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aversion

Bram Driesen∗ Andrés Perea∗ Hans Peters∗

This version, January 2009

Abstract

The Rubinstein alternating offers bargaining game is reconsidered under

the assumption that each player is loss averse and the associated refer-

ence point is equal to the highest turned down offer of the opponent in the

past. This makes the payoffs and therefore potential equilibrium strate-

gies dependent on the history of play. A subgame perfect equilibrium is

constructed, in which the strategies depend on the history of play through

the current reference points. It is shown that this equilibrium is unique

under some assumptions that it shares with the equilibrium in the classical

model: immediate acceptance of equilibrium offers, indifference between

acceptance and rejection of such offers, and strategies depending only on

the current reference points. It is also shown that in this equilibrium loss

aversion is a disadvantage. Moreover, a relation with asymmetric Nash

bargaining is established, where a player’s bargaining power is negatively

related to own loss aversion and positively to the opponent’s loss aversion.

JEL-Classification: C78

Keywords: Bargaining, Alternating offers, Loss aversion, Reference-dependence.

1 Introduction

One of the characteristics of the St̊ahl (1972) and Rubinstein (1982) non-co-
operative approach to the classical problem of dividing a pie between two players
is that preferences are time dependent but do not otherwise depend on the
history of play of the game. In real life bargaining situations it is very likely
that this assumption is violated and that the share of the pie that an agent
finally obtains is evaluated in terms of the history of offers and counter-offers
made so far. In particular, it is likely that a share of x% is evaluated less if a
share of y% with y > x has been within reach at an earlier stage of the game.

∗Department of Quantitative Economics, University of Maastricht, P.O. Box 616, 6200 MD
Maastricht, The Netherlands. Telephone: +31-43-3883835. Telefax: +31-43-3884874. Email
adresses: B.Driesen@ke.unimaas.nl, A.Perea@ke.unimaas.nl, H.Peters@ke.unimaas.nl.
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This is the phenomenon of loss aversion, and the objective of this paper is to
study the effect of loss aversion in the Rubinstein alternating offers bargaining
game.

Loss aversion was introduced by Kahneman and Tversky (1979). We adopt
the simple and elegant version of Shalev (2002). In this version, an agent’s
preference is characterized by a basic utility function, a reference point, and
a loss aversion coefficient : outcomes below the reference point are regarded as
losses and their basic utility values are scaled down by the loss aversion factor. It
is essential that this reference point be endogenous (see Kahneman and Tversky,
1984). In particular, in a game-theoretic context, what is regarded as a loss is
likely to depend on the (history of play of the) game.

In the present paper we make the natural assumption that the reference
point of a player is equal to the highest turned down offer of the opponent,
since that represents the share of the pie that could have been obtained with
certainty so far. It turns out that this results in a non-trivial modification of
the Rubinstein alternating offers bargaining game: through changed reference
points the game with loss aversion depends on the history of play. Indeed, while
all subgames in the classical Rubinstein model starting with either a proposal
by a player or an acceptance/rejection decision are essentially identical, in our
case these subgames depend on the effect the history of play has on preferences.
This makes the analysis of the game and, in particular, the characterization of
subgame perfect equilibria, much more complicated.

Thus, we consider the Rubinstein alternating offers bargaining game with
loss averse players, where the discount factor is interpreted as the probabil-
ity of continuation of the game after rejection of a proposal. For this game, we
construct a subgame perfect equilibrium that shares some features with the sub-
game perfect equilibrium of the classical game without loss aversion: immediate
acceptance of equilibrium offers – implying that agreement is reached immedi-
ately as well; indifference between acceptance and rejection of such offers; and
strategies depending only on the current reference points. It turns out that the
equilibrium strategies depend on nine different regions describing the location
of the players’ reference points. For instance, if the reference points are high
then we are essentially back in the classical case since higher offers are not going
to be made in equilibrium and, thus, the reference points will no longer change.
But if reference points are low – we assume them to be zero initially – then the
equilibrium proposals are influenced by the possibility of future higher reference
points. We also show that the constructed equilibrium is the unique subgame
perfect equilibrium with the three mentioned properties, but have to leave it as
an open problem whether these properties are necessary for uniqueness.

We include an extensive comparative statics analysis of the constructed sub-
game perfect equilibrium. We establish the intuitive result that higher loss
aversion leads to a lower equilibrium share of the pie. We also extend our re-
sults to the case of different discount factors (probabilities of continuation of
the game), and to more general (increasing and concave) basic utility functions.
Finally, we establish an asymptotic relation with non-symmetric Nash bargain-
ing solutions, in the spirit of Binmore et al. (1986). In particular, we show
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that a player’s bargaining power is negatively related to own loss aversion and
positively to the opponent’s loss aversion.

Further related literature

Loss aversion with a fixed reference point can be regarded as a special case of
risk aversion. The effect of risk aversion in the Nash (1950) and Rubinstein
(1982) bargaining models has been studied before, initially in Kihlstrom et al.

(1981) and Roth (1985) in the context of expected utility. For the more general
context of rank dependent utility, see Safra and Zilcha (1993) and Köbberling
and Peters (2003). In all this work the utility functions are fixed and do not
change as a result of (play of) the game.

Closer to the present context is Shalev (2002), who applies a loss aversion
transformation to the discount factor, and obtains the unique subgame per-
fect equilibrium of Rubinstein with the transformed discount factors. Li (2007)
assumes that bargainers prefer disagreement over any share that is below the
highest they have been offered in the past, and finds a unique subgame perfect
equilibrium in this setting. Thus, Li’s way of updating reference points dur-
ing play of the game bears some resemblance with our approach. However, Li
assumes that reference points grow over time. Moreover, the utility functions
in Li’s model have a discontinuous jump that explicitly ensures that, in equi-
librium, each offer made to a player exceeds the previous offer made to that
player.

Compte and Jehiel (2003) assume that after breakdown of the negotiations,
the game starts anew at a fixed cost. The first mover is randomly chosen from
the two bargainers, and in each such new bargaining phase, they have a constant
reference point which is based on the proposals made in the previous phases.
The subgame perfect equilibrium they find in this setting has in common with
Li’s that bargainers do not achieve agreement instantaneously.

Organization of the paper

Section 2 describes the model and in Section 3 we construct a subgame perfect
equilibrium. Section 4 concerns uniqueness of this equilibrium, and Section 5
collects our comparative statics results. Section 6 concludes. Because of their
length, all proofs are collected in three Appendices A, B, and C.

2 The alternating offers bargaining model with

loss aversion

In this section we describe the alternating offers bargaining model of Rubinstein
(1982) and introduce the concept of loss aversion in this model. We will try to
be as nontechnical as is possible without becoming imprecise. A completely
formal treatment is presented in Appendix A.
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One unit of a perfectly divisible good, the pie, has to be divided among two
bargainers, 1 and 2. The set of all possible partitions of the pie is denoted as

Z := {(z1, z2) ∈ R
2 | z1 + z2 = 1, z1, z2 ≥ 0} .

Bargaining takes place at time t = 1, 2, . . . At odd moments, player 1 makes
a proposal z = (z1, z2) ∈ Z and player 2 decides to accept (Y ) or to reject
(N) this proposal. At even moments, the roles of the players are reversed. If a
proposal (z1, z2) ∈ Z is accepted, then the game ends and each player i obtains
zi. If a proposal is rejected then the game continues to the next moment with
probability 0 < δ < 1, and stops with probability 1 − δ. In the latter case,
the game ends in disagreement and no player receives anything, i.e., the shares
(0, 0) result. If the game continues forever – which happens with probability 0
– then again the shares (0, 0) result.

A strategy f for player 1 in this game specifies for each odd moment a
proposal in Z, where this proposal may depend on the complete history of play
of the game so far; and for each even moment an answer Y or N , where this
answer may depend on the current proposal and on the rest of the history of
play of the game. A strategy g of player 2 is defined similarly, with the roles of
odd and even moments reversed.

So far, this is the Rubinstein alternating offers mechanism. From here,
however, we deviate by assuming that the players are loss averse. We assume
that the basic utility for a player i of obtaining a share zi of the pie is just equal
to zi,

1 but that shares zi below some reference point ri ∈ [0, 1] are regarded as
losses and scaled down by a loss aversion coefficient λi ≥ 0. More precisely,
player i evaluates zi by the function

w(zi, ri, λi) :=

{

zi if zi ≥ ri ,

zi − λi(ri − zi) if zi < ri .

or, equivalently, by

w(zi, ri, λi) = (1 + λi)zi − λi max{ri, zi} . (1)

Loss aversion was first introduced by Kahneman and Tversky (1979). We use the
simplified version of Shalev (2002). We assume that the loss aversion coefficients
of the bargainers are given and fixed. The reference points of the players,
however, are determined endogenously, in the following way.2 At some moment
t, consider all the offers made to player i by the other player j so far, possibly
including the offer that is on the table at moment t. These represent all the
shares of the pie that player i could have obtained up to this moment with
certainty. Then, it is natural to assume that the maximum of those shares is
player i’s reference point, since this is what he could have obtained: lower shares

1This assumption will be relaxed in Section 5.
2Endogeneity of the reference point is an essential assumption in prospect theory, see

Kahneman and Tversky (1984). If we would assume exogenous, fixed reference points then
our model would reduce to a special case of the standard Rubinstein bargaining model.
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represent losses with respect to this reference point, and are evaluated according
to (1).

Thus, we assume that the initial reference points are 0 and write r01 = r02 = 0;
and that at any moment t ≥ 1, player 1’s and 2’s reference points are equal to

rt1 = max{0, zs1 | s = 2, 4, . . . ≤ t}, rt2 = max{zs2 | s = 1, 3, . . . ≤ t} ,

if z1, z2, . . . , zt ∈ Z are the proposals made up to time t. Observe that incor-
porating loss aversion in this natural way causes a crucial difference with the
classical Rubinstein bargaining game: the game is no longer history indepen-
dent. For instance, subgames starting at odd moments are no longer identical
copies of the whole game, since reference points and therefore payoff functions
may have changed during the play of the game.

Recall that the unique subgame perfect equilibrium (SPE) in the classical
Rubinstein bargaining game (without loss aversion) has the following character-
istics: (i) it is time and history independent, that is, players always make and
accept the same proposals; (ii) in equilibrium every proposal is immediately ac-
cepted; and (iii) in equilibrium a player is always indifferent between acceptance
and rejection. Also in our model with loss aversion we look for an SPE but,
clearly, we cannot expect to find a history independent equilibrium. In the next
section, we will construct an SPE in which, instead, the strategies of the players
are stationary Markov strategies: proposals and acceptance/rejection decisions
depend only on the current reference points, and not on time or on the history
of play of the game otherwise than through the effect on reference points. This
equilibrium will still satisfy (ii) and (iii) and, in fact, we will show that it is
the unique SPE with stationary Markov strategies and satisfying (ii) and (iii).
Whether dropping one or more of these three conditions allows for different SPE
is an open question.

3 A subgame perfect equilibrium

Heuristically, the SPE in the Rubinstein model is based on the idea that the
proposal of a player i should make his opponent j indifferent between that
proposal and the proposal of j himself in the next round. We will employ the
same idea to construct an SPE in our model with loss averse players.

Consider an odd time moment t, where player 1 makes a proposal x ∈ Z.
Suppose that after rejection player 2 makes the proposal y ∈ Z at time t + 1.
Let r2 be player 2’s reference point at time t− 1 (so r2 = x2 at t = 1). To make
player 2 accept the proposal x we would need

(1 + λ2)x2 − λ2 max{r2, x2} ≥ (2)

δ [(1 + λ2)y2 − λ2 max{y2,max{r2, x2}}]− (1 − δ)λ2 max{r2, x2} .

That is, player 2 should value the offer x at time t at least as highly as his own
offer y in the next period after having rejected x. The analogous inequality at
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even moments is

(1 + λ1)y1 − λ1 max{r1, y1} ≥ (3)

δ [(1 + λ1)x1 − λ1 max{x1,max{r1, y1}}] − (1 − δ)λ1 max{r1, y1} .

To construct the equilibrium, we assume that the inequalities (2) and (3) are
equalities. Let µi := 1+λi(1−δ) for i = 1, 2. Then elaborating (3) with equality
yields the following three cases:

1. r1 > x1 > y1: δx1 = y1 .

