi > αi]Zi∑

i∈S Zi

]
>
e− 1

e
max
zi6qi

{
n∑
i=1

E[Xi | Xi > αi]zi

∣∣∣ n∑
i=1

zi 6 1

}

>
e− 1

e

n∑
i=1

E[Xi | Xi > αi]qi ,

where the second to last inequality follows from the Bernoulli Selection
Lemma, while the last holds since

∑n
i=1 qi = 1. Now note that we can

write E [maxi=1,...,n Xi] =
∑n
i=1E[Xi | Xi > Xj, ∀j = 1, . . . ,n]qi. To finish

the proof, it suffices to show that

E[Xi | Xi > αi] > E[Xi | Xi > Xj, ∀j = 1, . . . ,n] .

Indeed, if x > αi, we have P(Xi > x | Xi > αi) =
∫∞
x
1
qi

dFi(t), while, if
x 6 αi, this equals 1. On the other hand,

P(Xi > x | Xi > Xj ∀j = 1, . . . ,n) =
∫∞
x

∏
j6=i Fj(t)

qi
dFi(t) .

It follows that P(Xi > x | Xi > αi) > P(Xi > x | Xi > Xj, ∀j = 1, . . . ,n) for
all x > 0. Thus we can conclude that Xi | (Xi > αi) stochastically dominates
Xi | (Xi > Xj ∀j = 1, . . . ,n), and the conclusion follows.

5.3 adaptive threshold rule 113

When some Fi are not continuous, it could be the case that there is no
αi such that 1 − Fi(αi) = qi or that

∑
qi > 1. If the former happens,

the result still holds provided αi is chosen randomly. The latter case is
solved by slightly perturbing the support of the random variables in a way
that the probability that two or more are the maximum simultaneously is
negligible. �

5.3 adaptive threshold rule

In the previous section we considered the setting in which the threshold
value only depends on the random variable Xi, not on the order. In this
section we consider the setting in which the threshold value may depend
both on Xi and on the prizes that arrived before but got rejected. For i.i.d.
random variables we design an adaptive threshold strategy that achieves
an expected revenue of at least a 1/β∗ ≈ 0.745 fraction of the expected
maximum value. In particular we prove the following.

Theorem 5.6. Given non-negative i.i.d. random variables X1, . . . ,Xn, there exist
thresholds τ1, . . . , τn, such that

E(max{X1, . . . ,Xn}) 6 β∗E(Xt),

where t := min{i ∈ {1, . . . ,n} : Xi > τi} and β∗ ≈ 1.3415 is the unique value
such that∫1

0

1

y(1− ln(y)) + (β− 1)
dy = 1 . (5.1)

For X1, . . . ,Xn non-negative i.i.d. random variables, we take F as their
probability distribution function and refer to X as a random variable with
the same common distribution. Let F−1(q) = inf{x > 0 | F(x) > q} be the
generalized inverse of F (or quantile function) and let τ(q) = F−1(1− q).
Therefore, we have that P(X > τ(q)) > q > P(X > τ(q)) = 1− F(τ(q)), and
this holds with equalities if F is continuous at τ(q). We start by deriving
an expression for the expectation of the maximum of X1, . . . ,Xn, for which
we let R(q) =

∫q
0 F

−1(1− θ)dθ, use Fubini’s Theorem, and integration by
parts:

E(max{X1, . . . ,Xn}) =
∫∞
0

1− Fn(t)dt =
∫1
0

F−1(n
√
z)dz (5.6)

= n

∫1
0

(1− q)n−1F−1(1− q)dq

114 optimal stopping and posted prices

= n

∫1
0

(n− 1)(1− q)n−2
(∫q
0

F−1(1− θ)dθ
)

dq

= n

∫1
0

(n− 1)(1− q)n−2R(q)dq .

Rather than directly constructing a threshold rule, our approach is to
choose at each step a probability of acceptance, which naturally will be in-
creasing as less random variables are left. It is worth mentioning that in this
i.i.d. case one could compute the optimal thresholds at each step, however
the analysis of such an optimal strategy becomes difficult. Here we use a
less direct algorithm but obtain two big advantages: first our thresholds are
explicit, and second the posterior analysis becomes quite simple.

Specifically when faced with a random variable X, we will select a proper
acceptance probability q. Now if F is continuous at τ(q) we stop if X > τ(q)
(so the acceptance probability is q). Otherwise (there is mass at τ(q)), there
may be no value that accomplishes the previous condition, so we stop
if X > τ(q) and if X = τ(q) we stop with probability s = [q − P(X >

τ(q)]/P(X = τ(q)) (so again the acceptance probability is q). The goal be-
hind this seemingly obscure rule is that, if at a given step we are faced
with a random variable X and have decided on an acceptance probability
q, the expected reward in that step equals R(q). Indeed, the reward can be
calculated as:

R(q) = P(X = τ(q))sτ(q) + P(X > τ(q))E[X|X > τ(q)]

= (q− P(X > τ(q)))τ(q) +

∫∞
0

P(X > t,X > τ(q))dt

= (q+ F(τ(q)) − 1)τ(q) +

∫∞
τ(q)

1− F(t)dt =
∫q
0

F−1(1− θ)dθ.

Quantile stopping rule

Our stopping rule is constructed as follows, see Fig. 5.2 for an illustration.
We first partition the interval A = [0, 1] into n intervals Ai = [εi−1, εi],
with 0 = ε0 < ε1 < . . . < εn−1 < εn = 1. For Xi we draw an acceptance
probability qi at random from the interval Ai, according to probability
density function fi(q) =

ψ(q)
γi

, where ψ(q) = (n− 1)(1− q)n−2 and γi is
a normalization parameter equal to γi =

∫
q∈Ai ψ(q)dq. As this qi is the

acceptance probability of variable Xi, the corresponding threshold at step
i is τi = τ(qi). With all the qi’s at hand we scan X1, . . . ,Xn and stop at

5.3 adaptive threshold rule 115

ε0 = 0 ε1 ε2 . . . εn = 1

q1 q2 . . . qn

Figure 5.2: A graphical illustration of our quantile stopping rule for the adaptive
setting. The intuition is that the acceptance probabilities increase as less
customers are remaining, and hence, the thresholds will be decreasing.

step i with probability qi using the previously described rule (i.e., if F is
continuous at τ(qi) we stop if X > τ(qi); otherwise we stop for sure if
X > τ(qi), and if X = τ(qi) we stop with probability si = [qi − P(X >

τ(qi))]/P(X = τ(qi))).

Lemma 5.12. Let ρ1 = 1
γ1

and ρi+1 = ρi
γi+1

∫εi
εi−1

ψ(q)(1 − q)dq for i =

1, . . . ,n − 1. Then the expected value of the random variable at which we stop,
Xr, satisfies

E(Xr) =

n∑
i=1

ρi

∫εi
εi−1

(n− 1)(1− q)n−2R(q)dq .

Proof. We have already shown that the expected value at step i equals R(qi).
On the other hand, the probability that we get to step i is equal to

∏i−1
j=1(1−

qj). Hence, by linearity of expectation and independence of the qi’s, the
expected value of Xr is:

E(Xr) =

n∑
i=1

E(R(qi))

i−1∏
j=1

E(1− qj)

=

n∑
i=1

∫εi
εi−1

(n− 1)(1− q)n−2R(q)dq

∏i−1
j=1

∫εj
εj−1

ψ(q)(1− q)dq∏i
j=1 γi

=

n∑
i=1

ρi

∫εi
εi−1

(n− 1)(1− q)n−2R(q)dq ,

and the proof is complete. �

116 optimal stopping and posted prices

Our stopping rule still has freedom in the choice of ε1, . . . , εn−1. The
next lemma says that an appropriate choice leads to express the expected
value Xr in terms of that of the expectation of the maximum.

Lemma 5.13. If we choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn, then

E(max{X1, . . . ,Xn}) = nγ1E(Xr) .

Proof. If we choose ε1, . . . , εn−1 such that ρi = ρ1 = 1
γ1

for all i, then by
equation (5.6) and Lemma 5.12 we can express

E(max{X1, . . . ,Xn}) = n
∫1
0

(n− 1)(1− q)n−2R(q) dq

= nγ1ρ1

n∑
i=1

∫εi
εi−1

(n− 1)(1− q)n−2R(q) dq

= nγ1

n∑
i=1

ρi

∫εi
εi−1

(n− 1)(1− q)n−2R(q) dq

= nγ1E(Xr) . �

Bounding γ1

Since ρi+1 = ρi
γi+1

∫εi
εi−1

ψ(q)(1− q)dq for all i, choosing ε1, . . . , εn−1 such
that all ρi are equal amounts to choosing them such that

∫εi+1
εi

ψ(q)dq =∫εi
εi−1

ψ(q)(1− q)dq for all i. By the definition of ψ(q), this is equivalent to
choosing them such that for all i

n− 1

n
((1− εi−1)

n − (1− εi)
n) = (1− εi)

n−1 − (1− εi+1)
n−1 .

Substituting xi = 1− εi we obtain the following equivalent recursion on xi:

xi−1
n

n
−
xi
n

n
=
xi
n−1

n− 1
−
xi+1

n−1

n− 1
, (5.7)

where x0 = 1 and xn = 0. With these boundary constraints, we can write
this recursion as follows:

xi+1 =

(
n− 1

n
xi
n −

αn

n

)1/(n−1)
, (5.8)

5.3 adaptive threshold rule 117

where αn = n− 1− nx1
n−1 is the recursion from Hill and Kertz [58]. In-

deed, for i = 1 equation (5.7) gives

x2 =

(
x1
n−1 +

n− 1

n
x1
n −

n− 1

n

)1/(n−1)
.

Now, suppose the claim is true for i = 1, . . . , j. From (5.7), we have that

xj+1
n−1 = xj

n−1 +
n− 1

n
xj
n −

n− 1

n
xj−1

n

=
n− 1

n
xj−1

n + x1
n−1 −

n− 1

n
+
n− 1

n
xj
n −

n− 1

n
xj−1

n

=
n− 1

n
xj
n + x1

n−1 −
n− 1

n
.

Note that our quantity of interest γ1 equals
∫ε1
0 ψ(q) dq = 1− x1

n−1. So
that if n(1− x1n−1) 6 β∗, the expected value of the maximum is at most
that of our stopping rule times β∗. We remark that the value of x1 (and all
of the recursion) depends on n, but we have omitted this dependency for
simplicity.

Observe that n(1 − x1n−1) 6 β is equivalent to x1 > (1 − β
n)
1/(n−1).

Thus, if we find the minimum value of β such that x1 < (1− β
n)
1/(n−1)

implies xn < 0, we know that x1 > (1 − β
n)
1/(n−1) for that value of β.

