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Abstract

We investigate the algorithmic performance of Vickrey-Clarke-Groves mechanisms in the single item

case. We provide a formal definition of a Vickrey algorithm for this framework, and give a number

of examples of Vickrey algorithms. We consider three performance criteria, one corresponding to a

Pareto criterion, one corresponding to worst case analysis, and a third criterion related to first-order

stochastic dominance. We show that Pareto optimal Vickrey algorithms do not exist and that worst

case analysis is of no use in discriminating between Vickrey algorithms. For the case of two bidders,

we show the bisection auction to be optimal according to the third criterion. The bisection auction is

therefore optimal in a very strong sense.

Keywords: Single item auctions, Vickrey-Clarke-Groves implementation, algorithms, performance

analysis.
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1 Introduction

Recently there has been quite some interest in designing sealed-bid auctions with limited communication

(Blumrosen and Nisan (2002), Blumrosen, Nisan, and Segal (2003)) and iterative auctions with few rounds

(David, Rogers, Schiff, Kraus, and Jennings (2005), Fujishima, McAdams, and Shoham (1999)). However,

designs with severely limited communication or large bid levels necessarily lead to inefficient allocations

for some instances, meaning that the items are not necessarily allocated to those who value them most.

In Grigorieva, Herings, Müller, and Vermeulen (2007) we have proposed an iterative auction, called the

bisection auction for selling a single, indivisible item to a set of bidders who have integer valuations for this

item. We have shown that in the proposed auction truth-telling is a weakly-dominant strategy and the

equilibrium where all bidders follow this strategy always results in an efficient allocation. The bisection

auction shares this property with the Vickrey auction and the English auction. In contrast to these

auctions it is however more economical in the amount of information that bidders have to communicate

about their willingness to pay. Moreover, in comparison to the English auction, it needs fewer rounds

to determine the winner and the price he has to pay. The superiority of the bisection auction has been

made precise in Grigorieva, Herings, Müller, and Vermeulen (2006), where we give precise upper bounds

on the average information revealed in the course of the auction and compare these to lower bounds for

the Vickrey auction and the English auction.

Results of Green and Laffont (1977) and Holmström (1979) imply that under certain minor restrictions

on bidders’ utility functions the Vickrey-Clarke-Groves (VCG) mechanisms are the only ones that are

incentive compatible in dominant strategies and allocate efficiently. For the case of a single indivisible

item any mechanism that belongs to this class is a mechanism that finds the outcome corresponding to

the Vickrey auction. This outcome requires that the winner is a bidder having the highest valuation and

the price he pays for the item is equal to the second-highest valuation. We can therefore interpret such

an auction as an algorithm that finds the identity of all bidders with the highest valuation and the exact

value of the second-highest valuation. We formally introduce Vickrey algorithms as algorithms that find

this information. We introduce a number of examples of Vickrey algorithms, including the sealed bid and

modified sealed bid algorithm, as well as the bisection and modified bisection algorithm. Well-performing

Vickrey algorithms are attractive as they lead to auctions that result in a fast allocation of the object.

They also have the attractive feature that bidders only have to reveal part of their valuations.

In this paper we model a bidder’s valuation by a binary code of length R. An algorithm is viewed as a series

of queries that are performed on the resulting n×R matrix of zeroes and ones. And a Vickrey algorithm

is deemed to be fast when it needs to query only a limited number of entries (boxes) in the matrix in

order to find the Vickrey outcome. We study three performance criteria for Vickrey algorithms to specify

what we mean by “fast”. The first one is a Pareto criterion where one Vickrey algorithm is superior to

another if it needs less steps to identify the bidders with the highest valuation and the exact value of the
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second-highest valuation, irrespective of the realization of the bidders’ valuations. Surprisingly, although

the bisection algorithm Pareto dominates many other algorithms, including the sealed bid algorithm, we

show that Pareto optimal algorithms do not exist.

It is widely accepted in theoretical computer science to compare the performance of two algorithms by

considering the performance of the algorithms in the worst case (see e.g. Knuth (1997)). For the problem

at hand, worst case analysis hardly makes any sense since for any algorithm there exists a realization of

valuations requiring Rn queries to provide a Vickrey outcome, where n is the number of bidders and R is

the length of the binary encoding of the valuations.

Therefore, we need a third, more sophisticated tool for algorithm comparison. Given an algorithm we count

the number of realizations of valuations for which the number of queries is at most k, for some 0 ≤ k ≤ Rn.

We say that algorithm A1 is preferred to algorithm A2 if for every k the number of realizations of valuations

on which algorithm A1 finds the Vickrey outcome by performing at most k queries is not less than the same

number in algorithm A2. For the case of two bidders we show that the bisection algorithm is preferred

to any other algorithm that determines the Vickrey outcome. We discuss the complications that arise

in extending this result to more than two bidders. Our counting of comparisons utilizes a representation

of algorithms as binary trees. The trees are similar to those which are used to derive lower bounds on

the worst case running time of sorting algorithms (see, e.g., Chapter 9 of Cormen, Leisserson and Rivest

(1990)).

The paper is organized as follows. In Section 2 we give a formal definition of a Vickrey algorithm and

we give a number of examples of such algorithms. In Section 3 we introduce some performance criteria

and study how particular algorithms perform. We show that Pareto optimal algorithm do not exist, and

argue that worst-case analysis is not very helpful. Section 4 introduces the performance criterion that

we advocate and show that for the case of two bidders the bisection algorithm is the optimal Vickrey

algorithm. Section 5 concludes.