2. x1 ≥ r1 > y1: δx1 = (1 + λ1)y1 − δλ1r1 .

3. x1 > y1 ≥ r1: δx1 = µ1y1 .

These three cases are exhaustive – it is easy to check that the case y1 ≥ x1

cannot occur. From (2) we obtain three similar cases:

I. r2 > y2 > x2: δy2 = x2 .

II. y2 ≥ r2 > x2: δy2 = (1 + λ2)x2 − δλ2r2 .

III. y2 > x2 ≥ r2: δy2 = µ2x2 .

By combining these equations we obtain a partition of the unit square [0, 1]2

of all possible pairs of reference points (r1, r2) into nine sets. These sets are
accurately depicted in Figure 1, and denoted by X1,I, . . . , X3,III. Within one
and the same set X·,· the equilibrium proposals of the players take the same
form, which may or may not depend on the specific values of the reference
points within the set.
A formal description of these nine sets and of all associated equilibrium proposals
is given in Appendix A. Here we limit ourselves to the main aspects.

In the set X1,I the reference points are relatively high and the classical
Rubinstein proposals

x1,I =

(

1

1 + δ
,

δ

1 + δ

)

, y1,I =

(

δ

1 + δ
,

1

1 + δ

)

.

obtain. These are independent of the values of the reference points.
Also in the sets X1,III and X3,I the equilibrium proposals are constant and

do not depend on the reference points. In X3,III, which is the relevant set for
the equilibrium outcome in Theorem 3.1 below, the equilibrium proposals are

x3,III =

(

µ1(µ2 − δ)

µ1µ2 − δ2
,
δ(µ1 − δ)

µ1µ2 − δ2

)

, y3,III =

(

δ(µ2 − δ)

µ1µ2 − δ2
,
µ2(µ1 − δ)

µ1µ2 − δ2

)

.

Again, these proposals do not depend directly on the reference points.
In X1,II and X3,II the equilibrium proposals depend explicitly on player 2’s

reference point but not on player 1’s reference point; and in X2,I and X2,III the
equilibrium proposals depend explicitly on player 1’s reference point but not
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r1

r2

0

b

b

b

b

X3,III X2,III X1,III

X3,II

X2,II

X1,II

X3,I X2,I X1,I

δ(µ1−δ)
µ1µ2−δ2

δ
1+λ2+δ

1
1+δ

1+λ1

1+λ1+δ

1

δ
(µ

2
−
δ
)

µ
1
µ

2
−
δ
2

δ
1
+
λ
1
+
δ

1
1
+
δ

1
+
λ
2

1
+
λ
2
+
δ

1

Figure 1: The partition X1,I, . . . , X3,III.

on player 2’s reference point. In X2,II the proposals depend on both players’
reference points. Thus, only intermediate valued reference points turn up in the
equilibrium proposals explicitly. An equilibrium share is above the reference
point if this is low, and below the reference point if this is high.

We now define strategies f̂ for player 1 and ĝ for player 2 based on the sets Xω

and associated proposals xω , yω, where ω ∈ {1,I , . . . , 3,III}. Consider player 1.
At any odd moment t and for any reference point (r1, r2), take the (unique) Xω

containing (r1, r2): then player 1 makes the corresponding proposal xω . At any
even moment t and for any reference point (r1, r2), take again the relevant set
Xω: then player 1 accepts a proposal z if and only if z1 ≥ yω1 . This defines the

strategy f̂ . The strategy ĝ for player 2 is defined similarly.
We now have the following result.

Theorem 3.1 The strategy profile (f̂ , ĝ) is an SPE. The outcome is

x3,III =

(

µ1(µ2 − δ)

µ1µ2 − δ2
,
δ(µ1 − δ)

µ1µ2 − δ2

)

.

The proof of Theorem 3.1 is in Appendix A.

4 A uniqueness result

Let (f, g) be a pair of strategies and consider the following possible conditions
on (f, g).
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(U1) f and g are stationary Markov strategies. Specifically, the proposal pre-
scribed by f at each odd moment is time independent and depends only
on the reference points at that moment, and the Y/N decision prescribed
by f at each even moment depends only on player 2’s proposal and the
reference points at that moment. Similarly for g.

(U2) Immediate acceptance. Any proposal made by player 1 according to f is
accepted by player 2 according to g, and conversely.

(U3) Accept-reject indifference. According to (f, g), player 2 is indifferent be-
tween accepting (Y) or rejecting (N) a proposal made by player 1, and
conversely.

Note that these conditions are satisfied by the subgame perfect equilibrium in
the classical model (without loss aversion). The equilibrium (f̂ , ĝ) in Theorem
3.1 was in fact constructed using these assumptions, which makes the following
result intuitive.

Theorem 4.1 (f̂ , ĝ) is the unique SPE strategy profile satisfying (U1), (U2),
and (U3).

The formal (lengthy) proof is presented in Appendix B. We now proceed with
a discussion of these conditions.

The condition that the equilibrium strategies are stationary Markov strate-
gies implies that they depend on the history of play of the game only through
the effect this play has on the players’ reference points. Note that this does not
imply that the players are restricted to stationary Markov strategies: the SPE
(f̂ , ĝ) is resistent to deviations also with other strategies.

The second condition means that any proposal is immediately accepted. We
can in fact show that any SPE must satisfy this condition in some subgames,
namely those where the reference points are higher than the (equilibrium) shares
of the pie. This is intuitive, cf. the extreme case where the reference points are
equal to 1 and, thus, are fixed throughout the rest of the game, so that such a
subgame is equivalent to the classical game without loss aversion.

The third condition, finally, requires that each player is indifferent between
accepting and rejecting the proposal made by the other player. Note that it
follows from the basic equilibrium condition that accepting a proposal must
make a player at least as well off as rejecting it. In the classical model with
loss neutral players a player j cannot be strictly better off since otherwise the
proposing player i could lower the share of j in the proposal and, thus, increase
his own share and be better off. This argument, however is based on the fact
that in the classical model the payoffs of the players do not change as a result
of playing the game. In our model we cannot exclude the possibility that such
a deviation by the proposing player i may lead to rejection by j since j’s new
reference point resulting from the rejection may be lower as it would have been
from rejecting the equilibrium proposal. This may effect not only player j’s
future payoff but also the play of the game after rejection.
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Based on many failed attempts to construct different equilibria we are in-
clined to think that the conditions (U1)–(U3) are implied by SPE, but, as
mentioned, the question is still open.

5 Analysis of the equilibrium

In this section we analyze the SPE (f̂ , ĝ) with respect to the loss aversion co-
efficients λ1 and λ2 and the probability of continuation δ. We consider what
happens if δ goes to 1 and if the players have different δ’s. We also consider
what happens if the time lapse between proposals tends to zero, and establish
a relation with asymmetric Nash bargaining solutions.

5.1 Comparative statics of the loss aversion coefficients

The result of playing the equilibrium (f̂ , ĝ) is the proposal and immediate ac-
ceptance of some distribution of the pie. Here we investigate the dependence of
this distribution on the players’ loss aversion coefficients. We restrict ourselves
to the set of reference point pairs X3,III, since this is the relevant set at the
beginning of the game. Moreover, the comparative statics results in subgames
where the reference points are in different sets Xω, are similar. Recall that

x3,III =

(

µ1(µ2 − δ)

µ1µ2 − δ2
,
δ(µ1 − δ)

µ1µ2 − δ2

)

where µi = 1 + λi(1 − δ). It is sufficient to restrict the analysis to one player,
because what one player gains is exactly what the other player loses. Differen-
tiating with respect to λ1 and λ2 yields

dx3,III
1

dλ1
= −

δ2(1 − δ)2(1 + λ2)

(µ1µ2 − δ2)2
< 0 ,

and

dx3,III
1

dλ2
=
δµ1(1 − δ)2(1 + λ1)

(µ1µ2 − δ2)2
> 0 .

Thus, players are hurt by their own loss aversion and benefit from their oppo-
nent’s. This result also holds for the other subgames. However, if a player’s
reference point is very high, i.e., r1 ≥ xω1 where ω ∈ {1,I, 1,II, 1,III} or r2 ≥ yω2
where ω ∈ {3,I, 2,I, 1,I}, then the equilibrium is independent of this player’s
degree of loss aversion. For instance, if (r1, r2) ∈ X1,II, then λ1 has no influence
on the equilibrium partition, but λ2 has a positive effect on player 1’s payoff
and a negative effect on player 2’s.
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5.2 Convergence results with respect to the probability of

continuation

5.2.1 Convergence of the SPE for a common δ

The question we consider here is what happens to the equilibrium if δ tends to
one. Using l’Hôpital’s rule we derive

lim
δ→1

x3,III
1 =

1 + λ2

2 + λ1 + λ2
,

and hence

lim
δ→1

x3,III
2 =

1 + λ1

2 + λ1 + λ2
.

Observe that player i’s payoff is conversely proportional to 1 + λj , where i, j ∈
{1, 2} and i 6= j.

We can repeat this for all subgames. Figure 2 shows the nine sets of Fig-
ure 1 in the limit for δ going to 1 and the limit equilibrium proposals, for the
case where λ2 > λ1. The limit outcome in X1,I is an equal split of the pie,

r1

r2

0

b

b

b

b

X3,III X
2
,III

X1,III

X3,II

X1,II

X3,I

X2,I

X1,I

1+λ1

2+λ1+λ2

1
2+λ2

1
2

1+λ1

2+λ1

1

1
+
λ
2

2
+
λ
1
+
λ
2

1
2
+
λ
1

12 1
+
λ
2

2
+
λ
2

1

Figure 2: The equilibrium partitions for δ → 1, with λ2 > λ1.

(1/2, 1/2). In X3,II and X1,II the limit equilibrium partition is (1 − r2, r2),
while in X2,III and X2,I it is (r1, 1 − r1). In X3,I the limit equilibrium parti-
tion is (1/(2 + λ1), (1 + λ1)/(2 + λ1)), and in X1,III it is ((1 + λ2)/(2 + λ2),
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1/(2 + λ2)). Set X2,II collapses to the line piece r1 + r2 = 1 where r1 ∈
(1/(2 + λ1), (1 + λ2)/(2 + λ2)). The limit equilibrium partition associated with
this set is (r1, r2).

5.2.2 Convergence of the SPE for δ1 6= δ2

We generalize the model to the situation where the players have individual con-
tinuation probabilities δ1 and δ2. In our setting, δi is interpreted as the proba-
bility that the game continues after player i rejected j’s proposal. Inequalities
(2) and (3) generalize to

(1 + λ2)x2 − λ2 max{r2, x2} ≥

δ2((1 + λ2)y2 − λ2 max{y2,max{r2, x2}}) − (1 − δ2)λ2 max{r2, x2}

and

(1 + λ1)y1 − λ1 max{r1, y1} ≥

δ1((1 + λ2)y2 − λ2 max{y2,max{r2, x2}}) − (1 − δ1)λ2 max{r2, x2} .

All prior results also apply to this more general model. In particular, we obtain
a solution to the above inequalities, considered as equalities, from which we
construct a strategy profile. This strategy profile is the unique SPE satisfying
(U1)–(U3).

A further generalization that leaves the previous results intact, is when there
is a time lapse ∆ between proposals, and the waiting time for breakdown of
the game after player i, i = 1, 2, rejected the last proposal, is exponentially
distributed with survival rate βi. Then the probability that the game continues
after player i rejected a proposal is δ∆i , where δi = exp (−1/βi). Since the game
starts with the reference points in X3,III , we limit the analysis to this case. The
SPE outcome is

x3,III =

(

µ1(µ2 − δ∆2 )

µ1µ2 − δ∆1 δ
∆
2

,
δ∆2 (µ1 − δ∆1 )

µ1µ2 − δ∆1 δ
∆
2

)

y3,III =

(

δ∆1 (µ2 − δ∆2 )

µ1µ2 − δ∆1 δ
∆
2

,
µ2(µ1 − δ∆1 )

µ1µ2 − δ∆1 δ
∆
2

)

where now µi := 1 + λi(1 − δ∆i ) for i = 1, 2. We can derive

lim
∆→0

x3,III =

(

(1 + λ2) log δ2
(1 + λ1) log δ1 + (1 + λ2) log δ2

,
(1 + λ1) log δ1

(1 + λ1) log δ1 + (1 + λ2) log δ2

)

.

In a similar way we obtain

lim
∆→0

y3,III = lim
∆→0

x3,III.