Hence, we proceed by showing an upper bound on the value of xn.
Comparing this to Hill and Kertz [58], they prove that the smallest pos-

sible value an that satisfies their initial recurrence is equal to 1+ αn, and
therefore we can write an in terms of this new recursion as an = n(1−

x1
n−1). By bounding γ1, we thus also bound their quantity of interest and

prove their conjecture.

Bounding the recursion through a differential equation

In the following, we show that each of the terms xi in the recursion can
be upper bounded by a function y(t) : [0, 1] → R, defined through the
following differential equation. All derivatives of y are with respect to t.

y ′ = y(ln(y) − 1) − (β− 1) ,

y(0) = 1 .
(ODE)

Furthermore, y(1) := limt↑1 y(t) is the continuous extension of y(t).

118 optimal stopping and posted prices

Later on, we will choose β = β∗ ≈ 1.3415. For this β, we have y ∈ [0, 1],
so we restrict our analysis of (ODE) to this interval. We assume β > 1.25
and y ∈ [0, 1]. We validate these assumptions at the end of our analysis.

Lemma 5.14. Differential equation (ODE) has a unique solution y(t), which
is a decreasing and strictly convex function on the interval [0, 1]. Furthermore,
y ′′′(t) > 0 for y ∈ (0, 1).

Proof. Note that y ′(0) = −β < 0 because y(0) = 1. For y ∈ (0, 1], we know
ln(y) 6 0. Also, as β > 1, we conclude y ′(t) < 0. Furthermore, y(t) is
convex as for y ∈ [0, 1),

y ′′ = y ′(ln(y) − 1) + y
y ′

y
= y ′ ln(y) > 0 ,

and y ′′ = 0 for y = 1. Finally,

y ′′′ = y ′′ ln(y) + y ′
y ′

y
= y ′ ln2(y) +

(y ′)2

y

= y ′
(

ln2(y) + ln(y) − 1−
β− 1

y

)
.

We show that ln2(y) + ln(y) − 1− β−1
y < 0 for y ∈ (0, 1) or, equivalently,

that g(y) = y ln2(y) + y ln(y) − y− β+ 1 < 0 for y ∈ (0, 1). To determine
the maximum value of g(y), observe that

dg(y)
dy

= ln2(y) + 2y ln(y)
1

y
+ ln(y) + y

1

y
− 1

= ln2(y) + 3 ln(y) = ln(y) (ln(y) + 3) .

Note that dg(y)
dy > 0 on y ∈ (0, e−3) and g ′(y) < 0 on y ∈ (e−3, 1). Hence,

since g(y) is continuous, its maximum is attained at y = e−3, and g(e−3) =
5e−3 −β+ 1 < 0 as β > 1.25 .

Moreover, note that if y ∈ (0, 1), then |y ′′| is bounded, and hence y ′ is
Lipschitz continuous. Therefore, by the Picard-Lindelöf Theorem [76], y(t)
is unique on (0, 1). As y(0) is given, and we defined y(1) as the continuous
extension of y(t), the solution y(t) is unique on [0, 1]. �

We now proceed to prove that the solution of (ODE) dominates the terms
of the recurrence. In this proof, we make use of the following technical
result.

5.3 adaptive threshold rule 119

Proposition 5.15. If x ∈ (0, 1] and n > 2, then

x+
x(ln(x) − 1)

n
+

ln(x)(x(ln(x) − 1) − (β− 1))

2n2
>
n− 1

n
x

n
n−1 .

Proof. Fix a value for n. Since −(β− 1) ln(x) is positive, and since x > 0, it
suffices to prove that

f(x) := 1+
ln(x) − 1

n
+

ln(x)(ln(x) − 1)
2n2

−
n− 1

n
x

1
n−1 > 0 .

As f(1) = 0 for all n, showing that f is non-increasing completes the proof.
Noting that f ′(x) = 1

nx

(
1− x

1
n−1 + 1

2n(2 ln(x) − 1)
)

, we have that for x ∈
(0, 1], f ′ has the same sign as g(x) := 1− x

1
n−1 + 1

2n(2 ln(x) − 1). We prove
that g has a maximum x∗ ∈ (0, 1] with g(x∗) 6 0. This implies that both g
and f ′ are non-positive. Indeed,

g ′(x) =
1

nx
−
x

1
n−1−1

n− 1
, g ′′(x) = −

1

nx2
+

n− 2

(n− 1)2
x

1
n−1−2 ,

So g ′(x∗) = 0 only when x∗ = (n−1n)n−1. Furthermore, g ′′ has the same
sign as h(x) := − 1n + n−2

(n−1)2
x

1
n−1 , which is an increasing function in x for

all n > 2. As h(1) = − 1
n(n−1)2

< 0, g ′′ is negative, g is concave and attains
its maximum at x∗. Finally,

g(x∗) =
1

2n
+
n− 1

n
ln
(
1−

1

n

)
6
1

2n
+
n− 1

n

(
−
1

n

)
=
1

n2
−
1

2n
6 0 ,

where the last inequality follows from n > 2. This concludes the proof. �

Lemma 5.16. If x1 < (1− β
n)

1
n−1 , then xin−1 < y(in) for i = 1, . . . ,n, where

y(t) is the unique solution of (ODE).

Proof. First note that x0 = y(0) = 1, by definition. Moreover, we already saw
that y ′(0) = −β. As y(t) is strictly convex and, by the assumption of the
lemma, we have that y(1/n) > y(0) − 1

nβ > x1
n−1, proving the statement

for i = 1. We proceed by induction assuming that xin−1 < y(in). The Taylor
expansion of y(i+1n) around i

n states that there exists ζ ∈ [in , i+1n] such that

y(i+1n) = y(in) +
1

n
y ′(in) +

1

2n2
y ′′(in) +

1

6n6
y ′′′(ζ) .

120 optimal stopping and posted prices

Thus,

y(i+1n) > y(in) +
1

n
y ′(in) +

1

2n2
y ′′(in)

= y(in) +
y ′(in)

n

(
1+

ln(y(in)
2n

)

= y(in) +
y(in)(ln(y(

i
n)) − 1) − (β− 1)

n

(
1+

ln(y(in)
2n

)

>
n− 1

n
y(in)

n
n−1 −

β− 1

n
>
n− 1

n
xi
n −

β− 1

n
> xi+1

n−1 .

Here, the first inequality follows from y ′′′ > 0, the second from Proposi-
tion 5.15, the third from the induction hypothesis, and the last from equa-
tion (5.8) and the assumption that x1n−1 < 1−

β
n . �

Now we are ready to prove Theorem 5.6.

Theorem 5.6. Given non-negative i.i.d. random variables X1, . . . ,Xn, there exist
thresholds τ1, . . . , τn, such that

E(max{X1, . . . ,Xn}) 6 β∗E(Xt),

where t := min{i ∈ {1, . . . ,n} : Xi > τi} and β∗ ≈ 1.3415 is the unique value
such that∫1

0

1

y(1− ln(y)) + (β− 1)
dy = 1 . (5.1)

Proof. Consider the thresholds of the optimal threshold strategy, which can
be easily computed by dynamic programming trough the recurrence:τn = 0, Vn = E(X)

τi = Vi+1, Vi = E(X|X > τi), i = n− 1 , . . . , 1.

Note that under these thresholds, it is irrelevant whether to stop when
X > τi or X > τi, since they are constructed such that there is indifference
between selecting a variable and keeping its value, or to continue for the
expected value of the remaining. Therefore, any stopping rule that uses de-
terministic thresholds obtains an expected reward less or equal than E(Xt).

We argue that the expected reward obtained by our randomized thresh-
old rule E(Xr) is upper bounded by the reward of a rule that uses only

5.3 adaptive threshold rule 121

deterministic thresholds. Recall that our stopping rule randomizes at step i
every time the corresponding threshold τ(qi) has mass, choosing between
accepting when X > τ(qi) or X > τ(qi). If we denote q̄i = P(X > τ(qi))
and q

i
= P(X > τ(qi)), then F−1(1− q) is constant in [q

i
, q̄i]. Thus, R(q) =∫q

0 F
−1(1− θ)dθ is linear in that interval, implying that E(Xr) is linear as

a function of qi when τ(qi) has mass. This means that either the strategy
that stops in step i whenever X > τ(qi), or the strategy that does so when
X > τ(qi), attains a larger expected reward than E(Xr), and because both
these strategies use only deterministic thresholds, they are in turn upper
bounded by E(Xt). Then, we know by Lemma 5.13 that

E(max{X1, . . . ,Xn}) 6 nγ1E(Xr) 6 nγ1E(Xt) ,

where γ1 = 1− x1n−1.
It remains to show that n(1− xn−11) 6 β∗ for β∗ ≈ 1.3415. Lemma 5.16

yields xn < y(1), so we choose β such that y(1) = 0 to reach a contradiction
with the fact that xn = 0. Note that this indeed implies y ∈ [0, 1] as we
assumed. Hereto, note that y(t) is invertible by Lemma 5.14. Hence, we can
consider t as a function of y, for which we know t(1) = 0, and we want to
choose β such that t(0) = 1. In particular, we have that

t(1) = t(0) +

∫1
0

dt
dy

dy = 1+

∫1
0

1
dy
dt

dy

= 1−

∫1
0

1

y(1− ln(y)) + (β− 1)
dy.

So β∗ is the value such that the last integral equals 1. This yields β∗ ≈
1.3415. �

Remark 5.17. A routine exercise shows that the sequence an defined by Hill
and Kertz [58] exactly equals our nα1. Note here that our α1 does depend
on n, though we have omitted this dependency for simplicity of notation.
Thus our result implies that an 6 β∗ for all n > 1, and by the work of
Kertz [71] we know that an → β∗. Let Tn be the set of stopping rules for
X1, . . . ,Xn. Recalling that an is the smallest possible value for which

E(max{X1, . . . ,Xn}) 6 an sup{E(Xt) : t ∈ Tn} , (5.9)

we know that β∗ is the smallest value satisfying (5.9) for all n > 1, and
hence, it is tight.

122 optimal stopping and posted prices

5.4 posted price mechanisms

5.4.1 Problem description

In this section we extend our results to the setting of posted price mecha-
nisms. A seller has a single item to sell to a given set of customers I. We
assume that the seller has no value for keeping the item. Customers have in-
dependent random valuations for the item with customer i ∈ I valuing the
item at vi, drawn from distribution Fi(·). The customers arrive in (uniform)
random order, and the goal of the seller is to maximize his expected rev-
enue. As is standard in the literature, we say that a distribution Fi is regular
if the virtual value function ci(v) = v− (1− Fi(v))/fi(v) is non-decreasing,
where fi is the density of Fi. Also here we consider a non-adaptive and an
adaptive scenario (cf. Problem 5.1 and Problem 5.2).

