The graphity of cognitive problems in epilepsy

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

DOI:
10.26481/dis.20120329mv

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 01 Nov. 2023
Summary
SUMMARY

Many patients with epilepsy develop cognitive problems in the course of their disease, such as memory problems, slowness of thought or problems finding words. The etiology of these cognitive problems has not been resolved. It is thought that cognitive functioning is the result of interactions between brain areas in large scale networks. Therefore, it is interesting to investigate whether the cause of cognitive problems results from a disruption of brain networks. With the aid of relatively new MRI techniques, in particular functional Magnetic Resonance Imaging (fMRI) and diffusion weighted MRI (DWI), it is possible to measure abnormalities of brain networks which might be related to cognitive impairments. The research in this thesis has focused on detecting network abnormalities in patients with epilepsy compared to healthy controls. The results demonstrated that patients with epilepsy — especially those with cognitive problems — have a disrupted organization of functional and structural networks. These findings are an important step in understanding the neuronal correlate of cognitive deficits in neurological diseases such as epilepsy.

Epilepsy is one of the most prevalent neurological disorders worldwide. It affects 1-2% percent of the population at some point in their lives. In the Netherlands alone, approximately 110,000 persons have some form of epilepsy at any given moment. The unpredictability and sudden occurrence of a seizure frequently creates a great social burden to the patient and those who surround him. Although the direct consequences of epileptic seizures are serious, many patients rank their cognitive impairments highest on their list of complaints. Much research has focused on clinical factors that might contribute to the development of cognitive impairments, for instance, the role of seizure frequency, age at onset of the seizures and anti-epileptic drug use. However, results have been mixed and thus far no conclusive relationship between cognitive problems and these clinical factors has been demonstrated. At present, it is difficult for the clinician to give a prognosis: patients and relatives cannot be informed about whether cognition will remain intact and whether a certain anti-epileptic drug (AED) will successfully control seizures. Therefore, diagnostic tools to identify patients at risk of cognitive impairment and treatment failure are needed.

Owing to the recent progress made in MR imaging and particularly computational methods, it is now possible to measure how macroscopic brain regions functionally interact and how they are connected by white matter fiber bundles. Functional MRI allows indirect measurement of neuronal activity in the brain’s grey matter. Functional connectivity can then be derived by calculating the synchronicity between the activity of different brain areas. Diffusion weighted MRI is able to provide information on the micro structural organization of the white matter (the nerve fibers). By applying fiber tractography it is possible to reconstruct and visualize structural connections between brain areas. This opens up new opportunities for
researchers to investigate the properties of the human brain network, how they relate to cognitive functioning, and how connectivity is affected by cerebral diseases such as epilepsy. Intuitively, a network is a collection of entities that are somehow connected and thus the term network can be applied to a large number of systems like the brain, the internet, or groups of socially interacting humans. A more formal definition of a network exists from the field of applied mathematics: here a network is often called a graph which is composed of its individual elements, the nodes, and the link between nodes, the edges. At the macroscopic scale the nodes of the brain graph relate to brain regions and the edges represent the functional or structural connectivity between regions. With methods from graph theory, it is possible to derive simple characteristics of enormously complex networks that provide information on the topological properties of the network, thus facilitating research where measured networks need to be compared. A great variety of graph metrics exist. This thesis focuses on metrics that characterize integration and segregation between brain regions (path length and clustering respectively) and sub-networks formed by brain regions (modularity analysis).

The aim of this thesis was to develop and explore the use of graph analysis methods in finding the neuronal correlate of cognitive impairment in epilepsy. Research to date has mainly focused on the relation between cognitive parameters and localized functional and structural tissue abnormalities. Although this approach is viable, in this thesis we advocate a different paradigm: the brain is to be viewed as a highly interconnected system and analysis methods should be tailored towards relating cognitive deficits to characteristics of large-scale networks.

Not much was known about the peculiarities of deriving graph metrics from structural large-scale brain networks. Therefore, in chapter 2, the effect of several imaging parameters on the reproducibility of graph metrics was investigated. The results indicated that the graph metrics were well reproducible and thus might be used to detect abnormalities in brain networks. The reproducibility of graph metrics was better than that of traditional tract measures such as the number of tracts of a connection.