2 Auctions as Algorithms

Suppose there is an auctioneer who wants to sell a single indivisible item to an individual in a set N =

{1, . . . , n} of bidders, where n ≥ 2. Each bidder i has a valuation for the item that is given in a binary

encoding of length R ≥ 1. Thus, the valuation of bidder i is a vector vi = (vri), r = 1, . . . , R, where

each element vri is a binary digit, i.e. is equal to 0 or 1. The set Vi = {0, 1}R denotes the set of all

possible realizations of bidder i’s valuation. A realization of the valuation of all bidders is therefore a

matrix v = (vi)i∈N , where column i corresponds to the valuation of bidder i. In the following we will also

refer to a cell in this matrix as a box. The set V =
∏

i∈N{0, 1}R is the set of all possible realizations

of bidders’ valuations. The valuation of a bidder is private information, so is only known to the bidder

himself.
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If the auctioneer wants to allocate the object in an incentive compatible and efficient way, he should use

a Vickrey-Clarke-Groves mechanism. To implement this mechanism, the auctioneer needs to find a bidder

with the highest valuation, and makes him pay a price equal to the second-highest valuation. The major

advantage of this mechanism is that it gives the bidders the appropriate incentives to reveal their valuation

truthfully.

In terms of the matrix v, the task of the auctioneer is to identify a column whose value exceeds the values

of all other columns, and to determine the value of the second-highest column 1. We are interested in the

fastest algorithm to do so. An algorithm is represented as a sequence of queries by the auctioneer about

the value contained in a box of the matrix v. The well-known 2nd price, sealed bid auction 2 would ask

for the values contained in all the boxes of v. We will show that there are faster algorithms.

To define precisely what we mean by an algorithm, we need some more notation. For k ∈ N, a history h of

length k is a sequence of k binary digits. So h = (b1, . . . , bk), where bj ∈ {0, 1}, j = 1, . . . , k. The length

of the history h is denoted by `(h). The initial history is given by h0 = ∅ and has length zero. The history

g is a subhistory of h, denoted g ≤ h, if the first `(g) digits of h yield the history g. The history g is a

proper subhistory of h, denoted g < h, if g 6= h and g ≤ h. The set C = {1, . . . , R} ×N denotes the set of

matrix coordinates, in this paper also referred to as entries or boxes.

Definition 2.1 Consider a triplet A = (H,σ, ϕ), where H is a collection of histories, and σ : H → {0, 1}

is the stopping function. The set of non-terminal histories is H0 = {h ∈ H | σ(h) = 0}. The function

ϕ : H0 → C is the query function. The triplet A = (H,ϕ, σ) is an algorithm if:

1. ∅ ∈ H.

2. If h ∈ H and σ(h) = 0, then (h, 0) ∈ H and (h, 1) ∈ H.

3. If h ∈ H and σ(h) = 1, then (h, 0) 6∈ H and (h, 1) 6∈ H.

4. If h ∈ H and g ≤ h, then g ∈ H.

The interpretation of an algorithm is as follows. First, nature selects an instance v in V . The algorithm

A starts without any information, represented by the history h0 = ∅. If σ(∅) = 1, the algorithm has

solved the problem and stops. Otherwise, σ(∅) = 0 and the algorithm performs a query, meaning that it

opens box ϕ(h0) of v, which generates the history h1 = (vϕ(h0)), where vϕ(h0) is the value found in box

ϕ(h0). If σ(h1) = 1, the algorithm stops. Otherwise, the algorithm performs another query and opens box

ϕ(h1), which generates the history h2 = (h1, vϕ(h1)). In general, after k steps historyhk is generated. If

σ(hk) = 1, the algorithm stops. Otherwise, the algorithm opens box ϕ(hk), which generates the history

hk+1 = (hk, vϕ(hk)), and so forth.

1A column is said to be the second highest one if there is at least one column whose value is at least as high as the value

of the column in question, and at most one column whose value is strictly higher than the value of the column in question.
2This auction is usually called the Vickrey auction. We deliberately do not use this name though to avoid confusion with

other notions in this paper that bear the prefix “Vickrey”.
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Example 2.2 The algorithm corresponding to the 2nd price sealed bid auction, where first bidder one

is queried for its valuation by asking for increasing values of r the value of box (r, 1), next the second

bidder is queried, and so on, and so forth, would be defined a follows. The set of histories H consists of all

sequences with less than or equal to Rn binary digits. For h ∈ H, σ(h) = 0 if `(h) ≤ Rn− 1 and σ(h) = 1

if `(h) = Rn. For h ∈ H0, ϕ(h) = (r, i), where i is the largest integer less than or equal to (`(h)/R) + 1,

and r = `(h) + 1− (i− 1)R.

Definition 2.3 The sealed bid algorithm As = (Hs, σs, ϕs) is the algorithm defined in Example 2.2.

The notation of a history only includes the announced binary digits, but not the box that contained them.

This is without loss of generality, since the algorithm itself can be used to determine the queried box. Thus,

to include data regarding the queries itself—not just the answers—into histories will needlessly complicate

our notation. It suffices just to remember which answers were given in which order.