Problem 5.18 (Non-adaptive posted price mechanism problem). The seller
sets prices pi > 0 for all i ∈ I, with the goal of maximizing his expected
revenue, defined as

∑
i∈I

piPσ,v

[
i = argmin

j∈I
{σ(j) | vj > pj}

]
,

where the probability is taken over the arrival permutation σ and the cus-
tomers’ valuations v.

Problem 5.19 (Adaptive posted price mechanism problem). The seller of-
fers each customer a price as she arrives. So, the seller sets functions pi :
2I → R for each customer i, such that, if S is the set of customers who
already arrived and declined the offer, pi(S) is the price offered to cus-
tomer i if she is next to arrive. For an arrival permutation σ, we denote
pi(σ) = pi({σ

−1(1), . . . ,σ−1(σ(i) − 1)}), and therefore we can write the
seller’s expected revenue as

Eσ

[∑
i∈I

pi(σ)Pv

[
i = argmin

j∈I
{σ(j) | vj > pj(σ)

]]
,

where the expectation is taken over the arrival permutation σ, and the prob-
ability is taken over the customers’ valuations v.

In the next section we will prove Theorem 5.21, which gives us a new re-
duction from the prophet inequality setting to posted price mechanisms

5.4 posted price mechanisms 123

(cf. [22, 51]). Using this reduction, we will derive tight results for both
non-adaptive and adaptive posted price mechanisms (cf. Corollary 5.22

and Corollary 5.24). In particular, we will design a non-adaptive posted
price mechanism with expected revenue within a factor of 1− 1/e of Myer-
son’s [83] optimal auction and an adaptive posted price mechanism whose
expected revenue is within a factor of 1/β∗ ≈ 0.745 of the expected revenue
of the optimal auction.

One may think here that the right benchmark should be the expectation
of the maximum valuation. However, this cannot yield useful results. Con-
sider a single customer whose valuation lies in [1,+∞) distributed accord-
ing to F(v) = 1−1/v. Clearly, if we charge price p the acceptance probability
is 1/p, for a total revenue of 1. On the other hand, the expectation of the
valuation is actually +∞. This example can easily be turned into one with
finite expectation but arbitrarily large ratio between the optimal pricing
and the expectation of the random variable.

5.4.2 Reduction

In this section we extend the results for the prophet inequality setting to
posted price mechanisms by deriving a general reduction principle. Similar
reductions have been developed by [9, 22, 50]. We provide an alternative
proof showing the applicability of this construction. We start with the fol-
lowing lemma.

Lemma 5.20. Let X be the positive part of the virtual valuation of a non-negative
random variable V with regular distribution F. For any τ > 0 let q = P (X > τ).
Then E (X | X > τ) = F−1 (1− q).

If the distribution is non-regular, there exist q1,q2, x ∈ [0, 1] such that xq1 +
(1− x)q2 = q and

E (X | X > τ) =
xq1F

−1 (1− q1) + (1− x)q2F
−1 (1− q2)

q
.

Proof. Let c̄ be the ironed virtual value function. Recall that c̄(v) = G ′ (F(v)),
where G is the convexification of the negative revenue function H(θ) =

−(1− θ)F−1(θ). Then

E (X | X > τ)P (X > τ) =

∫∞
τ

c̄(u)dF(u) =
∫q
0

G ′ (1− θ)dθ = −G(1−q) .

In the case of a regular distribution, G = H and the result follows. �

124 optimal stopping and posted prices

Since the events Xi > τi and Vi > F−1i (1 − qi) are equivalent, it fol-
lows that if the virtual value function ϕ is increasing, then E (X | X > τ) =

c−1(τ).
Using this lemma we can prove the following reduction.

Theorem 5.21. Consider a sequential auction of one item where each customer
i ∈ N has a private valuation vi ∼ Fi. Suppose there exists a threshold rule
for non-negative random variables Xi ∼ Fi that are presented following the same
sequence as the customers in the auction, achieving an expected reward of α times
the expected maximum. Then there exists a posted price mechanism for the auction
that achieves a revenue of α times the optimal auction on N.

Proof. Let V1, . . . ,Vn be the valuation functions of the customers. The ex-
pected revenue of a posted price mechanism that offers prices v1, . . . , vn
equals

n∑
i=1

viP (Vi > vi, i is the first accepting customer) .

Let X1, . . . ,Xn be the positive part of the virtual valuation functions of
V1, . . . ,Vn. Consider non-negative thresholds τ1, . . . , τn over them and let
qi = P (Xi > τi). Let r be the index of the first customer whose virtual
value is above his threshold. In case of regular distributions, the expected
virtual value is

E (Xr) =

n∑
i=1

E (Xi | i = r)P (i = r)

=

n∑
i=1

E (Xi | Xi > τi)P (Xi > τi), i is the first accepting customer)

=

n∑
i=1

F−1i (1− qi) ·

P
(
Vi > F

−1
i (1− qi) , i is the first accepting customer

)
.

Since the expected virtual valuation is equal to the expected revenue (see
e.g. [22]), the expected value of the threshold rule over the virtual valua-
tions equals the expected revenue of the posted price mechanism over the
valuations. If the distribution of some customer is irregular, randomizing
between two prices for him maintains the result.

Since any threshold threshold derived from a threshold rule over the non-
negative virtual valuations will be non-negative, all prices induced by these
thresholds will be at least the reservation price for every customer. �

5.4 posted price mechanisms 125

5.4.3 Non-adaptive posted price mechanism

In this section we prove the following corollary for non-adaptive posted
price mechanisms:

Corollary 5.22. For any given set of potential customers I, there exists a non-
adaptive posted price mechanism that achieves an expected revenue of at least a
1− 1/e fraction of that of Myerson’s optimal auction on I.

Besides the Bernoulli Selection Lemma, key to our analysis is the by now
classic result of Chawla et al. [22].

Lemma 5.23 ([22, Lemma 4]). If all value distributions are regular, then the
expected value of Myerson’s optimal auction is bounded from above by∑

i∈I
F−1i (1− qMi)qMi ,

where qMi is the probability that the optimal auction assigns the item to i.
Furthermore, for every i (with regular or non-regular value distribution) there

exist two prices pi and pi, with corresponding probabilities qi and qi, and a
number 0 6 xi 6 1, such that xiqi + (1− xi)qi = q

M
i , and the expected revenue

of Myerson’s optimal auction is bounded from above by∑
i∈I

xipi qi + (1− xi)pi qi .

Proof of Corollary 5.22. We prove the regular case first. Let qMi denote the
probability with which Myerson’s optimal auction assigns the item to cus-
tomer i ∈ I, and set bi = F−1i (1 − qMi). The expected revenue of a non-
adaptive posted price mechanism, that chooses to sell only to customers in
S ⊆ I while offering prices bi, is given by∑

i∈S
biP[i = argmin

j∈S
{σ(j) | vj > bj}]

=
∑
i∈S

biq
M
i P[i = argmin

j∈S
{σ(j) | vj > bj} | vi > bi]

=
∑
i∈S

biq
M
i

∑
R⊆S\{i}

1

1+ |R|

∏
j∈R

qMj

∏
j∈S\(R∪{i})

(1− qMj)

=
∑
i∈S

biq
M
i E

[
1

1+
∑
j∈S\{i}Xj

]
= E

[∑
i∈S biXi∑
i∈SXi

]
,

126 optimal stopping and posted prices

where {Xi}i∈I are Bernoulli random variables with Xi = 1 with probability
qMi . By the Bernoulli Selection Lemma we can choose the set S ⊆ I to be
such that the latter is lower bounded by(

1−
1

e

)
max
zi6qMi

{∑
i∈I

bizi

∣∣∣∑ zi 6 1

}
>

(
1−

1

e

)∑
i∈I

F−1i (1−qMi)qMi .

Therefore, Lemma 5.23 leads to the desired conclusion.
In the non-regular case, the posted price mechanism runs a lottery be-

tween two prices to get the desired bound. This lottery can be derandom-
ized using standard techniques, since each combination of prices offered to
the customers is a deterministic mechanism in itself and the random mech-
anism is simply a lottery over, and thus a convex combination of, those
deterministic mechanisms. First, for every bidder with positive probability
of winning the optimal auction, set

b ′i =
xipi qi + (1− xi)pi qi

qMi
,

where the variables are defined as in the lemma. Also consider the same
Bernoulli random variables presented in the first part of the proof. The
non-adaptive posted price mechanism sells only to a set S ′ of customers
(to be defined). For every i ∈ S ′, it offers a random price pi equal to pi
with probability xi, and pi otherwise. This way, the a priori probability
that vi is above the price offered is exactly xiqi + (1− xi)qi = qMi , while
the expected revenue of the mechanism can be evaluated as∑

i∈S ′
xipi qiP[i = argmin

j∈S ′
{σ(j) | vj > pj} | vi > pi, pi = pi]

+ (1− xi)pi qiP[i = argmin
j∈S ′

{σ(j) | vj > pj} | vi > pi, pi = pi]

=
∑
i∈S ′

(xipi qi + (1− xi)pi qi)·

∑
R⊆S ′\{i}

1

1+ |R|

∏
j∈R

qMj

∏
j∈S ′\(R∪{i})

(1− qMj)

=
∑
i∈S ′

b ′iq
M
i E

[
1

1+
∑
j∈S ′\{i}Xj

]
= E

[∑
i∈S ′ b

′
iXi∑

i∈S ′ Xi

]
.

By the same argument as before, Lemma 5.5 implies that there exists S ′ ⊆ I

such that the latter is lower bounded by (1− 1/e)
∑
i∈I b

′
iq
M
i . Lemma 5.23

implies the bound over the optimal auction. �

5.4 posted price mechanisms 127

In the case of monotone virtual valuations,the algorithm that achieves
this result becomes remarkably simple, see Algorithm 5.3.

Algorithm 5.3: Algorithm for the non-adaptive posted price mechanism.

1 Compute qi = probability that optimal auction assigns to i ;
2 Discard customer i with probability 1− 2

2+(e−2)qi
;

3 Offer non-discarded customers price F−1i (1− qi) ;
4 Item is allocated to a random customer accepting the offer ;

5.4.4 Tight instance with i.i.d. valuations

We construct a family of instances for Problem 5.1 with i.i.d. customer val-
uations, such that, for all ε > 0, there is an instance from this family for
which no non-adaptive strategy can achieve an expected revenue within a
factor (1+ ε)(1− 1/e) of the optimal expected revenue. The idea is to mimic
the instance that makes the Bernoulli Selection Lemma tight, but here we
achieve this with i.i.d. valuations. Consider n2 customers whose values are
independent identically distributed according to

V =


n
e−2 w.p. 1

n3
,

1 w.p. 1n ,

0 w.p. 1− 1
n − 1

n3
.