Note that this is an asymmetric Nash bargaining solution as described by
Harsanyi and Selten (1972) and Kalai (1977). That is, it is the solution to
the optimization problem

argmax
z∈Z

zα1 z
1−α
2 ,

11



where

α =
(1 + λ2) log δ2

(1 + λ1) log δ1 + (1 + λ2) log δ2
. (4)

In Appendix C, we extend this result to the situation where players have concave
utility functions vi : [0, 1] → [0, 1], and the feasible set associated with the
partitions of the pie is

Z̃ := {(v1(γ), v2(1 − γ)) | 0 ≤ γ ≤ 1} .

We construct an SPE, resulting in an x ∈ Z̃, which is a function of δ∆1 and δ∆2 .
Using an argument from Binmore et al. (1986) we show that if ∆ goes to zero,
then the SPE outcome x converges to z̃N where

z̃N := arg max
z∈Z̃

zα1 z
1−α
2 ,

with α as defined by (4). Thus, increased loss aversion of a player results in
increased ‘bargaining power’ of the opponent.

6 Concluding Remarks

In this paper we have investigated the effect of loss aversion in the strategic
bargaining game of alternating offers introduced by Rubinstein (1982), by con-
structing a subgame perfect equilibrium in the extended model, and performing
a comparative statics analysis on the outcome with respect to the bargainers’
loss aversion coefficients. We find that being loss averse has a negative effect
on a player’s equilibrium share. We further find that the outcome of the bar-
gaining procedure converges to an asymmetric Nash bargaining solution if the
exogenous probability of breakdown goes to zero, such that higher loss aversion
leads to higher bargaining power of the opponent.

This subgame perfect equilibrium is the unique SPE that shares three dis-
tinguishing features – stationary Markov strategies, immediate acceptance, and
accept-reject indifference – with the unique SPE of Rubinstein. It is an open
question whether uniqueness also holds without all or some of these conditions.
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A The formal model and the SPE

In this section we formally complete the description of the model and show that
the constructed strategy profile (f̂ , ĝ) is an SPE (i.e., we prove Theorem 3.1).

A.1 Formal model

We divide T = N into Todd := {1, 3, . . .} and Teven := {2, 4, . . .}. We assume
that players have full information about the history of play: at any time t ∈ T ,
they know all previous proposals, their own as well as those of the other player.

Define ht, the history of the game at time t ∈ T , as a vector of players’
proposals which have taken place before and at time t. Specifically, ht :=
(z1, . . . , zt), where zs ∈ Z for all s ≤ t. Furthermore, define Ht as the set of
all possible histories ht of the bargaining procedure at time t ∈ T . That is,
Ht :=

∏t
s=1 Z. Furthermore, let H0 := {h0}, where h0 is the empty history.

Henceforth, the term ‘history’ is used to indicate non-empty histories.
The players’ strategies are elements in F or G where F is the set of infinite

sequences of functions (f t)t∈T where

for t = 1 : f t ∈ Z,

for t > 1 and t ∈ Todd : f t : Ht−1 → Z,

for t ∈ Teven : f t : Ht → {Y, N},

and G the set of infinite sequences of functions (gt)t∈T where

for t ∈ Todd : gt : Ht → {Y, N},

for t ∈ Teven : gt : Ht−1 → Z.

An agreement path (ht, a) is a history ht ∈ Ht ending in acceptance of the
time t proposal. The set

At := {(ht, a) | ht ∈ Ht}

contains all time t agreement paths. The set

A :=
⋃

t∈T

At

contains all histories ending in agreement. Similarly, we define a disagreement

path (ht, d) as a history ht ∈ Ht ending in breakdown of the negotiations upon
rejection of the time t proposal. We define Dt := {(ht, d) | ht ∈ Ht} and
D :=

⋃

t∈T D
t. The set Ct contains all objects of the form (ht, c), i.e. histories

that do not end at time t. Finally, we define

H∞ := {(z1, z2, . . .) | zt ∈ Z for all t ∈ T },

and refer to elements of H∞ as infinite paths. Then

H̄ := H∞ ∪A ∪D

13



is the set containing all paths of the game. Observe that a strategy profile
(f, g) ∈ F ×G determines a specific play of the game or, equivalently, a set of
paths in H̄ . In particular, if (f, g) leads to agreement on a partition at time t,
then the set of paths associated with that strategy profile contains t− 1 paths
in D and one in A. If (f, g) never induces an agreement, then this set contains
a single path in H∞, and countably many in D.

We introduce the function ξi : H̄ \H∞ → [0, 1] that specifies for each finite
path in H̄ the (physical) share of the pie bargainer i obtains. Specifically, for
all ht ∈ H , ht = (z1, . . . , zt), we have

ξi(h
t, a) := zti , and

ξi(h
t, d) := 0.

We define player i’s utility function for (dis)agreement paths as

ui(h
t, a) := w(ξi(h

t, a), ri(h
t), λi), ui(h

t, d) := w(ξi(h
t, d), ri(h

t), λi) .

Furthermore, player i’s utility evaluation of paths in H∞, i.e., perpetual dis-
agreement, is defined as −λi. That is,

ui(h) := −λi for all h ∈ H∞.

Finally, we define the expected utility function Ui : F ×G→ R. Let t ∈ T be
the point in time up until which the history is known, and let players play the
strategy profile (f, g) ∈ F ×G from then on. Then we say they play (f |ht, g|ht)
at time t+ 1, and we denote by Ui(f |h

t, g|ht) player i’s time t expected utility
from the strategy profile (f, g) ∈ F ×G. This can be exactly calculated, and is
known to both players.

The strategy profile (f, g) is a subgame perfect equilibrium (SPE) if for every
t ∈ T and every ht ∈ Ht, we have

U1(f |h
t, g|ht) ≥ U1(f̃ |h

t, g|ht) for all f̃ , and

U2(f |h
t, g|ht) ≥ U2(f |h

t, g̃|ht) for all g̃.

A.2 Proof of Theorem 3.1

We first formally describe the nine sets, also referred to as regions, and associ-
ated proposals on which the definition of (f̂ , ĝ) is based.

A.2.1 Definition of Xω and xω, yω

• Region 1,I

X1,I =

{

(r1, r2) ∈ [0, 1]2
∣

∣ r1 >
1

1 + δ
, r2 >

1

1 + δ

}

.
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The equilibrium proposals in X1,I are

x1,I =

(

1

1 + δ
,

δ

1 + δ

)

, y1,I =

(

δ

1 + δ
,

1

1 + δ

)

.

[Thus, if both players’ reference points lie above 1/(1 + δ), then the regular
Rubinstein outcomes are obtained. In Figure 1, the Rubinstein outcome is the
South-West corner point of this set.]

• Region 1,III

X1,III =

{

(r1, r2) ∈ [0, 1]2
∣

∣ r1 >
1 + λ2

1 + λ2 + δ
, r2 ≤

δ

1 + λ2 + δ

}

.

The equilibrium proposals in X1,III are

x1,III =

(

1 + λ2

1 + λ2 + δ
,

δ

1 + λ2 + δ

)

y1,III =

(

δ(1 + λ2)

1 + λ2 + δ
,
1 + λ2(1 − δ)

1 + λ2 + δ

)

.

[Observe that this set is a square, and that its North-West corner point lies on
the line r1 + r2 = 1.]

• Region 3,I

X3,I =

{

(r1, r2) ∈ [0, 1]2
∣

∣ r1 ≤
δ

1 + λ1 + δ
, r2 >

1 + λ1

1 + λ1 + δ

}

.

This set is similar to X1,III, but with the roles of the players reversed. The
equilibrium proposals are

x3,I =

(

1 + λ1(1 − δ)

1 + λ1 + δ
,
δ(1 + λ1)

1 + λ1 + δ

)

y3,I =

(

δ

1 + λ1 + δ
,

1 + λ1

1 + λ1 + δ

)

.

[This set is again a square , and its South-East corner point lies on the line
r1 + r2 = 1.]

• Region 3,III

X3,III =

{

(r1, r2) ∈ [0, 1]2
∣

∣ r1 ≤
δ(µ2 − δ)

µ1µ2 − δ2
, r2 ≤

δ(µ1 − δ)

µ1µ2 − δ2

}

.

The equilibrium proposals are

x3,III =

(

µ1(µ2 − δ)

µ1µ2 − δ2
,
δ(µ1 − δ)

µ1µ2 − δ2

)

, y3,III =

(

δ(µ2 − δ)

µ1µ2 − δ2
,
µ2(µ1 − δ)

µ1µ2 − δ2

)

.

15



• Region 1,II

X1,II =

{

(r1, r2) ∈ [0, 1]2
∣

∣ r1 >
(µ2 − δ) + δλ2(1 − r2)

(1 + λ2) − δ2
,

δ

1 + λ2 + δ
< r2 ≤

1

1 + δ

}

.

The equilibrium proposals are

x1,II =

(

(µ2 − δ) + δλ2(1 − r2)

(1 + λ2) − δ2
,
δ(1 − δ) + δλ2r2)

(1 + λ2) − δ2

)

y1,II =

(

δ(µ2 − δ) + δ2λ2(1 − r2)

(1 + λ2) − δ2
,
(µ2 − δ) + δ2λ2r2

(1 + λ2) − δ2

)

.

[Observe that these proposals now depend on player 2’s reference point.]

• Region 3,II

X3,II =

{

(r1, r2) ∈ [0, 1]2
∣

∣ r1 ≤
δ(µ2 − δ + δλ2(1 − r2))

µ1(1 + λ2) − δ2
,

δ(µ1 − δ)

µ1µ2 − δ2
< r2 ≤

1 + λ1

1 + λ1 + δ

}

.

The equilibrium proposals are

x3,II =

(

µ1(µ2 − δ + λ2δ(1 − r2))

µ1(1 + λ2) − δ2
,
δ(µ1 − δ + λ2r2µ1)

µ1(1 + λ2) − δ2

)

y3,II =

(

δ(µ2 − δ + δλ2(1 − r2))

µ1(1 + λ2) − δ2
,
(µ1 − δ)(1 + λ2) + δ2λ2r2

µ1(1 + λ2) − δ2

)

.

[In this set player 1’s reference point is low, which explains that the equilibrium
proposals do not depend on it.]

• Region 2,I

X2,I =

{

(r1, r2) ∈ [0, 1]2
∣

∣

δ

1 + λ1 + δ
< r1 ≤

1

1 + δ
, r2 >

(µ1 − δ) + δλ1(1 − r1)

(1 + λ1) − δ2

}

.

The equilibrium proposals are

x2.I =

(

(µ1 − δ) + δ2λ1r1
(1 + λ1) − δ2

,
δ(µ1 − δ) + δ2λ1(1 − r1)

(1 + λ1) − δ2

)

y2,I =

(

δ(1 − δ) + δλ1r1)

(1 + λ1) − δ2
,
(µ1 − δ) + δλ1(1 − r1)

(1 + λ1) − δ2

)

.

[This set is similar to X1,II.]

• Region 2,III

X2,III =

{

(r1, r2) ∈ [0, 1]2
∣

∣

δ(µ2 − δ)

µ1µ2 − δ2
≤ r1 ≤

1 + λ2

1 + λ2 + δ
,
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r2 ≤
δ((µ1 − δ) + δλ1(1 − r1))

(1 + λ1)µ2 − δ2

}

.

The equilibrium proposals are

x2,III =

(

(1 + λ1)(µ2 − δ) + δ2λ1r1
(1 + λ1)µ2 − δ2

,
δ((µ1 − δ) + δλ1(1 − r1))

(1 + λ1)µ2 − δ2

)

y2,III =

(

δ((µ2 − δ) + µ2λ1r1)

(1 + λ1)µ2 − δ2
,
µ2((µ1 − δ) + δλ1(1 − r1))

(1 + λ1)µ2 − δ2

)

.

[In this set player 2’s reference point is low, which explains that the equilibrium
proposals do not depend on it.]

