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Stochastic Games on a Product State Space

János Flesch∗, Gijs Schoenmakers, Koos Vrieze†

March 27, 2007

Abstract

We examine product-games, which are n-player stochastic games satisfying: (1)

the state space is a product S1 ×· · ·×Sn; (2) the action space of any player i only

depends of the i-th coordinate of the state; (3) the transition probability of moving

from si ∈ Si to ti ∈ Si, on the i-th coordinate Si of the state space, only depends

on the action chosen by player i. So, as far as the actions and the transitions

are concerned, every player i can play on the i-th coordinate of the product-game

without interference of the other players. No condition is imposed on the payoff

structure of the game.

We focus on product-games with an aperiodic transition structure, for which we

present an approach based on so-called communicating states. For the general n-

player case, we establish the existence of 0-equilibria, which makes product-games

one of the first classes within n-player stochastic games with such a result. In ad-

dition, for the special case of two-player zero-sum games of this type, we show that

both players have stationary 0-optimal strategies. Both proofs are constructive by

nature.

Keywords: Noncooperative Games, Stochastic Games, Markov De-

cision Problems, equilibria.

1 Introduction

Stochastic games and product-games. An n-player stochastic game is given by

(1) a set of players N = {1, . . . , n}, (2) a nonempty and finite set of states S, (3) for
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each state s ∈ S, a nonempty and finite set of actions Ai
s for each player i, (4) for each

state s ∈ S and each joint action as ∈ ×i∈NAi
s, a payoff ri

s(as) ∈ R to each player i,

(5) for each state s ∈ S and each joint action as ∈ ×i∈NAi
s, a transition probability

distribution psas = (psas(t))t∈S .

The game is to be played at stages in N in the following way. Play starts at stage 1

in an initial state, say in state s1 ∈ S. In s1, each player i ∈ N is to choose an action

ai
1 from his action set Ai

s1
. These choices have to be made independently. The chosen

joint action a1 = (a1
1, . . . , a

n
1 ) induces an immediate payoff ri

s1
(a1) to each player i.

Next, play moves to a new state according to the transition probability distribution

ps1a1
, say to state s2 ∈ S. At stage 2, a new action ai

2 ∈ Ai
s2

is to be chosen by

each player i in state s2. Then, given action combination a2 = (a1
2, . . . , a

n
2 ), player i

receives payoff ri
s2

(a2) and the play moves to some state s3 according to the transition

probability distribution ps2a2
, and so on. We assume complete information (i.e. the

players know all the data of the stochastic game), full monitoring (i.e. the players

observe the present state and the actions chosen by all the players), and perfect recall

(i.e. the players remember all previous states and actions).

A Markov transition structure Γi for player i ∈ N is given by (1) a nonempty and

finite state space Si; (2) a nonempty and finite action set Ai
si for each state si ∈ Si; (3)

a transition probability distribution pi
siai

si

over the state space Si for each state si ∈ Si

and for each action ai
si ∈ Ai

si . Note that, if we also assigned a payoff in every state to

every action, then we would obtain the well-known model of Markov decision problems

for player i.

We will now consider a special type of n-player stochastic games in which the

transition structure is derived by taking the product of these n Markov transition

structures. For the sake of simplicity, we will call such a game a product-game. A

product-game G, associated to the Markov transition structures Γ1, Γ2, . . . ,Γn, is an

n-player stochastic game for which (1) the set of players is N = {1, . . . , n} ; (2) the

state space is S = S1 × · · · × Sn; (3) the action set for each player i ∈ N in each state

s = (s1, . . . , sn) ∈ S is Ai
s = Ai

si ; (4) the transition probability distribution psas , for

each state s = (s1, . . . , sn) ∈ S and for each joint action as = (a1
s, . . . , a

n
s ) ∈ ×i∈NAi

s, is

psas (s̄) =
∏

i∈N

pi
siai

s
(s̄i)

for state s̄ = (s̄1, . . . , s̄n) ∈ S. Note that there is no condition imposed on the payoff

structure.

Observe that (1) the action space of player i only depends on the i-th coordinate
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of the state, (2) the i-th coordinate of the transitions from any state s only depend on

the i-th coordinate si of the state and on the action ai
s chosen by player i, i.e. for any

s̄i ∈ Si we have

psas(S
1, . . . , Si−1, s̄i, Si+1, . . . , Sn) = pi

siai
s
(s̄i).

Therefore, as far as the actions and the transitions are concerned, player i can play

on the i-th coordinate of the game G without the interference of the other players.

As a consequence, play of the product game G can be viewed as simultaneous play

of the n Markov transition structures Γ1, . . . ,Γn, which are linked by payoff functions

r1, . . . , rn that may depend on all n current states as well as on all n actions chosen by

the players.

Product-games have been introduced in Altman et al. [2005], although in a some-

what different fashion. They only examined two-player games in which the sum of the

payoffs is always equal to zero (zero-sum games), and dropped the assumption of full

monitoring by letting each player only observe his own coordinate of the present state

and only the action chosen by himself. As a result, both players have to make choices

without noticing anything about the other player’s behavior. They showed that a linear

programming formulation is sufficient to solve these games, i.e. to find the value and

stationary optimal strategies (cf. the definitions below).

Note that the class of product-games, as defined in our paper, differs essentially

from other known classes of n-player stochastic games. Stochastic games with a single

controller, i.e. when one player controls the transitions, however, fall into the class

of product-games. Indeed, a stochastic game which is controlled by player i can be

seen as a product-game in which Sj is a singleton for all players j 6= i. Finally, we

wish to mention the class of stochastic games with additive transitions (AT-games, cf.

Flesch et al. [2007]), i.e. when the transitions are additively decomposable into player-

dependent components, in contrast with a product decomposition. Not surprisingly,

the structure of product-games and AT-games differ essentially, and product-games

require new ideas and an entirely different approach.

From now on, we will consequently use the upper-index for the player and the lower-

index for the state. Whenever one of them is omitted, we will then mean a vector in

the case of quantities and a product in the case of sets, for all possible players or states

respectively. For example, Ai denotes ×s∈SAi
s. Finally, we denote the set of opponents

of any player i by −i := N − {i}. Then, −i in the upper-index will mean a vector or

product for all players j 6= i. For example, S−i denotes ×j∈N−{i}S
j .

Strategies. A mixed action xi
s for player i in state s ∈ S is a probability distribu-
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tion on Ai
s. The set of mixed actions for player i in state s is denoted by Xi

s. A mixed

action is called completely mixed, if it assigns a positive probability to each available

action. A (history dependent) strategy πi for player i is a decision rule that prescribes a

mixed action πi
s(h) ∈ Xi

s in the present state s depending on the past history h of play

(i.e. the sequence of all past states and all past actions chosen by the players). We use

the notation Πi for the set of strategies for player i. A strategy πi for player i is called

pure if πi prescribes, for every state and every possible history, one specific action to be

played with probability 1. Given a strategy πi for player i and a history h, the strategy

πi conditional on h, denoted by πi[h], is the strategy which prescribes a mixed action

πi
s[h](h′) in any present state s for any history h′ as if h had happened before h′, i.e.

πi
s[h](h′) = πi

s(h ⊕ h′), where h ⊕ h′ is the history consisting of h concatenated by h′.

In fact, πi[h] is just the continuation strategy of πi after history h.

If the mixed actions prescribed by a strategy only depend on the present state then

the strategy is called stationary. Thus, the stationary strategy space for player i is

Xi = ×s∈S Xi
s. We use the notation xi for stationary strategies for player i, while xi

s

refers to the corresponding mixed action for player i in state s. Note that the set of

pure stationary strategies for player i is simply Ai = ×s∈SAi
s.

A joint stationary strategy x = (xi)i∈N induces a Markov-chain on the state space S

with transition matrix P (x), where entry (s, s̄) of P (x) gives the transition probability

psxs(s̄) for moving from state s to state s̄ when the joint mixed action xs is played in

state s. With respect to this Markov-chain, we can speak of transient and recurrent

states. A state is called recurrent if, when starting there, play will eventually return

with probability 1; otherwise the state is called transient. If play is in a recurrent state,

then this state will be visited infinitely often with probability 1, while transient states

can only be visited finitely many times, with probability 1. We can group the recurrent

states into minimal closed sets, into so-called ergodic sets. An ergodic set is a collection

F of recurrent states with the property that, when starting in any of the states in F ,

all states in F will be visited infinitely often and the play will remain in F forever with

probability 1.

Let

Q(x) := lim
M→∞

1

M

M∑

m=1

Pm(x); (1)

the limit is known to exist (cf. Doob [1953], theorem 2.1, page 175). Entry (s, s̄) of

the stochastic matrix Q(x), denoted by qsx(s̄), is the expected frequency of stages for

which the process is in state s̄ when starting in s. The matrix Q(x) has the well known
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properties (cf. Doob [1953]) that

Q(x) = Q(x)P (x) = P (x)Q(x) = Q2(x). (2)

Note that Q(·) is in general not continuous on the set X of joint stationary strategies.

Indeed, if xm converges to x but the probabilities on certain actions vanish in the limit,

then the ergodic structure of the induced Markov chains may change drastically in the

limit.

Rewards. For a joint strategy π = (πi)i∈N and initial state s ∈ S, the sequences

of payoffs are evaluated by the (expected) average reward, which is given for player i

by

γi
s(π) := lim inf

M→∞
Esπ

(
1

M

M∑

m=1

Ri
m

)
= lim inf

M→∞

1

M

M∑

m=1

Esπ

(
Ri

m

)
,

where Ri
m is the random variable for the payoff for player i at stage m, and where Esπ

stands for expectation with respect to the initial state s and the joint strategy π.

With regard to a joint stationary strategy x = (xi)i∈N , we obtain more explicit

formulas for the average reward. Let ri
s (xs) denote the expected immediate payoff for

player i in state s if the joint mixed action xs is played. By definition, for the average

reward of every player i we have

γi(x) = Q(x) ri(x), (3)

hence by (2) we also obtain

γi(x) = P (x) γi(x) (4)

γi(x) = Q(x) ri(x) = Q2(x) ri(x) = Q(x) γi(x). (5)

Note that, as Q(·) is not necessarily continuous on the set X of joint stationary

strategies, the same holds for the average reward γi of any player i. This possible

discontinuity causes the main difficulties in the analysis of stochastic games with the

average reward.

Nevertheless, every player i has a stationary best reply against any fixed joint

stationary strategy of his opponents (cf. Hordijk et al. [1983]), i.e. for any x−i ∈ X−i

there exists an xi ∈ Xi such that γi
s(x

i, x−i) ≥ γi
s(π

i, x−i) for all initial states s ∈ S

and for all strategies πi ∈ Πi.

For any player i ∈ N and initial state s ∈ S, let

vi
s := inf

π−i∈Π−i
sup

πi∈Πi

γi
s(π

i, π−i). (6)

5



Here vi
s is called the minmax-level for player i in state s. Intuitively, this is the highest

reward that player i can defend against any strategies of the other players if the initial

state is s. Note that, against different joint strategies of players −i, player i may have

to use different strategies to defend his minmax-level (as changing the order of infimum

and supremum may yield a lower reward). It is known that the minmax-level of any

player i satisfies

vi
s = min

x−i
s ∈X−i

s

max
xi

s∈Xi
s

∑

t∈S

p
s,(xi

s,x−i
s )(t) vi

t, (7)

which is an easy consequence of the definition of vi
s and equality (4). Furthermore,

by Thuijsman & Vrieze [1991] (their proof is given for only two players but directly

extends to the n-player case), there always exists an initial state s in the set {t ∈

S| vi
t = mint′∈S vi

t′} for which players −i have a joint stationary strategy x−i such

that γi
s(π

i, x−i) ≤ vi
s for all strategies πi for player i. In other words, the infimum in

expression (6) is attained for state s at stationary strategies.

Equilibria. A joint strategy π = (πi)i∈N is called a (Nash) ε-equilibrium for initial

state s ∈ S, for some ε ≥ 0, if

γi
s

(
σi, π−i

)
≤ γi

s (π) + ε ∀σi ∈ Πi, ∀i ∈ N,

which means that no player can gain more than ε by a unilateral deviation. Equiva-

lently, for each player i, strategy πi is an ε-best reply for initial state s against π−i. If π

is an ε-equilibrium for all initial states, then we call π an ε-equilibrium. It is clear from

the definition of the minmax-level v that if π is an ε-equilibrium then γi
s(π) ≥ vi

s − ε

for each player i and each initial state s ∈ S.

Regarding general stochastic games, the famous game called the Big Match, which

was introduced by Gillette [1957] and solved by Blackwell & Ferguson [1968], and

the game in Sorin [1986] demonstrated that 0-equilibria do not necessarily exist with

respect to the average reward. They made it clear, moreover, that history dependent

strategies are indispensable for establishing ε-equilibria, for ε > 0.

For two-player stochastic games, Vieille [2000-a,b] managed to establish the ex-

istence of ε-equilibria, for all ε > 0. However, only little is known about n-player

stochastic games, and it is unresolved whether they always possess ε-equilibria, for all

ε > 0. This is probably the most challenging open problem in the field of stochastic

games these days.

For the class of n-player aperiodic product-games, we will answer this question

in the affirmative by proving the existence of 0-equilibria (cf. Main Theorem 1).
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Here aperiodicity refers to an aperiodic transition structure, and will be given a pre-

cise definition later. Our proof is constructive by nature. The approach we present

relies on so-called communicating states. The notion of communicating states we use

is borrowed from the literature of Markov decision problems. We call two states of

the game communicating if from either state, the players can move to the other state

in finite time with probability 1 by choosing appropriate joint actions. We could call

these states weakly communicating in order to emphasise that all players are needed

to move between the states. The applicability of this form of weak communication is

limited for general stochastic games for the simple reason that there is in general no

guarantee that it is in all players’ interest to follow the path between such communicat-

ing states. Nevertheless, for the class of product-games, due to their specific transition

structure, this weak communication plays a fundamental role in the analysis, as we will

demonstrate below.