With any algorithm we can associate as follows a rooted binary tree with arcs directed from the root to

the endnodes. Nodes of this tree correspond to histories in H, at which the query ϕ(h) is posed, arcs

correspond to answers to the queries ϕ(h). The root of the tree is h0 = ∅. A sequence of nodes on a

path from the root to any node of the tree is a realization of algorithm A. Any node h for which the

stopping criterion σ(h) is equal to 0 is followed by two arcs. Any node h for which σ(h) is equal to 1 is an

endnode. The length of an endnode e is equal to the number of nodes, not counting the root, on the path

from the root to h. Alternatively, `(e) equals the number of arcs on the path from the root to e. This

length indicates how many queries are performed before algorithm A ends for an instance v for which the

algorithm goes along this path. The set of instances in V for which algorithm A goes along this path and

ends in node e has cardinality 2Rn−`(e), since the number of unopened boxes when algorithm A stops is

equal to Rn− `(e).

An algorithm is a Vickrey algorithm if it does not stop before the identity of all bidders with the highest

valuation and the exact value of the second-highest valuation are found. The identity of all bidders with the

highest valuation has been found if for each bidder it either can be decided that he has the highest valuation

or it can be decided that he does not have the highest valuation. Consider an algorithm A = (H,σ, ϕ)

that has generated a history h. We associate to such a history the minimal valuation of bidder i ∈ N ,

vi(h), by assigning a 0 to all unopened boxes of bidder i, and the maximal valuation of bidder i, v̄i(h), by

assigning a 1 to all unopened boxes of bidder i. At h it can be decided that a bidder i′ has the highest

valuation if vi′(h) ≥ maxi∈N\{i′} v̄i(h), and it can be decided that i′ does not have the highest valuation

if v̄i′(h) < maxi∈N\{i′} vi(h).

The exact value of the second-highest valuation has been found if the entire valuation of a bidder that is

known to have the second-highest valuation is known. More precisely, consider an algorithm A = (H,σ, ϕ)

that has generated a history h. At h the second highest valuation is known if
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1. there is a bidder i′ ∈ N such that vi′(h) = v̄i′(h),

2. there is at least one bidder i 6= i′ such that vi(h) ≥ v̄i′(h), and

3. there is at most one bidder i 6= i′ such that v̄i(h) > vi′(h).

Notice that the requirement vi′(h) = v̄i′(h) is equivalent to the requirement that all boxes of bidder i have

been opened.

Definition 2.4 An algorithm A = (H,σ, ϕ) is a Vickrey algorithm if the stopping criterion σ is defined in

such a way that the algorithm does not stop before the identity of all bidders with the highest valuation

and the exact value of the second-highest valuation are found.

We require a Vickrey algorithm to find the identity of all bidders with the highest valuation to give them

equal chance to get the object in case of ties.

Example 2.5 The sealed bid algorithm of Example 2.2 qualifies as a Vickrey algorithm. The sealed bid

algorithm of Example 2.2 would continue to make queries even after all the information needed has been

retrieved. A superior alternative is therefore the modified sealed bid algorithm that stops as soon as the

identity of all bidders with the highest valuation and the exact value of the second highest valuation are

found. We denote the modified sealed bid algorithm by Ams.

Definition 2.6 The modified sealed bid algorithm Ams = (Hms, σms, ϕms) is the algorithm defined in

Example 2.5.

Vickrey algorithms that stop as soon as the identity of all bidders with the highest valuation and the exact

value of the second highest valuation are found, are called proper. The sealed bid algorithm is not proper,

whereas the modified sealed bid algorithm is.

Acyclic algorithms never perform the same query, i.e. never ask a bidder to report a specific digit of his

valuation more than once. Therefore an acyclic algorithm always ends within Rn performed queries.

Definition 2.7 An algorithm A = (H,σ, ϕ) is cyclic if there are histories g, h ∈ H with g < h such that

ϕ(g) = ϕ(h). An algorithm A = (H,σ, ϕ) is acyclic if for all histories g, h ∈ H with g < h it holds that

ϕ(g) 6= ϕ(h).

Both the sealed bid algorithm and the modified sealed bid algorithm are acyclic.

Another Vickrey algorithm is the algorithm corresponding to the bisection auction proposed in Grigorieva

et al. (2007). The bisection auction has R rounds, with the auctioneer announcing a price in each round.

The first price equals 2R−1, the middle of the initial interval [0, 2R). Bidders report their demand at the

current price by sealed bids. A yes-bid stands for the announcement to be willing to buy at the current

price, a no-bid for the contrary. As a function of these bids, the auctioneer announces the price of the next

round.
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In case there are at least two bidders submitting a yes-bid, the price goes up to the middle of the upper

half interval, i.e. the interval [2R−1, 2R). The bidders that are allowed to participate actively in the next

round are the ones that said yes and they are competing for the object in the price range [2R−1, 2R). The

other bidders drop out of the auction.

In case there is at most one bidder saying yes, attention shifts to the lower half interval, i.e. the interval

[0, 2R−1) and the price goes down to the middle of this interval. Two different things can happen now.

First, if no one has submitted a yes-bid then all active bidders remain active in the next round. In the

other case there is a single bidder that submitted a yes-bid. This bidder now becomes the winner and

he gets the object. Nevertheless the auction doesn’t end, but enters a price-determination phase. The

active bidders in the next round are the ones that were active in the previous round minus the winner.

The remaining active bidders are competing on the lower half interval [0, 2R−1). The winner is no longer

active, and the auctioneer by default considers him to say yes to all prices that are proposed beyond the

moment he became the winner. Apart from this, the way it is decided whether the price should go up or

down is not any different from the way this is decided in the winner-determination phase. In each round

depending on submitted bids we subsequently restrict attention to either the lower or the upper half of

the current interval.