• Region 2,II

The boundaries of X2,II are described by the boundaries of the neighboring sets,
see Figure 1. The equilibrium proposals x2,II and y2,II are given by

x2,II
1 =

(1 + λ1)((µ2 − δ) + δλ2(1 − r2)) + δ2λ1r1
(1 + λ1)(1 + λ2) − δ2

,

x2,II
2 =

δ(µ1 − δ + δλ1(1 − r1) + λ2(1 + λ1)r2)

(1 + λ1)(1 + λ2) − δ2
,

y2,II
1 =

δ(µ2 − δ + δλ2(1 − r2) + λ1(1 + λ2)r1)

(1 + λ1)(1 + λ2) − δ2
,

y2,II
2 =

(1 + λ2)((µ1 − δ) + δλ1(1 − r1)) + δ2λ2r2
(1 + λ1)(1 + λ2) − δ2

.

A.2.2 Proof of Theorem 3.1

To prove Theorem 3.1, we use the one-deviation property. The one-deviation
property says that for a strategy profile (f, g) ∈ F ×G to be a subgame perfect
equilibrium it is sufficient that no player can improve by deviating only once,
i.e., at one point in time.

Hendon et al. (1996) showed that the one-deviation property holds in infinite-
horizon extensive-form games which are continuous at infinity3. Continuity at
infinity is defined as follows. For any ε > 0 there is a number t ∈ T such that
if two strategy profiles (f, g), (f ′, g′) ∈ F ×G are such that (fs, gs) = (f ′s, g′s)
for all s ≤ t, then |Ui(f, g) − Ui(f

′, g′)| < ε.

Lemma A.1 The bargaining game with loss averse players is continuous at

infinity.

Proof. Let ε > 0, and let (f, g) and (f ′, g′) be strategy profiles in F × G
satisfying (fs, gs) = (f ′s, g′s) for all s ≤ t, where t > maxi=1,2 logδ ε/(1 + λi).
Observe that the largest payoff difference between two such strategy profiles

3Another requirement concerns Bayesian updating, but this is automatically fulfilled since
our game is one of perfect information.
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would emerge when the one yields player i the whole pie at time t + 1, while
the other leads to perpetual disagreement. In the former case, player i would
obtain

U i = δt + (1 − δ)
t

∑

s=1

δs−1ui(h
s, d),

while in the latter he would obtain

U i = (1 − δ)

∞
∑

s=1

δs−1ui(h
s, d).

From the fact that ui(h
t, d) ≥ −λi for all t ∈ T , it follows that

U i = (1 − δ)

t
∑

s=1

δs−1ui(h
s, d) + (1 − δ)

∞
∑

s=t+1

δs−1ui(h
s, d)

≥ (1 − δ)
t

∑

s=1

δs−1ui(h
s, d) + δt(1 − δ)(−λi)

1

1 − δ

= −δtλi + (1 − δ)

t
∑

s=1

δs−1ui(h
s, d).

From this and the fact that U i − U i ≥ 0, we obtain

|Ui(f, g) − Ui(f
′, g′)| ≤ U i − U i ≤ δt + (1 − δ)

t
∑

s=1

δs−1ui(h
s, d)

+ δtλi − (1 − δ)

t
∑

s=1

δs−1ui(h
s, d) = δt(1 + λi) < ε .

Hence, the game is continuous at infinity. �

It follows from Lemma A.1 that we can use the one-deviation property.
Denote Ω = {1.I., . . . , 3.III.}.

Proof of Theorem 3.1. To show that (f̂ , ĝ) is SPE, it is sufficient to show

that there is no subgame in which player 1 (2) can profitably deviate from f̂

(ĝ) at a single time t ∈ T , given that player 2 (1) plays strategy ĝ (f̂). Assume
player 2 plays strategy ĝ. We denote the utility player 1 obtains by following
strategy f̂ by u∗1.

Let ht−1 ∈ Ct−1, i.e. ht−1 is a history continuing to the next period. Assume
ht−1 is such that (r1(h

t−1), r2(h
t−1)) ∈ Xω with ω ∈ Ω, and that ht = (ht−1, z)

with z ∈ Z. If t is odd (even), then z is proposed by player 1 (2). If the proposal
z is rejected, then the game continues with probability δ to the next period or
ends with probability 1 − δ. If the game continues to time t + 1, then it ends
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in immediate acceptance of the proposal at t + 1, since (f̂ , ĝ) is the prevalent
strategy profile.

To show that f̂ is a best reply to ĝ we distinguish two cases, namely t is odd
and t is even. For each case, we consider three subcases. The reference point
pair (r1, r2) is in Xω where

Case 1. ω ∈ {1,I, 1,II, 1,III}. Then r1 > xω1 > yω1 , and yω1 = δxω1 .

Case 2. ω ∈ {2,I, 2,II, 2,III}. Then xω1 ≥ r1 > yω1 , and yω1 =
δ(xω

1 +λ1r1)
1+λ1

.

Case 3. ω ∈ {3,I, 3,II, 3,III}. Then xω1 > yω1 ≥ r1, and yω1 = δ
µ1
xω1 .

t odd, case 1. We distinguish between the following cases:

• z1 = xω1 : In this case player 1 follows strategy f̂ . Player 2 accepts, so

u∗1 = u1(h
t, a) = (1 + λ1)x

ω
1 − λ1 max{r1, x

ω
1 } = (1 + λ1)x

ω
1 − λ1r1.

• z1 < xω1 : Then z2 > xω2 , so player 2 accepts. Player 1’s payoff is u1(h
t, a) =

(1 + λ1)z1 − λ1 max{r1, z1}. Observe that r1 ≥ xω1 > z1 implies that

u1(h
t, a) = (1 + λ1)z1 − λ1r1.

Then z1 < xω1 implies u1(h
t, a) < u∗1. Hence, the proposal z is not optimal.

• z1 > xω1 : Then z2 < xω2 , so player 2 rejects and proposes yω if the game
continues. Hence, player 1 obtains

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= δ((1 + λ1)y
ω
1 − λ1 max{yω1 , r1}) − (1 − δ)λ1r1

= (1 + λ1)δy
ω
1 − δλ1r1 − (1 − δ)λ1r1

= (1 + λ1)δy
ω
1 − λ1r1.

Since xω1 > δ2xω1 = δyω1 , we have δu1(h
t+1, a)+ (1− δ)u1(h

t, d) < u∗1. Thus, the
proposal z is not optimal.

t odd, case 2. We distinguish between three cases:

• z1 = xω1 : In this case player 1 follows strategy f̂ . Player 2 accepts, so

u∗1 = u1(h
t, a) = (1 + λ1)x

ω
1 − λ1 max{xω1 , r1} = xω1 .

• z1 < xω1 : Since then z2 > xω2 , player 2 accepts. Player 1’s payoff is u1(h
t, a) =

(1 + λ1)z1 − λ1 max{r1, z1}. From

(1 + λ1)z1 − λ1 max{r1, z1} ≤ z1 < xω1 = u∗1,

it follows that the proposal z is not optimal.
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• z1 > xω1 : Since then z2 < xω2 , player 2 rejects, and proposes yω if the game
continues. Hence, player 1 obtains

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δy
ω
1 − δλ1 max{yω1 , r1} − (1 − δ)λ1r1

= (1 + λ1)δy
ω
1 − λ1r1.

From yω1 =
δ(xω

1 +λ1r1)
1+λ1

it follows that δxω1 = (1 + λ1)y
ω
1 − δλ1r1. Therefore,

u∗1 = xω1 = (1 + λ1)
1

δ
yω1 − λ1r1 > (1 + λ1)δy

ω
1 − λ1r1.

Thus, the proposal z is not optimal.

t odd, case 3. We distinguish between three cases:

• z1 = xω1 : In this case player 1 follows strategy f̂ . Player 2 accepts, so

u∗1 = u1(h
t, a) = (1 + λ1)x

ω
1 − λ1 max{xω1 , r1} = xω1 .

• z1 < xω1 : Since then z2 > xω2 , player 2 accepts. Player 1’s payoff is u1(h
t, a) =

(1 + λ1)z1 − λ1 max{r1, z1}. From

(1 + λ1)z1 − λ1 max{r1, z1} ≤ z1 < xω1 ,

it follows that u∗1 > u1(h
t, a). Thus, the proposal z is not optimal.

• z1 > xω1 : Since z2 < xω2 , player 2 rejects, and proposes yω if the game
continues. Hence, player 1 obtains

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δy
ω
1 − δλ1 max{yω1 , r1} − (1 − δ)λ1r1

= δyω1 − (1 − δ)λ1r1.

Observe that
u∗1 = xω1 > yω1 > δyω1 ≥ δyω1 − (1 − δ)λ1r1.

Hence, the proposal z is not optimal.

t even, case 1. Assume player 2 proposes some z ∈ Z. Accepting gives player 1

u1(h
t, a) = (1 + λ1)z1 − λ1 max{r1, z1}.

Rejecting makes his reference point switch to max{r1, z1}; if the game continues,
he proposes xω, and player 2 accepts. Since r1 > xω1 and yω1 = δxω1 , we have

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δx
ω
1 − δλ1 max{xω1 ,max{r1, z1}} − (1 − δ)λ1 max{r1, z1}

= (1 + λ1)δx
ω
1 − δλ1 max{r1, z1} − (1 − δ)λ1 max{r1, z1}

= (1 + λ1)y
ω
1 − λ1 max{r1, z1}.
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Hence, it is optimal to accept the proposal z if z1 ≥ yω1 , and to reject it otherwise.

That is, to play strategy f̂ .

t even, case 2. Assume player 2 proposes some z ∈ Z with z1 ≤ xω
′

1 where
ω′ ∈ {1,I, 1,II, 1,III}. Accepting gives player 1

u1(h
t, a) = (1 + λ1)z1 − λ1 max{r1, z1}.

If he rejects and the game continues, then the reference point r1(h
t) is max{r1, z1}.

Thus, at t + 1 we enter a new game in which (max{r1, z1}, r2) is the prevalent
reference point pair. Since (max{r1, z1}, r2) ∈ ω where ω ∈ {2,I, 2,II, 2,III}, we
have xω1 ≥ max{r1, z1} ≥ yω1 , where yω1 = δ(xω1 + λ1 max{r1, z1})/(1 + λ1). At
t+ 1 player 1 proposes xω1 and player 2 accepts, so rejecting z yields

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δx
ω
1 − δλ1 max{xω1 ,max{r1, z1}} − (1 − δ)λ1 max{r1, z1}

= δxω1 − (1 − δ)λ1 max{r1, z1}

= (1 + λ1)y
ω
1 − λ1 max{r1, z1}.

If player 2 proposes z ∈ Z with z1 > xω
′

1 , then accepting yields u1(h
t, a) = z1

and rejecting

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δx
ω′

1 − δλ1 max{xω
′

1 ,max{r1, z1}} − (1 − δ)λ1 max{r1, z1}

= (1 + λ1)y
ω′

1 − λ1z1.

Since z1 > xω
′

1 > yω
′

1 , we have u1(h
t, a) > δu1(h

t+1, a) + (1 − δ)u1(h
t, d). In

general, it is optimal to accept the proposal z if z1 ≥ yω1 , and to reject it

otherwise. That is, it is optimal to follow strategy f̂ .

t even, case 3. Assume player 2 proposes some z ∈ Z with z1 < yω1 . Note that
r1 < xω1 . Hence, rejecting yields

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δx
ω
1 − δλ1 max{xω1 ,max{r1, z1}} − (1 − δ)λ1 max{r1, z1} (5)

= δxω1 − (1 − δ)λ1 max{r1, z1}.

Accepting yields u1(h
t, a) = (1 + λ1)z1 − λ1 max{r1, z1}. Since yω1 = δ

µ1
xω1 , we

have

u1(h
t, a) = (1 + λ1)z1 − λ1 max{r1, z1}

= (1 + λ1)z1 − δλ1 max{r1, z1} − (1 − δ)λ1 max{r1, z1}

< (1 + λ1)y
ω
1 − δλ1 max{r1, y

ω
1 } − (1 − δ)λ1 max{r1, z1} (6)

= (1 + λ1)y
ω
1 − δλ1y

ω
1 − (1 − δ)λ1 max{r1, z1}

= µ1y
ω
1 − (1 − δ)λ1 max{r1, z1}

= δxω1 − (1 − δ)λ1 max{r1, z1}.
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Thus, it is optimal to reject z. If player 2 proposes z ∈ Z with z1 ≥ yω1 , then
accepting yields

u1(h
t, a) = (1 + λ1)z1 − λ1 max{r1, z1} = z1.