In this thesis, two different groups of patients are investigated and compared to healthy controls. Chapter 3 and 4 are based on the population from the CODICE (COgnitive Deterioration In Cryptogenic Epilepsy) study. In this study adult patients with localization related but cryptogenic epilepsy (i.e. no visible lesions on structural MRI) are included. Although all patients have a seizure onset in the frontal or temporal lobe, their epilepsy is of unknown cause. Chapters 5 and 6 are based on another cohort: the IMAGINE (IMAGing IN Epilepsy) study. Here, children with localization related epilepsy, also without visible lesions on macrostructural MRI, are included. All patients have a seizure focus in the frontal lobe. Graph metrics derived
from both functional and structural brain networks were compared between patients and healthy controls and related to cognitive performance.

In chapter 3 it was shown that reduced efficiency of cerebral functional networks was evident in adult patients with chronic cryptogenic epilepsy and that the cerebral efficiency was related to measures of global cognitive performance. Especially the patients with severe cognitive problems displayed a less efficient network (increased path length and reduced clustering). Chapter 4 dealt with the same study population, but here structural networks were investigated. Differences in graph metrics between patients with cognitive impairment and healthy controls were identified as well as a strong relation between cognitive scores and graph metrics. Again, the largest deviations in graph metrics were seen in the patients with the most severe cognitive problems. A cohort of children with frontal lobe epilepsy was investigated in chapter 5. Functional brain networks showed connectional abnormalities that were mainly expressed as a reduction in coupling between functional sub-networks (modules) and this reduction was correlated with poorer cognitive function. The reduction in between-module connectivity was most evident in the most cognitively impaired patients. Moreover, the frontal lobe displayed a deviant modular organization in patients. A specific module was identified that occupied several brain lobes in healthy controls but was severely reduced in extent in patients, especially those with cognitive impairment. In chapter 6 we studied whether the functional abnormalities found in children with FLE could also be related to structural networks. A reduction in between-module connectivity with increased modularity, clustering and path length was observed in the patients. However, an overall increase in white matter connectivity was observed, although whole structural graph metrics did not show any differences.

The results presented in this thesis demonstrate that disruption of large-scale brain networks is one of the mechanisms underlying, or at least associated with, cognitive dysfunction in cryptogenic localization-related epilepsy. When changes in MR network measures would precede changes in neuropsychological outcomes, this would potentially open a window towards early detection of neuronal changes that increase the risk for the development of cognitive impairment. The early detection of patients at risk may be valuable, especially in chronic epilepsy, as earlier therapeutic interventions hopefully lead to a better long term neurocognitive outcome. This is particularly important for children with epilepsy, as children and parents remain uncertain about treatment success and the maximum achievable educational level.
Samenvatting
In het verloop van hun ziekte ontwikkelen patiënten met epilepsie vaak cognitieve stoornissen zoals geheugenproblemen, traagheid van denken en problemen met het vinden van woorden. De oorzaak van deze cognitieve stoornissen is nog onbekend. Er wordt gedacht dat cognitieve functies het resultaat zijn van synchrone activiteit tussen gebieden in de hersenen die onderdeel zijn van netwerken. Het is daarom interessant om de oorzaak van cognitieve stoornissen te zoeken in de verstoring van hersennetwerken. Met behulp van relatief nieuwe Magnetic Resonance Imaging (MRI) technieken, in het bijzonder functionele MRI (fMRI) en diffusie gewogen MRI (DWI), is het mogelijk om eigenschappen van netwerken in de hersenen te meten en te onderzoeken of mogelijke afwijkingen in deze netwerkeigenschappen gerelateerd zijn aan de cognitieve stoornissen. Deze thesis richt zich op het detecteren van afwijkingen in hersennetwerken bij patiënten met epilepsie in vergelijking tot gezonde personen. De resultaten demonstreren dat patiënten met epilepsie – vooral diegenen met cognitieve stoornissen – een afwijkende functionele en structurele hersennetwerk organisatie hebben. Deze bevindingen geven inzicht in het neuronale correlaat van cognitieve stoornissen bij neurologische ziekten zoals epilepsie.