Iterating this procedure will eventually yield a winner and a price. When in no round precisely one bidder

said yes, at least two bidders will still be active after R rounds, and the object is assigned by a lottery to

one of them. The price is uniquely determined because in each round the length of the current interval

goes down by a factor of two, so after R rounds the resulting interval is of length 1, and since it is a

half-open interval, it contains exactly one integer. This integer is declared to be the price the winner of

the auction has to pay for the object.

The bisection auction implicitly defines the bisection algorithm, denoted by B, and opens boxes of the

matrix v in R steps. In step r the algorithm B opens boxes in the rth row of v. Inside a step the boxes

can be opened in an arbitrary order, but to be specific we require this order to correspond to the ranking

{1, . . . , n} of the bidders. To define boxes to be opened in a step we introduce sets Ar, Wr, and Yr, with

as interpretation the set of active bidders, the set of winning bidders, and the set of players saying yes.

Initially, A1 = N and W1 = ∅. The set Y1 will be determined by the algorithm.

In step r the bisection algorithm B

1. Opens box (r, i) for all i ∈ Ar, with (r, i1) before (r, i2) when i1 < i2;

2. Defines Yr = {i ∈ Ar | vri = 1};

3. Defines Ar+1 and Wr+1 as follows

• if |Yr| = 0, then Wr+1 = Wr and Ar+1 = Ar;
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• if |Yr| = 1 and Wr = ∅, then Wr+1 = Yr and Ar+1 = Ar \ Yr;

• if |Yr| = 1 and Wr 6= ∅ or if |Yr| > 1, then Wr+1 = Wr and Ar+1 = Yr.

After R steps the bisection algorithm opens all boxes of all valuations from the set AR+1. The valuation

of a bidder in this set equals the second highest valuation. If WR+1 is non-empty, it contains the bidder

with the highest valuation. Otherwise, the set AR+1 contains at least two bidders, all of them having the

highest valuation (Grigorieva et al. (2007)).

Definition 2.8 The bisection algorithm B = (HB , σB , ϕB) is the algorithm defined in previous para-

graphs.

Example 2.9 Consider the case where n = 2, R = 3, and

v =

 0 0
1 0
1 0

 .

The bisection algorithm will open the boxes (1, 1), (1, 2), (2, 1), (2, 2), and (3, 2) and generates the terminal

history h = (0, 0, 1, 0, 0). For this instance v, it needs one step less than both the sealed bid algorithm and

the modified sealed bid algorithm.

We state the following result without proof.

Theorem 2.10 The bisection algorithm B is acyclic and, for n = 2, proper.

The following example shows that for n = 3, the bisection algorithm need not be proper.

Example 2.11 Consider the case where n = 3, R = 2, and

v =

[
1 0 0
0 1 0

]
.

The bisection algorithm will open the boxes (1, 1), (1, 2), (1, 3), (2, 2), and (2, 3) and generates the terminal

history h = (1, 0, 0, 1, 0). For this instance v, the bisection auction needs five steps. However, it could have

terminated after four steps, since at that point the identity of all bidders with the highest valuation and

the exact value of the second-highest valuation were known. For n ≥ 3, we may therefore consider the

modified bisection algorithm that stops as soon as the identity of all bidders with the highest valuation

and the exact value of the second-highest valuation are found.

Definition 2.12 The modified bisection algorithm Bm = (HmB , σmB , ϕmB) is the algorithm defined in

Example 2.11.

According to Theorem 2.10, the bisection algorithm is proper for n = 2. The bisection algorithm and the

modified bisection algorithm do therefore coincide for n = 2.

The number of different algorithms is staggering. Suppose we restrict ourselves to acyclic algorithms.

There are Rn possibilities for the first box to be opened. An acyclic algorithm proceeds conditional on the
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information found, chooses one box out of Rn − 1 boxes to be opened next, and so on. If we ignore the

stopping criterion, and consider only algorithms that proceed until the last box is opened, then we obtain

(Rn)! different acyclic algorithms.

3 Performance Criteria for Algorithms

Given an algorithm A, `A : V → N ∪ {∞} denotes the function that assigns to each instance v in V the

length of the history after which the algorithm stops, or equivalently the number of queries that A performs

on v. Among all Vickrey algorithms we want to find the one with the most favorable `A.

One approach consists of preferring an algorithm A1 to an algorithm A2 if for all v ∈ V , `A1(v) ≤ `A2(v).

We refer to this concept as Pareto preferred.

Definition 3.1 An algorithm A1 is Pareto preferred to an algorithm A2 if for all v ∈ V , `A1(v) ≤ `A2(v).

The algorithm A1 is strictly Pareto preferred to A2 if A1 is Pareto preferred to A2, and A2 is not Pareto

preferred to A1. The algorithms A1 and A2 are Pareto indifferent if A1 is Pareto preferred to A2 and A2

is Pareto preferred to A1 (in other words, when `A1(v) = `A2(v) for all v ∈ V ).

Definition 3.2 A Vickrey algorithm is Pareto optimal if it is Pareto preferred to any other Vickrey

algorithm.

Not all Vickrey algorithms are candidates for being Pareto optimal. It is rather obvious that neither

Vickrey algorithms that are not proper nor cyclic Vickrey algorithms are Pareto optimal.

Theorem 3.3 For any Vickrey algorithm A = (H,σ, ϕ) that is not proper, there is a Vickrey algorithm

A′ = (H ′, σ′, ϕ′) that is strictly Pareto preferred to A1.