Let z1 ≤ yω
′

1 where ω′ ∈ {1,I, 1,II, 1,III}. If player 1 rejects and the game
continues, then r1(h

t) = z1, and (z1, r2) ∈ ω′′ where ω′′ ∈ {2,I, 2,II, 2,III}.
Note that then yω

′′

1 ≤ z1 ≤ xω
′′

1 . Thus, rejecting yields

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δx
ω′′

1 − δλ1 max{xω
′′

1 , z1} − (1 − δ)λ1z1

= δxω
′′

1 − (1 − δ)λ1z1 (7)

= (1 + λ1)y
ω′′

1 − λ1z1 .

Since z1 ≥ yω
′′

1 , also z1 ≥ (1 + λ1)y
ω′′

1 − λ1z1. If player 2 proposes z ∈ Z with
z1 > xω

′

1 , then rejecting yields

δu1(h
t+1, a) + (1 − δ)u1(h

t, d)

= (1 + λ1)δx
ω′

1 − δλ1 max{xω
′

1 ,max{r1, z1}} − (1 − δ)λ1 max{r1, z1}

= (1 + λ1)δx
ω′

1 − δλ1z1 − (1 − δ)λ1z1 (8)

= (1 + λ1)δx
ω′

1 − λ1z1.

Observe that z1 > xω
′

1 implies z1 > δxω
′

1 . It follows that z1 > (1+λ1)δx
ω′

1 −λ1z1,
i.e. accepting z is optimal.

Thus, we have shown that player 1 can not profitably deviate from f̂ at any
single time t, given that player 2 plays strategy ĝ. The proof that player 2 can
not profitably deviate from ĝ at any single time t, given that player 1 plays f̂ ,
is analogous. Lemma A.1 implies that (f̂ , ĝ) is an SPE. �
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B Proof of Theorem 4.1

Throughout this section, we assume that conditions (U1)–(U3) are satisfied.

B.1 Preliminary lemmas

Define a bargaining round as an offer made by player 1 and a counter offer made
by player 2. Bargaining rounds are indexed with i ∈ {0, 1, 2, . . .}. Then (ri1, r

i
2)

is the reference point pair prevalent at the beginning of bargaining round i. In
view of (U1) it makes sense to define

ri+1
1 := max{ri1, y1(r

i
1, r

i+1
2 )}, and ri+1

2 := max{ri2, x2(r
i
1, r

i
2)}. (9)

This allows us to show the following.

Lemma B.1 When x(ri1, r
i
2) is player 1’s SPE proposal and y(ri1, r

i+1
2 ) player

2’s counterproposal, we have

x2(r
i
1, r

i
2) =



















δ − δy1(r
i
1, r

i+1
2 ) if ri2 > y2(r

i
1, r

i+1
2 ) > x2(r

i
1, r

i
2)

δ(1+λ2r
i+1
2 )

1+λ2
−

δy1(r
i
1,r

i+1
2 )

1+λ2
if y2(r

i
1, r

i+1
2 ) ≥ ri2 > x2(r

i
1, r

i
2)

δ
µ2

− δ
µ2
y1(r

i
1, r

i+1
2 ) if y2(r

i
1, r

i+1
2 ) > x2(r

i
1, r

i
2) ≥ ri2,

and

y1(r
i
1, r

i+1
2 ) =



















δ − δx2(r
i+1
1 , ri+1

2 ) if ri1 > x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 )

δ(1+λ1r
i+1
1 )

1+λ1
−

δx2(r
i+1
1 ,r

i+1
2 )

1+λ1
if x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 )

δ
µ1

− δ
µ1
x2(r

i+1
1 , ri+1

2 ) if x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1.

Proof. This follows from (U2) and (U3), and the definition of the players’
utility functions. �

For each ω ∈ Ω we introduce the following sets Pω and Qω of pairs of reference
points:

P1,I := {(ri1, r
i
2) | r

i
2 > y2(r

i
1, r

i+1
2 ), ri1 > x1(r

i+1
1 , ri+1

2 )}

P2,I := {(ri1, r
i
2) | r

i
2 > y2(r

i
1, r

i+1
2 ), x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 )}

P3,I := {(ri1, r
i
2) | r

i
2 > y2(r

i
1, r

i+1
2 ), y1(r

i
1, r

i+1
2 ) ≥ ri1}

P1,II := {(ri1, r
i
2) | y2(r

i
1, r

i+1
2 ) ≥ ri2 > x2(r

i
1, r

i
2), r

i
1 > x1(r

i+1
1 , ri+1

2 )}

P2,II := {(ri1, r
i
2) | y2(r

i
1, r

i+1
2 ) ≥ ri2 > x2(r

i
1, r

i
2), x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 )}

23



P3,II := {(ri1, r
i
2) | y2(r

i
1, r

i+1
2 ) ≥ ri2 > x2(r

i
1, r

i
2), y1(r

i
1, r

i+1
2 ) ≥ ri1}

P1,III := {(ri1, r
i
2) | x2(r

i
1, r

i
2) ≥ ri2, r

i
1 > x1(r

i+1
1 , ri+1

2 )}

P2,III := {(ri1, r
i
2) | x2(r

i
1, r

i
2) ≥ ri2, x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 )}

P3,III := {(ri1, r
i
2) | x2(r

i
1, r

i
2) ≥ ri2, y1(r

i
1, r

i+1
2 ) ≥ ri1}

Q1,I := {(ri1, r
i+1
2 ) | ri1 > x1(r

i+1
1 , ri+1

2 ), ri+1
2 > y2(r

i+1
1 , ri+2

2 )}

Q1,II := {(ri1, r
i+1
2 ) | ri1 > x1(r

i+1
1 , ri+1

2 ), y2(r
i+1
1 , ri+2

2 ) ≥ ri+1
2 > x2(r

i+1
1 , ri+1

2 )}

Q1,III := {(ri1, r
i+1
2 ) | ri1 > x1(r

i+1
1 , ri+1

2 ), x2(r
i+1
1 , ri+1

2 ) ≥ ri+1
2 }

Q2,I := {(ri1, r
i+1
2 ) | x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 ), ri+1

2 > y2(r
i+1
1 , ri+2

2 )}

Q2,II := {(ri1, r
i+1
2 ) | x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 ), y2(r

i+1
1 , ri+2

2 ) ≥ ri+1
2 >

x2(r
i+1
1 , ri+1

2 )}

Q2,III := {(ri1, r
i+1
2 ) | x1(r

i+1
1 , ri+1

2 ) ≥ ri1 > y1(r
i
1, r

i+1
2 ), x2(r

i+1
1 , ri+1

2 ) ≥ ri+1
2 }

Q3,I := {(ri1, r
i+1
2 ) | y1(r

i
1, r

i+1
2 ) ≥ ri1, r

i+1
2 > y2(r

i+1
1 , ri+2

2 )}

Q3,II := {(ri1, r
i+1
2 ) | y1(r

i
1, r

i+1
2 ) ≥ ri1, y2(r

i+1
1 , ri+2

2 ) ≥ ri+1
2 > x2(r

i+1
1 , ri+1

2 )}

Q3,III := {(ri1, r
i+1
2 ) | y1(r

i
1, r

i+1
2 ) ≥ ri1, x2(r

i+1
1 , ri+1

2 ) ≥ ri+1
2 } .

We derive a series of lemmas for reference point pairs in these sets.

Lemma B.2 For all (ri1, r
i
2) ∈ Pω, we have

x2(r
i
1, r

i
2) ≥ x2(r

i+1
1 , ri+1

2 ) ⇔ x2(r
i
1, r

i
2) ≤ xω2 .

Similarly, for all (ri1, r
i+1
2 ) ∈ Qω, we have

y1(r
i
1, r

i+1
2 ) ≥ y1(r

i+1
1 , ri+2

2 ) ⇔ y1(r
i
1, r

i+1
2 ) ≤ yω1 .

Proof. Let ω = 1,I and (ri1, r
i
2) ∈ Pω. By definition of P1,I we have

ri2 > y2(r
i
1, r

i+1
2 ) and ri1 > x1(r

i+1
1 , ri+1

2 ).

From Lemma B.1 we obtain

x2(r
i
1, r

i
2) = δ − δy1(r

i
1, r

i+1
2 )

= δ − δ(δ − δx2(r
i+1
1 , ri+1

2 ))

= δ − δ2 + δ2x2(r
i+1
1 , ri+1

2 ). (10)
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Suppose x2(r
i+1
1 , ri+1

2 ) ≥ x2(r
i
1, r

i
2). Then by (10)

x2(r
i
1, r

i
2) = δ − δ2 + δ2x2(r

i+1
1 , ri+1

2 ) ≥ δ − δ2 + δ2x2(r
i
1, r

i
2).

It follows that

x2(r
i
1, r

i
2) ≥

δ − δ2

1 − δ2
=

δ

1 + δ
= x1,I

2 .

Suppose x2(r
i+1
1 , ri+1

2 ) < x2(r
i
1, r

i
2). Then by (10)

x2(r
i
1, r

i
2) = δ − δ2 + δ2x2(r

i+1
1 , ri+1

2 ) < δ − δ2 + δ2x2(r
i
1, r

i
2),

implying x2(r
i
1, r

i
2) < x1,I

2 . Therefore,

x2(r
i
1, r

i
2) ≥ x2(r

i+1
1 , ri+1

2 ) ⇔ x2(r
i
1, r

i
2) ≤ x1,I

2 .

Similarly, let ω = 1,I and (ri1, r
i+1
2 ) ∈ Qω. By definition of Q1,I

ri1 > x1(r
i+1
1 , ri+1

2 ) and ri+1
2 > y2(r

i+1
1 , ri+2

2 ).

Then by Lemma B.1

y1(r
i
1, r

i+1
2 ) = δ − δx2(r

i+1
1 , ri+1

2 )

= δ − δ(δ − δy1(r
i+1
1 , ri+2

2 ))

= δ − δ2 + δ2y1(r
i+1
1 , ri+2

2 ),

which implies

y1(r
i
1, r

i+1
2 ) ≥ y1(r

i+1
1 , ri+2

2 ) ⇔ y1(r
i
1, r

i+1
2 ) ≤ y1,I

1 .

The proof for ω ∈ Ω, ω 6= 1,I, is analogous. �

The following lemma says that if the reference point pair is in Pω now and at all
future odd time points, then player 1 must propose xω . A similar result holds
for Qω.

Lemma B.3 If (rk1 , r
k
2 ) ∈ Pω for all k ≥ i, then x2(r

i
1, r

i
2) = xω2 . Similarly, if

(rk1 , r
k+1
2 ) ∈ Qω for all k ≥ i, then y1(r

i
1, r

i+1
2 ) = yω1 .

Proof. Observe that if (rk1 , r
k
2 ) ∈ Pω for all k ≥ i, then by Lemma B.1 it follows

that x2(r
i
1, r

i
2) is either independent from the reference point pair (ri1, r

i
2), or no

offer is ever made that changes that reference point pair. Hence, x2(r
i
1, r

i
2) can

be obtained as the sum of a geometric series. For instance, let (rk1 , r
k
2 ) ∈ P1,I

for all k ≥ i. Then by Lemma B.1,

x2(r
i
1, r

i
2) = δ − δ2 + δ2x2(r

i+1
1 , ri+1

2 )

= δ(1 − δ) + δ2(δ − δ2 + δ2x2(r
i+2
1 , ri+2

2 ))

= δ(1 − δ)(1 + δ2) + δ4x2(r
i+2
1 , ri+2

2 ))

= δ(1 − δ)(1 + δ2 + δ4 + . . .)

= δ(1 − δ) ×
1

1 − δ2

= x1,I
2 .
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The proof for Pω where ω 6= 1,I and for Qω where ω ∈ Ω is analogous to the
proof for P1,I. �

The following lemma establishes some restrictions on how reference points can
move through the sets P and Q.

Lemma B.4 If (ri1, r
i
2) ∈ P1,III, then (ri1, r

i+1
2 ) /∈ Q1,I.

If (ri1, r
i
2) ∈ P2,III, then (ri1, r

i+1
2 ) /∈ Q2,I.

If (ri1, r
i+1
2 ) ∈ Q3,I, then (ri+1

1 , ri+1
2 ) /∈ P1,I.

If (ri1, r
i+1
2 ) ∈ Q3,II, then (ri+1

1 , ri+1
2 ) /∈ P1,II.