Then, it is easy to design an auction that achieves a revenue approaching
(e− 1)/(e− 2) as n → ∞. Indeed, consider the auction that offers the item
for price n/(e− 2) − c (with c a small value, say c = 2) to any bid above
that price (and assigns the item at random if more than one such offer is
received), and if no such bid is received, then it runs a lottery at price 1

among all the bids above that price. As there are many buyers of value 1,
a potential large value customer will prefer to make a revenue of c rather
than risking to lose the item in the lottery. Therefore the revenue the auction
will generate will approach 1/(e− 2) + 1 as n→∞. Of course, the revenue
of the optimal auction is then at least this quantity. On the other hand, the
best posted price mechanism offers a price of 1 to, say, customers 1, . . . ,k
and n/(e− 2) to the rest of the customers, for some well chosen value of k
which turns out to be roughly n. One can show that in the limit the revenue

128 optimal stopping and posted prices

approaches (1
e−2 + 1)(1 − e−1). The expected revenue of this mechanism

can be computed by recursing on the expected revenue of the remaining
buyers. Let V(j) be the expected revenue when there are j customers left.
Denoting p = k

n2
, the total expected revenue is

V(n2) = (1− p)
1

n3
n

e− 2
+ p

(
1

n
+
1

n3

)
+

(
1−

1

n3
−
p

n

)
V(n2 − 1)

=

(
(1− p)

1

n2
1

e− 2
+ p

(
1

n
+
1

n3

))n2−1∑
i=0

(
1−

1

n3
−
p

n

)i

=

(
(1− p)

1

n(e− 2)
+ p

(
1+

1

n2

))
1−

(
1− 1

n3
− p
n

)n2
1
n2

+ p
.

Letting x(n) = np+ 1/n, we have that

V(n2) 6

(
1

e− 2
+ x(n)

)
1−

(
1− 1

n2
x(n)

)n2
x(n)

.

Thus for all ε > 0, there is a large enough n such that

V(n2) 6 ε+ max
x>0

(
1

x(e− 2)
+ 1

)
(1− e−x) .

Invoking Proposition 5.11 from Section 5.2.2 yields

V(n2) 6

(
1

e− 2
+ 1

)
(1− e−1) + ε = (1− e−1)OPT + ε ′ .

5.4.5 Adaptive posted price mechanism

Given the tight bound above, we turn our attention to adaptive posted price
mechanisms, in which the seller may also base the price he is offering to a
customer on the set of customers who previously rejected the offer. For this
setting, Theorem 5.6 and Theorem 5.21 yield the following corollary.

Corollary 5.24. For any given set of potential customers I whose values are in-
dependent and identically distributed, there exists an adaptive posted price mecha-
nism that achieves an expected revenue of at least a 1/β > 0.745 fraction of that
of Myerson’s optimal auction on I, where β is the unique value satisfying (5.1).

5.4 posted price mechanisms 129

However, deriving a simple algorithm from the previous characterization
is not straightforward. In this section we will provide the details of the algo-
rithmic construction. For our analysis the bound provided by Lemma 5.23

is not enough, so we derive an exact expression for the expected revenue
of the optimal auction for i.i.d. customers.

Expected value of Myerson’s optimal auction for i.i.d. customers

We assume that the valuations of the customers are i.i.d. with cumulative
distribution function F(·) and probability density function f(·). As before
we define the virtual valuation as c(v) = v −

1−F(v)
f(v) and the ironed virtual

valuation as c̄(v) = G ′(F(v)), where G = conv(H) is the convexification of
the negative revenue curve H(q) =

∫q
0 c(F

−1(θ))dθ as a function of the
acceptance probability q. Let E(MY(n, F)) be the expected revenue of the
optimal auction over n customers with values drawn from distribution F.

Lemma 5.25. For a given set of n i.i.d. potential customers with cumulative dis-
tribution function F(·), the expected revenue of Myerson’s optimal auction is

E(MY(n, F)) = n(n− 1)

∫1
0

(1− q)n−2Ḡ(1− q)dq . (5.10)

Proof. The expected profit of the optimal auction equals its expected virtual
surplus (see, e.g., [56]), i.e., the sum over all customers of the expected value
of the maximum of c̄ above zero. Note that c̄ is an increasing function, and
let v∗ be the value at which c̄(v∗) = 0 or zero, if no such value exists. Then,
the latter can be evaluated as:

E(MY(n, F)) =
∫∞
v∗
nF(v)n−1c̄(v)f(v)dv .

Performing the change of variables q = 1 − F(v) and α∗ = 1 − F(v∗), we
obtain

E(MY(n, F)) = n
∫α∗
0

(1− q)n−1c̄(F−1(1− q))dq

= n

∫α∗
0

(1− q)n−1G ′(1− q)dq

= −nG(1− q)(1− q)n−1
∣∣∣α∗
0

−

∫α∗
0

n(n− 1)(1− q)n−2G(1− q)dq

= nG(1) −nG(F(v∗))F(v∗)n−1 −n(n− 1)

∫α∗
0

(1− q)n−2G(1− q)dq .

130 optimal stopping and posted prices

Since c̄(v∗) = 0, we know that G attains a minimum at F(v∗) and, therefore,
equals H(F(v∗)) at that point. Now, observe that

H(q) =

∫q
0

F−1(θ) −
1− θ

f(F−1(θ))
dθ = −(1− q)F−1(q) .

Therefore, we can conclude that

E(MY(n, F))

= −nH(F(v∗))F(v∗)n−1 −n(n− 1)

∫α∗
0

(1− q)n−2G(1− q)dq

= nv∗(1− F(v∗))F(v∗)n−1 −n(n− 1)

∫α∗
0

(1− q)n−2G(1− q)dq .

Now, let

Ḡ(1− q) =

−G(1− q) if 1− q > F(v∗) ,

v∗(1− F(v∗)) otherwise .

Then, we can write the expected revenue of the optimal mechanism as
Eq. (5.10) and the proof is complete. �

We note that expression (5.10), although fairly natural to derive, appears
to be new.

The adaptive posted price mechanism

In the adaptive setting, the price offered to every customer also depends on
the set of customers that previously declined their offer. However, since the
customers are i.i.d., it suffices to know only how many customers arrived
before the current customers.

As in Section 5.3 we partition the interval A = [0, 1] into n intervals
Ai = [εi−1, εi] with 0 = ε0 < ε1 < . . . < εn = 1. We draw an acceptance
probability qi for the i-th customer who arrives from interval Ai according
to probability density function ψ(qi) =

(n−1)(1−qi)
n−2

γi
, where γi is a nor-

malization factor. We offer the customer a price of max
{
F−1(1− qi), v∗

}
,

where v∗ is the reservation price of the optimal auction.
The expected revenue from selling the item to customer i is Ḡ(1 − qi).

To see this, suppose that qi < 1− F(v∗). Then, for monotone virtual valua-
tions, the price offered to customer i is F−1(1− qi), and thus the expected

5.4 posted price mechanisms 131

revenue is qiF−1(1 − qi) = −G(1 − qi) = Ḡ(1 − qi). On the other hand,
if qi > 1 − F(v∗), the price offered to customer i is v∗ which is accepted
with probability 1− F(v∗). Similar arguments hold when the virtual valu-
ation is not monotone, where it might be the case that qiF−1(1 − qi) =

−H(1 − qi) < Ḡ(1 − qi), and by offering a price F−1(1 − qi) we might
not get the best revenue. To circumvent this problem, we can randomize
between two acceptance probabilities qi1 and qi2 such that G(1 − qi) =

γH(1− qi1) + (1− γ)H(1− qi2) and qi = γqi1 + (1− γ)qi2.
Following the same reasoning as in Section 5.3, we can bound the ex-

pected revenue of this adaptive posted price mechanism by

n∑
i=1

ρi

∫εi
εi−1

(n− 1)(1− q)n−2Ḡ(1− q)dq ,

where ρ1 = 1
γ1

and ρi+1 = ρi
γi+1

∫εi
εi−1

ψ(q)(1 − q)dq for i = 1, . . . ,n− 1.
Again, if we choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn and solve
the recurrence on the εi values, this quantity can be lower bounded by

1

nγ1
E(MY(n, F)) >

1

β∗
E(MY(n, F)) ≈ 0.745E(MY(n, F)) .

See Algorithm 5.4 for our algorithm in the case of monotone virtual val-
uations.

Algorithm 5.4: Algorithm for the adaptive posted price mechanism.

1 Partition the interval [0, 1] into intervals Ai = [ai−1,ai], s.t. a0 = 0,
an = 1 ;

2 Sample qi from Ai with an appropriately chosen distribution ;
3 When the i−th buyer comes, offer price pi = max{F−1(1− qi), v∗},

where v∗ is the reservation price of the optimal auction ;

We believe that the bound of Corollary 5.24 is tight. Although the best up-
per bound known for the i.i.d. case, due to Blumrosen and Holenstein [13],
proves that no algorithm can achieve a fraction of at least 0.79, we believe
that the family of instances provided by Hill and Kertz [58] in the context
of prophet inequalities for i.i.d. random variables can be transformed into
a tight family of instances for Corollary 5.24. We remark here that recent
work of Dütting, Fischer, and Klimm [30] also studies the benefit of adap-
tivity in the i.i.d. case, but from a different perspective.

132 optimal stopping and posted prices

5.5 concluding remarks

This chapter considers two different fields. In the field of optimal stopping
theory, we presented a non-adaptive and an adaptive threshold rule maxi-
mizing the expected reward of a gambler facing a sequence of non-negative
random variables whose realizations arrive over time in a uniform random
fashion. In both settings we present an algorithm whose approximation
guarantee matches lower bounds obtained from tight instances. In the field
of posted price mechanisms, these algorithms translate to pricing schemes
for both the non-adaptive and the adaptive setting. For the non-adaptive
setting the approximation guarantee is tight, and for the adaptive setting
the approximation guarantee is believed to be tight. Formally proving this
conjecture would be interesting.

The approach in this chapter is new compared to related literature. In fu-
ture research, a similar approach can perhaps be taken in related problems
in both fields. This new perspective on the analysis of problems like the
ones in this chapter could turn out to be fruitful.

Another interesting open direction is to investigate the computational
complexity of the algorithms in this chapter. Does the PTAS presented in
Cominetti et al. [27] naturally extend to this setting for example? This ex-
tension seems to be quite subtle and it is not clear yet whether the PTAS
can be extended or not.

Furthermore, the amount of information our stopping rules require from
the underlying distributions is little; only quantile distribution information
is necessary. Future research could further investigate the trade off between
the amount of distribution information and the achievable approximation
guarantee.

B I B L I O G R A P H Y

[1] M. Abolhassani, S. Ehsani, H. Esfandiari, M. T. Hajiaghayi, R. Klein-
berg, and B. Lucier. „Beating 1-1/e for Ordered Prophets”. In: Pro-
ceedings of 49th Annual ACM SIGACT Symposium on the Theory of Com-
puting. STOC ’17. ACM, 2017.