Proof. We construct an algorithm A′ with the desired properties. Let H ′ be the subset of histories h ∈ H

that does not have subhistories g < h such that after history g the identity of all bidders with the highest

valuation and the exact value of the second-highest valuation are found. When h is a maximal history in

H ′, then define σ′(h) = 1, otherwise σ′(h) = 0. For all h ∈ H ′ with σ′(h) = 0 define ϕ′(h) = ϕ(h). Then

A′ coincides with A until the desired information has been found, and stops thereafter. It is strictly Pareto

preferred to A. Q.E.D.

Theorem 3.4: For any cyclic Vickrey algorithm A there is a Vickrey algorithm A′ that is strictly Pareto

preferred to A.

Proof. Take a cyclic Vickrey algorithm A = (H,σ, ϕ). We construct an algorithm A′(H ′, σ′, ϕ′) such

that for all v ∈ V , `A′(v) ≤ `A(v) with strict inequality for some v. Since A is cyclic, there is an instance

v ∈ V generating histories a, b ∈ H such that a < b and ϕ(a) = ϕ(b).

Suppose that there is such an instance v ∈ V for which `A(v) is finite, so there are histories a, b, c ∈ H

such that a < b < c, ϕ(a) = ϕ(b), `(c) ∈ N, and σ(c) = 1. We construct algorithm A′ in the following

9



way. A′ performs the same queries as A does, except after history b. After history b it skips query ϕ(b)

and continues with the same queries as A after history (b, vϕ(b)). By skipping query ϕ(b) algorithm A′

does not lose any information and is therefore able to stop whenever A stops. For all other histories A′ is

identical to A. It follows that for all instances v that generate history b, `(c)− 1 = `A′(v) < `A(v) = `(c),

whereas for all other instances `A′(v) = `A(v). Hence A′ is strictly Pareto preferred to A.

Suppose that for all instances v ∈ V that generate histories a, b with a < b and ϕ(a) = ϕ(b), it holds that

`A(v) = ∞. Construct algorithm A′ as follows. For all histories h ∈ H that do not contain a subhistory

g with g < h and ϕ(h) = ϕ(g), ϕ′(h) = ϕ(h). For minimal histories h ∈ H that do contain a subhistory

g with g < h and ϕ(h) = ϕ(g), ϕ′(h) is the lexicographically minimal unopened box, and A′ continues by

opening unopened boxes in lexicographical order till all boxes are opened. So, for all instances v ∈ V for

which A terminates in finite steps, `A(v) = `A′(v), and for all v ∈ V for which `A(v) = ∞, `A′(v) is finite.

Hence A′ is strictly Pareto preferred to A. Q.E.D.

Thus both cyclic and non-proper Vickrey algorithm are not Pareto optimal. Unfortunately, the Pareto

criterion has only limited further use beyond these straightforward observations. There do exist rather

silly algorithms that accidently perform very well for particular instances. An example is the reversed

modified sealed bid algorithm, that starts by opening box (R,n), next box (R − 1, n), and continues in

this way until all boxes of bidder n are opened. The algorithm then continues with the same operations

for bidders n − 1, n − 2, and so on, until the identities of all bidders with the highest valuation, and the

exact value of the second highest valuation have been found.

Now consider the case considered in Example 2.9 with n = 2, R = 3, and

v =

 0 0
1 0
1 0

 .

For this instance, the length of the sealed bid algorithm and the modified sealed bid algorithm is six,

the length of the bisection algorithm and the modified bisection algorithm is five, and the length of the

reversed modified sealed bid algorithm is four. Indeed, this algorithm opens box (3, 1) after history (0, 0, 0),

concludes that bidder 1 is the unique bidder with the highest valuation, and knows the second highest

valuation to be equal to zero.

The following result shows that for R ≥ 2 Pareto optimal Vickrey algorithms do not exist 3.

Theorem 3.5 Assume n ≥ 2 and R ≥ 2. Then there is no Pareto optimal Vickrey algorithm.

We prove Theorem 3.5 by means of Lemmas 3.6 and 3.7 that consider the case n = 2, R ≥ 2, and the case

n ≥ 3, R ≥ 2, respectively.

Lemma 3.6 Assume n = 2 and R ≥ 2. Then there is no Pareto optimal Vickrey algorithm.
3When R = 1 all acyclic Vickrey algorithms are of course Pareto indifferent and take n steps.
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Proof. Based on Theorems 3.3 and 3.4, we can restrict our attention to proper acyclic algorithms when

searching for a Pareto optimal Vickrey algorithm. Consider the instance

v1 =


0 0
...

...
0 0
1 0

 .

Let A be an algorithm that opens one of the boxes (r, 1), r ≤ R−1, in the first round. We get lA(v1) > R+1,

because A will have to open box (R, 1) to determine the winner and all boxes (r, 1), r ≤ R, to determine

the second highest valuation. Thus, because there exists a Vickrey algorithm A1 with lA1(v1) = R + 1, A

is not Pareto optimal. Indeed, A1 opens all boxes in the second column together with box (R, 1). Next

consider the instance

v2 =


0 0
...

...
0 0
0 1

 .

By the same reasoning as before, any algorithm A that opens one of the boxes (r, 2), r ≤ R−1, in the first

round cannot be Pareto optimal. Therefore, any Pareto optimal algorithm A has to start with opening

either box (R, 1) or (R, 2). W.l.o.g., assume it starts with box (R, 2). Now consider the instance

v3 =


0 1
...

...
0 0
0 0

 .

By the same reasoning as before, lA(v3) > R+1. But there exists a Vickrey algorithm with lA(v3) = R+1,

a contradiction. It follows that Pareto optimal Vickrey algorithms do not exist. Q.E.D.

Lemma 3.7 Assume n ≥ 3 and R ≥ 2. Then there is no Pareto optimal Vickrey algorithm.