Proof. Let (ri1, r
i
2) ∈ P1,III and assume (ri1, r

i+1
2 ) ∈ Q1,I. Then from the

definitions of P1,III and Q1,I we have

y2(r
i
1, r

i+1
2 ) > x2(r

i
1, r

i
2) ≥ ri2,

ri1 > x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ), and

ri+1
2 > y2(r

i+1
1 , ri+2

2 ) > x2(r
i+1
1 , ri+1

2 ).

Since ri1 > y1(r
i
1, r

i+1
2 ) and ri+1

2 > x2(r
i+1
1 , ri+1

2 ) we have ri+1
1 = ri1 and ri+2

2 =
ri+1
2 by (9). From (U1) it follows that

y2(r
i
1, r

i+1
2 ) = y2(r

i+1
1 , ri+2

2 ).

Furthermore, since x2(r
i
1, r

i
2) ≥ ri2, (9) implies ri+1

2 = x2(r
i
1, r

i
2). Thus,

ri+1
2 > y2(r

i+1
1 , ri+2

2 ) = y2(r
i
1, r

i+1
2 ) > x2(r

i
1, r

i
2) = ri+1

2 .

This is a contradiction.
The proofs of the other statements are analogous. �

B.2 Proof of Theorem 4.1

In this section we prove a series of lemmas which are used in the proof of
Theorem 4.1.

Lemma B.5 Let ω ∈ {1,I, 1,II, 2,I, 2,II}. Then for all (ri1, r
i
2) ∈ Pω we have

x(ri1, r
i
2) = xω. Similarly, for all (ri1, r

i+1
2 ) ∈ Qω we have y(ri1, r

i+1
2 ) = yω.

Proof. Let (ri1, r
i
2) ∈ Pω where ω ∈ {1,I,1,II,2,I,2,II}. Then ri1 > y1(r

i
1, r

i+1
2 )

and ri2 > x2(r
i
1, r

i
2). By (9) this implies ri+1

1 = ri1 and ri+1
2 = ri2. By (U1),

x2(r
i
1, r

i
2) = x2(r

i+1
1 , ri+1

2 ).

By Lemma B.2 x2(r
i
1, r

i
2) = xω2 . The case for Qω is similar. �

Lemma B.6 If (ri1, r
i+1
2 ) ∈ Q3,I, then
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i. y1(r
i
1, r

i+1
2 ) ≥ y3,I1 .

ii. y1(r
i
1, r

i+1
2 ) ≤ y3,I1 .

Thus, y1(r
i
1, r

i+1
2 ) = y3,I1 .

Proof of Lemma B.6, part i. Let (ri1, r
i+1
2 ) ∈ Q3,I. From the definition of

Q3,I we have

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1, and

ri+1
2 > y2(r

i+1
1 , ri+2

2 ) > x2(r
i+1
1 , ri+1

2 ).

Assume y1(r
i
1, r

i+1
2 ) < y3,I

1 . By Lemma B.2, y1(r
i
1, r

i+1
2 ) > y1(r

i+1
1 , ri+2

2 ). Since
y1(r

i
1, r

i+1
2 ) ≥ ri1 we have from (9) that ri+1

1 = y1(r
i
1, r

i+1
2 ). Hence, ri+1

1 >
y1(r

i+1
1 , ri+2

2 ). We have two possibilities:

a. ri+1
1 > x1(r

i+2
1 , ri+2

2 ) > y1(r
i+1
1 , ri+2

2 ), i.e. (ri+1
1 , ri+1

2 ) ∈ P1,I.

b. x1(r
i+2
1 , ri+2

2 ) ≥ ri+1
1 > y1(r

i+1
1 , ri+2

2 ), i.e. (ri+1
1 , ri+1

2 ) ∈ P2,I.

By Lemma B.4, case a. can be ruled out. Hence, (ri+1
1 , ri+1

2 ) ∈ P2,I. By Lemma

B.5, x2(r
i+1
1 , ri+1

2 ) = x2,I
2 . Since (ri1, r

i+1
2 ) ∈ Q3,I, Lemma B.1 implies

y1(r
i
1, r

i+1
2 ) =

δ

µ1
−

δ

µ1
x2(r

i+1
1 , ri+1

2 )

=
δ

µ1
−

δ

µ1
x2,I

2

=
δ

µ1
x2,I

1 .

By (9), we have ri+1
1 = y1(r

i
1, r

i+1
2 ). Note that x2,I

1 is a function of ri+1
1 , and

therefore of y1(r
i
1, r

i+1
2 ). That is,

y1(r
i
1, r

i+1
2 ) =

δ

µ1
×

(µ1 − δ) + δ2λ1r
i+1
1

(1 + λ1) − δ2

=
δ

µ1
×

(µ1 − δ) + δ2λ1y1(r
i
1, r

i+1
2 )

(1 + λ1) − δ2
.
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Solving for y1(r
i
1, r

i+1
2 ) yields

y1(r
i
1, r

i+1
2 ) =

δ

µ1
×

µ1 − δ

1 + λ1 − δ2 − δ2λ1
δ
µ1

=
δ(µ1 − δ)

(1 + λ1)µ1 − δ2µ1 − δ3λ1

=
δ(µ1 − δ)

(1 + λ1)µ1 − δ2 − δ2λ1 + δ3λ1 − δ3λ1

=
δ(µ1 − δ)

(1 + λ1)(µ1 − δ2)

=
δ

1 + λ1 + δ

= y3,I
1 ,

where we used the fact that

(1 + λ1)(µ1 − δ2) = (1 + λ1)(1 + λ1(1 − δ) − δ2)

= (1 + λ1)((1 + δ)(1 − δ) + λ1(1 − δ))

= (1 + λ1)(1 − δ)(1 + λ1 + δ)

= (1 − δ + λ1(1 − δ))(1 + λ1 + δ)

= (µ1 − δ)(1 + λ1 + δ).

Observe that y1(r
i
1, r

i+1
2 ) = y3,I

1 is contradicting y1(r
i
1, r

i+1
2 ) < y3,I

1 , our initial
assumption. �

Before we can prove Part ii. we must make a similar argument for Q3,II.

Lemma B.7 If (ri1, r
i+1
2 ) ∈ Q3,II, then

i. y1(r
i
1, r

i+1
2 ) ≥ y3,II1 .

ii. y1(r
i
1, r

i+1
2 ) ≤ y3,II1 .

Thus, y1(r
i
1, r

i+1
2 ) = y3,II1 .

Proof of Lemma B.7, Part i. Let (ri1, r
i+1
2 ) ∈ Q3,II. From the definition

of Q3,II it follows that

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1, and

y2(r
i+1
1 , ri+1

2 ) ≥ ri+1
2 > x2(r

i+1
1 , ri+1

2 ).

Assume y1(r
i
1, r

i+1
2 ) < y3,II

1 . Thus, y1(r
i
1, r

i+1
2 ) > y1(r

i+1
1 , ri+2

2 ) by Lemma B.2.
Since y1(r

i
1, r

i+1
2 ) ≥ ri1, we have ri+1

1 = y1(r
i
1, r

i+1
2 ) by (9). Hence, ri+1

1 >
y1(r

i+1
1 , ri+2

2 ), leaving two possibilities:

a. ri+1
1 ≥ x1(r

i+2
1 , ri+2

2 ) > y1(r
i+1
1 , ri+2

2 ), i.e. (ri+1
1 , ri+1

2 ) ∈ P1,II.
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b. x1(r
i+2
1 , ri+2

2 ) > ri+1
1 > y1(r

i+1
1 , ri+2

2 ), i.e. (ri+1
1 , ri+1

2 ) ∈ P2,II.

Case a. is ruled out by Lemma B.4. Hence, (ri+1
1 , ri+1

2 ) ∈ P2,II, and thus

by Lemma B.5, x2(r
i+1
1 , ri+1

2 ) = x2,II
2 . Since (ri1, r

i+1
2 ) ∈ Q3,II, we have from

Lemma B.1 that

y1(r
i
1, r

i+1
2 ) =

δ

µ1
−

δ

µ1
x2(r

i+1
1 , ri+1

2 )

=
δ

µ1
−

δ

µ1
x2,II

2

=
δ

µ1
x2,II

1 .

Note that y1(r
i
1, r

i+1
2 ) = ri+1

1 and that x2,II
1 is a function of ri+1

1 . That is,

y1(r
i
1, r

i+1
2 ) =

(1 + λ1)((µ2 − δ) + δλ2(1 − ri+1
2 )) + δ2λ1r

i+1
1

(1 + λ1)(1 + λ2) − δ2

=
(1 + λ1)((µ2 − δ) + δλ2(1 − ri+1

2 )) + δ2λ1y1(r
i
1, r

i+1
2 )

(1 + λ1)(1 + λ2) − δ2
.

Solving for y1(r
i
1, r

i+1
2 ) yields

y1(r
i
1, r

i+1
2 ) =

δ

µ1
×

(1 + λ1)(µ2 − δ + δλ2(1 − ri+1
2 ))

(1 + λ1)(1 + λ2) − δ2 − δ2λ1
δ
µ1

=
δ(1 + λ1)(µ2 − δ + δλ2(1 − ri+1

2 ))

(1 + λ1)(1 + λ2)µ1 − δ2µ1 − δ3λ1

=
δ(1 + λ1)(µ2 − δ + δλ2(1 − ri+1

2 ))

(1 + λ1)(1 + λ2)µ1 − δ2 − δ2λ1 + δ3λ1 − δ3λ1

=
δ(1 + λ1)(µ2 − δ + δλ2(1 − ri+1

2 ))

(1 + λ1)((1 + λ2)µ1 − δ2)

=
δ(µ2 − δ + δλ2(1 − ri+1

2 ))

(1 + λ2)µ1 − δ2

= y3,II
1 .

This contradicts y1(r
i
1, r

i+1
2 ) < y3,II

1 . �

This result allows us to prove the second part of Lemma B.6.

Proof of Lemma B.6, Part ii. Let (ri1, r
i+1
2 ) ∈ Q3,I. By the definition of

Q3,I we have

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1, and

ri+1
2 > y2(r

i+1
1 , ri+2

2 ) > x2(r
i+1
1 , ri+1

2 ).

29



Assume y1(r
i
1, r

i+1
2 ) > y3,I

1 . Then by Lemma B.2 we have y1(r
i+1
1 , ri+2

2 ) >
y1(r

i
1, r

i+1
2 ). Observe that y1(r

i
1, r

i+1
2 ) ≥ ri1, and thus by (9) y1(r

i
1, r

i+1
2 ) = ri+1

1 .
Hence, y1(r

i+1
1 , ri+2

2 ) > ri+1
1 , implying (ri+1

1 , ri+1
2 ) ∈ P3,I. Then from Lemma

B.1, y1(r
i
1, r

i+1
2 ) > y3,I

1 and y1(r
i+1
1 , ri+2

2 ) > y1(r
i
1, r

i+1
2 ), we have

x2(r
i+1
1 , ri+1

2 ) = δ − δy1(r
i+1
1 , ri+2

2 ) < δ − δy1(r
i
1, r

i+1
2 ) < δ − δy3,I

1 = x3,I
2 .

By Lemma B.2 this implies x2(r
i+1
1 , ri+1

2 ) > x2(r
i+2
1 , ri+2

2 ). Observe that, by
(9), ri+1

2 > x2(r
i+1
1 , ri+1

2 ) implies ri+2
2 = ri+1

2 , and thus

ri+2
2 = ri+1

2 > x2(r
i+1
1 , ri+1

2 ) > x2(r
i+2
1 , ri+2

2 ).

This leaves two possibilities.

a. ri+2
2 > y2(r

i+2
1 , ri+3

2 ) > x2(r
i+2
1 , ri+2

2 ), i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,I.

b. y2(r
i+2
1 , ri+3

2 ) ≥ ri+2
2 > x2(r

i+2
1 , ri+2

2 ), i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,II.

Take case b., i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,II. Then

y2(r
i+2
1 , ri+3

2 ) ≥ ri+2
2 = ri+1

2 > y2(r
i+1
1 , ri+2

2 ),

which implies y1(r
i+1
1 , ri+2

2 ) > y1(r
i+2
1 , ri+3

2 ). By Lemma B.2 we have y1(r
i+1
1 ,

ri+2
2 ) < y3,II

1 . This contradicts part i. of Lemma B.7.
Hence, case a. must hold, i.e. (ri+1

1 , ri+2
2 ) ∈ Q3,I. Note that x2(r

i+2
1 , ri+2

2 ) <

x2(r
i+1
1 , ri+1

2 ) < x3,I
2 . Then

y1(r
i+1
1 , ri+2

2 ) =
δ

µ1
−

δ

µ1
x2(r

i+2
1 , ri+2

2 ) >
δ

µ1
−

δ

µ1
x3,I

2 = y3,I
1 .