Zero-sum games and optimality. In the development of stochastic games, a

special role has been played by the class of zero-sum stochastic games, which are two-

player stochastic games for which r2
s(as) = −r1

s(as) (meaning that the sum of the

payoffs is zero), for each state s and for each joint action as. In these games the two

players have completely opposite interests. Mertens & Neyman [1981] showed that for

such games v2 = −v1. Here v := v1 is called the value of the game. They also showed

that, if instead of using liminf one uses limsup in the definition of the average reward,

one would find precisely the same value v. Thus, in a zero-sum game, player 1 wants

to maximize his own reward, while at the same time player 2 tries to minimize player

1’s reward. For simplicity, let γ = γ1. A strategy π1 for player 1 is called ε-optimal

for initial state s ∈ S, for some ε ≥ 0, if γs(π
1, π2) ≥ vs − ε for any strategy π2 of

player 2, while a strategy π2 for player 2 is called ε-optimal for initial state s ∈ S if

γs(π
1, π2) ≤ vs + ε for any strategy π1 of player 1. If π1 or π2 is ε-optimal for all initial

states, then we call π1 or π2 an ε-optimal strategy. For simplicity, 0-optimal strategies

are briefly called optimal. Mertens and Neyman [1981] proved that both players have ε-

optimal strategies for any ε > 0, even though history dependent strategies are necessary

for ε-optimality.

For the class of aperiodic zero-sum product-games, we will provide a proof that both

players have stationary 0-optimal strategies (cf. Main Theorem 2). In addition, we

analyse the structure of the value of these games.

The structure of the article. In section 2, we will present the main results and

a detailed outline of the proofs, together with illustrative examples. The formal proofs
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are given in section 3. Finally, section 4 concludes with a short discussion on the case

of periodic product-games.

2 The main results and a detailed outline of the proofs

2.1 The main results

For the class of product-games, we present the following result concerning existence of

equilibria.

Main Theorem 1. There exists a 0-equilibrium in every aperiodic n-player product-

game.

Aperiodicity refers to an aperiodic transition structure, and we will give a pre-

cise definition in section 2.2. In addition, for the special case of two-player zero-sum

product-games, we show the existence of stationary solutions.

Main Theorem 2. In two-player aperiodic zero-sum product-games, both players have

a stationary 0-optimal strategy.

As Main Theorem 2 will follow without much difficulty (cf. the end of section 3.1.3)

from our extensive study of the minmax-levels in general n-player product-games, we

will focus here on the proof of Main Theorem 1.

Now we provide a detailed outline of the proof of Main Theorem 1; the formal proof

is given in section 3. The proof of Main Theorem 1 is constructive by nature. After

some preliminary concepts and results in section 2.2, the first main step is to analyse

the minmax-levels of the players in depth in section 2.3. Given the structural properties

we achieve, we finally discuss the construction of 0-equilibria in section 2.4.

2.2 Preliminary concepts and results

Some of the contents of this section is very similar to the decomposition presented in

Ross and Varadarajan [1991] for Markov decision problems (i.e. stochastic games with

only one player).

Classification of states. First, we analyse the Markov transition structure Γi

of each player i separately. We distinguish between two basic types of states in the
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state space Si of Γi, based on the possibilities that player i has at his disposal to move

between states.

A state si ∈ Si belongs to type 1 if it has the properties that (1) regardless the

action of player i in state si, play leaves si with a positive probability, and (2) after

leaving si through any action, the probability that player i ever comes back to si is

strictly less than 1, regardless his strategy. Let S⋄i denote the set of states of type 1

for player i. Hence, player i can only be in S⋄i at finitely many stages, with probability

1.

On the other hand, a state si ∈ Si belongs to type 2 if it has the property that

either (1) player i has an action in state si which keeps play in si with probability 1,

or (2) player i has an action in state si such that, given play leaves si through this

action, player i is able to come back to state si, possibly in a number of moves, with

probability 1. Hence, given player i is in a state of type 2, player i can visit this state

infinitely often, if he wishes so.

It is clear that each state in Si belongs to precisely one type, and that there is

always at least one state belonging to type 2.

Maximal communicating sets. Two states si
1 and si

2 of type 2 are said to

communicate with each other, if, starting in state si
1, player i is able to go to state si

2

with probability 1, possibly in a number of moves, and vice versa. This relationship of

communication is an equivalence relation (reflexive, symmetric and transitive) on the

set of states of type 2. As such, it induces equivalence classes, which we call maximal

communicating sets. So, by definition, two states of type 2 belong to the same maximal

communicating set if and only if they communicate with each other.

Therefore, every maximal communicating set Ei has the properties that (1) player

i can go from any state in Ei to any other state in Ei, possibly in a number of moves,

without leaving Ei with probability 1 and (2) if player i decides to leave Ei, the

probability that he ever comes back to Ei is strictly less than 1, regardless his strategy.

The latter observation further implies that (3) the total number of times during the

whole play that player i switches from a maximal communicating set to another one is

finite with probability 1, regardless the initial state and player i’s strategy; (4) there is

always at least one amongst the maximal communicating sets which player i is unable to

leave, i.e. there are no transitions to states outside; (5) regardless the initial state and

player i’s strategy, player i eventually settles, with probability 1, in one of his maximal

communicating sets Ei, i.e. after finitely many stages, player i remains forever in Ei

(it is possible that player i would be able to leave Ei with a different strategy).

Let Ei
ki , where ki ∈ Ki, denote the maximal communicating sets for player i.

9



Within the index-set Ki, we distinguish K∗i ⊂ Ki for those maximal communicating

sets which player i is not able to leave. In view of observation (4), K∗i is always

nonempty. Further, let K := ×n
i=1K

i. For any k = (k1, . . . , kn) ∈ K, the product

Ek := ×n
i=1E

i
ki of the maximal communicating sets Ei

ki , with i = 1, . . . , n, is called a

joint maximal communicating set.

In every state si of the communicating set Ei
ki , for every ki ∈ Ki, let Āi

si denote

the set of those actions ai
si ∈ Ai

si which keep play in Ei
ki with probability 1. The sets

Āi
si are clearly nonempty. We denote the mixed actions of player i on Āi

si by X̄i
si . For

every state s = (s1, . . . , sn) ∈ S, we also let Āi
s := Āi

si and X̄i
s := X̄i

si .

Aperiodicity. A maximal cummunicating set Ei
ki of player i is called aperiodic,

if there exists a number m such that, for any initial state in Ei
ki , if player i plays a

strategy that only uses completely mixed actions on Āi
si for all si ∈ Ei

ki , then the

probability that play at stage m is in state si is positive for all si ∈ Ei
ki . Of course, this

property is independent of the particular choice of this strategy of player i and remains

valid for all stages larger than m. The notion of aperiodicity captures the idea that

player i can be anywhere in Ei
ki with positive probability, after a certain finite number

of moves.

For instance, if player i can move from any state si ∈ Ei
ki to every state ti ∈ Ei

ki

(thus including ti = si) in one single move with a positive probability through an

action in Āi
si , then Ei

ki is obviously aperiodic. On the other hand, a trivial example

of a periodic maximal communicating set is Ei
ki = {1, . . . , z} , with z ≥ 2, when the

transitions yield a cycle, i.e. player i’s only choice in state si < z is to move to state

si + 1, and in state z to move to state 1.

We will call a product-game aperiodic if all maximal communicating sets, for all

players, are aperiodic. From now on, we will only consider aperiodic product-games,

with the exception of section 4.

Restricted games. Take an arbitrary aperiodic product-game and some k =

(k1, . . . , kn) ∈ K. By restricting the state space to Ek ⊂ S, and the action set of each

player i in any state s ∈ Ek to Āi
s, we obtain a restricted game Ḡk. Obviously, Ḡk is

an aperiodic product-game itself, and the underlying Markov transition structure of

any player i is obtained from Γi by restricting player i’s state space to Ei
ki , and by

restricting player i’s action set in any state si ∈ Ei
ki to Āi

si .

These restricted games play a key role in the analysis of product-games, which is

due to the following observation. As is pointed out above, regardless the initial state

and the strategies of the players, each player i eventually settles in one of his maximal
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2,−2 0, 0

→ (1, 1) → (1, 2)

0, 0 0, 0

→ (2, 1) → (2, 2)

state (1, 1)

0, 0

→ (1, 2)

1, 1

→ (2, 2)

state (1, 2)

3,−1 0, 0

→ (1, 1) → (1, 2)

0, 0 0, 0

→ (3, 1) → (3, 2)

state (2, 1)

−2, 0

→ (1, 2)

0, 0

→ (3, 2)

state (2, 2)

0, 0 0, 0

→ (3, 1) → (3, 2)

state (3, 1)

1,−1

→ (3, 2)

state (3, 2)

Figure 1: Game of Example 1

communicating sets Ei
ki . This yields a joint maximal communicating set Ek = ×n

i=1E
i
ki ,

which the players will never leave. Since actions outside Āi
s, for any player i and in any

state s ∈ Ek, would leave Ek with a positive probability, this means that such actions

will be taken only finitely many times, with probability 1. Hence, with probability 1,

play will eventually settle in a restricted game Ḡk. The study of these restricted games

is therefore of great importance.

Example 1. As an illustration, consider the product-game with two players given

in figure 1. This is a game with six states. In each state, the actions of player 1 are

represented by the rows, while the actions of player 2 by the columns. So each cell

of each state corresponds to a pair of actions. In each cell, the two payoffs to the

respective players are given in the upper-left corner, while the next state is indicated in

the bottom-right corner. In this game all the transitions are pure, i.e. each transition

probability distribution assigns probability 1 to a certain state.

The underlying Markov transition structure for player 1 is given by state space

S1 = {1, 2, 3} , action sets

A1
1 = A1

2 = {1, 2} , A1
3 = {1} ,
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and transitions

p1
11 = (1, 0, 0), p1

12 = (0, 1, 0), p1
21 = (1, 0, 0), p1

22 = (0, 0, 1), p1
31 = (0, 0, 1).

So in state 1, player 1 can either stay or leave for state 2, from state 2 he can either

go to state 1 or to state 3, while state 3 is absorbing. Regarding the classification of

the states in S1, both E1
I := {1, 2} and E1

II := {3} are maximal communicating sets.

Moreover, they are both aperiodic. Since player 1 can leave E1
I but not state 3, we have

K1 = {I, II} and K∗1 = {II} . As for the actions which keep play in these maximal

communicating sets, we obtain Ā1
1 = {1, 2}, Ā1

2 = {1}, Ā1
3 = {1}.

The underlying Markov transition structure for player 2 is given by state space

S2 = {1, 2} , action sets A2
1 = {1, 2} , A2

2 = {1} , and transitions p2
11 = (1, 0), p2

12 =

(0, 1), p2
21 = (0, 1). Further, both E2

I := {1} and E2
II := {2} are aperiodic maximal

communicating sets, with K2 = {I, II} and K∗2 = {II} , and Ā2
1 = Ā2

2 = {1}.

As all maximal communicating sets are aperiodic, we may conclude that the game

is aperiodic as well. Finally, we have K = {I, II}2, which yields four joint maximal

communicating sets and four corresponding restricted games. For example, E(I,I) =

{1, 2} × {1}, and the corresponding restricted game Ḡ(I,I) consists of cells (1, 1) and

(2, 1) in state (1, 1) and cell (1, 1) in state (2, 1).

2.3 The structure of the minmax-levels

We refer to section 3.1 for the formal discussion. Recall that the rewards corresponding

to a 0-equilibrium are always individually rational, i.e. the equilibrium reward for each

player i from any initial state s is at least his minmax-level vi
s. It is therefore essential,

for the construction of 0-equilibria, to learn more about the minmax-levels of the players

in these product-games.

The analysis of the minmax-levels is split into three sub-steps. In section 2.3.1,

we study the minmax-levels of the players in the restricted-games. Then, in section

2.3.2., we introduce the notion of simple product-games and explore the structure of

their minmax-levels. Finally, in section 2.3.3, by combining the first two sub-steps, we

are able to demonstrate the most essential structural properties of the minmax-levels

in general product-games.

2.3.1 The minmax-level v̄k of a restricted game Ḡk

Consider a restricted game Ḡk corresponding to the joint maximal communicating set

Ek, for some k = (k1, . . . , kn) ∈ K. Let v̄i
k,s denote each player i’s minmax-level in Ḡk
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for initial state s ∈ Ek. By using the aperiodicity of each Ei
ki and that each player i can

go from any state in Ei
ki to any other one in Ei

ki , we will be able to show that any player

i’s minmax-level v̄i
k,s in Ḡk is constant on the whole state space Ek of Ḡk (cf. lemma

1). This means that the players are indifferent between the states in Ek, as far as their

minmax-levels in Ḡk are concerned. It will also follow that for any player i, players −i

have a joint stationary strategy which guarantees within Ḡk that player i’s reward from

any initial state s ∈ Ek is at most his minmax-level v̄i
k,s. In other words, the infimum in

expression (6) is attained at joint stationary strategies, for all restricted games. This

will become important later, as our ultimate goal is the existence of 0-equilibria, which

do not allow even small positive error terms.