[2] H. Ackermann, H. Röglin, and B. Vöcking. „On The Impact of Com-
binatorial Structure on Congestion Games”. In: Journal of the ACM
55.6 (2008), pp. 1–22.

[3] M. Adamczyk, A. Borodin, D. Ferraioli, B. de Keijzer, and S. Leonardi.
„Sequential Posted Price Mechanisms with Correlated Valuations”.
In: Proceedings of the 11th International Conference on Web and Inter-
net Economics - Volume 9470. WINE 2015. Springer-Verlag New York,
Inc., 2015, pp. 1–15.

[4] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. „Approximation
Schemes for Scheduling on Parallel Machines”. In: Journal of Schedul-
ing 1 (1998), pp. 55–66.

[5] M. Andrews, S. Antonakopoulos, and L. Zhang. „Minimum-Cost
Network Design with (Dis)economies of Scale”. In: Proceedings of the
51st Annual IEEE Symposium on the Foundations of Computer Science.
FOCS ’10. 2010, pp. 585–592.

[6] S. Antonakopoulos, C. Chekuri, F. B. Shepherd, and L. Zhang. „Buy-
at-Bulk Network Design with Protection”. In: Mathematics of Opera-
tions Research 36.1 (2011), pp. 71–87.

[7] D. Assaf, L. Goldstein, and E. Samuel-Cahn. „Ratio prophet inequal-
ities when the mortal has several choices”. In: The Annals of Applied
Probability 12.3 (2002), pp. 972–984.

[8] G. Ausiello, A. D’Atri, and M. Protasi. „Structure Preserving Re-
ductions among Convex Optimization Problems”. In: Journal of Com-
puter and System Sciences 21.1 (1980), pp. 136 –153.

[9] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. „Online
Auctions and Generalized Secretary Problems”. In: SIGecom Exchanges
7.2 (June 2008), 7:1–7:11.

133

134 Bibliography

[10] N. Bansal, T. Oosterwijk, T. Vredeveld, and R. van der Zwaan. „Ap-
proximating Vector Scheduling: Almost Matching Upper and Lower
Bounds”. In: Algorithmica 76.4 (2016), pp. 1077–1096.

[11] D. Bertsimas, D. Gamarnik, and J. Sethuraman. „From Fluid Relax-
ations to Practical Algorithms for High-Multiplicity Job-Shop Schedul-
ing: The Holding Cost Objective”. In: Operations Research 51.5 (2003),
pp. 798–813.

[12] L. Blumrosen and S. Dobzinski. „Welfare Maximization in Conges-
tion Games”. In: IEEE Journal on Selected Areas in Communication 25.6
(2007), pp. 1224–1236.

[13] L. Blumrosen and T. Holenstein. „Posted Prices vs. Negotiations: An
Asymptotic Analysis”. In: Proceedings of the 9th ACM Conference on
Electronic Commerce. EC ’08. ACM, 2008, pp. 49–49.

[14] F. F. Boctor. „The Two-Product, Single-Machine, Static Demand, Infi-
nite Horizon Lot Scheduling Problem”. In: Management Science 28.7
(1982), pp. 798–807.

[15] V. Bonifaci and A. Wiese. „Scheduling Unrelated Machines of Few
Different Types”. In: CoRR abs/1205.0974 (2012).

[16] N. Brauner, Y. Crama, A. Grigoriev, and J. van de Klundert. „A
Framework for the Complexity of High-Multiplicity Scheduling Prob-
lems”. In: Journal of Combinatorial Optimization 9.3 (2005), pp. 313–
323.

[17] N. Brauner, Y. Crama, A. Grigoriev, and J. van de Klundert. „Multi-
plicity and Complexity Issues in Contemporary Production Achedul-
ing”. In: Statistica Neerlandica 61.1 (2007), pp. 75–91.

[18] J. R. Bult and T. Wansbeek. „Optimal Selection for Direct Mail”. In:
Marketing Science 14.4 (1995), pp. 378–394.

[19] C. Calabro, R. Impagliazzo, and R. Paturi. „A Duality between Clause
Width and Clause Density for SAT”. In: IEEE Conference on Computa-
tional Complexity. 2006, pp. 252–260.

[20] D. Chakrabarty, A. Mehta, and V. Nagarajan. „Fairness and Optimal-
ity in Congestion Games”. In: Proceedings of the 6th ACM Conference
on Electronic Commerce. EC ’05. 2005, pp. 52–57.

[21] S. Chawla, J. D. Hartline, and R. Kleinberg. „Algorithmic pricing
via virtual valuations”. In: Proceedings of the 8th ACM Conference on
Electronic Commerce. EC 2007. 2007.

Bibliography 135

[22] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. „Multi-parameter
Mechanism Design and Sequential Posted Pricing”. In: Proceedings
of the 42nd ACM Symposium on Theory of Computing. STOC ’10. ACM,
2010, pp. 311–320.

[23] C. Chekuri and S. Khanna. „On Multidimensional Packing Prob-
lems”. In: SIAM Journal on Computing 33.4 (2004), pp. 837–851.

[24] V. Choudhary, A. Ghose, T. Mukhopadhyay, and U. Rajan. „Person-
alized Pricing and Quality Differentiation”. In: Management Science
51.7 (2005), pp. 1120–1130.

[25] J. J. Clifford and M. E. Posner. „High Multiplicity in Earliness-Tardiness
Scheduling”. In: Operations Research 48.5 (2000), pp. 788–800.

[26] J. J. Clifford and M. E. Posner. „Parallel Machine Scheduling with
High Multiplicity”. In: Mathematical Programming 89.3 (2001), pp. 359–
383.

[27] R. Cominetti, J. R. Correa, T. Rothvoß, and J. San Martín. „Optimal
Selection of Customers for a Last-Minute Offer”. In: Operations Re-
search 58.4 (2010), pp. 878–888.

[28] J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld.
„Posted Price Mechanisms for a Random Stream of Customers”. In:
Proceedings of the 2017 ACM Conference on Economics and Computation.
EC ’17. Cambridge, Massachusetts, USA: ACM, 2017, pp. 169–186.

[29] W. Cunningham. „Improved Bounds for Matroid Partition and In-
tersection Algorithms”. In: SIAM Journal on Computing 15.4 (1986),
pp. 948–957.

[30] P. Dütting, F. Fischer, and M. Klimm. „Revenue Gaps for Discrimina-
tory and Anonymous Sequential Posted Pricing”. In: ArXiv e-prints
(July 2016).

[31] F. Eisenbrand and G. Shmonin. „Carathéodory Bounds for Integer
Cones”. In: Operations Research Letters 34.5 (2006), pp. 564–568.

[32] L. Epstein and T. Tassa. „Vector Assignment Problems: A General
Framework”. In: Journal of Algorithms 48.2 (2003), pp. 360–384.

[33] L. Epstein and T. Tassa. „Vector Assignment Schemes for Asymmet-
ric Settings”. In: Acta Informatica 42.6-7 (2006), pp. 501–514.

136 Bibliography

[34] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat, and M. Monemizadeh.
„Prophet Secretary”. In: Algorithms - ESA 2015: 23rd Annual European
Symposium, Patras, Greece, September 14-16, 2015, Proceedings. Ed. by
N. Bansal and I. Finocchi. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2015, pp. 496–508.

[35] A. Fabrikant, C. Papadimitriou, and K. Talwar. „The Complexity
of Pure Nash Equilibria”. In: Proceedings of the 36th Annual ACM
Symposium on Theory of Computing. Ed. by L. Babai. STOC ’04. 2004,
pp. 604–612.

[36] P. von Falkenhausen and T. Harks. „Optimal Cost Sharing for Re-
source Selection Games”. In: Mathematics of Operations Research 38.1
(2013), pp. 184–208.

[37] U. Feige. „A Threshold of lnn for Approximating Set Cover”. In:
Journal of the ACM 45.4 (July 1998), pp. 634–652.

[38] C. Filippi and G. Romanin-Jacur. „Exact and Approximate Algo-
rithms for High-Multiplicity Parallel Machine Scheduling”. In: Jour-
nal of Scheduling 12.5 (Oct. 2009), pp. 529–541.

[39] A. Frank and É. Tardos. „An Application of Simultaneous Diophan-
tine Approximation in Combinatorial Optimization”. In: Combinator-
ica 7 (1987), pp. 49–65.

[40] S. Fujishige. Submodular Functions and Optimization. Annals of dis-
crete mathematics. Amsterdam, Boston, Paris: Elsevier, 2005.

[41] M. Gabay, A. Grigoriev, V. J. C. Kreuzen, and T. Oosterwijk. „High
Multiplicity Scheduling with Switching Costs for Few Products”. In:
Operations Research Proceedings 2014, Selected Papers of the Annual In-
ternational Conference of the German Operations Research Society (GOR),
RWTH Aachen University, Germany, September 2-5, 2014. 2014, pp. 437–
443.

[42] H. N. Gabow. „Algorithms for Graphic Polymatroids and Paramet-
ric s-Sets”. In: Journal of Algorithms 26.1 (1998), pp. 48–86.

[43] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[44] E. Gassner, J. Hatzl, S. O. Krumke, H. Sperber, and G. J. Woegin-
ger. „How Hard is it to Find Extreme Nash Equilibria in Network
Congestion Games?” In: Theoretical Computer Science 410.47-49 (2009),
pp. 4989–4999.

Bibliography 137

[45] J. P. Gilbert and F. Mosteller. „Recognizing the Maximum of a Se-
quence”. In: Journal of the American Statistical Association 61 (1966),
pp. 35–76.

[46] S. K. Goyal. „Scheduling a Multi-Product Single Machine System”.
In: Journal of the Operational Research Society 24.2 (1973), pp. 261–269.

[47] H. Groenevelt. „Two Algorithms for Maximizing a Separable Con-
cave Function over a Polymatroid Feasible Region”. In: European
Journal of Operational Research 54.2 (1991), pp. 227 –236.

[48] K. Haase. „Capacitated Lot-Sizing with Sequence Dependent Setup
Costs”. In: Operations-Research-Spektrum 18.1 (1996), pp. 51–59.

[49] K. Haase and A. Kimms. „Lot Sizing and Scheduling with Sequence-
Dependent Setup Costs and Times and Efficient Rescheduling Op-
portunities”. In: International Journal of Production Economics 66.2 (2000),
pp. 159 –169.

[50] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes. „Adaptive Limited-
supply Online Auctions”. In: Proceedings of the 5th ACM Conference
on Electronic Commerce. EC ’04. New York: ACM, 2004, pp. 71–80.
isbn: 1-58113-771-0.