Thus, if (ri1, r
i+1
2 ) ∈ Q3,I and y1(r

i
1, r

i+1
2 ) > y3,I

1 , then (ri+1
1 , ri+2

2 ) ∈ Q3,I and

y1(r
i+1
1 , ri+2

2 ) > y3,I
1 . Thus, for all k ≥ i we have (rk1 , r

k+1
2 ) ∈ Q3,I. Then by

Lemma B.3 we have that y1(r
i
1, r

i+1
2 ) = y3,I

1 . This contradicts y1(r
i
1, r

i+1
2 ) > y3,I

1 .
�

We can now also complete the proof of Lemma B.7.

Proof of Lemma B.7, Part ii. Let (ri1, r
i+1
2 ) ∈ Q3,II. By definition of Q3,II

we have

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1

y2(r
i+1
1 , ri+2

2 ) ≥ ri+1
2 > x2(r

i+1
1 , ri+1

2 ).

Assume y1(r
i
1, r

i+1
2 ) > y3,II

1 . Then by Lemma B.2 we have y1(r
i
1, r

i+1
2 ) <

y1(r
i+1
1 , ri+2

2 ). Since y1(r
i
1, r

i+1
2 ) ≥ ri1, (9) says that ri+1

1 = y1(r
i
1, r

i+1
2 ). Hence,

y1(r
i+1
1 , ri+2

2 ) > ri+1
1 , which implies (ri+1

1 , ri+1
2 ) ∈ P3,II. From Lemma B.1,
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y1(r
i
1, r

i+1
2 ) < y1(r

i+1
1 , ri+2

2 ), y3,II
1 < y1(r

i
1, r

i+1
2 ), and the fact that ri+2

2 =
max{ri+1

2 , x2(r
i+1
1 , ri+1

2 )} = ri+1
2 , we have

x2(r
i+1
1 , ri+1

2 ) =
δ(1 + λ2r

i+2
2 )

1 + λ2
−

δ

1 + λ2
y1(r

i+1
1 , ri+2

2 )

<
δ(1 + λ2r

i+2
2 )

1 + λ2
−

δ

1 + λ2
y1(r

i
1, r

i+1
2 )

<
δ(1 + λ2r

i+2
2 )

1 + λ2
−

δ

1 + λ2
y3,II
1

=
δ(1 + λ2r

i+1
2 )

1 + λ2
−

δ

1 + λ2
y3,II
1

= x3,II
2 .

By Lemma B.2 this implies x2(r
i+1
1 , ri+1

2 ) > x2(r
i+2
1 , ri+2

2 ). Since ri+2
2 = ri+1

2 >
x2(r

i+1
1 , ri+1

2 ), this implies ri+2
2 > x2(r

i+2
1 , ri+2

2 ). Then there are two possibili-
ties:

a. ri+2
2 > y2(r

i+2
1 , ri+3

2 ) > x2(r
i+2
1 , ri+2

2 ), i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,I.

b. y2(r
i+2
1 , ri+3

2 ) ≥ ri+2
2 > x2(r

i+2
1 , ri+2

2 ), i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,II.

Take case a., i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,I. Observe that

y2(r
i+1
1 , ri+2

2 ) ≥ ri+1
2 = ri+2

2 > y2(r
i+2
1 , ri+3

2 ),

and thus y1(r
i+1
1 , ri+2

2 ) < y1(r
i+2
1 , ri+3

2 ). Lemma B.2 now implies y1(r
i+1
1 , ri+2

2 ) >

y3,I
1 . This contradicts part i. of Lemma B.6.

Hence, case b. must hold, i.e. (ri+1
1 , ri+2

2 ) ∈ Q3,II. Since x2(r
i+1
1 , ri+1

2 ) >

x3,II
2 and x2(r

i+2
1 , ri+2

2 ) > x2(r
i+1
1 , ri+1

2 ), we have from Lemma B.1

y1(r
i+1
1 , ri+2

2 ) =
δ

µ1
−

δ

µ1
x2(r

i+2
1 , ri+2

2 ) >
δ

µ1
−

δ

µ1
x3,II

2 = y3,II
1 .

Thus, (ri1, r
i+1
2 ) ∈ Q3,II and y1(r

i
1, r

i+1
2 ) > y3,II

1 implies (ri+1
1 , ri+2

2 ) ∈ Q3,II and

y1(r
i+1
1 , ri+2

2 ) > y3,II
1 . Then, for all k ≥ i we have (rk1 , r

k+1
2 ) ∈ Q3,II, which by

Lemma B.3 implies y1(r
i
1, r

i+1
2 ) = y3,II

1 . This contradicts y1(r
i
1, r

i+1
2 ) > y3,II

1 . �

Similar results hold in P2,III and P1,III.

Lemma B.8 If (ri1, r
i
2) ∈ P1,III, then x2(r

i
1, r

i
2) = x1,III

2 .

Lemma B.9 If (ri1, r
i
2) ∈ P2,III, then x2(r

i
1, r

i
2) = x2,III

2 .

The proofs of these lemmas are analogous to the proofs of Lemmas B.6 and B.7
respectively.

Lemma B.10 If (ri1, r
i
2) ∈ P3,III, then
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i. x2(r
i
1, r

i
2) ≥ x3,III

2 .

ii. x2(r
i
1, r

i
2) ≤ x3,III

2 .

Thus, x2(r
i
1, r

i
2) = x3,III

2 .

Proof of Lemma B.10, Part i. Let (ri1, r
i
2) ∈ P3,III. By the definition of

P3,III we have

y2(r
i
1, r

i+1
2 ) > x2(r

i
1, r

i
2) ≥ ri2,

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1.

Assume x2(r
i
1, r

i
2) < x3,III

2 . Lemma B.2 implies x2(r
i
1, r

i
2) > x2(r

i+1
1 , ri+1

2 ).
Since x2(r

i
1, r

i
2) ≥ ri2, we have from (9) that ri+1

2 = x2(r
i
1, r

i
2). Hence, ri+1

2 >
x2(r

i+1
1 , ri+1

2 ). Then there are two possibilities:

a. ri+1
2 > y2(r

i+1
1 , ri+2

2 ) > x2(r
i+1
1 , ri+1

2 ), i.e. (ri1, r
i+1
2 ) ∈ Q3,I.

b. y2(r
i+1
1 , ri+2

2 ) ≥ ri+1
2 > x2(r

i+1
1 , ri+1

2 ), i.e. (ri1, r
i+1
2 ) ∈ Q3,II.

Take case a., i.e. (ri1, r
i+1
2 ) ∈ Q3,I. From Lemma B.6 we have y1(r

i
1, r

i+1
2 ) = y3,I

1 .

From Lemma B.1 it follows that x2(r
i
1, r

i
2) = δ

µ2
− δ
µ2
y3,I
1 = δ

µ2
y3,I
2 . Observe that

µ2(µ1 − δ2) < µ1µ2 − δ2. Thus,

y3,I
2 =

1 + λ1

1 + λ1 + δ
=

(1 + λ1)(1 − δ)

(1 + λ1 + δ)(1 − δ)
=

(1 − δ + λ1(1 − δ))

1 − δ + λ1(1 − δ) + δ − δ2

=
µ2

µ2
×

(µ1 − δ)

µ1 − δ2
>
µ2(µ1 − δ)

µ1µ2 − δ2
= y3,III

2 . (11)

Then x2(r
i
1, r

i
2) >

δ
µ2
y3,III
2 = x3,III

2 , contradicting the initial assumption x2(r
i
1,

ri2) < x3,III
2 .

Take case b., i.e., (ri1, r
i+1
2 ) ∈ Q3,II. By Lemma B.1, x2(r

i
1, r

i
2) = δ

µ2
y3,II
2 .

Note that ri+1
2 = x2(r

i
1, r

i
2) by (9), and that y3,II

2 is a function of ri+1
2 . That is,

x2(r
i
1, r

i
2) =

δ

µ2
×

(µ1 − δ)(1 + λ2) + δ2λ2r
i+1
2

µ1(1 + λ2) − δ2

=
δ

µ2
×

(µ1 − δ)(1 + λ2) + δ2λ2x2(r
i
1, r

i
2)

µ1(1 + λ2) − δ2
.

Solving for x2(r
i
1, r

i
2) yields

x2(r
i
1, r

i
2) =

δ

µ2
×

(µ1 − δ)(1 + λ2)

µ1(1 + λ2) − δ2 − δ2λ2
δ
µ2

=
δ(µ1 − δ)(1 + λ2)

µ1µ2(1 + λ2) − δ2µ2 − δ3λ2

=
δ(µ1 − δ)(1 + λ2)

µ1µ2(1 + λ2) − δ2 − δ2λ2 + δ3λ2 − δ3λ2
=
δ(µ1 − δ)

µ1µ2 − δ2
= x3,III

2 .
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This contradicts x2(r
i
1, r

i
2) < x3,III

2 . �

Before we can complete the proof of Lemma B.10, we need a similar result for
Q3,III.

Lemma B.11 If (ri1, r
i+1
2 ) ∈ Q3,III, then

i. y1(r
i
1, r

i+1
2 ) ≥ y3,III1 ,

ii. y1(r
i
1, r

i+1
2 ) ≤ y3,III1 .

Thus, y1(r
i
1, r

i+1
2 ) = y3,III1 .

Proof of Lemma B.11, Part i. This is analogous to the proof of Lemma
B.10 Part i. �

We continue with the second part of Lemma B.10.

Proof of Lemma B.10, Part ii. Let (ri1, r
i
2) ∈ P3,III. By definition of P3,III

we have

y2(r
i
1, r

i+1
2 ) > x2(r

i
1, r

i
2) ≥ ri2, and

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1.

Assume x2(r
i
1, r

i
2) > x3,III

2 . Then by Lemma B.2 x2(r
i
1, r

i
2) < x2(r

i+1
1 , ri+1

2 ).
Since x2(r

i
1, r

i
2) ≥ ri2, we have ri+1

2 = x2(r
i
1, r

i
2) by (9). Thus, ri+1

2 < x2(r
i+1
1 ,

ri+1
2 ), implying (ri1, r

i+1
2 ) ∈ Q3,III. By the first part of Lemma B.11 this implies

that y1(r
i
1, r

i+1
2 ) ≥ y3,III

1 . Then from Lemma B.1 and the construction of x3,III

we obtain

x2(r
i
1, r

i
2) =

δ

µ2
−

δ

µ2
y1(r

i
1, r

i+1
2 ) ≤

δ

µ2
−

δ

µ2
y3,III
1 = x3,III

2 .

This contradicts x2(r
i
1, r

i
2) > x3,III

2 . �

In a similar way we can complete the proof of Lemma B.11.

Proof of Lemma B.11, Part ii. Analogous to the proof of Lemma B.10,
Part ii. �

redWe can now obtain the offers made in the sets P3,I and P3,II.

Lemma B.12 If (ri1, r
i
2) ∈ P3,I then x2(r

i
1, r

i
2) = x3,I

2 .

Proof. Let (ri1, r
i
2) ∈ P3,I. By definition of P3,I we have

ri2 > y2(r
i
1, r

i+1
2 ) > x2(r

i
1, r

i
2), and

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1.

Assume x2(r
i
1, r

i
2) 6= x3,I

2 . We have three mutually exclusive and exhaustive
cases.
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• (ri1, r
i+1
2 ) ∈ Q3,I: Note that (ri1, r

i
2) ∈ P3,I by Lemma B.1 implies x2(r

i
1, r

i
2)

= δ−δy1(r
i
1, r

i+1
2 ) = δy2(r

i
1, r

i+1
2 ). Then by Lemma B.6 and the construc-

tion of x3,I this implies x2(r
i
1, r

i
2) = δy3,I

2 = x3,I
2 , contradicting x2(r

i
1, r

i
2) 6=

x3,I
2 .

• (ri1, r
i+1
2 ) ∈ Q3,II: Since (ri1, r

i
2) ∈ P3,I and (ri1, r

i+1
2 ) ∈ Q3,II we have

y2(r
i+1
1 , ri+2

2 ) ≥ ri+1
2 = max{ri2, x2(r

i
1, r

i
2)} = ri2 > y2(r

i
1, r

i+1
2 ).