As an illustration, we now revisit the game in example 1. Take first the restricted

game Ḡ(I,I), consisting of cells (1, 1) and (2, 1) in state (1, 1) and cell (1, 1) in state

(2, 1). Let us examine player 1’s minmax-level v̄1
(I,I) in Ḡ(I,I). In Ḡ(I,I), it is only player

1 who has a choice and only in state (1, 1). By choosing the first action, he receives

payoff 2, while by playing the second one he receives payoff 0 and subsequently payoff

3 in state (2, 1) before returning to state (1, 1). As the second action gives payoff 3/2

on average, we may conclude that he cannot do better than to keep on choosing action

1 in state (1, 1). Hence, for both initial states in Ḡ(I,I), player 1’s minmax-level v̄1
(I,I)

is 2, whereas, for similar reasons, player 2’s minmax-level v̄2
(I,I) is −2. Thus, both

minmax-levels are constant on the state space E(I,I) = {(1, 1), (2, 1)} of Ḡ(I,I).

Now consider the restricted game Ḡ(I,II), consisting of the whole state (1, 2) and the

upper cell in state (2, 2). By using similar arguments, player 1’s minmax-level v̄1
(I,II) is

0, and player 2’s minmax-level v̄2
(I,II) is also 0 for both initial states in Ḡ(I,II).

Finally, the restricted games Ḡ(II,I) and Ḡ(II,II) are both trivial, i.e. they consist of

one single state and one action for both players. In Ḡ(II,I), both minmax-levels v̄1
(II,I)

and v̄2
(II,I) are equal to 0, whereas in Ḡ(II,II), player 1’s minmax-level v̄1

(II,II) equals 1

and player 2’s minmax-level v̄2
(II,II) equals −1.

2.3.2 The minmax-levels in simple product-games

We now examine a special class of product-games. We call a product-game G simple if

it holds for all restricted games Ḡk that, for all players i, all payoffs to player i within

Ḡk are equal. This way, all restricted games are trivial.

For the minmax-levels of the players in simple product-games, we will derive sev-

eral results. These results will be illustrated throughout this section by the following

example.
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2,−2 0, 0

→ (1, 1) → (1, 2)

2,−2 0, 0

→ (2, 1) → (2, 2)

state (1, 1)

0, 0

→ (1, 2)

0, 0

→ (2, 2)

state (1, 2)

2,−2 0, 0

→ (1, 1) → (1, 2)

0, 0 0, 0

→ (3, 1) → (3, 2)

state (2, 1)

0, 0

→ (1, 2)

0, 0

→ (3, 2)

state (2, 2)

0, 0 0, 0

→ (3, 1) → (3, 2)

state (3, 1)

1,−1

→ (3, 2)

state (3, 2)

Figure 2: Game of Example 2

Example 2: Consider the simple product-game G with two players given in figure

2. The underlying Markov transition structures are identical to those in example 1.

Hence, this game is aperiodic as well. Actually, this game is obtained from the game

in example 1 by replacing all payoffs for player 1 by 2 and for player 2 by −2 in the

restricted game Ḡ(I,I), and all payoffs for either player by 0 in the restricted game

Ḡ(I,II). Hence, the only possible pair of payoffs is (2,−2) in G(I,I), and (0, 0) in Ḡ(I,II).

Finally, for restricted game Ḡ(II,I), the only possible pair of payoffs remained (0, 0),

while in Ḡ(II,II), it remained (1,−1). So, the game is simple, indeed. In fact, this is a

zero-sum game, but we will not pay much attention to this aspect.

Let us examine the players’ minmax-levels in G. For player 1, we will argue that

v1
(1,1) = v1

(1,2) = v1
(2,1) = v1

(2,2) = v1
(3,2) = 1, v1

(3,1) = 0.

Player 1’s minmax-level is clearly 0 for initial state (3, 1), in view of player 2’s first

action. Now consider an arbitrary other initial state s ∈ S − {(3, 1)}. By moving to

his second state, player 2 can always make sure that player 1’s reward is at most 1.

On the other hand, player 1 can guarantee reward 1 for state s by the pure stationary
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strategy x1 defined as

x1
(1,1) = (1, 0), x1

(1,2) = (0, 1) , x1
(2,1) = (1, 0), x1

(2,2) = (0, 1), x1
(3,1) = x1

(3,2) = (1).

Hence, player 1’s minmax-level equals 1 for all s ∈ S − {(3, 1)}, indeed. We similarly

find that v2
s = −v1

s for all s ∈ S.

Given this example, we would like now to explain and to illustrate the most im-

portant results that we will achieve regarding the minmax-levels of simple aperiodic

product-games. The explanation below of each of these results is given for an arbitrary

simple aperiodic product-game G, which is then followed by an illustration with the

help of example 2.

Observation A (cf. lemma 2). In any state s ∈ S, even if any player i had a

“solitary move”, i.e. he could play an action while every other player j remains in the

same state sj , he cannot improve on his minmax-level vi in expectation. Similarly,

players −i cannot decrease player i’s minmax-level vi in expectation by executing a

solitary move. (This important result heavily relies on the aperiodicity of the product-

game, and would fail in general, cf. section 4.) Consider in example 2, for instance,

state (2, 1) and a solitary move for player 1. Now given player 2 stays in state 1, player

1’s first action yields state (1, 1), while the second one state (3, 1). As v1
(2,1) = v1

(1,1) = 1

and v1
(3,1) = 0, player 1 is indeed unable to improve on his minmax-level by such a

solitary move.

Observation B (cf. lemma 4). On any joint maximal communicating set Ek, each

player i’s minmax-level vi is constant. In example 2, for instance, on both states of

E(I,I), player 1’s minmax-level is 1.

Observation C (cf. lemma 5). If player i is in a state of type 2, then the actions

of the corresponding restricted game provide the best possible transitions with respect

to the expected minmax-level vi, regardless the actions of the opponents. Somewhat

similarly, if players −i all play actions in a restricted game, then player i’s minmax-level

cannot increase in expectation. In example 2, consider, for instance, player 1 in state

(2, 1). If player 1 plays his first action (the action of the restricted game Ḡ(I,I)) then his

minmax-level will remain 1, regardless the action chosen by player 2. Therefore, action

2 can never be better than action 1 for player 1, with respect to player 1’s expected

minmax-level after transition.

Observation D (cf. lemma 6). In any restricted game Ḡk, if any player i’s unique

reward in Ḡk is strictly less than his minmax-level vi on Ek (which is constant on Ek, cf.
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observation B above), then player i is able to leave Ḡk (or actually the set of states Ek)

in a satisfactory way. More precisely, player i has a state si ∈ Ei
ki and a corresponding

pure “exit” action ai
si such that by playing ai

si in any state t ∈ Ek with ti = si, play

leaves Ek with a positive probability and at the same time player i’s minmax-level

cannot decrease in expectation, regardless the actions of the opponents. As player i

can move to si from any state in Ei
ki , he is always able on his own to make play leave

such an “unfavorable” Ek. Similarly, if player i’s unique reward in Ḡk is strictly larger

than his minmax-level vi on Ek, then players −i are able to leave Ḡk in an analogous

manner. As an illustration, in example 2, consider the restricted game Ḡ(I,II), in which

player 1’s unique reward is 0 while his minmax-level v1 is 1. Indeed, player 1 can

leave Ḡ(I,II) by moving to state (2, 2) (or actually to state 2 ∈ E1
(I,II)) and playing

his second action there. Note that by playing this action, player 1’s minmax-level v1

remains unchanged. Similarly, player 2 is unsatisfied with the restricted game Ḡ(I,I),

as his unique reward is −2, which is strictly less than his minmax-level on E(I,I), which

equals −1. Notice that player 2 can leave Ḡ(I,I) by playing his second action, and by

doing so, regardless whether play is in state (1, 1) or in state (2, 1), and regardless the

action chosen by player 1, the minmax-level v2 of player 2 cannot decrease (as −1 is

his lowest minmax-level in the whole game).

2.3.3 The minmax-levels in general product-games

This section is devoted to the analysis of the minmax-levels of the players in the context

of general aperiodic product-games. Take an arbitrary aperiodic product-game G. As

we know from section 2.3.1, the minmax-level v̄i
k of each player i in any restricted

game Ḡk is constant on the whole state space Ek of Ḡk. Let G̃ denote the simple

aperiodic product-game which is derived from G by replacing each player i’s payoffs in

any restricted game Ḡk by his minmax-level v̄i
k. Let wi

s denote player i’s minmax-level

in G̃ from initial state s. For an illustration, we refer to the game in example 2 (which is

now game G̃ with minmax-levels w), which is obtained exactly by this very procedure

from the game in example 1 (which is now game G with minmax-levels v). Recall for

this example that w1
(3,1) = w2

(3,1) = 0 while w1
s = 1 and w2

s = −1 for all s ∈ S−{(3, 1)}.

The transformation above of G into G̃ is of course very natural, and we will be able

to show in general that the minmax-levels of the players remain unchanged under this

transformation (cf. lemma 7), i.e. wi
s = vi

s for all players i and all initial states s ∈ S.

Let us explain in detail why wi
s ≥ vi

s holds in general. For this it is sufficient to show

that players −i have a joint stationary strategy x−i which guarantees in the original
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game G that player i’s (expected) reward is not more than wi
s for any initial state s.

In our illustrative game in example 1, for i = 2, one can take the stationary strategy

y1(= x−2) for player 1 defined as

y1
(1,1) = (1, 0), y1

(1,2) = (0, 1) , y1
(2,1) = (1, 0), y1

(2,2) = (0, 1), y1
(3,1) = y1

(3,2) = (1),

which guarantees in G that player 2’s reward is not more than w2
s for all initial states

s ∈ S. Now we turn back to the general case, but we will indicate between brackets the

corresponding events in this example.

As is pointed out in observation B in section 2.3.2, wi
s is a constant wi

k on each

Ek. Thus, we obtained two constants v̄i
k and wi

k for any player i in any joint maximal

communicating set Ek. Now, players −i should use a joint stationary strategy x−i which

prescribes to play, roughly speaking, as follows:

1. In any joint maximal communicating set Ek in which v̄i
k ≤ wi

k, players −i should

play a joint stationary strategy in Ḡk which guarantees in Ḡk that player i’s reward

is not more than v̄i
k. Such a joint stationary strategy exists, as is discussed in section

2.3.1. (In our example, this happens with y1 in E(I,I), E(II,I) and E(II,II).)

2. In any joint maximal communicating set Ek in which v̄i
k > wi

k, players −i should

leave Ek, as is discussed in observation D (with respect to the minmax-level wi of the

game G̃) in section 2.3.2 above. This can be done in a stationary way by moving to

the joint states where exit can take place and then playing the joint “exit” actions. (In

our example, this happens with y1 in E(I,II).)

3. In states in which at least one player is in a state of type 1, players −i should play

joint mixed actions which take care that the value of wi cannot increase in expectation

after transition. Such joint actions obviously exist, as wi is the minmax-level of game

G̃. (In our example, there are no such states.)

We will now argue that x−i guarantees in G that player i cannot receive a reward

higher than wi
s for any initial state s, as desired. Take an arbitrary stationary strategy

xi for player i and an arbitrary initial state s. Consider the joint stationary strategy

(xi, x−i). First notice that the value of wi cannot increase in expectation during play.

For case 3 it is immediate. On the other hand, in cases 1 and 2, players −i always use

actions of the corresponding restricted game or they leave Ek with a joint “exit” action.

And indeed, in both cases, as is discussed in observations C and D (with respect to the

minmax-level wi of the game G̃) in section 2.3.2, wi cannot increase in expectation.

As we know, with respect to (xi, x−i) and initial state s, play eventually settles,

with probability 1, in a restricted game. Let ξ denote the random variable for the index

of this restricted game (so play settles in restricted game Ḡξ). Since wi cannot increase
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in expectation during play, it follows that wi
ξ is then at most wi

s in expectation, i.e.

Es,(xi,x−i)(w
i
ξ) ≤ wi

s. Because Eξ can only fall under case 1, and not case 2 due to the

“exit” actions, we have for player i’s reward (in G) that

γi
s(x

i, x−i) ≤ Es,(xi,x−i)(v̄
i
ξ) ≤ Es,(xi,x−i)(w

i
ξ) ≤ wi

s.

As xi was arbitrary and player i has a stationary best reply to x−i, we conclude that

x−i guarantees in the original game G that player i’s reward is not more than wi
s for

any initial state s. This implies wi
s ≥ vi

s, as desired.

One can similarly show that wi
s ≤ vi

s, yielding wi
s = vi

s for all players i and all initial

states s ∈ S. This has important consequences.

First, x−i thus guarantees in the original game G that player i’s reward is not more

than vi
s for any initial state s. This implies, in the context of two-player aperiodic

zero-sum product-games, that the stationary strategy x−1 of player 2 (as −1 = {2})

guarantees that player 1’s reward is not more than v1
s for any initial state s. Hence,

x−1 is 0-optimal for player 2. One similarly finds that x−2 is 0-optimal for player 1.

Thus, both players have stationary 0-optimal strategies (cf. the end of section 3.1.3),

which proves Main Theorem 2.

Second, the structural properties (i.e. observations A,B,C and D) that we achieved

in section 2.3.2 for the minmax-levels of simple product-games are now applicable to

all product-games (cf. corollary 8). With this knowledge on the minmax-levels, we are

now sufficiently prepared to tackle the problem of the existence of 0-equilibria.

2.4 The construction of 0-equilibria in general product-games

Take an arbitrary aperiodic product-game G. In this section, we will show that there

exists a 0-equilibrium in G, as is claimed by Main Theorem 1. The construction will

make extensive use of the results we obtained for the minmax-levels of the players.

The first step again is to examine the existence of equilibria in the restricted games.

We will show for any restricted game Ḡk (cf. lemma 10) that there exists a 0-equilibrium

σk in Ḡk such that the corresponding rewards are independent of the initial state and all

the continuation rewards remain unchanged with probability 1 during the whole play.