Proof. For i = 1, . . . , n, let the instance vi be such that it has zeroes everywhere, except in box (R, i),

where it has a 1. Any algorithm A has to open all the boxes of bidders not equal to i to decide whether

such bidders have the highest valuation or not. When also box (R, i) is opened, the identity of all bidders

with the highest valuation, i, and the exact value of the second-highest valuation, 0, is known. A Pareto

optimal algorithm terminates after R(n− 1) + 1 steps. Any algorithm that opens a box (r, i), r ≤ R − 1,

1 ≤ i ≤ n, in round 1 will need at least R(n − 1) + 2 steps for instance vi as it has to open all boxes in

some column j 6= i to determine the second highest valuation, all other boxes in columns other than i in

order to assure that this is the second highest valuation, and box (R, i) to determine the winner. A by

now familiar argument shows that a Pareto optimal algorithm starts by opening a box in row R.

W.l.o.g., assume that a Pareto optimal A algorithm starts with box (R, 1). Let the instance v̄1 be such

that it has a 1 in box (1, 1), a 0 everywhere else. Algorithm A has to open all boxes in some column j

11



in order to determine the second highest valuation, all other boxes in columns not equal to i in order to

verify that this is the second highest valuation, and box (1, 1) in order to determine the winner. Thus

lA(v̄1) ≥ R(n − 1) + 2. However, there exists a Vickrey algorithm Ā with lĀ(v̄1) = R(n − 1) + 1, a

contradiction. It follows that a Pareto optimal algorithm does not exist. Q.E.D.

The usual approach taken when assessing the performance of an algorithm is to perform a worst-case

analysis. This leads to the following definitions.

Definition 3.8 A Vickrey algorithm A1 is worst case preferred to a Vickrey algorithm A2 if maxv∈V `A1(v) ≤

maxv∈V `A2(v). The algorithm A1 is strictly worst case preferred to A2 when A1 is worst case preferred to

A2, but A2 is not worst case preferred to A1. A1 and A2 are worst case equivalent when A1 is worst case

preferred to A2 and A2 is worst case preferred to A1.

Definition 3.9 A Vickrey algorithm A1 is a worst case optimal Vickrey algorithm if A1 is worst case

preferred to any other Vickrey algorithm.

In a worst-case analysis of the algorithms under consideration, an upper bound is given for the number of

queries the algorithm performs for a given number of bidders n and length of valuations R. The connection

with the Pareto criterion is straightforward.

Theorem 3.10 Let A1 and A2 be two Vickrey algorithms. If A1 is Pareto preferred to A2, then A1 is also

worst case preferred to A2.

Unfortunately, worst case analysis does not give many insights when applied to Vickrey algorithms, as all

acyclic Vickrey algorithms are equivalent to each other according to this criterion.

Theorem 3.11 Let A1 and A2 be two acyclic Vickrey algorithms. Then A1 is worst case equivalent to A2.

Proof. Any acyclic Vickrey algorithm terminates in less than or equal to Rn steps. The upper bound is

attained for all instances v with vi = vj for all i, j ∈ N , as the only way to decide whether a bidder has

the highest valuation is to open all his boxes. Q.E.D.

4 Optimality of the Bisection Algorithm

Thus, the usual criteria for comparison of algorithms, Pareto optimality and worst-case analysis, are of

no use for comparison of Vickrey algorithms. The criterion we advocate to compare (Vickrey) algorithms

relies on the concept of the characteristic function of an algorithm.

Definition 4.1 The characteristic function of an algorithm A is the function FA : N → N, where FA(k)

equals the number of instances in V for which `A(v) ≤ k.

The characteristic function of an algorithm enables us to identify the number of instances for which the

algorithm terminates in exactly k steps, since this number equals FA(k)− FA(k − 1).

12



Definition 4.2 An algorithm A1 is preferred to an algorithm A2 if FA1(k) ≥ FA2(k) for all k ∈ N. A1 is

strictly preferred to A2 when A1 is preferred to A2, but A2 is not preferred to A1.

Notice that an algorithm A1 is preferred to an algorithm A2 precisely when the graph of FA1 is never

below the graph of FA2 .

We use this criterion to compare Vickrey algorithms. For the trivial case where R = 1, a Vickrey algorithm

has to open all the boxes, so FA(k) = 0 for all k ≤ n− 1. When R ≥ 2, the most favorable instance is the

one where in the first row one box contains a 1 and the other entries are 0, since the bidder with the highest

valuation is then known. If entry v1,i = 0, but vr,i = 1 for all r ≥ 2, then opening the boxes in column

i determines the exact value of the second-highest valuation. Any Vickrey algorithm has to open all the

boxes of the bidder with the second-highest valuation. We therefore obtain that for all Vickrey algorithms

FA(k) = 0 for all k ≤ R + n− 2, and there are Vickrey algorithms A such that FA(R + n− 1) > 0.

Definition 4.3 A Vickrey algorithm A is an optimal Vickrey algorithm when A is preferred to any other

Vickrey algorithm.

Definition 4.2 corresponds to the definition of first-order stochastic dominance (see, e.g. Levy (1998)) if we

assume a uniform distribution of instances. Indeed, for the case at hand, it would state that an algorithm

A1 first-order stochastically dominates an algorithm A2 if for every number of queries k, the probability

of stopping after at most k queries is not smaller for A2 than it is for A1. Rescaling the characteristic

function along the y-axis by dividing by the total number of instances 2Rn, we get the function that for

every number of queries shows the probability that the algorithm performs at most as many queries if

instances were randomly chosen. A direct consequence is that, when we assume instances to be uniformly

distributed, an algorithm A1 that is (strictly) preferred to an algorithm A2 has a (strictly) shorter average

running time than the algorithm A2.