Epilepsie is een van de meest voorkomende neurologische ziekten wereldwijd en 1 tot 2% van de bevolking heeft er op een gegeven moment last van. In Nederland hebben ongeveer 110,000 mensen epilepsie. De onvoorspelbaarheid en plotselinge opkomst van een epileptische aanval zorgt ervoor dat patiënten en hun naasten het sociaal moeilijker hebben. De aanvallen zijn het meest bekende aspect van de ziekte, maar veel patiënten vinden hun cognitieve stoornissen het meest belastend. Er is al veel onderzoek gedaan naar de relatie tussen klinische factoren en het ontstaan van cognitieve stoornissen, bijvoorbeeld de aanvalsfrequentie, de leeftijd waarop de epilepsie begon en het gebruik van medicatie. Deze onderzoeken laten echter geen eenduidige resultaten zien. Mede hierdoor is het lastig voor de behandelaar om een duidelijke prognose te geven. Daarom is er een behoefte aan additionele diagnostische middelen om patiënten, die cognitieve achteruitgang zullen gaan vertonen, te kunnen identificeren.

Dankzij recente ontwikkelingen in MRI en beeldanalyse methoden is het nu mogelijk om in kaart te brengen hoe het brein op een grove (macroscopische) schaal functioneel en structureel verbonden is. Met functionele MRI kan indirect de neuronale activiteit in de grijze stof worden gemeten. De functionele connectiviteit kan dan berekend worden aan de hand van de mate van synchronisatie tussen verschillende gebieden. Met diffusie-gewogen MRI kan de microstructurele oriëntatie van de witte stof (de zenuwbanen) bepaald worden, en door fiber tractography toe te passen kan worden berekend en gevisualiseerd hoe gebieden structureel verbonden zijn. Dit geeft onderzoekers nieuwe mogelijkheden om de eigenschappen van
hersennetwerken te meten, uit te zoeken hoe deze eigenschappen samenhangen met het cognitief functioneren en te bepalen of hersennetwerken aangedaan zijn in neurologische ziekten zoals epilepsie. Een netwerk is een begrip waarmee meestal een verzameling objecten (deelsystemen) wordt aangeduid die op een of andere manier verbonden zijn. De term netwerk slaat dus op een grote verzameling systemen zoals het brein, het internet of de sociale interactie tussen een groep mensen. Vanuit de toegepaste wiskunde bestaat er echter een meer formele definitie van een netwerk, deze wordt dan een graaf genoemd. Een graaf bestaat uit de elementen van het systeem (de nodes, knooppunten) en de verbindingen tussen de nodes (de edges). Macroscopisch kunnen we de nodes toeken aan brein regio’s en de edges toekennen aan de functionele of structurele verbindingen tussen de verschillende regio’s in het brein. Met behulp van methodes uit de graaf theorie kunnen we een complex netwerk samenvatten in een klein aantal maten (graaf maten) die ons een beeld geven over de opbouw (topologie) van het netwerk. Op deze manier wordt het uitvoeren van wetenschappelijk onderzoek naar complexe netwerken gefaciliteerd. Er bestaan een groot aantal graaf theoretische maten. In deze thesis wordt vooral gebruik gemaakt van maten die informatie geven over de integratie en segregatie tussen brein regio’s (respectievelijk pad lengte en clustering) en over hoe het brein opgedeeld is in subnetwerken (modulariteit).

Het primaire doel van het onderzoek in deze thesis was het ontwikkelen en toepassen van graaf theoretische analyse methodes om het neuronale correlaat van cognitieve stoornissen in epilepsie te vinden. Tot nu toe hebben veel studies zich gericht op het vinden van een specifieke locatie in het brein waar het weefsel aangedaan is. Dit is zeker een praktische aanpak, maar in deze thesis hebben we gepleit voor een ander paradigma waarbij het brein wordt gezien als een sterk verbonden systeem en geanalyseerd zou moeten worden met methodes die netwerk- en cognitieve eigenschappen direct kunnen relateren.