More precisely, if σk induces reward zi
k ∈ R for some player i, then γ̄i

s(σk[h]) = zi
k holds

for every state s ∈ Ek and for every history h with a positive probability of occurrence

with respect to σk. Here γ̄i denotes player i’s average reward in the restricted game

Ḡk. So if no player deviates, every player i’s future expectations remain zi
k during the

whole play. This will guarantee that no player will change his mind and decides to
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leave Ek just because a certain history took place. Since σk is a 0-equilibrium in Ḡk,

we have zi
k ≥ v̄i

k for all players i, where v̄i
k is the minmax-level of player i in Ḡk (v̄i

k is

constant on Ek, as we know from section 2.3.1).

The idea of the proof that such a 0-equilibrium σk exists in Ḡk is simple. Notice

first that, as the state space Ek of Ḡk is a joint maximal communicating set and each

Ei
ki is aperiodic, the players can move from any state in Ek to any other one in Ek,

possibly in a number of steps, if they wish so. Thus, the set of feasible rewards (i.e. the

rewards that can be obtained by some joint strategy) is the same from any initial state

in Ek. Moreover, we also know that each player i’s minmax-level v̄i
k in Ḡk is constant

on Ek. Hence, this game situation in Ḡk is fairly similar to an ordinary repeated game,

and the construction of such a σk is then a simple task by applying ideas and arguments

taken from the well-known Folk-theorem for repeated games.

Hence, we may fix a 0-equilibrium σk with some reward zk in every restricted game

Ḡk. Fix further, for every player i, a joint stationary strategy y−i for players −i which

guarantees in the original game G that player i’s reward is not more than vi
s for any

initial state s. Such joint stationary strategies exist, as is discussed in the first conclusion

at the end of section 2.3.3 (where we used the notation x−i for such a joint stationary

strategy).

We are now ready to discuss the proof of Main Theorem 1, which claimed the

existence of a 0-equilibrium η in G. The proof is constructive by nature. The main

body of the proof is to construct a joint strategy π with important properties, amongst

others that:

property (1): the rewards for π are individually rational, i.e. γi
s(π) ≥ vi

s for all

initial states s ∈ S and for all players i;

property (2): no player i has an incentive to deviate from πi inside the support of

πi, i.e. by redistributing the probabilities over the actions to which πi would assign

a positive probability (such deviations are difficult to detect, as player i still chooses

actions which have positive probability according to πi).

The joint strategy η will then, roughly speaking, prescribe to play as follows: the

players play the joint strategy π as long as no player i deviates from πi by playing

an action on which πi puts probability zero. If player i deviates in such a way, then

from the next state, say state s, players −i switch to the joint strategy y−i and play

it for the rest of the time. By doing so, they push down player i’s reward to a level of

at most vi
s. As π induces individually rational rewards, y−i acts as a threat strategy,

which forces player i to follow the prescriptions of πi. The use of such threat strategies

for the construction of equilibria is standard in the theory of stochastic games.
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Now the remaining task is to construct π. For simplicity, suppose that there are

no states of type 1. As we know, states of type 1 have a transient nature, and while

those states will cause no fundamental difficulties in the formal proofs, they do involve

some technicalities (we would have to define two additional auxiliary games). So, by

this assumption, S splits up into joint maximal communicating sets. Now π prescribes

for the players to play as follows. On each joint maximal communicating set Ek, we

compare the rewards zk that the players could obtain as an equilibrium reward inside

Ḡk with the minmax-levels of the players in the original game G, which are some

constant vk on Ek according to observation B in section 2.3.2 (and the final conclusion

of section 2.3.3 as well). Now, if play enters an ergodic set Ek in which zi
k ≥ vi

k for all

players i, then Ḡk is a “satisfactory” restricted game and π prescribes to switch to σk

and collect reward zk. On the other hand, if play enters an ergodic set Ek in which

zi
k < vi

k for some player i while zj
k ≥ vj

k for all players j < i, then player i is unsatisfied

with Ḡk, and π lets accordingly player i leave Ḡk as is given in observation D in section

2.3.2 (cf. the final conclusion of section 2.3.3 as well). As long as player i has not made

the exit yet, players −i will simply play a joint stationary strategy in the restricted

game Ḡk which guarantees that player i cannot receive more than v̄i
k inside Ḡk. Such a

strategy exists as is mentioned in section 2.3.1. As v̄i
k ≤ zi

k < vi
k, by doing so, players

−i force player i to eventually leave Ḡk.

Notice that π only prescribes actions within the restricted games, except for the

exit actions. Therefore, it will follow from observations C and D in section 2.3.2 (and

the final conclusion of section 2.3.3) that the joint strategy π satisfies properties (1)

and (2) above, as desired. Given π, the construction of the 0-equilibrium η is complete.

This concludes the outline of the proof of Main Theorem 1.

We wish to add that it remains unclear whether 0-equilibria always exist within

the class of stationary strategies. This question is already challenging in the situation

when each player i’s state space Si is just one maximal communicating set (precisely the

situation we have in a restricted game), meaning that S consists of one joint maximal

communicating set. While there are indications that stationary equilibria may exist,

for example that all minmax-levels are constant on the whole state space S, it is still

not evident how one should get a grip on the problem.

Finally, let us revisit example 1. As we know, the minmax-levels of this game

coincide with the minmax-levels of the game in example 2, hence

v1
(1,1) = v1

(1,2) = v1
(2,1) = v1

(2,2) = v1
(3,2) = 1, v1

(3,1) = 0,
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while v2 = −v1. Now consider the pure stationary strategy x1 for player 1 defined as

x1
(1,1) = (1, 0), x1

(1,2) = (0, 1) , x1
(2,1) = (1, 0), x1

(2,2) = (0, 1), x1
(3,1) = x1

(3,2) = (1),

and the pure stationary strategy x2 for player 2 given as

x2
(1,1) = x2

(2,1) = (0, 1), x2
(3,1) = (1, 0), x2

(1,2) = x2
(2,2) = x2

(3,2) = (1).

This pair (x1, x2) actually could play the role of π in this example. Indeed, each of the

joint maximal communicating sets E(II,I) and E(II,II) is “satisfactory” to the players,

and trivially, (x1, x2) lets the players play a 0-equilibrium in each of the restricted

games Ḡ(II,I) and Ḡ(II,II). On the other hand, as we know, Ḡ(I,I) is unsatisfactory to

player 2 and Ḡ(I,II) is unsatisfactory to player 1, and x2 leaves E(I,I) while x1 leaves

E(I,II) accordingly. Notice that we need no threat strategies here, so (x1, x2) is a

0-equilibrium.

3 The formal proof of Main Theorems 1 and 2

In this section, we provide a formal proof for Main Theorems 1 and 2. We will focus

on Main Theorem 1, as Main Theorem 2 will follow (cf. the end of section 3.1.3) along

the way without major additional difficulties.

For the main ideas and the intuition behind the proofs, we also refer to the discussion

in section 2. Recall the classification of states for each player’s Markov transition

structure from section 2.2.

3.1 The structure of the minmax-levels

3.1.1 The minmax-levels of the restricted games

Let k = (k1, . . . , kn) ∈ K. As in section 2.3.1, by restricting the state space to Ek =

E1
k1 × · · ·×En

kn and the action set of each player i to Āi
s in all states s ∈ Ek, we obtain

a restricted product-game, which we denote by Ḡk. Let v̄i
k,s denote the minmax-level

of player i in Ḡk for initial state s ∈ Ek.

Lemma 1 Let G be an arbitrary aperiodic product-game and consider the restricted

game Ḡk, for any k = (k1, . . . , kn) ∈ K, and an arbitrary player i. Then, the minmax-

level v̄i
k of any player i in Ḡk is constant, i.e. v̄i

k,s = v̄i
k,t for all states s, t ∈ Ek.

Moreover, in Ḡk, players −i have a joint stationary strategy x−i which guarantees that
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player i’s reward from any initial state s ∈ Ek is at most his minmax-level v̄i
k,s, i.e. for

all strategies πi for player i in Ḡk we have

γ̄i
s(π

i, x−i) ≤ v̄i
k,s,

where γ̄ denotes the average reward for the game Ḡk.

Proof. Consider such a restricted game Ḡk and a player i. Let αi := mint∈Ek
v̄i
k,t.

As is mentioned in the introduction, by applying Thuijsman & Vrieze [1991] for the

game Ḡk, there exists a state s′ ∈ {t ∈ Ek|v̄
i
k,t = αi} for which players −i have a joint

stationary strategy x−i such that for all strategies πi for player i in Ḡk we have

γ̄i
s′(π

i, x−i) ≤ v̄i
k,s′ = αi.

Let Z denote the set of all those states s ∈ {t ∈ Ek|v̄
i
k,t = αi} for which this x−i

satisfies for all strategies πi for player i in Ḡk that

γ̄i
s(π

i, x−i) ≤ αi.

Let xi be a completely mixed stationary strategy in Ḡk for player i. For the joint

stationary strategy (xi, x−i), take an arbitrary ergodic set F ⊂ Ek which is reached

from some initial state s ∈ Z with a positive probability. Then, by the definition of

x−i, we have F ⊂ Z. Due to the aperiodicity of Ei
ki and the definition of xi, it holds

that if u ∈ F then (ti, u−i) ∈ F for all states ti ∈ Ei
ki . Thus, the ergodic set F must be

of the form F = F̃ × Ei
ki for some non-empty

F̃ ⊂ E−i
k−i = ×j∈N−{i}E

j

kj .

Define a joint stationary strategy y−i for players −i in Ḡk as follows: let y−i
t = x−i

t

for all t ∈ F and let y−i
t be an arbitrary completely mixed action on Ā−i

t for all

t ∈ (Ek−F ). Now, y−i satisfies the following two properties, regardless the initial state

and player i’s strategy in Ḡk.

Property 1: play eventually visits F. This follows from the observation that players

−i eventually visit F̃ , due to the aperiodicity of Ej

kj for all j 6= i and the choice of y−i

outside F.

Property 2: once play reaches F , it will never leave it. This is so because F was

closed with respect to (xi, x−i) and y−i equals x−i on F.

In view of

F ⊂ Z ⊂ {t ∈ Ek|v̄
i
k,t = αi},
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property 1 implies that the minmax-level v̄i
k of player i in Ḡk equals the constant αi,

so the first part of the lemma follows.

We finally show that y−i satisfies the second part of the lemma. Let yi be a

stationary best reply of player i against y−i in Ḡk, and consider the joint stationary

strategy (yi, y−i). Suppose U is an ergodic set with respect to (yi, y−i). Then, by

properties 1 and 2, we have U ⊂ F , and hence U ⊂ Z as well. Because y−i equals x−i

on F , it follows for all u ∈ U that

γ̄i
u(yi, y−i) ≤ αi.

Since play eventually reaches an ergodic set, we conclude

γ̄i
u(yi, y−i) ≤ αi = v̄i

k,u

for all initial states u ∈ Ek. For yi is a best reply to y−i, we proved that y−i satisfies

the second part of the lemma.

We remark that if ki ∈ K∗i for all players i, then for all initial states in Ek, the

restricted game Ḡk is strategically equivalent to the original game G, and therefore

v̄i
k,s = vi

s for all players i and for all states s ∈ Ek. In view of the previous lemma,

minmax-level vi of any player i in the original game G is also constant on such an Ek.

3.1.2 The minmax-levels in simple product-games

We call a product-game G simple if it holds within any restricted game Ḡk for any

player i that, all payoffs to player i are equal, i.e. for any k ∈ K and for any player

i, we have ri
s(as) = ri

s(bs) for any state s ∈ Ek and for any joint actions as, bs ∈ Ās.

Hence, in simple product-games, all restricted games are trivial.

The following lemma deals with “solitary moves” of the players, as is described in

property A in section 2.3.2.

Lemma 2 Let G be a simple aperiodic product-game. Take an arbitrary player i and

a state s = (s1, . . . , sn) ∈ S.

(1) For any action ai
s ∈ Ai

s of player i, it holds that
∑

ti∈Si

pi
siai

s
(ti) vi

(ti,s−i) ≤ vi
s.

(2) For any joint action a−i
s ∈ A−i

s of players −i, it holds that
∑

t−i∈S−i

p−i

s−ia−i
s

(t−i) vi
(t−i,si) ≥ v−i

s .
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Proof. We only show part (1) of the lemma; part (2) can be proven similarly. Take

an arbitrary state s = (s1, . . . , sn) ∈ S, a player i and an action ai
s of player i in state

s. Let ε > 0. The idea of the proof is as follows. We construct a joint strategy (σi, π−i)

for initial state s and another joint strategy (πi, σ−i) for all initial states of the form

(ti, s−i), with ti ∈ Si; for other initial states the joint strategies are arbitrary. These

joint strategies will have the properties:

Property (a): with respect to (σi, π−i) and initial state s, player i’s reward is at

most his minmax-level up to ε, i.e. γi
s(σ

i, π−i) ≤ vi
s + ε.

Property (b): with respect to (πi, σ−i) and any initial state of the form (ti, s−i),

player i’s reward is at least his minmax-level up to ε, i.e. γi
(ti,s−i)

(πi, σ−i) ≥ vi
(ti,s−i)

−ε.

Property (c): player i’s expected reward is the same with respect to the following

two ways of playing from initial state s: (i) according to (σi, π−i) and (ii) player i

first executes the solitary move ai
s in state s, by which play moves to a state of the

form (ti, s−i), and subsequently from state (ti, s−i) the players start playing (πi, σ−i).

Formally,

γi
s(σ

i, π−i) =
∑

ti∈Si

pi
siai

si
(ti) · γi

(ti,s−i)(π
i, σ−i).

Properties (a) and (b) will follow immediately from the definitions of the strategies,

cf. step 1 below. On the other hand, property (c) will be implied by the observation,

cf. step 2 below, that play will settle in any restricted game Ḡk with equal probabilities

with respect to both ways of playing as mentioned in property (c). At this point, it is

essential that the game is simple and therefore all payoffs within any Ḡk are identical.