[51] M. Hajiaghayi, R. Kleinberg, and T. Sandholm. „Automated online
mechanism design and prophet inequalities”. In: Proceedings of the
22nd Conference on Artificial Intelligence. AAAI 2007. 2007.

[52] T. Harks and P. von Falkenhausen. „Optimal Cost Sharing for Ca-
pacitated Facility Location Games”. In: European Journal of Operations
Research 239.1 (2014), pp. 187–198.

[53] T. Harks, M. Klimm, and B. Peis. „Resource Competition on Integral
Polymatroids”. In: Web and Internet Economics - 10th International Con-
ference, WINE 2014, Beijing, China, December 14-17, 2014. Proceedings.
2014, pp. 189–202.

[54] T. Harks, T. Oosterwijk, and T. Vredeveld. „A Logarithmic Approxi-
mation for Polymatroid Congestion Games”. In: Operations Research
Letters 44.6 (2016), pp. 712–717.

[55] T. Harks, M. Hoefer, M. Klimm, and A. Skopalik. „Computing Pure
Nash and Strong Equilibria in Bottleneck Congestion Games”. In:
Mathematical Programming 141.1-2 (2013), pp. 193–215.

[56] J. D. Hartline. Mechanism Design and Approximation. 2017.

138 Bibliography

[57] T. P. Hill. „Prophet inequalities and order selection in optimal stop-
ping problems”. In: Proceedings of the American Mathematical Society
88.1 (1983), pp. 131–137.

[58] T. P. Hill and R. P. Kertz. „Comparisons of Stop Rule and Supremum
Expectations of i.i.d. Random Variables”. In: The Annals of Probability
10.2 (1982), pp. 336–345.

[59] T. P. Hill and R. P. Kertz. „A survey of prophet inequalities in opti-
mal stopping theory”. In: Contemporary Mathematics 125 (1992), pp. 191–
207.

[60] D. S. Hochbaum and R. Shamir. „Strongly Polynomial Algorithms
for the High Multiplicity Scheduling Problem”. In: Operations Re-
search 39.4 (1991), pp. 648–653.

[61] D. S. Hochbaum and D. B. Shmoys. „Using Dual Approximation
Algorithms for Scheduling Problems: Theoretical and Practical Re-
sults”. In: Journal of the ACM 34.1 (1987), pp. 144–162.

[62] D. S. Hochbaum and D. B. Shmoys. „A Polynomial Approximation
Scheme for Scheduling on Uniform Processors: Using the Dual Ap-
proximation Approach”. In: SIAM Journal of Computing 17.3 (1988),
pp. 539–551.

[63] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun. „Fast
and Compact: A Simple Class of Congestion Games”. In: Proceed-
ings of the 20th National Conference on Artificial Intelligence - Volume 2.
AAAI’05. Pittsburgh, Pennsylvania: AAAI Press, 2005, pp. 489–494.

[64] R. Impagliazzo, R. Paturi, and F. Zane. „Which Problems Have Strongly
Exponential Complexity?” In: Journal of Computer and System Sciences
63.4 (2001), pp. 512–530.

[65] K. Jansen. „An EPTAS for Scheduling Jobs on Uniform Processors:
Using an MILP Relaxation with a Constant Number of Integral Vari-
ables”. In: SIAM Journal on Discrete Mathematics 24.2 (2010), pp. 457–
485.

[66] R. Kannan. „Minkowski’s Convex Body Theorem and Integer Pro-
gramming”. In: Mathematics of Operations Research 12 (1987), pp. 415–
440.

Bibliography 139

[67] N. Karmarkar and R. M. Karp. „An Efficient Approximation Scheme
for the Onedimensional Bin-Packing Problem”. In: 23rd Annual Sym-
posium on Foundations of Computer Science. FOCS ’82. 1982, pp. 312–
320.

[68] R. M. Karp. „A Characterization of the Minimum Cycle Mean in a
Digraph”. In: Discrete Mathematics 23.3 (1978), pp. 309 –311.

[69] B. de Keijzer and G. Schäfer. „Finding Social Optima in Congestion
Games with Positive Externalities”. In: Proceedings of the 20th An-
nual European Symposium on Algorithms. ESA ’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 395–406.

[70] D. P. Kennedy. „Prophet-type inequalities for multi-choice optimal
stopping”. In: Stochastic Processes and their Applications 24 (1987), pp. 77–
88.

[71] R. P. Kertz. „Stop Rule and Supremum Expectations of i.i.d. Ran-
dom Variables: A Complete Comparison by Conjugate Duality”. In:
Journal of Multivariate Analysis 19 (1986), pp. 88–112.

[72] O. Kharif. „Supermarkets Offer Personalized Pricing”. In: Bloomberg
(Nov. 2013).

[73] U. Krengel and L. Sucheston. „Semiamarts and Finite Values”. In:
Bulletin of the American Mathemical Society 83 (1977), pp. 745–747.

[74] U. Krengel and L. Sucheston. „On Semiamarts, Amarts, and Pro-
cesses with Finite Value”. In: Advances in Probability 4 (1978), pp. 197–
266.

[75] H. W. Lenstra. „Integer Programming with a Fixed Number of Vari-
ables”. In: Mathematics of Operations Research 8.4 (1983), pp. 538–548.

[76] E. Lindelöf. „Sur l’Application de la Méthode des Approximations
Successives aux Équations Différentielles Ordinaires du Premier Or-
dre”. In: Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences 116 (1894), pp. 454–457.

[77] B. Lucier. „An economic view of prophet inequalities”. In: ACM
SIGecom Exchanges 16.1 (2017), pp. 24–47.

[78] J. G. Madigan. „Scheduling a Multi-Product Single Machine System
for an Infinite Planning Period”. In: Management Science 14.11 (1968),
pp. 713–719.

[79] D. Mattioli. „On Orbitz, Mac Users Steered to Pricier Hotels”. In:
The Wall Street Journal (Aug. 2012).

140 Bibliography

[80] C. A. Meyers and A. S. Schulz. „The Complexity of Welfare Maxi-
mization in Congestion Games”. In: Networks 59.2 (2012), pp. 252–
260.

[81] A. Meyerson, A. Roytman, and B. Tagiku. „Online Multidimensional
Load Balancing”. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques - 16th International Work-
shop, APPROX 2013, and 17th International Workshop, RANDOM 2013,
Berkeley, CA, USA, August 21-23, 2013. Proceedings. 2013, pp. 287–302.

[82] I. Milchtaich. „Congestion Games with Player-Specific Payoff Func-
tions”. In: Games and Economic Behavior 13.1 (1996), pp. 111–124.

[83] R. B. Myerson. „Optimal Auction Design”. In: Mathematics of Opera-
tions Research 6.1 (1981), pp. 58–73.

[84] M. A. Narro Lopez and B. G. Kingsman. „The Economic Lot Schedul-
ing Problem: Theory and Practice”. In: International Journal of Produc-
tion Economics 23.1-3 (1991), pp. 147–164.

[85] E. Petrank. „The Hardness of Approximation: Gap Location”. In:
Computational Complexity 4 (1994), pp. 133–157.

[86] R. Rosenthal. „A Class of Games Possessing Pure-Strategy Nash
Equilibria”. In: International Journal of Game Theory 2.1 (1973), pp. 65–
67.

[87] M. Rothkopf. „The Traveling Salesman Problem: On the Reduction
of Certain Large Problems to Smaller Ones”. In: Operations Research
14.3 (1966), pp. 532–533.

[88] T. Rothvoß. „Approximating Bin Packing within O(log OPT * Log
Log OPT) Bins”. In: 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science. 2013, pp. 20–29.

[89] T. Roughgarden. „Barriers to Near-Optimal Equilibria”. In: Proceed-
ings of the 2014 IEEE 55th Annual Symposium on Foundations of Com-
puter Science. FOCS ’14. Washington, DC, USA: IEEE Computer So-
ciety, 2014, pp. 71–80.

[90] U. Saint-Mont. „A Simple Derivation of a Complicated Prophet Re-
gion”. In: Journal of Multivariate Analysis 80 (2002), pp. 67–72.

[91] E. Samuel-Cahn. „Comparisons of Threshold Stop Rule and Maxi-
mum for Independent Nonnegative Random Variables”. In: The An-
nals of Probability 12.4 (1984), pp. 1213–1216.

Bibliography 141

[92] E. Samuel-Cahn. „Prophet inequalities for bounded negatively de-
pendent random variables”. In: Statistics and Probability Letters 12

(1991), pp. 213–216.

[93] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Berlin,
Germany: Springer, 2003.

[94] C. Shapiro and H. R. Varian. Information Rules: A Strategic Guide to the
Network Economy. Cambridge, MA: Harvard Business School Press,
1999.

[95] A. Skopalik and B. Vöcking. „Inapproximability of Pure Nash Equi-
libria”. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing. STOC ’08. 2008, pp. 355–364.

[96] H. Sperber. „How to Find Nash Equilibria with Extreme Total La-
tency in Network Congestion Games?” In: Mathematical Methods of
Operations Research 71.2 (2010), pp. 245–265.

[97] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York,
Inc., 2001.

[98] R. Werneck, J. Setubal, and A. da Conceicão. „Finding Minimum
Congestion Spanning Trees”. In: Journal of Experimental Algorithmics
5, 11 (2000).

[99] D. P. Williamson and D. B. Shmoys. The Design of Approximation Al-
gorithms. 1st. New York: Cambridge University Press, 2011.

[100] L. A. Wolsey. „An Analysis of the Greedy Algorithm for the Sub-
modular Set Covering Problem”. In: Combinatorica 2.4 (1982), pp. 385–
393.

[101] Q. Yan. „Mechanism Design via Correlation Gap”. In: Proceedings of
the 22nd Annual ACM-SIAM Symposium on Discrete algorithms. SODA
’11. ACM-SIAM, 2011, pp. 710–719.

N E D E R L A N D S E S A M E N VAT T I N G

In dit proefschrift worden vier optimalisatieproblemen bekeken die voort-
komen uit de onderzoeksgebieden van algoritmische speltheorie, planning
en mechanisme-ontwerptheorie.

Voor elk van de vier problemen laten we zien dat het waarschijnlijk niet
mogelijk is om efficiënt een optimale oplossing hiervoor te vinden. Om iets
nauwkeuriger te zijn bewijzen we, onder bepaalde aannames die een groot
deel van de wetenschappers waarschijnlijk acht, maar nog niemand aan
heeft kunnen tonen, dat een optimale oplossing voor deze problemen niet
gevonden kan worden binnen een bepaalde tijd. Derhalve wordt er vaak
gekeken naar de complexiteit van het vinden van oplossingen die wellicht
niet optimaal zijn, maar wel in korte tijd berekend kunnen worden. Me-
thoden die dergelijke bijna-optimale oplossingen trachten te vinden, heten
benaderingsalgoritmen. Voor elk van de vier problemen in dit proefschrift
vinden wij een benaderingsalgoritme die (bijna) net zo goed of zo snel is
als waar we theoretisch gezien op kunnen hopen.