Consider an acyclic Vickrey algorithm A. Since the number of elements in V equals 2Rn, and opening all

boxes definitely yields the required information, it holds that FA(k) = 2Rn for all k ≥ Rn. When all bidders

have identical valuations, a Vickrey algorithm will open all the boxes. It follows that FA(Rn)−FA(Rn−1) ≥

2R. Using the tree representation of the algorithm, we can say that

FA(k) =
k∑

j=1

|Ej |2Rn−j ,

where Ej is the set of endnodes with length j. Here we use that an acyclic algorithm that terminates after

j steps, has Rn− j boxes unopened, which corresponds to 2Rn−j instances.

The next result claims that optimality is weaker than Pareto optimality, but stronger than worst case

optimality. The proof is obvious and therefore omitted.

Theorem 4.4 Let A1 and A2 be two algorithms. If A1 is Pareto preferred over A2, then A1 is preferred

over A2. If A1 is preferred over A2, then A1 is worst case preferred over A2.

13



Suppose we have two Vickrey algorithms A1 and A2, and suppose that the designer of algorithm A1

challenges the designer of algorithm A2 saying: I claim that my algorithm requires less steps than yours on

the set V of instances. How could we decide that this is a legitimate claim? We suggest to let the designers

play the following game. Each contestant starts with an instance bin that initially contains all instances

and a discard bin that is initially empty. In the first round of the game A2 may choose any instance v

from his instance bin. The task of A1 is to find an instance v′ (not necessarily equal to v) in his instance

bin on which his algorithm performs at least as good as algorithm A2 does on instance v, i.e. such that

`A1(v′) ≤ `A2(v). If A1 is not able to find such an instance, then A1’s claim is considered illegitimate.

However, if A1 succeeds to find such an instance, both contestants discard the instance they have chosen to

their respective discard bins, and the game enters the second round that is played using only the instances

that are still left in their instance bins. This procedure is repeated until either all remaining instances are

worse for A1 than the chosen instance by A2, or the instance bins are empty, in which case we declare A1

to be the winner.

It is fairly easy to find optimal strategies for both designers. Designer A2 can basically chose any instance

from his instance bin while designer A1 should, when faced with instance v, select an instance v′ that has the

highest value of `A1 among those instances that are left in his instance bin and for which `A1(v′) ≤ `A2(v)

holds. Notice that following the optimal strategy designer A1 wins the game if and only if for all k the

number of instances for which algorithm A1 performs at most k queries is not less than the number of

instances for which algorithm A2 performs at most k queries, so if and only if A1 is preferred over A2.

We will now show how to use this game to prove that in the case of 2 bidders, i.e. N = {1, 2}, the bisection

algorithm is optimal. We know that the bisection algorithm coincides with the modified bisection algorithm.

We show that the bisection algorithm is optimal. We use the notation

v =


a1 b1

...
...

aR bR

 .

Definition 4.5 Let v be an instance in V . Row r of v is a double if ar = br and is a single otherwise.

Let rA : V → N be the function that assigns to each instance v in V the number of rows that algorithm A

opens in v before it stops. Let GA : N → N be the function where GA(k) equals the number of instances

in V for which rA(v) ≤ k.

Since a Vickrey algorithm A should find the exact value of the second-highest valuation and thus should

open all the boxes of a bidder with the second-highest valuation, the number of queries that an acyclic

Vickrey algorithm A performs on an instance v is equal to the number of rows that A opens in V before

it stops plus R:

`A(v) = rA(v) + R.

For any two acyclic Vickrey algorithms A1 and A2 it therefore holds that GA1(k) ≥ GA2(k) for all k is
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equivalent to FA1(k) ≥ FA2(k) for all k ∈ N. To prove that an acyclic Vickrey algorithm A1 is preferred

to an acyclic Vickrey algorithm A2, it is enough to show that GA1(k) ≥ GA2(k) holds for all k ∈ N.

Lemma 4.6 Assume n = 2. Let A be an acyclic Vickrey algorithm. If v ∈ V contains R doubles, then

rA(v) = R. For any other v, A opens at least one single before terminating.

Proof. The first statement of the theorem is obvious. Consider the case where v has at least one single.

If a Vickrey algorithm does not open any single, it cannot decide for both bidders whether they have the

highest valuation or not, since it cannot exclude that both bidders valuations are equal. This contradicts

the definition of a Vickrey algorithm. Q.E.D.

If we do not require an algorithm to find the identity of all bidders with the highest valuation, then the

statement of Lemma 4.6 does not hold. Consider the following example. Suppose an algorithm has opened 0 0
1 1
0 x


after five queries. The information revealed is enough to find the second highest valuation, which is equal

to the valuation of bidder 1, as well as the identity of a bidder with the highest valuation, bidder 2. If

we are satisfied with finding only a bidder with the highest valuation we can stop without opening the

remaining box. That means that the algorithm, before it stops, neither opens all R rows nor a single.

Lemma 4.7 Assume n = 2. Let A be an acyclic Vickrey algorithm. Then, for k < R,

GA(k) ≤
k∑

j=1

22R−j .

Proof. Consider the algorithm A′ that is identical to A as long as no single is opened, and stops as soon

as the first single is opened. Notice that A′ is not a Vickrey algorithm, since it may terminate before the

required information has been retrieved. We show that, for k < R,

GA′(k) =
k∑

j=1

22R−j .