It follows from properties (a), (b) and (c) that

vi
s + ε ≥ γi

s(σ
i, π−i) (8)

=
∑

ti∈Si

pi
siai

si
(ti) · γi

(ti,s−i)(π
i, σ−i)

≥
∑

ti∈Si

pi
siai

si
(ti) ·

(
vi
(ti,s−i) − ε

)

=
∑

ti∈Si

pi
siai

si
(ti) · vi

(ti,s−i) − ε.

As ε > 0 was arbitrary, the proof will then be complete.

Step 1. The construction of two joint strategies: (σi, π−i) for initial state s and

(πi, σ−i) for all initial states of the form (ti, s−i). Before the construction of the

strategies, we define two maps φ and ψ, both of which will “transform” possible histories
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of play. More precisely, φ will transform histories with initial state s into histories with

initial states of the form (ti, s−i), while ψ will do it the other way around.

Let sm denote the state that play visited at stage m and let am denote the joint

action played by the players in state sm at stage m. The history up to stage m is then

the sequence hm = (s1, a1; s2, a2; . . . ; sm, am). For initial state s1 = s, let φ(hm) denote

the sequence of states and joint actions

φ(hm) := ((si
2, s

−i
1 ), (ai

2, a
−i
1 ); (si

3, s
−i
2 ), (ai

3, a
−i
2 ); . . . ; (si

m, s−i
m−1), (a

i
m, a−i

m−1)),

which is derived from hm by simply letting player i one step ahead of players −i. Note

that, as the action space of a player j in a product-game only depends on the j-th

coordinate of the state, the sequence φ(hm) could arise as a possible history up to

stage m− 1 (as it consists of m− 1 states and m− 1 corresponding joint actions) with

initial state (si
2, s

−i) = (si
2, s

−i
1 ). For infinite histories, φ is defined similarly.

For an initial state s1 = (ti, s−i), for some ti ∈ Si, we also define the transformation

ψ for hm by

ψ(hm) := (s, (ai
s, a

−i
1 ); (si

1, s
−i
2 ), (ai

1, a
−i
2 ); . . . ; (si

m−1, s
−i
m ), (ai

m−1, a
−i
m )),

where s and ai
s are the state and action that we fixed initially. (The notation ψs,ai

s

would be more precise to indicate the dependence of ψ on s and ai
s, but since we only

consider one s and one ai
s througout this proof, we omit the upper index here.) Note

that ψ(hm) could arise as a possible history up to stage m (as it consists of m states

and m corresponding joint actions) with initial state s. In ψ(hm), it is now players −i

who are one step ahead of player i.

Note that if s1 = s and ai
1 = ai

s (the state and action we fixed initially) then

ψ(φ(hm)) = hm−1. (9)

We start with the strategies for players −i. In view of the definition of the minmax-

level, there exists a joint strategy π−i of players −i such that player i’s reward from

initial state s cannot be more than his minmax-level up to ε, i.e. γi
s(τ

i, π−i) ≤ vi
s + ε

for all strategies τ i of player i.

Given π−i, define a history-dependent strategy σ−i for players −i for every initial

state s1 of the form s1 = (ti, s−i), for some ti ∈ Si, as follows. For stage 1 in state s1

(with empty history of play) let

σ−i
s1

(∅) := π−i
s (∅),
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where s = (s1, . . . , sn) is the state we fixed initially, and in general for stage m ≥ 2 in

state sm with past history hm−1 = (s1, a1; s2, a2; . . . ; sm−1, am−1) let

σ−i
sm

(hm−1) := π−i

(si
m−1

,s−i
m )

(ψ(hm−1)).

In words, in initial state s1 at stage 1, the joint strategy σ−i prescribes for players −i

to follow π−i as if the initial state was state s, while in state sm at stage m ≥ 2, to

follow π−i as if the past history was ψ(hm−1) and the present state was (s−i
m , si

m−1).

Now we define the strategies for player i. By the definition of the minmax-level

once more, there also exists a strategy πi for player i which defends the minmax-level

against σ−i up to ε, i.e. γi
t(π

i, σ−i) ≥ vi
t − ε for all initial states t.

Given πi, define also a strategy σi for player i for initial state s1 = s (for other

initial states, σi is arbitrary) as follows. For stage 1 in state s1 let

σi
s1

(∅) := ai
s,

where s and ai
s are the state and action that we fixed initially, and in general for stage

m ≥ 2 in state sm with past history hm−1 let

σi
sm

(hm−1) := πi

(si
m,s−i

m−1
)
(φ(hm−1)).

In words, in state s1 = s at stage 1, the strategy σi prescribes for player i to play action

ai
s, while in state sm at stage m ≥ 2, to follow πi as if the past history was φ(hm−1)

and the present state was (si
m, s−i

m−1).

Note that, by the definitions of π−i and πi, we have

γi
s(σ

i, π−i) ≤ vi
s + ε (10a)

and

γi
(ti,s−i)(π

i, σ−i) ≥ vi
(ti,s−i) − ε ∀ti ∈ Si. (11)

This completes step 1.

Step 2. The relation between the histories with respect to defined joint strategies

(σi, π−i) and (πi, σ−i). Since, σi and σ−i are defined with mixed actions used by πi

and π−i respectively, there is an important relation between the occurrence probabilities

of the histories with respect to the joint strategies (σi, π−i) and (πi, σ−i).

Take a possible history hm = (s1, a1; . . . ; sm, am) up to stage m with initial state

s1 = s and initial action ai
1 = ai

s for player i from state s. Let
{
hm ∗ (si

m+1, a
i
m+1)

}
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denote the event that the history up to stage m coincides with hm, and additionally,

player i is in state si
m+1 at stage m + 1 and he plays action ai

m+1 in state si
m+1 at

stage m + 1. Note that φ(hm+1) does not include s−i
m+1 and a−i

m+1, so it is clear which

sequence we mean by φ(hm ∗ (si
m+1, a

i
m+1)). Let

{
φ(hm ∗ (si

m+1, a
i
m+1))

}
denote the

event that the history up to stage m coincides with φ(hm ∗ (si
m+1, a

i
m+1)).

We will now show that for all stages m

Ps,(σi,π−i)

{
hm ∗ (si

m+1, a
i
m+1)

}
= pi

siai
s
(si

2) · P(si
2
,s−i),(πi,σ−i)

{
φ(hm ∗ (si

m+1, a
i
m+1))

}

(12)

for every possible history hm up to stage m with initial state s1 = s and initial action

ai
1 = ai

s for player i (this is the action that σi prescribes with probability 1) and for

every state si
m+1 and action ai

m+1 for player i.

We use induction on m. For any strategy τ j of any player j, let τ j
t (aj

t |h) denote

the probability that the mixed action τ j
t (h) puts on action aj

t . Take first m = 1. By

the definitions of the strategies, the lefthandside of (12) equals

Ps,(σi,π−i)

{
(s, a1) ∗ (si

2, a
i
2)

}
= π−i

s (a−i
1 |∅) · pi

siai
s
(si

2) · π
i
(si

2
,s−i)(a

i
2|∅),

where we used that σi prescribes ai
1 = ai

s with probability 1 at stage 1 in state s1 = s

and also that the mixed action prescribed by σi in state s2 at stage 2 equals the mixed

action πi
(si

2
,s−i)

(∅). On the other hand, the righthandside of (12) equals

pi
siai

s
(si

2) · P(si
2
,s−i),(πi,σ−i)

{
((si

2, s
−i); (ai

2, a
−i
1 ))

}
= pi

siai
s
(si

2) · π
i
(si

2
,s−i)(a

i
2|∅) · π

−i
s (a−i

1 |∅),

where for the last factor we used that the mixed action prescribed by σ−i in state

(si
2, s

−i) at stage 1 equals the mixed action π−i
s (∅). Hence, (12) holds for m = 1.

Suppose then that equality (12) is valid for a certain m. For m + 1 we obtain by the

definition of the strategies in a similar way that the lefthandside of (12) equals

Ps,(σi,π−i)

{
hm+1 ∗ (si

m+2, a
i
m+2)

}
(13)

= Ps,(σi,π−i)

{
hm ∗ (si

m+1, a
i
m+1)

}
· p−i

s−i
m a−i

m

(s−i
m+1) · π

−i
sm+1

(a−i
m+1|hm)

· pi
si
m+1

ai
m+1

(si
m+2) · π

i

(si
m+2

,s−i
m+1

)
(ai

m+2|φ(hm+1)),

where for the last factor we used

σi
sm+2

(hm+1) = πi

(si
m+2

,s−i
m+1

)
(φ(hm+1)).
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On the other hand, the righthandside of (12) equals

pi
siai

s
(si

2) · P(si
2
,s−i),(πi,σ−i)

{
φ(hm+1 ∗ (si

m+2, a
i
m+2))

}
(14)

= pi
siai

s
(si

2) · P(si
2
,s−i),(πi,σ−i)

{
φ(hm ∗ (si

m+1, a
i
m+1))

}

· pi
si
m+1

ai
m+1

(si
m+2) · π

i

(si
m+2

,s−i
m+1

)
(ai

m+2|φ(hm+1)) · p
−i

s−i
m a−i

m

(s−i
m+1) · π

−i
sm+1

(a−i
m+1|hm),

where for the last factor we used that in view of equalities (9) we have

σ−i

(si
m+2

,s−i
m+1

)
(φ(hm ∗ (si

m+1, a
i
m+1))) = π−i

sm+1
(hm).

In conclusion, from our assumption that (12) holds for m, and from equalities (13) and

(14), it follows that (12) holds for m + 1. Consequently, equality (12) holds for all

stages m ≥ 2.

Step 3. Final conclusions. Recall that, with respect to any initial state and any

joint strategy, play eventually settles, with probability 1, in a restricted game. Since

the game is simple, the average reward is determined by this restricted game.

Let h∞ denote any infinite history, with initial state s, with respect to which play

eventually settles in a restricted game Ḡk (and the corresponding set of states Ek =

×n
i=1E

i
ki). Then, with respect to φ(h∞), each player j eventually settles in the same

set Ej

kj , implying that play eventually settles in Ḡk (and Ek) with respect to φ(h∞)

as well. It is therefore clear by equalities (12) that the probability that this restricted

game is some Ḡk with respect to (σi, π−i) with initial state s equals the probability

that this is Ḡk when player i first executes the solitary move ai
s in state s, by which

play moves to a state of the form (ti, s−i), and subsequently from state (ti, s−i), the

players start playing (πi, σ−i). Hence

γi
s(σ

i, π−i) =
∑

ti∈Si

pi
siai

si
(ti) · γi

(ti,s−i)(π
i, σ−i).

Combining this with inequalities (10a) and (11), we obtain inequalities (8). As ε > 0

was arbitrary, the proof is complete.

Based on the previous lemma, we are able to derive more structural properties of

the minmax-levels of simple product-games.

Lemma 3 Let G be a simple aperiodic product-game, and Ei
ki a maximal communi-

cating set for player i, for some ki ∈ Ki.

28



(1) For any two states si, ti ∈ Ei
ki of player i and any joint state s−i ∈ S−i of

players −i, the minmax-level of player i satisfies vi
(si,s−i)

= vi
(ti,s−i)

.

(2) For any two joint states s−i, t−i ∈ E−i
k−i of players −i and any state si ∈ Si of

player i, the minmax-level of player i satisfies vi
(si,s−i)

= vi
(si,t−i)

.

Proof. We will show part (1); the proof of part 2 is similar. Take an arbitrary

s−i ∈ S−i. Let F i denote those states si ∈ Ei
ki for which vi

(si,s−i)
≤ vi

(ti,s−i)
for all

ti ∈ Ei
ki . Suppose by way of contradiction that Ei

ki − F i is not empty. Take a state

si ∈ F i and an action ai
si ∈ Āi

si which moves from state si to a state in Ei
ki − F i with

a positive probability. Then, the solitary move ai
si in state (si, s−i) for player i would

improve player i’s minmax-level in expectation, which contradicts part (1) of lemma 2.

Hence, F i = Ei
ki , and part (1) of the lemma follows.

Lemma 4 Let G be a simple aperiodic product-game, and Ek a joint maximal com-

municating set for some k ∈ K. Then, the minmax-level vi of any player i is constant

on Ek, i.e. vi
s = vi

t for all s, t ∈ Ek.

Proof. Take a player i and two arbitrary states s, t ∈ Ek. Then, by applying both

parts of lemma 3, we obtain

vi
s = vi

(si,s−i) = vi
(si,t−i) = vi

(ti,t−i) = vi
t,

hence the result.

The following lemma deals with the actions in the sets Āi
s, which keep play in the

same maximal communicating set with probability 1.

Lemma 5 Let G be a simple aperiodic product-game. Then, for any player i the

following properties hold.

(1) Let s = (s1, . . . , sn) be a state such that si belongs to a maximal communicating

set Ei
ki . Then, regardless the mixed action x−i

s played by players −i in state s, all the

actions in Āi
s guarantee in expectation the best possible minmax-level for player i after

transition, i.e. for any actions ai
s ∈ Āi

s and bi
s ∈ Ai

s it holds that
∑

t∈S

p
s,(ai

s,x−i
s )(t) vi

t ≥
∑

t∈S

p
s,(bi

s,x−i
s )(t) vi

t.

(2) Let s = (s1, . . . , sn) be a state such that sj belongs to a maximal communicating

set Ej

kj for all players j 6= i. Then, all joint actions in Ā−i
s for players −i in state s
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guarantee in expectation that player i’s minmax-level cannot increase after transition,

i.e. for any joint action a−i
s ∈ Ā−i

s and for any action ai
s ∈ Ai

s it holds that
∑

t∈S

p
s,(ai

s,a−i
s )(t) vi

t ≤ vi
s.

