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Abstract We consider several parallel machine scheduling settings with the objective to min-
imize the schedule makespan. The most general of these settings is unrelated parallel machine
scheduling. We assume that, in addition to its machine dependence, the processing time of
any job is dependent on the usage of a scarce renewable resource. A given amount of that
resource, e.g. workers, can be distributed over the jobs in process at any time, and the more
of that resource is allocated to a job, the smaller is its processing time. This model generalizes
classical machine scheduling problems, adding a time-resource tradeoff. It is also a natural
variant of a generalized assignment problem studied previously by Shmoys and Tardos. On
the basis of integer programming formulations for relaxations of the respective problems, we
use LP rounding techniques to allocate resources to jobs, and to assign jobs to machines.
Combined with Graham’s list scheduling, we thus prove the existence of constant factor ap-
proximation algorithms. Our performance guarantee is (4 + 2

√
2) ≈ 6.83 for the most general

case of unrelated parallel machine scheduling. We improve this bound for two special cases,
namely to (3 + 2

√
2) ≈ 5.83 whenever the jobs are assigned to machines beforehand, and to

(5 + ε) whenever the processing times do not depend on the machine. Moreover, we discuss
tightness of the relaxations, and derive inapproximability results.

1. Introduction

Unrelated parallel machine scheduling to minimize the makespan, R| |Cmax in
the three-field notation of Graham et al. [7], is one of the classical problems in
combinatorial optimization. Given are n jobs that have to be scheduled on m
parallel machines, and the processing time of job j on machine i is pij . The
goal is to minimize the latest job completion, the makespan Cmax. If the num-
ber of machines m is not fixed, the best approximation algorithm to date is
a 2-approximation by Lenstra, Shmoys and Tardos [15]. Moreover, the prob-
lem cannot be approximated within a factor smaller than 3/2, unless P=NP
[15]. When the processing times pij are identical on all machines i, the prob-
lem is called identical parallel machine scheduling, or P | |Cmax. It is strongly
NP-hard [3] and admits a polynomial time approximation scheme [10].

Shmoys and Tardos [18] consider the unrelated parallel machine scheduling
problem with the additional feature of costs λij if job j is processed on machine i.
They show that, if a schedule with total cost Λ and makespan T exists, a schedule
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with total cost Λ and makespan at most 2T can be found in polynomial time.
The proof relies on rounding the solution of an LP relaxation. They obtain the
same result even for a more general version of the problem, namely when the
processing time pij of any job-machine pair is not fixed, but may be reduced
linearly, in turn for a linear increase of the associated cost λij [18]. Note that,
in both versions of the problem studied in [18], the costs λij are nonrenewable
resources, such as a monetary budget, with a global budget Λ.

In this paper, we consider three machine scheduling settings, the most general
being an unrelated parallel machine scheduling problem. This unrelated parallel
machine scheduling problem is in fact a different variant of the problem con-
sidered by Shmoys and Tardos in [18]. Namely, we assume that the processing
times pij of any job j, if processed on machine i, can be reduced by utilizing a
renewable resource, such as additional workers, that can be allocated to the job.
More precisely, a maximum number of k units of a resource is available at any
time. It may be used to speed up the jobs, and the available amount of k units
of that resource must not be exceeded at any time. In contrast to the linearity
assumption on the costs and processing times in [18], the only assumption we
make in this paper is that the processing times pijs, which now depend also on
the number s of allocated resources, are non-increasing in s for each job-machine
pair. That is, we assume that pij0 ≥ pij1 ≥ · · · ≥ pijk for all jobs j and all ma-
chines i. The two other settings that we consider are special cases: We consider
the problem where jobs are assigned to machines beforehand, sometimes also
called dedicated parallel machine scheduling [13,14], and the problem where the
processing time of any job is independent on the machine that processes the job,
the identical parallel machine scheduling problem.

The practical motivation to study these time-resource tradeoff problems is ev-
ident; to give an example, one may think of production planning where additional
(overtime) workers can be allocated to specific tasks within the production in
order to reduce the production cycle time. As a matter of fact, machine schedul-
ing problems with the additional feature of a nonrenewable resource constraint,
such as a total budget, have received quite some attention in the literature as
time-cost tradeoff problems. To give a few references, see [2,11,12,18,19]. Sur-
prisingly, the corresponding time-resource tradeoff problems, that is, problems
with a renewable resource constraint such as personnel, have received much less
attention, although they are not less appealing from a practical viewpoint.

2. Results and related work

Related work. In a manuscript by Grigoriev et al. [8], a restricted version of the
problem at hand is addressed. They consider the setting where jobs are assigned
to machines beforehand, the dedicated parallel machine setting. Furthermore,
their model assumes a binary resource, that is, there is just one unit of a renew-
able resource that can be used to speed up the jobs, and at any time at most one
job can make use of it. Any job has a reduced processing time if the resource is
used. Finally, the number of machines m in their paper is considered fixed, and
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not part of the input. For that problem, they derive a (3 + ε)–approximation
algorithm, and for the problem with m = 2 machines, they derive (weak) NP-
hardness and a fully polynomial time approximation scheme [8]. In a recent
paper, Grigoriev and Uetz [9] have generalized the approximation result of [8].
The model of [9] is a dedicated machine setting as well, and assumes a linear
time-resource tradeoff: There are k units of a renewable resource available, and
the processing time pj of any job becomes pjs = p̄j − bj s if s of the k resources
are used. Using quadratic programming relaxations, a (3 + ε)–approximation
algorithm is derived in [9], for an arbitrary number of machines.