However, y2(r
i
1, r

i+1
2 ) = y3,II

2 by Lemma B.7, and this implies y2(r
i
1, r

i+1
2 )

= y2(r
i+1
1 , ri+2

2 ) by Lemma B.2. This contradicts the above.

• (ri1, r
i+1
2 ) ∈ Q3,III: By Lemma B.1, Lemma B.11, inequality (11), and the

construction of x3,I, we have

x2(r
i
1, r

i
2) = δ − δy1(r

i
1, r

i+1
2 ) = δy3,III

2 < δy3,I
2 = x3,I

2 .

By Lemma B.2 this implies x2(r
i
1, r

i
2) > x2(r

i+1
1 , ri+1

2 ). Since ri2 > x2(r
i
1, r

i
2)

we have by (9) that ri+1
2 = ri2, implying ri+1

2 > x2(r
i+1
1 , ri+1

2 ). This im-
plies (ri1, r

i+1
2 ) /∈ Q3,III, a contradiction.

It follows that x2(r
i
1, r

i
2) = x3,I

2 . �

Lemma B.13 If (ri1, r
i
2) ∈ P3,II then x2(r

i
1, r

i
2) = x3,II

2 .

Proof. Let (ri1, r
i
2) ∈ P3,II. By definition of P3,II we have

y2(r
i
1, r

i+1
2 ) ≥ ri2 > x2(r

i
1, r

i
2)

x1(r
i+1
1 , ri+1

2 ) > y1(r
i
1, r

i+1
2 ) ≥ ri1.

Assume x2(r
i
1, r

i
2) 6= x3,II

2 . Then we distinguish three mutually exclusive and
exhaustive cases.

• (ri1, r
i+1
2 ) ∈ Q3,I: Since ri2 > x2(r

i
1, r

i
2) we have from (9) that ri2 = ri+1

2 .
Hence,

y2(r
i
1, r

i+1
2 ) ≥ ri2 = ri+1

2 > y2(r
i+1
1 , ri+2

2 ).

However, by Lemma B.6 we have y2(r
i
1, r

i+1
2 ) = y3,I

2 , which by Lemma B.2
implies y2(r

i
1, r

i+1
2 ) = y2(r

i+1
1 , ri+2

2 ). This contradicts the above.

• (ri1, r
i+1
2 ) ∈ Q3,II: By Lemma B.7 we have y1(r

i
1, r

i+1
2 ) = y3,II

1 . By Lemma
B.1 and the construction of x3,II, we then have

x2(r
i
1, r

i
2) =

δ(1 + λ2r
i+1
2 )

1 + λ2
−
δy1(r

i
1, r

i+1
2 )

1 + λ2

=
δ(1 + λ2r

i+1
2 )

1 + λ2
−

δy3,II
1

1 + λ2

=
δ(y3,II

2 + λ2r
i+1
2 )

1 + λ2

= x3,II
2 ,

contradicting x2(r
i
1, r

i
2) 6= x3,II

2 .
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• (ri1, r
i+1
2 ) ∈ Q3,III: By Lemma B.11 and the definition of y3,III

1 this implies

y1(r
i
1, r

i+1
2 ) = y3,III

1 =
δ

µ1
−

δ

µ1
x3,III

2 .

By Lemma B.1 we have

y1(r
i
1, r

i+1
2 ) =

δ

µ1
−

δ

µ1
x2(r

i+1
1 , ri+1

2 ).

Hence, x2(r
i+1
1 , ri+1

2 ) = x3,III
2 .

Since ri2 > x2(r
i
1, r

i
2), we have from (9) that ri+1

2 = ri2. Then

x2(r
i+1
1 , ri+1

2 ) ≥ ri+1
2 = ri2 > x2(r

i
1, r

i
2).

By Lemma B.2 this implies x2(r
i
1, r

i
2) > x3,II

2 . Since ri2 > x2(r
i
1, r

i
2) and

ri2 = ri+1
2 this implies ri+1

2 > x3,II
2 . That is,

ri+1
2 >

δ(µ1 − δ + λ2r
i+1
2 µ1)

µ1(1 + λ2) − δ2
.

This is equivalent to ri+1
2 > δ(µ1−δ)

µ1µ2−δ2
= x3,III

2 . Hence, ri+1
2 > x2(r

i+1
1 , ri+1

2 ),

which implies (ri1, r
i+1
2 ) /∈ Q3,III. This is a contradiction.

It follows that x2(r
i
1, r

i
2) = x3,II

2 . �

Similar results hold for Q2,III and Q1,III.

Lemma B.14 If (ri1, r
i+1
2 ) ∈ Q1,III then y1(r

i
1, r

i+1
2 ) = y1,III1 .

Lemma B.15 If (ri1, r
i+1
2 ) ∈ Q2,III then y1(r

i
1, r

i+1
2 ) = y2,III1 .

Proofs are analogous to Lemma B.12 resp. B.13. We now prove the main result
of this section.

Proof of Theorem 4.1. Let (ri1, r
i
2) = P1,I. By definition we have ri2 >

y2(r
i
1, r

i+1
2 ) and ri1 > x1(r

i
1, r

i
2). By Lemma B.5 this implies ri2 > y1,I

2 and

ri1 > x1,I
1 . Hence, (ri1, r

i
2) ∈ X1,I, from which it follows that P1,I ⊆ X1,I.

Similarly, by Lemmas B.5, B.8, B.9, B.10, B.12, and B.13, (ri1, r
i
2) ∈ Pω

implies (ri1, r
i
2) ∈ Xω for each ω ∈ Ω. Hence, Pω ⊆ Xω for each ω ∈ Ω. Since

the sets Pω are mutually exclusive and exhaustive, this implies

Pω = Xω for each ω ∈ Ω.

Hence, at times t ∈ Todd player 1’s unique SPE strategy is to propose xω if
(r1, r2) ∈ Xω. That is, to play strategy f̂ . Analogously, we have

Qω = Xω for each ω ∈ Ω,
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such that player 2’s unique SPE strategy at times t ∈ Teven is to propose yω if
(r1, r2) ∈ Xω, i.e. to follow strategy ĝ.

It follows from part B. of the proof of Theorem 3.1 that player 1’s unique
optimal strategy at times t ∈ Teven is to accept proposals which are at or
above 2’s SPE proposal, and to reject those which are not. (Rejecting player
2’s proposal violates immediate acceptance.) That is, player 1’s unique SPE

strategy at times t ∈ Teven is f̂ . Similarly, player 2’s unique optimal strategy
at times t ∈ Todd is to accept and reject proposals according to the strategy ĝ.

Thus, the strategy profile (f̂ , ĝ) is the unique SPE satisfying (U1)–(U3). �

C Concave utility functions

Let player i’s preference for pie, i = 1, 2, be represented by a strictly increasing,
concave von Neumann-Morgenstern utility function vi : [0, 1] → R. Since such
a utility function is unique up to an affine transformation, we may assume that
vi(0) = 0 and vi(1) = 1. Furthermore, define

Z̃ := {(v1(z1), v2(z2)) | z ∈ Z}.

In this more general setting, each finite path in H̄ is associated with a utility

outcome. That is, for all h ∈ H̄ \ H∞, we say that player i, i = 1, 2, obtains
vi(ξi(h)), rather than ξi(h). Note that due to rescaling, both players still attach
a zero utility payoff to a disagreement path, and a utility payoff of one to
agreement on a partition that gives them the whole pie. The loss aversion
transformation w is then applied to the utility outcome vi(ξi(h)). The reference
point ri used in this transformation, is defined as the utility associated with the
highest share player i has rejected in the past. Like before, we have

a. r1 > x1 > y1: δ1x1 = y1.

b. x1 ≥ r1 > y1: δ1x1 = (1 + λ1)y1 − δ1λ1r1.

c. x1 > y1 ≥ r1: δ1x1 = µ1y1.

and

i. r2 > y2 > x2: δ2y2 = x2.

ii. y2 ≥ r2 > x2: δ2y2 = (1 + λ2)x2 − δ2λ2r2.

iii. y2 > x2 ≥ r2: δ2y2 = µ2x2.

where x, y ∈ Z̃. These equations again define a ninefold partition of the set of
all possible reference point pairs, similar to the one depicted in Figure 1. Define
Ω̃ := {a.i., . . . , c.iii.}, and denote the associated sets again by Xω, ω ∈ Ω̃. It
can be shown that the system of equations yields a unique solution (xω, yω) in
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Z̃× Z̃ for each ω ∈ Ω̃. Let ht = (ht−1, z) with z ∈ Z̃. Then for all ω ∈ Ω̃, define

the strategy pair (f̆ , ğ) for t ∈ Todd by

f̆ t(ht−1) = xω, ğt(ht) =

{

Y if z2 ≥ xω2
N otherwise.

, if (r1(h
t−1), r2(h

t−1)) ∈ Xω,

and for t ∈ Teven by

f̆ t(ht) =

{

Y if z1 ≥ yω1
N otherwise

, ğt(ht−1) = yω, if (r1(h
t−1), r2(h

t−1)) ∈ Xω.

We obtain the following result.

Theorem C.1 The strategy profile (f̆ , ğ) is an SPE.

Proof. Observe that Lemma A.1 continues to hold if players’ utility func-
tions are concave. Hence, the game is still continuous at infinity. The proof of
Theorem C.1 is then analogous to that of Theorem 3.1. �

It follows that the partition obtained at the beginning of the game, where ref-
erence points are zero, is given by xc.iii.. Henceforth, we drop the superscript
c.iii., and write the solution as x. Note that we may again generalize the above
results to the case where the time lapse between proposals is ∆. Thus, we have

ψ(x1) = x2 =
δ∆2
µ2
yc.iii.
2 =

δ∆2
µ2
ψ(yc.iii.

1 ) =
δ∆2
µ2
ψ

(

δ∆1
µ1
x1

)

where µi = 1 + λi(1 − δ∆i ). Then by extending Proposition 4 from Binmore et

al. (1986), we generalize the result that the equilibrium partition converges to
an asymmetric Nash bargaining solution partition as ∆ goes to zero, to the case
where players have concave utility functions.

Let zN be the asymmetric Nash solution

zN = argmax
z∈Z̃

zα1 z
1−α
2 ,

where α = (1+λ2) log δ2
(1+λ1) log δ1+(1+λ2) log δ2

. Observe that zN is uniquely defined by

• zN2 = ψ(zN1 ), and

• |ψ′

−
(zN1 )| ≤ α

1−α
zN
2

zN
1

≤ |ψ′

+(zN1 )|,

where ψ′

−
and ψ′

+ are the left- resp. righthand side derivatives of ψ. Let x→ x̄ as
∆ → 0. Since ψ is continuous on [0, 1], we have that x̄2 = ψ(x̄1). Furthermore,
since ψ is decreasing and concave, we have

|ψ′

−
(x̄1)| ≤ lim

∆→0

∣

∣

∣

∣

∣

∣

ψ(x1) − ψ(
δ∆1
µ1
x1)

x1 −
δ∆1
µ1
x1

∣

∣

∣

∣

∣

∣

≤ |ψ′

+(x̄1)|,
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and, using l’Hôpital’s rule,

lim
∆→0

∣

∣

∣

∣

∣

∣

ψ(x1) − ψ(
δ∆1
µ1
x1)

x1 −
δ∆1
µ1
x1

∣

∣

∣

∣

∣

∣

= lim
∆→0

∣

∣

∣

∣

∣

∣

(
δ∆2
µ2

− 1)ψ(
δ∆1
µ1
x1)

(1 −
δ∆1
µ1

)x1

∣

∣

∣

∣

∣

∣

= lim
∆→0

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1+λ2)δ∆2 log δ2
µ2

2

ψ
(

δ∆1
µ1
x1

)

+ (
δ∆2
µ2

− 1)
dψ

(

δ∆
1

µ1
x1

)

d∆

−
(1+λ1)δ∆1 log δ1

µ2
1

x1 + (1 −
δ∆1
µ1

)dx1

d∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(1 + λ2) log δ2
(1 + λ1) log δ1

×
ψ(x̄1)

x̄1

=
α

1 − α
×
x̄2

x̄1
.

It follows that x̄ = zN .
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