Proof. First we prove part (1). Take an arbitrary mixed action x−i
s for players −i,

and actions ai
s ∈ Āi

s and bi
s ∈ Ai

s for player i in state s. Then the transition from state

s according to (bi
s, x

−i
s ) can be decomposed into the following three subsequent steps.

Step 1. In state s, players −i play x−i
s while player i stays in Ei

ki by playing action

ai
s. By doing so, play moves to a state s̄ with ti ∈ Ei

ki .

Step 2. From state s̄, player i gets a sequence of solitary moves in the sense of part

(1) of lemma 2, and returns back to si. This can be achieved in a finite number of

moves, with probability 1, inside the maximal communicating set Ei
ki . After this step,

the new state is (si, s̄−i), and by lemma 4, player i’s minmax-level remains unchanged,

i.e. vi
s̄ = vi

(si,s̄−i)
.

Step 3. In state (si, s̄−i), player i gets a solitary move and he plays action bi
s. By

part (1) of lemma 2, player i’s minmax-level cannot increase during this step.

It is obvious that these three steps together induce the same transitions from state

s as the joint mixed action (bi
s, x

−i
s ). As player i’s minmax-level cannot increase during

steps 2 and 3, we conclude that step 1 with (ai
s, x

−i
s ) must be at least as good as the

three steps together with (bi
s, x

−i
s ) for the minmax-level of player i. Hence, the proof of

part (1) is now complete.

Part (2) of the lemma follows similarly. One can show just as in part (1), by

applying part (2) of lemma 2, that for all mixed actions xi
s of player i in state s, for all

joint actions a−i
s ∈ Ā−i

s and b−i
s ∈ A−i

s

∑

t∈S

p
s,(xi

s,a−i
s )(t) vi

t ≤
∑

t∈S

p
s,(xi

s,b−i
s )(t) vi

t.

Therefore, in state s, the infimum in equality (7) is attained at all a−i
s ∈ Ā−i

s , hence we

have for all a−i
s ∈ Ā−i

s and ai
s ∈ Ai

s that
∑

t∈S

p
s,(ai

s,a−i
s )(t) vi

t ≤ vi
s,

which proves part (2).

The next lemma examines the situation, for simple product-games, when player

i’s (unique) reward in a restricted game Ḡk is strictly smaller or strictly larger than
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his minmax-level in the original game (which is a constant by lemma 4). We refer to

observation D in section 2.3.2.

Lemma 6 Let G be a simple aperiodic product-game, and let Ek be a joint maximal

communicating set for some k = (k1, . . . , kn) ∈ K. Let zi
k denote player i’s unique

reward in the restricted game Ḡk, and vi
k be player i’s minmax-level on Ek in the game

G (a constant, cf. lemma 4).

(1) Suppose zi
k < vi

k. Then, there is a state si ∈ Ei
ki and an action ai

si ∈ Ai
si−Āi

si for

player i in state si such that if player i plays action ai
si in any state s = (si, s−i) ∈ Ek,

with s−i ∈ E−i
k−i , then player i’s minmax-level cannot decrease in expectation from state

s, regardless the actions played by players −i. More precisely, for any a−i
s ∈ A−i

s we

have ∑

t∈S

p
s,(ai

si ,a
−i
s )(t) vi

t ≥ vi
s.

(2) Suppose zi
k > vi

k. Then, there is a joint state s−i ∈ E−i
k−i of players −i and a

joint action a−i
s−i ∈ A−i

s−i − Ā−i
s−i (i.e. at least one player j 6= i plays outside Āj

sj ) such

that if players −i play joint action a−i
s−i in any state s = (si, s−i) ∈ Ek, with si ∈ Ei

ki ,

then player i’s minmax-level cannot increase in expectation from state s, regardless the

action played by player i. More precisely, for any ai
s ∈ Ai

s we have

∑

t∈S

p
s,(ai

s,a−i

s−i )
(t) vi

t ≤ vi
s.

Proof. We will prove part (1); the proof of part (2) is similar.

Step 1: Choosing state si and action ai
s. We will first argue that there must be at

least one state s ∈ Ek, joint action b−i
s ∈ Ā−i

s and action ai
s ∈ Ai

s − Āi
s such that

∑

t∈S

p
s,(ai

s,b−i
s )(t) vi

t ≥ vi
k. (15)

(In view of part (2) of lemma 5, even equality holds, but this is not needed for the

proof.) Suppose by way of contradiction that (15) does not hold, i.e. there exists an

α > 0 such that ∑

t∈S

p
s,(ai

s,b−i
s )(t) vi

t ≤ vi
k − α

holds for all s ∈ Ek, b−i
s ∈ Ā−i

s and ai
s ∈ Ai

s − Āi
s. For any initial state in Ek, suppose

players −i play in the following way: (1) players −i play an arbitrary joint strategy in
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Ḡk as long as player i only plays actions within the restricted game Ḡk; (2) as soon

as player i plays an action outside Ḡk, say action ai
s ∈ Ai

s − Āi
s in some state s ∈ Ek,

and play moves to some state t, then players −i start playing a joint strategy σ−i in

the original game G which guarantees that player i’s reward is at most vi
t + α/2 in G.

Then, if player i only plays actions within Ḡk, player i’s reward is exactly zi
k < vi

k,

while if player i decides to play such an action ai
s outside Ḡk, when players −i play

some joint action b−i
s , then his reward will be at most

∑

t∈S

p
s,(ai

s,b−i
s )(t) (vi

t +
1

2
α) =

∑

t∈S

p
s,(ai

s,b−i
s )(t) vi

t +
1

2
α ≤ vi

k −
1

2
α.

This would mean that player i is unable to defend vi
k from initial states in Ek in either

case, which would contradict the definition of the minmax-level vi of player i. Hence,

inequality (15) holds indeed for some s = (s1, . . . , sn) ∈ Ek, joint action b−i
s ∈ Ā−i

s and

action ai
s ∈ Ai

s − Āi
s.

Now si and ai
s are the state and action we were looking for. However, keep the

whole state s and the joint action b−i
s in mind, as we will use them below as well.

Step 2: Proving that state si and action ai
s satisfy part (1) of the lemma, for this

particular state s, i.e. for any a−i
s ∈ A−i

s we have

∑

t∈S

p
s,(ai

s,a−i
s )(t) vi

t ≥ vi
s.

Take an arbitrary a−i
s ∈ A−i

s . The transition from state s according to (ai
s, a

−i
s ) can be

decomposed into the following three subsequent steps.

Step A. In state s, player i plays action ai
s while players −i stays in E−i

k−i by playing

joint action b−i
s . By doing so, play moves to a state s̄ with s̄−i ∈ E−i

k−i , and by inequality

(15), player i’s minmax-level cannot decrease in expectation during this step.

Step B. From state s̄, players −i get a sequence of solitary moves in the sense of part

(2) of lemma 2, and return back to s−i. This can be achieved in a finite number moves,

with probability 1, inside the joint maximal communicating set E−i
k−i . After this step,

the new state is (ti, s−i), and by lemma 3, player i’s minmax-level remains unchanged

during step B, i.e. vi
s̄ = vi

(ti,s−i)
.

Step C. In state (ti, s−i), players −i get a solitary move and play joint action a−i
s .

By part (2) of lemma 2, player i’s minmax-level cannot decrease during this step.

It is obvious that these three steps A, B and C together induce the same transitions

from state s as the joint action (ai
s, a

−i
s ). As player i’s minmax-level cannot decrease
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during all steps, we conclude that

∑

t∈S

p
s,(ai

s,a−i
s )(t) vi

t ≥ vi
s,

which proves that state si and action ai
s satisfy part (1) of the lemma, for this particular

state s.

Step 3: Proving that state si and action ai
s satisfy part (1) of the lemma (not only

for state s, but for all states (si, t−i) ∈ Ek, with t−i ∈ E−i
k−i), i.e. for any a−i

s ∈ A−i
s

we have ∑

u∈S

p(si,t−i),(ai
s,a−i

t−i )
(u) vi

u ≥ vi
(si,t−i).

Take an arbitrary t−i ∈ E−i
k−i and a joint action b−i

t−i ∈ Ā−i
t−i . By lemma 3, vi is a

constant wi
ui on {ui} × E−i

k−i , for any ui ∈ Si. Then, as both b−i
t−i from joint state t−i

and b−i
s from joint state s−i keep play in E−i

k−i with probability 1, we have

∑

u∈S

p(si,t−i),(ai
s,b−i

t−i )
(u) vi

u =
∑

ui∈Si

pi
siai

s
(ui)wi

ui =
∑

u∈S

p
s,(ai

s,b−i
s )(u) vi

u,

hence by inequality (15)

∑

u∈S

p(si,t−i),(ai
s,b−i

t−i )
(u) vi

u =
∑

u∈S

p
s,(ai

s,b−i
s )(u) vi

u ≥ vi
s.

Now similarly to step 2, it follows for all a−i
t−i that

∑

u∈S

p(si,t−i),(ai
s,a−i

t−i )
(u) vi

u ≥ vi
(si,t−i),

which proves step 3 and part (1) of the lemma.

3.1.3 The minmax-levels of general product-games

Take an arbitrary product-game G. The next lemma presents a natural way of trans-

forming G into a simple product-game G̃, and claims that the minmax-levels of the

players remain unchanged under this transformation.

Lemma 7 Take an arbitrary aperiodic product-game G, with vi
s denoting the minmax-

level for every player i and for every state s ∈ S. Let v̄i
k denote player i’s minmax-level

in any restricted game Ḡk (which is constant, cf. lemma 1). Let G̃ denote the simple
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aperiodic product-game which is derived from G by replacing each player i’s payoffs in

any restricted game Ḡk by his minmax-level v̄i
k. Further, let wi

s denote every player i’s

minmax-level in G̃ in state s.

Then, the minmax-levels of the product-games G and G̃ are equal, i.e. vi
s = wi

s for

all players i and for all states s ∈ S.

Proof. Consider the original product-game G and take an arbitrary player i. For

this game G, we will show in step 1 below that players −i have a joint stationary

strategy x−i which guarantees that player i’s reward from any initial state s ∈ S is at

most wi
s, i.e. for all strategies πi for player i we have

γi
s(π

i, x−i) ≤ wi
s.

This yields vi
s ≤ wi

s for all states s ∈ S. Then, in step 2, we will prove vi
s ≥ wi

s for all

s ∈ S by showing that player i can defend wi in G, i.e. for any initial state s and for

any strategy σ−i for players −i, player i has a strategy πi such that γi
s(π

i, σ−i) ≥ wi
s.

Given steps 1 and 2, we will have vi
s = wi

s for all states s, so the proof will then be

complete.

Step 1: Proving that players −i have a joint stationary strategy x−i such that, for all

initial states s and for all strategies πi for player i, we have γi
s(π

i, x−i) ≤ wi
s. Note first

that wi
s is also a constant wi

k on any joint maximal communicating set Ek, by lemma

4 for the game G̃. We construct the joint stationary strategy x−i by distinguishing the

following three mutually exclusive cases.

Case 1: States s = (s1, . . . , sn) ∈ S such that sj is of type 1 for at least one player

j (possibly j = i). In any such a state s, let x−i
s ∈ X−i

s be a joint mixed action for

players −i such that for any mixed action xi
s ∈ Xi

s of player i we have

∑

t∈S

p
s,(x−i

s ,xi
s)

(t)wi
t ≤ wi

s.

Obviously, by expression (7) for player i’s minmax-level wi in G̃, such a joint mixed

action exists.

Case 2: States in a joint maximal communicating set Ek for which v̄i
k ≤ wi

k. Take

a joint stationary strategy y−i for player i in the corresponding restricted game Ḡk

(which is a part of the original game G) as in lemma 1. Then, let x−i
s = y−i

s for all

s ∈ Ek.

Case 3: States in a joint maximal communicating set Ek for which v̄i
k > wi

k. Take

a joint state t−i ∈ E−i
k−i and a joint “exit” action a−i

t−i ∈ Ā−i
t−i , with respect to the
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game G̃ and its minmax-level wi for player i, as in part (2) of lemma 6. Then, for any

s = (s1, . . . , sn) ∈ Ek, let x−i
s = a−i

t−i whenever s−i = t−i, and let x−i
s be an arbitrary

joint completely mixed action on Ā−i
s whenever s−i 6= t−i.

Take a stationary best reply xi of player i in G against x−i. We will show that

γi
s(x

i, x−i) ≤ wi
s for any initial state s ∈ S.

First, consider an arbitrary ergodic set F for (xi, x−i). As players −i will leave any

set Ek considered in case 3, we conclude that F ⊂ Ek for some Ek in case 2. Since xi

does not leave F, we also have xi
s ∈ X̄i

s for all s ∈ F , meaning that xi behaves on F as

a stationary strategy in the restricted game Ḡk. Hence, by the choice of x−i in case 2,

we have

γi
s(x

i, x−i) ≤ v̄i
k ≤ wi

k = wi
s (16)

for all s ∈ F . As F was an arbitrary ergodic set, we have γi
s(x

i, x−i) ≤ wi
s for all states

s that are recurrent for (xi, x−i).

Next, note that wi cannot increase in expectation after transition with respect to

(xi, x−i), i.e. P (xi, x−i)wi ≤ wi. Indeed, for cases 2 and 3 it is guaranteed by part (2)

of lemma 5 and by part (2) of lemma 6 (both applied to wi as the minmax-level of

player i in G̃), while it holds by construction for case 1. Consequently, we also have

Pm(xi, x−i)wi ≤ wi for all m ∈ N, yielding Q(xi, x−i)wi ≤ wi.

By applying equality (5), we now obtain

γi(xi, x−i) = Q(xi, x−i) · γi(xi, x−i) ≤ Q(xi, x−i) · wi ≤ wi,

where the first inequality follows from inequality (16) and from the fact that entry (t, s)

of the stochastic matrix Q(xi, x−i) is only positive if state s is recurrent for (xi, x−i).