Het onderzoek in deze thesis vergelijkt de resultaten tussen twee verschillende groepen: patiënten met epilepsie en gezonde personen. In de hoofdstukken 3 en 4 worden mensen uit de CODICE (COgnitive Deterioration In Cryptogenic Epilepsy) studie onderzocht. Deze groep bestaat uit patiënten met cryptogene lokalisatie gebonden epilepsie (d.w.z. er zijn geen grote laesies te zien op standaard MRI) en een groep gezonde volwassenen van vergelijkbare leeftijd. De patiënten hebben een epileptisch focus in de frontaal kwab of temporaalkwab, maar de precieze oorzaak van de epilepsie is onbekend. De hoofdstukken 5 en 6 zijn gebaseerd op de IMAGINE (IMAGing IN Epilepsy) studie waarin jonge kinderen met lokalisatie gebonden epilepsie zijn onderzocht. Deze patiëntjes hebben geen zichtbare afwijkingen op structurele MRI en het epileptisch focus bevindt zich in de frontaal kwab. Bij deze groepen zijn graaf maten van de functionele en structurele hersennetwerken
berekend en vergeleken met de gezonde controles en gerelateerd aan cognitief presteren.

Omdat er nog weinig bekend was over het berekenen van graaf maten van structurele netwerken, zijn het effect van MRI scan parameters op graaf maten en de reproduceerbaarheid van de graaf maten onderzocht in hoofdstuk 2. Hier bleek dat deze parameters inderdaad goed reproduceerbaar waren en dus mogelijk gebruikt konden worden om afwijkingen te detecteren, beter dan traditionele maten zoals het aantal tracts. De resultaten beschreven in hoofdstuk 3 lieten zien dat de functionele netwerken minder efficiënt waren opgebouwd bij de volwassen epilepsie patiënten en dat de graaf maten gecorreleerd waren aan cognitief functioneren. Vooral de patiënten met een meer uitgesproken intellectuele achteruitgang lieten een minder efficiënte opbouw van het netwerk zien (langere padlengte en verminderde clustering). In hoofdstuk 4 zijn dezelfde patiënten en controles onderzocht, maar hier zijn juist de eigenschappen van de structurele netwerken nader bekeken. Verschillen in graaf maten tussen gezonden en patiënten waren aanwezig en geassocieerd met cognitieve parameters. Wederom werden bij de patiënten die cognitief het meest aangedaan waren de voornaamste afwijkingen gevonden. De groep met jonge patiënten is onderzocht in hoofdstuk 5. De resultaten lieten zien dat de afwijkingen in de functionele netwerken van de patiënten vooral geïnterpreteerd werden door een verminderd in connectiviteit tussen subnetwerken (de modules). De verminderde tussen-module connectiviteit was het meest uitgesproken bij de patiënten met lage cognitieve scores. Bovendien liet vooral de frontaalkwab een andere modulaire organisatie zien bij de patiënten met frontaalkwab epilepsie. Ook viel er een module te identificeren die bij gezonde personen een grote uitgebreidheid had en vele kwabben bestreek, die echter in patiënten veel minder uitgebreid bleek vooral in die patiënten die cognitief aangedaan waren. In hoofdstuk 6 is onderzocht of de functionele afwijkingen die bij de kinderen aangedaan waren ook te zien waren in de structurele netwerken. Er werd bij de patiënten een afname in tussen-module connectiviteit en een toename in modulariteit, pad lengte en clustering waargenomen. Opvallend was dat de opbouw van de structurele netwerken nauwelijks of geen verandering liet zien, maar dat er wel sprake was van een algemene verhoging van de structurele (witte stof) connectiviteit.

De resultaten van het onderzoek gepresenteerd in deze thesis laten zien dat er een belangrijke associatie is tussen afwijkingen in macroscopische hersennetwerken en cognitieve stoornissen bij patienten met lokalisatie gebonden epilepsie. Wanneer de veranderingen in hersennetwerken, zoals gemeten met MRI en graaf maten, eerder zouden optreden dan veranderingen in neuropsychologische uitkomsten (die de cognitieve achteruitgang meten), zou vroege detectie van patiënten die cognitieve stoornissen gaan krijgen mogelijk zijn. Een vroege detectie van een patiënt met een verhoogd risico op cognitieve stoornissen kan waardevol zijn in de behandeling van
epilepsie, omdat een vroege en adequate therapeutische interventie zou kunnen leiden tot een betere cognitieve uitkomst op de lange termijn. Dit is vooral belangrijk bij kinderen met epilepsie, aangezien de kinderen en ouders in het ongewisse verkeren of een behandeling zal aanslaan en wat het opleidingspotentieel zal worden.