Bij problemen in de tak van speltheorie wordt rekening gehouden met
het natuurlijke gedrag van mensen. Beschouw ter illustratie een verkeers-
netwerk waar mensen zich in bevinden. Iedere chauffeur kiest een route
waarvan hij of zij denkt dat deze de beste route voor hem of haar is, bij-
voorbeeld de kortste route qua verwachte tijd. Een stabiele situatie waarin
iedere speler de keuze maakt die voor hem of haar het beste is, gegeven de
andere weggebruikers, noemen we een Nash-evenwicht. Een dergelijk Nash-
evenwicht functioneert in theoretisch onderzoek als indicator voor situa-
ties die in de praktijk voorkomen. Door deze egoïstische keuzes van men-
sen zijn de totale kosten van het systeem hoger dan noodzakelijk; als we
mensen centraal aan zouden kunnen sturen hoe ze zich door het netwerk
dienen te begeven, zouden we kunnen werken naar een situatie waarin bij-
voorbeeld de totale reistijd of het totale brandstofverbruik lager is, of zelfs
minimaal.

In Hoofdstuk 2 bekijken we een benaderingsalgoritme om deze totale
kosten zo laag mogelijk te houden als het netwerk aan bepaalde voorwaar-
den voldoet. We beschouwen daar een opstoppingsmodel voor netwerken
waarin de kosten voor iedere connectie omhoog gaan naarmate er zich

143

144 nederlandse samenvatting

meer gebruikers op die connectie bevinden, net zoals in een verkeersmo-
del. Specifiek wordt er gekeken naar netwerken waarin iedere gebruiker
een strategie moet kiezen die beschreven kan worden door middel van een
polymatroïde, wat een abstracte wiskundige structuur is met vele toepas-
singen. Op deze manier kunnen we verscheidene praktijkproblemen die
ogenschijnlijk weinig met elkaar te maken hebben, in één keer behandelen.
We bewijzen dat het waarschijnlijk niet mogelijk is om efficiënt een oplos-
sing te vinden die maximaal een bepaalde factor slechter is dan de optimale
oplossing, en zetten een concrete methode uiteen die een oplossing van die
best mogelijke kwaliteit vindt.

In het gebied van planning is de doelstelling in het algemeen om taken
zo goed mogelijk op machines te plannen. Men kan bijvoorbeeld zoeken
naar methoden die ervoor zorgen dat de taken zo snel mogelijk afgerond
zijn, of zo goedkoop mogelijk worden uitgevoerd.

In Hoofdstuk 3 bekijken we een dergelijk planningsprobleem. We be-
schouwen het probleem waarin een aantal producten op één machine ge-
produceerd dient te worden. De machine kan slechts één product tegelij-
kertijd verwerken. Van elk product is bekend hoeveel er per tijdseenheid
geproduceerd kan worden, hoeveel vraag er naar het product is per tijds-
eenheid en hoeveel het per tijdseenheid kost om één eenheid op te slaan in
de voorraad. Naast deze voorraadkosten dienen er overstapkosten te wor-
den betaald wanneer de machine overschakelt van de productie van het ene
product naar het andere product. Het doel is om een zo goedkoop moge-
lijke cyclische planning te maken waarin op elk moment aan de vraag van
alle producten voldaan wordt. We beschouwen bovendien drie mogelijke
varianten, afhankelijk van de vraag of de machine altijd op volle snelheid
moet produceren of de productiesnelheid verlaagd kan worden, en van de
vraag of de machine op elk moment kan overschakelen van productie of al-
leen aan het einde van een tijdseenheid (bijvoorbeeld alleen ’s nachts). Dit
probleem is op grond van twee redenen extra moeilijk. Niet alleen leiden
de overstapkosten tot een verhoogde complexiteit, bovendien is het moge-
lijk om een instantie van dit probleem zeer bondig te formuleren, wat tot
gevolg heeft dat efficiënte algoritmen significant minder tijd tot hun be-
schikking hebben om een oplossing te vinden. Dit laatste staat bekend als
hoge-multipliciteitscodering.

Ook voor dit probleem bewijzen we dat efficiënt een optimale oplossing
vinden waarschijnlijk onmogelijk is. Daarentegen karakteriseren we opti-
male oplossingen grotendeels door een aantal structurele eigenschappen

nederlandse samenvatting 145

van optimale oplossingen aan te tonen, en vinden we optimale oplossingen
voor situaties waarin het aantal producten laag is. Aangezien dit laatste het
voornaamste geval is bij situaties waarin dit probleem zich in de praktijk
manifesteert, is dit een redelijke aanname. Vervolgens vinden we voor twee
varianten met een algemeen aantal producten een benaderingsalgoritme.
Voor één variant kan een oplossing worden gevonden met een kwaliteit
die arbitrair dicht bij de optimale waarde ligt, voor de andere variant is de
kloof niet arbitrair klein.

Hoofdstuk 4 behandelt ook een planningsprobleem, weliswaar van een
heel andere aard. In dit planningsprobleem zijn er een aantal taken gegeven,
en elke taak heeft bepaalde eigenschappen. Men zou bijvoorbeeld kunnen
denken aan taken die gepland moeten worden op computers, en elke taak
heeft vereisten aan het CPU-gebruik, het RAM-gebruik et cetera. Het doel is
om deze verzameling taken te verdelen over een reeks computers, zodanig
dat geen enkele computer in enig aspect overbelast raakt.

Voor dit probleem geven we, onder bepaalde waarschijnlijk geachte theo-
retische aannames, een harde ondergrens aan de rekentijd die een benade-
ringsalgoritme nodig heeft om een oplossing te geven die arbitrair dicht bij
de optimale oplossing ligt: deze tijd is namelijk minimaal dubbel exponen-
tieel. Bovendien tonen we aan dat de toevoeging van een klein aantal com-
puters deze minimaal benodigde rekentijd niet significant vermindert. Dit
staat in schril contrast met een flink aantal optimalisatieproblemen waarbij
een vermeerdering van de bruikbare bronnen wel een beduidende reduc-
tie in rekentijd of stijging in kwaliteit teweegbrengt. Ten slotte geven we
een benaderingsalgoritme die een rekentijd behoeft die nagenoeg gelijk is
aan de rekentijd van de dubbel exponentiële ondergrens, wat derhalve een
vrijwel optimale rekentijd bedraagt.

Ten slotte bekijkt Hoofdstuk 5 twee schijnbaar ongerelateerde proble-
men, waarvoor met dezelfde technieken corresponderende resultaten kun-
nen worden geboekt. Het eerste probleem komt uit de theorie van opti-
maal stoppen, waarin aan een gokker één voor één een realisatie van sto-
chastische variabelen wordt gepresenteerd. Ter illustratie, neem een P&O-
manager die een nieuwe werknemer aan wil nemen. Voorafgaand aan elk
sollicitatiegesprek heeft de P&O-manager wel een idee van de kwaliteit
van de kandidaat, maar diens daadwerkelijke kwaliteit openbaart zich pas
tijdens het sollicitatiegesprek. Direct daarna dient de P&O-manager de be-
treffende kandidaat aan te nemen, of onherroepelijk af te wijzen. Welke
strategie dient hij of zij te gebruiken in de hoop iemand met een zo hoog

146 nederlandse samenvatting

mogelijke kwaliteit in dienst te nemen? Hierin onderscheiden we een niet-
adaptieve en een adaptieve strategie. In de eerste wordt a priori een drem-
pelwaarde voor elke kandidaat geselecteerd en hij of zij wordt aangenomen
indien de gebleken kwaliteit deze drempelwaarde overschrijdt. In de adap-
tieve strategie kan de drempelwaarde voor elke kandidaat worden aange-
past op basis van welke kandidaten er voor hem of haar reeds afgewezen
zijn.

Het tweede probleem komt uit de mechanisme-ontwerptheorie. Stel dat
je één object wilt verkopen aan een koper uit een groep potentiële consu-
menten met als doel je omzet te maximaliseren. Je kunt gebruikmaken van
een niet-adaptieve strategie door iedere potentiële consument een mail te
sturen met een persoonlijke prijsaanbieding, en de eerste consument die
zijn of haar persoonlijke prijs accepteert, koopt je object voor de geboden
prijs. Anderzijds kun je gebruikmaken van een adaptieve strategie waarbij
je de potentiële consumenten iteratief benadert en de prijs die je iemand
aanbiedt mag afhangen van welke consumenten hun aanbod daarvoor al
afgewezen hebben.

Voor beide problemen bewijzen we dat er een niet-adaptieve strategie
bestaat die een kwaliteit of omzet kan garanderen van ten minste 1− 1/e ≈
63% van de best mogelijke kwaliteit of omzet. Als we daarentegen meer
kracht geven aan onze strategie door deze gebruik te laten maken van adap-
tiviteit, loopt deze garantie op tot ongeveer 74.5% van de optimale kwaliteit
of omzet. Binnen beide contexten is de gevonden strategie bovendien het
best haalbare: we tonen aan dat het met de gegeven mogelijkheden van de
strategieën onmogelijk is om een betere garantie te geven.

VA L O R I S AT I O N

This chapter discusses the contribution of the research of this thesis to so-
ciety. The first part outlines the contributions of the general fields, and the
second part focuses more on the actual contents of the chapters.

This thesis deals with different optimization problems, in the fields of
congestion models, high multiplicity scheduling, vector scheduling, and op-
timal stopping theory and posted price mechanisms. In every optimization
problem, the goal is to minimize costs, maximize profit or to solve some-
thing as quickly as possible. The optimization of timetables for public trans-
port, vehicle routing problems, scheduling problems and other applications
has provided major efficiency improvements. Timetables are optimized to
reduce travelling time; vehicle routes are optimized to reduce time, fuel
costs and the impact on the environment; scheduling jobs on machines in
factories or tasks in processes is optimized to improve efficiency and so on.
The influence of mathematical optimization to society has been huge.

Although most optimization problems occurring in practice are intrinsi-
cally hard to solve to optimality, the impact of implementing non-optimal
solutions is still huge. Approximation algorithms compute solutions whose
value are not too far from the optimum. Though suboptimal, they can still
provide a huge decrease in costs, time requirements, or fuel costs, having a
positive impact on the users and the environment.

Chapter 2 deals with congestion models. Since there is a lot of conges-
tion on road and data networks, this is a field with relevant applications
to practice. By understanding where congestion comes from and the dy-
namics underlying it, congestion can be reduced to save costs, time and the
negative impact on the environment. For example, drivers arrive sooner
and cheaper at their destination, thereby using less fuel which is good for
the environment. And by reducing congestion in internet networks, data
packets arrive faster.