Since xi is a best reply to x−i in G, the proof of step 1 is complete.

Step 2: Proving that against any joint strategy σ−i for players −i, player i has a

strategy πi such that γi
s(π

i, σ−i) ≥ wi
s for all initial states s. The proof is quite similar

to step 1. Given a joint strategy σ−i, player i should use a strategy πi which prescribes

to play as follows. First, in states where at least one player is in a state of type 1

(case 1∗, being the counterpart of case 1 in step 1), against any joint mixed action

prescribed by σ−i, player i can just play a mixed action such that wi does not decrease

in expectation. Next, if a joint maximal communicating set Ek satisfies v̄i
k ≥ wi

k (case

2∗, being the counterpart of case 2 in step 1), then player i can defend wi
k against σ−i

inside Ḡk, whereas if Ek satisfies v̄i
k < wi

k (case 3∗, being the counterpart of case 3 in

step 1), then player i can leave Ek due to part (1) of lemma 6.

We remark here that, although cases 1∗ and 3∗ can be done in a stationary way,

case 2∗ may require a history-dependent strategy for player i. As πi is not necessarily
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stationary, the proof that such a πi defends wi in G against σ−i, i.e. γi
s(π

i, σ−i) ≥ wi
s

for all s ∈ S, differs slightly from the proof in step 1, and therefore we provide a short

proof.

Consider (πi, σ−i) and take an arbitrary initial state s ∈ S. As we know, play

eventually settles, with probability 1, in a restricted game. Let ξ denote the random

variable for the index of this restricted game (so play settles in restricted game Ḡξ).

Due to the construction of πi, the corresponding set of states Eξ falls under case 2∗,

and not under case 3∗. Hence, for player i’s reward we have

γi
s(π

i, σ−i) ≥ Es,(πi,σ−i)(v̄
i
ξ) ≥ Es,(πi,σ−i)(w

i
ξ).

(Note that this inequality is the counter-part of inequality (16) from step 1.)

Notice further that, by the construction of πi, player i is assured that wi cannot

decrease in expectation during play with respect to (πi, σ−i) and initial state s, i.e. if

W i
m denotes the random variable for the minmax-level of player i in the state at stage

m, then given any possible outcome w′ ∈ R we have

Es,(πi,σ−i)(W
i
m+1|W

i
m = w′) ≥ w′.

(Note that this inequality is the counter-part of inequality P (xi, x−i)wi ≤ wi from step

1.) Hence,

wi
s ≤ Es,(πi,σ−i)

(
wi

ξ

)
.

(This conclusion is very intuitive, and it immediately follows from basic optional stop-

ping theorems for submartingales, as we only have finitely many states and actions.

Note that this inequality is the counter-part of inequality wi ≥ Q(xi, x−i)wi from step

1.) In conclusion,

γi
s(π

i, σ−i) ≥ Es,(πi,σ−i)(w
i
ξ) ≥ wi

s,

proving step 2.

The previous lemma (and its proof) has important consequences. First, the results

from section 3.1.2 are now applicable to general aperiodic product-games, providing us

the necessary structural properties of the minmax-levels in the general context. This

is stated next.

Corollary 8 The results of lemmas 2 up to 5 in section 3.1.2 for simple aperiodic

product-games are also valid for any general aperiodic product-game G. Lemma 6

extends as well if one interprets zi
k as the minmax-level v̄i

k of player i in the restricted

game Ḡk (note that v̄i
k is constant on Ek by lemma 1, and evidently coincides with zi

k

of G̃, where G̃ is the simple product-game derived in lemma 7).
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Notice that, as a consequence of the proof of lemma 7, the joint stationary strategy

x−i in step 1 in the proof guarantees in the original game G that player i’s reward from

any initial state s ∈ S is at most vi
s = wi

s. Hence, the infimum in expression (6) of

the minmax-levels is attained at stationary strategies, for all product-games. This will

become important later, as we are heading towards 0-equilibria, which do not allow

even small positive error terms.

Corollary 9 (of step 1 of the proof of lemma 7) Take an aperiodic product-game G

and an arbitrary player i. Then, players −i have a joint stationary strategy x−i which

guarantees that player i’s reward from any initial state s ∈ S is at most his minmax-

level vi
s, i.e. for all strategies πi for player i we have

γi
s(π

i, x−i) ≤ vi
s.

With the help of this corollary, we are now ready to prove Main Theorem 2, which

claimed that, in every two-player aperiodic zero-sum product-game, both players have

a stationary 0-optimal strategy.

Proof of Main Theorem 2. Take an arbitrary two-player aperiodic zero-sum

product-game, and take player i = 1. By corollary 9, there exists a stationary strategy

x−1 for player 2 (as −1 = {2}) which guarantees that player 1’s reward is not more

than v1
s for any initial state s ∈ S. Hence, x−1 is 0-optimal for player 2. One finds

similarly a stationary 0-optimal strategy for player 1, which completes the proof.

3.2 The construction of 0-equilibria in product-games

In section 3.1 we achieved several results for the minmax-levels of aperiodic product-

games. We will use this knowledge now to construct 0-equilibria in aperiodic product-

games.

The following lemma deals with the restricted games. It states that, in any restricted

game, there exists a 0-equilibrium in which, if no player deviates, the players’ future

expectations remain unchanged during the whole play.

Lemma 10 Let G be an arbitrary aperiodic product-game and consider the restricted

game Ḡk, for any k = (k1, . . . , kn) ∈ K. Then, there exists a 0-equilibrium π in Ḡk

such that the corresponding rewards are independent of the initial state and all the

continuation rewards remain unchanged with probability 1 during the whole play. More

precisely, the reward γ̄i
s(π[h]) is independent of the initial state s ∈ Ek and the history
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h, given h occurs with a positive probability with respect to π. Here γ̄ denotes the average

reward for the restricted game Ḡk.

Proof. Observe the following for the game Ḡk.

(i) The set of feasible rewards (i.e. the rewards that can be obtained by some joint

strategy) is the same from any initial state in Ek. This is an immediate consequence of

the fact that, as Ek is an aperiodic joint maximal communicating set, the players can

move from any state in Ek to any other one in Ek, possibly in a number of steps.

(ii) The extreme points of the set of feasible rewards are induced by pure stationary

strategies (cf. for example the appendix in Dutta [1995]).

(iii) Each minmax-level in Ḡk is a constant v̄i
k, by lemma 1.

Given these three observations, this game situation is almost identical to a repeated

game. The following ideas and arguments are standard in Folk-theorems for repeated

games. For the context of stochastic games, we refer to Dutta [1995]. Take an arbitrary

feasible reward zk = (z1
k, . . . , zn

k ) such that zi
k ≥ v̄i

k for all players i. By property (ii),

we may write zk as a convex combination of rewards corresponding to pure stationary

strategies al, l = 1, . . . , L, i.e.

zk =
L∑

l=1

αl · γ̄(al).

Let σ be the pure joint strategy which prescribes to play as follows: play a1 for d1
1

stages, then a2 for d1
2 stages, ..., then aL for d1

L stages, and repeat this with lengths

d2
1, . . . , d

2
L, then with lengths d3

1, . . . , d
3
L, and so on. The lengths dm

l have to be chosen

in such a way that, when m tends to infinity, then we have for each l ∈ {1, . . . , L} that

(a) dm
l goes to infinity, so that the expected average payoff when strategy al is played

for dm
l stages will approach γ̄(al); (b) dm

l /(dm
1 + . . . + dm

L ) tends to αl, so that al is

played in the right proportion of time; (c)

dm
l

(d1
1 + . . . + dm

L ) + . . . + (dm−1
1 + . . . + dm−1

L ) + dm
1 + . . . + dm

l−1

tends to 0, so that the average payoffs will fluctuate less and less. Due to these three

properties, σ induces reward zk, and moreover, any continuation reward is also zk, i.e.

γ̄s(σ[h]) = zk for all states s ∈ Ek and for all histories h. Let π be the joint strategy

which prescribes to play σ, unless some player i deviates from the action prescribed
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by σi. In that case, from the new state, players −i should switch to a joint stationary

strategy x−i as in lemma 1. Since the players receive zk ≥ v̄k according to σ, while

if a player i deviates then his reward is not more than v̄i
k, the joint strategy π is a

0-equilibrium and satisfies the requirements of the lemma.

Now we are sufficiently prepared to prove Main Theorem 1, which claimed that, in

any aperiodic product-game, there exists a 0-equilibrium.

Proof of Main Theorem 1. Take an arbitrary aperiodic product-game G. For

any player i, in view of corollary 9, we may take a joint stationary strategy y−i for

players −i such that for all initial states s ∈ S and for all strategies τ i for player i we

have

γi
s(τ

i, y−i) ≤ vi
s.

We will below define a joint strategy π with important properties, amongst others

that the rewards are individually rational. The main idea for the construction of a

0-equilibrium is then to let the players play π, unless some player i deviates from πi

and plays an action on which πi puts probability zero. If player i deviates in such a

way, then from the next state, say state s, players −i switch to the joint strategy y−i

and push down player i’s reward to a level of at most vi
s. In fact, y−i acts as a threat

strategy, which forces player i to follow the prescriptions of πi. We wish to remark

that the use of such threat strategies for the construction of equilibria is standard in

stochastic games.

The proof of Main Theorem 1 consists of the following steps. In step 1, we con-

struct a joint stationary strategy x∗, which is used to reach the “right” joint maximal

communicating sets. Then, in step 2 we “extend” x∗ to the joint strategy π accord-

ing to which the players also receive the “right” rewards in the “right” joint maximal

communicating sets. Finally, in step 3, we will complete the proof by showing that π

supplemented with the joint stationary strategies y−i, for all i, as is described above,

forms a 0-equilibrium.

Step 1: The construction of the joint stationary strategy x∗ and a number of prop-

erties of x∗. As is mentioned above, x∗ will “guide” the players to the “right” joint

maximal communicating sets. In order to arrive at x∗, two supplementary games G̃

and G∗ have to be constructed. The game G̃ is a simple aperiodic product-game that

we derive from G, whereas G∗ is a stochastic game (not necessarily a product-game)

that we obtain by restricting the players in G̃ to certain mixed actions. Given G∗, the

joint strategy x∗ will be found as a stationary 0-equilibrium in the game G∗.
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Step 1.1: The simple aperiodic product-game G̃. Take a 0-equilibrium σk in every

restricted game Ḡk as in lemma 10. Let zi
k denote the corresponding reward for any

player i, which is independent of the initial state. Let G̃ denote the simple aperiodic

product-game which is derived from G by replacing each player i’s payoffs in any

restricted game Ḡk by zi
k. Further, let wi

s denote player i’s minmax-level in G̃ from

initial state s. Recall that wi
s is a constant wi

k on Ek, by lemma 4.

We will now argue that wi
s ≥ vi

s for all players i and for all states s ∈ S. By lemma

7, vi equals player i’s minmax-level in the simple aperiodic product-game G′ which is

derived from G by replacing each player i’s payoffs in any restricted game Ḡk by v̄i
k.

Since zi
k is a 0-equilibrium reward in Ḡk, we have zi

k ≥ v̄i
k. This means that player

i’s payoffs in G̃ are always larger or equal to his corresponding payoffs in G′, hence

wi
s ≥ vi

s must hold indeed, for all players i and for all states s ∈ S.

Step 1.2: The stochastic game G∗. In this step, we will define a stochastic game G∗

which is derived from G̃ by restricting each player i in each state s ∈ S to a certain

(non-empty) subset X∗i
s ⊂ Xi

s of mixed actions. First, for every state s = (s1, . . . , sn)

which belongs to some joint maximal communicating set Ek, fix an arbitrary completely

mixed action ȳi
s for every player i on X̄i

s. Second, suppose that Ḡk is a restricted game

such that zi
k < wi

k for player i and that zj
k ≥ wj

k for all j ∈ {1, . . . , i − 1}. Then take

a state si
k ∈ Ei

ki and an “exit” action ai
k for player i in state si

k, with respect to the

game G̃ and its minmax-level wi, as in part (1) of lemma 6.

Now, given these fixed pure and mixed actions, we will now define the subset X∗i
s ⊂

Xi
s of mixed actions for every player i in every state s = (s1, . . . , sn) ∈ S as follows.

First, if s is a state such that sj is of type 1 for at least one player j, then we let X∗i
s :=

Xi
s for all players i. Otherwise, for states belonging to a joint maximal communicating

set Ek, depending on the relation between zk and the players’ minmax-levels wk, we

distinguish the following mutually exclusive cases:

Case (a): zi
k ≥ wi

k holds for all players i. Then, we let X∗i
s := {ȳi

s} for all players i.

Case (b): zi
k < wi

k holds for player i and zj
k ≥ wj

k holds for all j ∈ {1, . . . , i− 1}. Then,

for players j 6= i, we let X∗j
s := {ȳj

s}. As for player i, if si = si
k then we let X∗i

s := {ai
k},

while if si 6= si
k then we let X∗i

s := {ȳi
s}.

Notice that, due to the construction in cases (a) and (b), joint strategies x ∈ X∗

can only differ in states s such that sj is of type 1 for at least one player j. Moreover,

the ergodic sets for all x ∈ X∗ are precisely the joint maximal communicating sets Ek

belonging to case (a), due to the use of the “exit” actions which eventually make play

leave each Ek belonging to case (b).
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Let G∗ denote the stochastic game which is derived from G̃ by restricting each

player i in each state s ∈ S to the space X∗i
s of mixed actions. The game G∗ is a well-

defined stochastic game (with the extreme points of X∗i
s , for every s ∈ S and for every

player i, acting as the set of pure actions for player i in state s), but not necessarily a

product-game.