Since GA(k) ≤ GA′(k), this proves the lemma.

The case R = 1 is trivial, so we assume R ≥ 2. In our proof we will construct a set Md of instances for

which the first opened row by A′ has distinct values, and a set Me of instances for which the first opened

row by A′ has equal values. Start with a set of instances M equal to V and let Me and Md be empty

sets. Go through the following procedure. Take an instance v from M . Consider the step in algorithm A′

where for the first time a row is opened. Without loss of generality in this step box br is opened. Define

the instance v′ as follows:
a′j = aj , for all j,

b′j = bj , for all j 6= r,

b′r 6= br.
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Obviously, the instance v′ belongs to M .

Clearly, either ar = br or a′r = b′r. If ar = br, then define

Me := Me ∪ {v},
Md := Md ∪ {v′},

and otherwise
Me := Me ∪ {v′},
Md := Md ∪ {v}.

In both cases M := M \ {v, v′}.

Repeat the procedure from the beginning until the set M is empty. It is clear from the construction that

when the procedure ends we have |Me| = |Md| = 22R−1. For any instance from Md, algorithm A′ stops

after opening one row. For k < R, let V (k) be the set of instances for which algorithm A′ stops after

opening k rows. By Lemma 4.5, it holds that V (1) = Md and |V (1)| = 22R−1, so GA′(1) = |V (1)| = 22R−1.

If R ≥ 3, then apply the same procedure to the set M := Me and consider the step in algorithm A′ where

the second row is opened. Note that for any instance from Me the first opened row is a double. At the

end of the procedure we have sets Md and Me. By Lemma 4.5, V (2) = Md, the set of instances for which

algorithm A′ stops after the second row is opened. The cardinality of this set is 22R−2. It follows that

GA(2) = 22R−1 + 22R−2.

Iterating this procedure we can show that for any k < R it holds that |V (k)| = 22R−k. We thereby obtain

the desired result that, for k < R,

GA′(k) = |
k⋃

j=1

V (j)| =
k∑

j=1

22R−j . Q.E.D.

The bisection algorithm opens rows in a top-down fashion as long as no single is opened. As soon as the

first single is opened the algorithm is able to determine the identity of the highest valuation and at the

same time the identity of the second highest. Then the algorithm opens the remaining boxes of the second

highest valuation.

Theorem 4.7 Assume n = 2. The bisection algorithm B is an optimal Vickrey algorithm.

Proof. First of all, observe that after algorithm B finds the first single no new row is opened. It holds

that Vk(B) = Vk(B′), where B′ is identical to B as long as no single is opened, and stops as soon as the

first single is opened. From the proof of Lemma 4.7 it follows that |Vk(B)| = 22R−k and for k < R,

GB(k) =
k∑

j=1

22R−j .

Using the result of Lemma 4.7, for any Vickrey algorithm A and any k we have

GA(k) ≤ GB(k)

and consequently

FA(k) ≤ FB(k). Q.E.D.
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5 Conclusion

In this paper we evaluate the performance of auctions from an algorithmic point of view. In particular,

we consider single item auctions with private information and analyze the algorithmic performance of

Vickrey-Clarke-Groves mechanisms. These algorithms have superior strategic properties, and in particular

give bidders incentives to reveal their true valuation. We introduce a number of such mechanisms, called

Vickrey algorithms, including the sealed bid and modified sealed bid algorithms, as well as the bisection

and modified bisection algorithms. Vickrey algorithms that perform well are attractive, as they lead to a

fast allocation of the object, and allow for a limited revelation of the valuations of the bidders.

We consider three possible performance criteria for Vickrey algorithms. The most demanding criterion is

the one of Pareto optimality, and requires that an algorithm terminated in at most as many steps as any

other algorithm, irrespective of the particular instance of the problem under consideration. We show that

Pareto optimal Vickrey algorithms do not exist. Next we turn to worst case analysis. Since all acyclic

Vickrey algorithms have identical worst-case performance, this criterion is not very helpful to distinguish

between algorithms. We therefore advocate an optimality concept that is related to first-order stochastic

dominance. Using this concept, an algorithm is preferred to another one if, for any k, the number of

instances it can solve in at most k steps is greater than or equal to the number of instances the other

algorithm can solve in at most k steps. Although this is a very demanding criterion too, we show the

bisection algorithm to be optimal for the case with two bidders.

An interesting and very natural question is to extend this result to an arbitrary number of bidders. Since

the bisection algorithm is not proper when the number of bidders exceeds two, it is not a candidate for

an optimal Vickrey algorithm. It is not hard to show that also the modified bisection algorithm, which

is a proper algorithm for any number of bidders, is not optimal. Suppose n = 3, R = 3, v1 = (1, 0, 0),

and v2 = v3 = (0, 1, 1). The bisection auction would open seven boxes. Of these, the modified bisection

algorithm would not open box (3, 3), since after opening box (3, 2) the second-highest valuation is known.

Still better would be an adjustment of the bisection algorithm, where once a unique winning bidder is

found, a systematic search is made among the remaining active bidders whether one of them has only ones

in the remaining boxes. Applied to the example in this paragraph, this would require opening first the

boxes (1, 1), (1, 2), and (1, 3), and next continuing with opening all the boxes of player 2. This adjusted

bisection algorithm would terminate after five steps only. An appropriately defined adjusted bisection

algorithm, in particular detailing the systematic search for ones after a unique winner has been found, is

a candidate for an optimal Vickrey algorithm.
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