Chapter 3 and Chapter 4 are problems in the field of scheduling. This
field is concerned with scheduling jobs on machines in general, but its ap-
plications are more varied and range from scheduling exams to scheduling
tasks on assembly lines. Companies use techniques from this field to opti-
mize their processes, educational institutes use scheduling methods to find
timetables, timetables for public transport are constructed using schedul-

147

148 valorisation

ing, and so on. In all applications, time or costs are saved by optimizing the
efficiency.

Finally, Chapter 5 considers problems in optimal stopping theory and
posted price mechanisms, in which the objective is to maximize the ex-
pected reward or profit. Both fields are concerned with optimizing expected
values given a random arriving sequence of events, such as applicants for
a vacant position or customers for an item someone is selling. In particular,
posted price mechanisms can be used in auctions and by companies who
want to set personalized prices for their customers, in order to maximize
their profit.

The remainder of the valorisation will outline more details about the
contributions of the results in the different chapters.

Chapter 2. Polymatroid Congestion Models

The problem considered in Chapter 2 is to minimize a non-decreasing sep-
arable function over a polymatroid. A polymatroid is an abstract structure
that incorporates many different structures like singletons, spanning trees
in graphs and matroids. The results in this chapter show that efficiently
finding an optimal solution in such a system is hard, i.e. there is an in-
trinsic hardness in the problem that hinders researchers to find an optimal
solution. To complement this hardness result, the chapter provides an algo-
rithm that finds the best possible solution, up to a constant factor, one can
find in an efficient amount of time. Researchers in discrete optimization can
use the method in this chapter whenever they need to minimize a function
over a polymatroid to find a satisfactory solution.

Minimizing a function over such a general structure subject to common
constraints has a wide variety of applications in different theoretical topics.
This of course includes the perspective from which the chapter is written,
namely polymatroid congestion models. Here, the strategic choices of a set
of players induce a strategy profile whose social costs we are minimizing.
Researchers working in congestion models can draw inspiration from the
methods and analysis leading to the result of this chapter. Moreover, min-
imum cost solutions can serve as building blocks for other cost-efficient
solutions in related problems.

In practice, the results of this chapter are mainly relevant in two different
scenarios. The first one is in cooperative games, where players can collab-
orate to minimize their costs. Collaborations between different parties is
happening more and more. Whenever the strategy space of every player

valorisation 149

can be modelled as a polymatroid, the result of this chapter can be applied.
This is for example true when players need to connect (a subset of) dif-
ferent objects in a network, e.g. computers, servers, or physical locations.
Using the algorithm of this chapter results in a lower total cost, saving e.g.
money, time or fuel, which has a positive impact on the players and the
environment.

The second scenario is the situation in which a planner can implement
a solution all players adhere to. This can occur e.g. in internet protocols or
when autonomous cars make use of the road network. In both applications,
there is a central planner that implements some protocol or software that
tries to find a satisfactory solution for everyone. Minimizing costs can result
in lower electricity usage, costs, time usage and fuel consumption.

Chapter 3. High Multiplicity Scheduling

Chapter 3 is dedicated to scheduling a set of products on a single machine
that can produce one product at a time. Every product is associated with
a maximum production rate, a demand rate and holding costs per time
unit. Moreover, there are sequencing costs that need to be paid when the
machine switches production. The objective is to find a cyclic schedule that
minimizes the average costs.

The research in this chapter was inspired by a problem in practice. A
multinational textile company wished to find the optimal cycle length for
their production, of only three types of lycra in extremely large quantities
on a single machine. The results in this chapter directly relate to problems
like this, where a small number of products need to be scheduled on a ma-
chine. For a small number of products, the chapter gives the best possible
schedule. For a general number of products, we show the problem is hard
to solve efficiently and present an algorithm that finds a solution whose
costs are not too far off from the costs of the optimal solution. All compa-
nies with similar problems can apply the methods in this chapter to find a
solution to their problem.

This is the first research that tackles the problem in this form. By includ-
ing both the high multiplicity encoding of the input and the sequencing
costs, the problem considered in the chapter is closer to problems occurring
in reality. Moreover, this research is a starting point for research in more
complex problems and the ideas and results can help other researchers and
practitioners to find methods to solve problems with additional practical
constraints.

150 valorisation

Chapter 4. Vector Scheduling

In Chapter 4 the Vector Scheduling problem is considered. There, a set of
jobs with certain requirements need to be scheduled on a set of machines
such that no machine is overloaded. One can think e.g. of applications on a
computer that both require some amount of memory and have some CPU
requirements, that need to be scheduled on a set of computers such that
every computer can handle the workload.

The theoretical contribution is clear. We show almost matching upper
and lower bounds on the running time required to find an approximate
solution to the problem. Thus, it almost settles the theoretical complexity
of the problem in terms of its approximation schemes.

In practice, the main contribution of this chapter is the knowledge that
computing near-optimal solutions to this problem can take a rather long
time. The lower bounds we show on the running time of these approxima-
tion schemes are high, indicating that no resources should be wasted on
trying to find near-optimal solutions. The running time of the approxima-
tion scheme presented in the chapter, though nearly matching the provided
lower bounds, is still too large for practical purposes.

There is a wide range of problems occurring in practice that can be mod-
elled as an instance of the Vector Scheduling problem. The example above
seems the most natural, in which the objective is to schedule a set of jobs
on a set of computers, such that no computer is overloaded. For all these
problems, and extensions of the problem, the results in this chapter show
that finding near-optimal solutions to this problem is simply too hard to
do efficiently.

Chapter 5: Optimal Stopping and Posted Prices

Finally, Chapter 5 concerns itself with two similar problems in different
fields. In optimal stopping theory, a gambler faces a finite sequence of non-
negative random variables whose values become apparent upon arrival.
At every arrival, the gambler can claim the realized value and stop, or
reject the value and continue, with the goal of maximizing his expected
reward. In posted price mechanisms, a seller has a single item to sell to a
set of potential customers who arrive uniform at random. The seller can set
individual prices for the customers and makes a profit equal to the price he
set for the first customer whose valuation exceeded the price. In both fields,
the chapter provides approximation algorithms for a non-adaptive and an
adaptive version of both problems.

valorisation 151

The problem in optimal stopping theory has applications in human re-
sources management. Suppose a company needs to hire a new employee
and has interviews with some applicants. During the interviews, they can
assess the value of the applicant for the position. The algorithms from this
chapter provide a way to decide which of the applicants to hire, with the
objective of maximizing the value of the new employee.

This is true for any practical problem in which true values are learned
upon the arrivals, and the goal is to maximize the value of the first arrival
that is accepted.

The applications following from the second field of posted price mecha-
nisms are quite natural. Whenever some person or company needs to sell
one item and wants to make the highest revenue, they can apply the algo-
rithms in this chapter to do so. An example of the non-adaptive scenario is
a retailer that sends a direct mail to all its potential customers, where the
first customer to accept the price offered to her gets to buy the item. An
example of the adaptive scenario is the situation in which at the gate of an
airport, the employees sequentially offer travellers an upgrade to business
class, where the extra revenue they make equals the price offered to the
first accepting traveller.

C U R R I C U L U M V I TA E

Tim Oosterwijk was born in Nijmegen, the Netherlands on October 24, 1989.
In 2007, he received his Gymnasium diploma from the Graaf Huyn College
in Geleen. In September of the same year he started studying Industrial and
Applied Mathematics with a focus on Discrete Mathematics and Applica-
tions at Eindhoven University of Technology. Under supervision of prof. dr.
Nikhil Bansal, he received his Master’s degree cum laude in October 2013.

From September 2013 until January 2017 he was a PhD student at Maas-
tricht University under supervision of prof. dr. Rudolf Müller and dr. Tjark
Vredeveld. Parts of the results of his research are presented in this thesis.
He presented his work at various international conferences and all chap-
ters of this thesis are published or under review in international academic
journals.

From February 2017 until February 2018, he was a lecturer at Maastricht
University. In March 2018, he will start a combined post-doctoral fellow-
ship at the Universidad de Chile in Santiago, Chile and at the Max Planck
Institut für Informatik in Saarbrücken, Germany.

153

	Dedication
	Acknowledgements
	Contents
	1 Introduction
	1.1 Optimization
	1.2 Computational complexity theory
	1.3 Approximation algorithms
	1.4 Outline of this thesis
	1.4.1 Polymatroid congestion models
	1.4.2 High multiplicity scheduling
	1.4.3 Vector scheduling
	1.4.4 Optimal stopping and posted prices

	1.5 Publications

	2 Polymatroid Congestion Models
	2.1 Introduction
	2.1.1 Applications in Optimization
	2.1.2 Applications in Game Theory
	2.1.3 Our Results
	2.1.4 Literature Review

	2.2 The Model
	2.2.1 Congestion Models
	2.2.2 Polymatroids
	2.2.3 Polymatroid Congestion Models

	2.3 A logarithmic approximation
	2.4 Concluding remarks

	3 High multiplicity scheduling
	3.1 Introduction
	3.2 The model
	3.3 Structural properties of optimal solutions
	3.3.1 Problem complexity
	3.3.2 Feasibility condition
	3.3.3 Characterizing optimal production schedules
	3.3.4 Bounding the average costs

	3.4 Optimal solutions for few products
	3.4.1 Fixed case with one product
	3.4.2 Continuous case with two products

	3.5 Approximation algorithms
	3.6 Concluding remarks

	4 Vector Scheduling
	4.1 Introduction
	4.1.1 Previous work
	4.1.2 Our contribution

	4.2 Preliminaries
	4.3 Lower bounds on the running time
	4.3.1 Lower bound assuming the ETH
	4.3.2 Lower bound assuming NP has no subexponential time algorithms
	4.3.3 Lower bound with resource augmentation

	4.4 Linear time approximation algorithm
	4.4.1 Preprocessing
	4.4.2 The mixed-integer linear program
	4.4.3 Randomized algorithm
	4.4.4 Deterministic algorithm

	4.5 Concluding remarks

	5 Optimal stopping and posted prices
	5.1 Introduction
	5.1.1 Optimal stopping theory
	5.1.2 Problem description
	5.1.3 Our results
	5.1.4 Posted price mechanisms

	5.2 The Bernoulli selection Lemma
	5.2.1 The proof
	5.2.2 Tightness
	5.2.3 Prophet inequality

	5.3 Adaptive threshold rule
	5.4 Posted price mechanisms
	5.4.1 Problem description
	5.4.2 Reduction
	5.4.3 Non-adaptive posted price mechanism
	5.4.4 Tight instance with i.i.d. valuations
	5.4.5 Adaptive posted price mechanism

	5.5 Concluding remarks

	Bibliography
	Nederlandse samenvatting
	Valorisation
	Curriculum Vitae