Step 1.3: Defining x∗ as a stationary 0-equilibrium of G∗ and proving a number

of properties of x∗. As the ergodic sets are the same for all x ∈ X∗, lemma 12 in the

appendix yields a stationary 0-equilibrium x∗ ∈ X∗ for the game G∗. Obviously, x∗

is also a joint stationary strategy in the game G̃ and in the original game G, but not

necessarily a 0-equilibrium.

As a conclusion of step 1.3, we wish to point out three properties of x∗ in the game

G̃, and provide a proof.

Property (1): If s = (s1, . . . , sn) ∈ S is a state such that sj is of type 1 for at

least one player j, then no player i can go to better states regarding his reward by

unilaterally deviating from x∗i
s , i.e. for every action bi

s ∈ Ai
s we have

∑

t∈S

p
s,(bi

s,x∗−i
s )(t) γ̃i

t(x
∗) ≤

∑

t∈S

psx∗
s
(t) γ̃i

t(x
∗),

where γ̃i denotes the average reward to player i in the game G̃.

Property (2): If s = (s1, . . . , sn) ∈ S is a state such that si is of type 2 for all

players i, then no player i can improve on his expected minmax-level in the next state

by unilaterally deviating from x∗i
s , i.e. for every action bi

s ∈ Ai
s we have

∑

t∈S

p
s,(bi

s,x∗−i
s )(t)wi

t ≤
∑

t∈S

psx∗
s
(t)wi

t.

Consequently, equality (7) also yields

wi
s =

∑

t∈S

psx∗
s
(t)wi

t. (17)

Property (3): x∗ yields individually rational rewards in G̃ for all initial states, i.e.

γ̃i
s(x

∗) ≥ wi
s for all players i and for all initial states s ∈ S.

Now, we provide the proofs for these properties.

Proof of property (1): This property follows from the fact that x∗ is a 0-equilibrium

in G∗, and no player is restricted in G∗ in state s.

Proof of property (2): This is due to parts (1) of lemmas 5 and 6.
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Proof of property (3): This property requires a longer argument. Notice that, as

x∗ ∈ X∗, all ergodic sets for x∗ are precisely the joint maximal communicating sets Ek

belonging to case (a), as is pointed out in step 1.2. Hence, if s ∈ S is recurrent for x∗,

then s belongs to some Ek considered under case (a), and we conclude for every player

i’s reward corresponding to x∗ from initial state s that

γ̃i
s(x

∗) = zi
k ≥ wi

k = wi
s, (18)

where γ̃i denotes the average reward to player i in the game G̃. This proves that x∗

yields individually rational rewards in G̃ for all initial states that are recurrent for x∗.

By applying equalities (7) for the game G̃, in every state s = (s1, . . . , sn) ∈ S where

sj is of type 1 for at least one player j, there exists a mixed action xi
s ∈ Xi

s = X∗i
s for

player i which defends wi
s against x∗−i

s in the sense that

∑

t∈S

p
s,(xi

s,x∗−i
s )(t)wi

t ≥ wi
s. (19)

Given these mixed actions xi
s in such states s, there is a unique extension (with the

mixed actions prescribed by x∗ in all states belonging to joint maximal communicat-

ing sets) to a stationary strategy xi in X∗i. Consider the joint stationary strategy

(xi, x∗−i) ∈ X∗. Then, the recurrent states for (xi, x∗−i) and for x∗ coincide (as both

belong to X∗, cf. step 1.2) and if s ∈ S is recurrent for x∗ then (as xi equals x∗i on all

reccurent states) we have

γ̃i
s(x

i, x∗−i) = γ̃i
s(x

∗). (20)

Then, equalities (17) together with inequalities (19) yield P (xi, x∗−i)wi ≥ wi, which

implies Pm(xi, x∗−i)wi ≥ wi for all m ∈ N. Hence, Q(xi, x∗−i)wi ≥ wi. By applying

equality (5), we now obtain

γ̃i(xi, x∗−i) = Q(xi, x∗−i) · γ̃i(xi, x∗−i) ≥ Q(xi, x∗−i) · wi ≥ wi,

where the first inequality follows from inequality (18) and equality (20), and from the

fact that entry (t, s) of the stochastic matrix Q(xi, x∗−i) is only positive if state s is

recurrent for (xi, x∗−i), or equivalently, recurrent for x∗. Since x∗i is a best reply to

x∗−i in G∗ and since xi ∈ X∗i, we have

γ̃i
s(x

∗) ≥ γ̃i
s(x

i, x∗−i) ≥ wi
s

for all initial states s ∈ S, which proves property (3).
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Step 2 . The construction of the joint strategy π for the original game G. Given x∗

from step 1, the definition of π is easy. Let π be the joint strategy which prescribes to

play as follows:

Case (1): states s = (s1, . . . , sn) ∈ S in which sj of type 1 for at least one player j.

In this case, each player i follows x∗, i.e. plays the mixed action x∗i
s .

Case (2): when play reaches a joint maximal communicating set Ek for which

zi
k ≥ wi

k holds for all players i (cf. case (a) in step 1.2). In this case, the players switch

to the joint strategy σk (cf. step 1.1).

Case (3): when play reaches a joint maximal communicating set Ek for which

zi
k < wi

k holds for player i and zj
k ≥ wj

k holds for all j ∈ {1, . . . , i − 1} (cf. case (b) in

step 1.2). In this case, players −i switch to a joint stationary strategy as in lemma 1,

while player i follows x∗, i.e. plays the mixed action x∗i
s in state s ∈ Ek.

Notice that play leaves all sets Ek in case (3), due to the exit made by player i,

with the guidance of x∗. Moreover, notice also that in a set Ek in case (2), by switching

to σk, each player i receives in expectation reward zi
k in the game G, which is exactly

what the players would receive within Ek according to x∗ in the game G̃. So in some

sense, x∗ is used to reach the “right” joint maximal communicating sets, and then σk

takes over to induce the “right” payoffs in the original game G. Thus

γi
s(π) = γ̃i

s(x
∗)

for all initial states s ∈ S and for all players i, which by property (3) of step 1.3 yields

that π induce rewards at least wi for each player i. In view of this, player i will have

an incentive to “exit” in any set Ek in case (2), since within Ḡk he can get at most v̄i
k,

while v̄i
k ≤ zi

k < wi
k.

Step 3 . Proving that π supplemented with the joint stationary strategies y−i, for

all players i, is a 0-equilibrium. Let η be the joint strategy which prescribes to play π,

unless some player i deviates from πi and plays an action on which πi puts probability

zero. If player i deviates in such a way, then from the next state, players −i switch to

the joint strategy y−i and play it for the rest of play. As is already mentioned, the role

of y−i is to force every player i to follow the prescriptions of πi.

Note that the expected rewards with respect to η in the original game G equals the

expected rewards with respect to π in the original game G, which is then also equal to

the rewards with respect to x∗ in the game G̃, i.e.

γi
s(η) = γi

s(π) = γ̃i
s(x

∗)
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for all initial states s ∈ S and for all players i. Notice also that if h denotes a history

and s ∈ S a state such that, with a positive probability, h can occur and s can be the

present state after h with respect to η (or equivalently with respect to π), then

γi
s(η[h]) = γi

s(π[h]) = γi
s(π) = γ̃i

s(x
∗), (21)

where for the second equality we used that for σk the “continuation rewards” remain

the same due to lemma 10. Hence, according to property (3) in step 1.3 above, we have

γi
s(η[h]) ≥ wi

s (22)

for all players i and for such histories h and states s ∈ S. Since wi
s ≥ vi

s, as is proven in

step 1.1, we conclude that η yields individually rational rewards in G, i.e. γi
s(η[h]) ≥ vi

s

for all players i and for such histories h and states s ∈ S.

It remains to show that η is a 0-equilibrium in G. Notice first that no deviation

which only uses actions that had a positive probability according to η can improve the

expected reward of any player. Indeed, (i) within a set Ek belonging to case (2) in

step 2, the players play the 0-equilibrium σk in Ḡk, (ii) within a set Ek belonging to

case (3) in step 2, such deviation by players −i (who do not make the “exit”) would

not change the probability of eventually moving to another set Ek′ , (iii) within a set

Ek belonging to case (3) in step 2, player i has an incentive to “exit” (as is already

pointed out in step 2), since within Ḡk he can get at most v̄i
k, and v̄i

k ≤ zi
k < wi

k, (iv)

in states belonging to case (1) in step 2, no player i can go to better states regarding

his reward according to equalities (21) and to property (1) from step 1.3.

So, consider now a deviation when, for the first time, say after history h in state s,

when the players should play the joint mixed action x′
s according to η, a player i deviates

and plays an action bi
s which has probability zero according to ηi, i.e. x′i

s (bi
s) = 0. This

deviation is immediately noticed by players −i and, according to η, they switch to the

joint stationary strategy y−i from the next state, say state t. Consequently, player i’s

reward will be at most vi
t in expectation. Obviously, without deviation player i would

receive reward γi
s(η[h]) = γ̃i

s(x
∗), in view of equalities (21). Now, observe the following.

(A) Suppose s is a state in which sj is of type 1 for at least one player j (possibly
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j = i). Then, x′
s = x∗

s, and player i’s expected reward after this deviation is at most

∑

t∈S

p
s,(bi

s,x∗−i
s )(t) vi

t ≤
∑

t∈S

p
s,(bi

s,x∗−i
s )(t)wi

t

≤
∑

t∈S

p
s,(bi

s,x∗−i
s )(t) γ̃i

t(x
∗)

≤
∑

t∈S

psx∗
s
(t) γ̃i

t(x
∗)

= γ̃i
s(x

∗)

= γi
s(η[h]),

where the first inequalilty follows from vi ≤ wi as is pointed out in step 1.1; the second

and the third inequalities follow from properties (3) and (1) in step 1.3, respectively;

then the equalities follow from (4) and (21). Hence, the deviation is not profitable.

(B) Suppose s ∈ Ek for some joint maximal communicating set Ek. Then, player

i’s expected reward after this deviation is at most

∑

t∈S

p
s,(bi

s,x′−i
s )(t) vi

t ≤
∑

t∈S

p
s,(bi

s,x′−i
s )(t)wi

t ≤
∑

t∈S

psx′
s
(t)wi

t ≤ γi
s(η[h]),

where the first inequalilty follows from vi ≤ wi as is pointed out in step 1.1, the second

inequality follows from parts (1) of lemmas 5 and 6 for the game G̃, while the last

inequality from inequalities (22). Hence, the deviation is not profitable again.

In conclusion, no deviation is profitable, and η is a 0-equilibrium in G. This com-

pletes the proof of Main Theorem 1. ¥

Remark 11 It remains unclear whether 0-equilibria always exist within the class of

stationary strategies. This question is already challenging in the situation when each

player i’s state space Si is just one maximal communicating set (precisely the situation

we have in a restricted game), meaning that S is one joint maximal communicating set.

Even though, corollary 8 would yield that all minmax-levels are constant on the whole

state space S, it is still not evident how one should get a grip on the problem.

4 Periodic product-games

The previous sections dealt with aperiodic product-games. When we allow for periodic

maximal communicating sets, the situation changes. Take for example a product-game

with two players in which the Markov transition structure for either player is as follows:
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the state space is {1, 2}, there is only one action in either state, and this action leads

to the other state with probability 1. So in the product-game, depending on the initial

state, play moves back and forth either between states (1, 1) and (2, 2) or between

states (1, 2) and (2, 1). This game is periodic, of course. Suppose the payoffs for either

player are 1 in states (1, 1) and (2, 2), while 0 in states (1, 2) and (2, 1). Then, a solitary

move for player 1 in state (1, 2) would lead to state (2, 2), improving player 1’s payoff.

Hence, the important lemma 2 is no longer valid for periodic product-games, and the

proof in the previous sections are not directly applicable. Notice also that this game

has two joint maximal communicating sets, i.e. {(1, 1), (2, 2)} and {(1, 2), (2, 1)}, but

neither of them can be written as a product of the form E1×E2. This entails additional

difficulties, and makes the analysis more technical. Nevertheless, we conjecture that

the main results of this paper extend to the periodic case as well.

5 Appendix

Lemma 12 In a stochastic game, if the ergodic sets are the same for all joint station-

ary strategies, then there exists a stationary 0-equilibrium.

Proof. For a joint stationary strategy x ∈ X, consider the β-discounted reward,

with β ∈ (0, 1), defined for player i and initial state s ∈ S as

γi
βs(x) := (1 − β)

∞∑

m=1

βm−1
Esx

(
Ri

m

)
,

where Ri
m is the random variable for the payoff for player i at stage m, and where

Esx stands for expectation with respect to initial state s and joint strategy x. Fink

[1964] and Takahashi [1964] showed that, for every β ∈ (0, 1), there exists a stationary

0-equilibrium with respect to the β-discounted rewards.

As the ergodic sets are the same for all joint stationary strategies, it is known (cf.

lemma 2.7.6 in Flesch [1998]) that for any sequence of discount factors βm converging

to 1 and joint strategies xm converging to x we have

γi
s(x) = lim

m→∞
γi

βms(xm) (23)

for all states s ∈ S and players i.

We will now work with a number of sequences in compact spaces. By taking sub-

sequences, we may assume that all these sequences have limits. Let βm be a sequence
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of discount factors converging to 1, and for any m ∈ N, let xm be a stationary βm-

discounted 0-equilibrium. Let x = limm→∞ xm. We will show that x is a 0-equilibrium

with respect to the average reward.

Take an arbitrary player i and a stationary best reply yi to x−i. Then for any initial

state s ∈ S, from (23) and from the fact that xm is a βm-discounted 0-equilibrium, it

follows that

γi
s(y

i, x−i) = lim
m→∞

γi
βms(y

i, x−i
m ) ≤ lim

m→∞
γi

βms(xm) = γi(x).

As yi is a best reply to x−i, the joint strategy x is a stationary 0-equilibrium with

respect to the average reward indeed.
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