Jobs with resource dependent processing times also appear in the literature
as malleable or parallelizable tasks, e.g. in [16,21]. In these models, jobs can
be processed on one or more parallel processors, and they have non-increasing
processing times pjs in the number s of processors used. Any processor can only
handle one job at a time, and the goal is to minimize the schedule makespan.
Turek et al. [21] derive a 2–approximation algorithm for this problem. In fact,
the model considered in [21] is just a special case of the problem considered in
this paper. Interpreting the parallel processors as a generic ‘resource’ that must
be allocated to jobs, the problem of [21] corresponds to the problem considered
in this paper, when letting n jobs with resource dependent processing times
be processed in parallel, but each on its own machine. In particular, thus, the
number of machines m then equals the number of jobs n. Mounie et al. [16]
consider yet another variant, in that the processor allocations must be contiguous
(for that problem, [21] includes a 2.7–approximation). Moreover, in [16] it is not
only assumed that the processing times pjs are non-increasing in s, but also the
processing ‘areas’ s·pjs are assumed to be non-decreasing in s. For that problem,
a
√

3–approximation is derived in [16].
When we restrict even further, and assume that the decision on the allocation

of resources to jobs is fixed beforehand, we are back at (machine) scheduling
under resource constraints as introduced by Blazewicz et al. [1]. More recently,
such problems with dedicated machines have been discussed by Kellerer and
Strusevich [13,14]. We refer to these papers for various complexity results, and
note that NP-hardness of the problem with dedicated machines and a binary
resource was established in [13]. More precisely, they show weak NP-hardness
for the case where the number of machines is fixed, and strong NP-hardness for
an arbitrary number of machines [13].

Results and methodology. We derive constant-factor approximation algorithms
for three time-resource tradeoff problems, namely with unrelated, dedicated,
and identical machines. Our approach is based upon integer linear programming
formulations that define a relaxations of the respective problems. The main idea
behind these relaxations is the utilization of an aggregate version of the resource
constraints, yielding a formulation that does not require time-indexed variables.

In Section 4, we address the most general, unrelated machine setting. We use
a formulation that takes as input all possible processing times pijs of jobs. We
then consider the linear programming relaxation of this integer program. In a
first step, the solution of this LP relaxation is rounded into a (still fractional)
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solution for another linear program. We then show that this in fact defines an
instance (and solution) of the linear programming relaxation used by Shmoys
and Tardos [18] for the generalized assignment problem. In a second step, we thus
apply their rounding procedure to obtain an approximate integral solution for
the original integer programming relaxation. From this solution, we extract both
the machine assignments and the resource allocations for the jobs. We then use
Grahams list scheduling [5] to generate a feasible schedule. Using the LP lower
bounds, we prove that this schedule is not more than a factor (4 + 2

√
2) ≈ 6.83

away from the optimum.
For the special case of dedicated parallel machines, our approach simplifies,

because the machine assignments are fixed beforehand, thus the second rounding
step is not even required. For that case, in Section 5, we derive a performance
bound of (3 + 2

√
2) ≈ 5.83, essentially by using the same approach as in the

unrelated machine case.
For the special case of identical parallel machines, we show in Section 6 how

to improve the performance bound to (5 + ε), for any ε > 0. This approach is
based upon another integer programming relaxation, and it lends some ideas
from [9]. More precisely, we use a fully polynomial time approximation scheme
(FPTAS), together with a sort of approximate binary search, to solve the integer
programming relaxation with sufficiently large precision. The corresponding FP-
TAS is a consequence of a theorem of Pruhs and Woeginger on the existence of
FPTAS’s for subset selection problems [17]. In order to achieve the performance
bound of (5+ε), we also utilize as a subroutine a 2-approximation algorithm for
strip packing by Steinberg [20].

Concerning lower bounds, in Section 7 we provide an instance showing that
the linear integer programming relaxations can be a factor (2 − ε) away from
the optimum solution, hence our analysis cannot yield anything better than
a 2 approximation. This holds for all three problem settings that we consider.
Concerning lower bounds on the approximability, note that the unrelated parallel
machine problem with resource dependent processing times is a generalization of
the classical unrelated machine scheduling problem R| |Cmax. Therefore it cannot
be approximated better than a multiplicative factor of 3/2, unless P=NP [15].
In Section 7, we furthermore show that the same inapproximability threshold
of 3/2 holds for both, the dedicated and the identical parallel machine settings
with resource dependent processing times.

3. Problem definition

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively on
a set of m unrelated (dedicated, identical) parallel machines, and the objective
is to find a schedule that minimizes the makespan Cmax, that is, the time of the
last job completion. During its processing, a job j may be assigned an amount
s ∈ {0, 1, . . . , k} of an additional resource, for instance additional workers, that
may speed up its processing. If s resources are allocated to a job j, and the
job is processed on machine i, the processing time of that job is pijs. The only
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assumption on the processing times in dependence on the amount of allocated
resources is monotonicity, that is, we assume that

pij0 ≥ pij1 ≥ · · · ≥ pijk

for every machine-job pair (i, j). For the special case of dedicated parallel ma-
chines, the assumption is that each job j has been assigned to a machine i be-
forehand, and by Vi ⊆ V we denote the subset of jobs that has to be processed
on machine i. For the special case of identical parallel machines, the processing
times of jobs do not depend on the machine. Hence, for both special cases we
can denote by pjs the processing time of job j, if s units of the resource are used,
s = 0, . . . , k, and the above monotonicity condition becomes

pj0 ≥ pj1 ≥ · · · ≥ pjk .

The allocation of resources to jobs is restricted as follows. At any time, no
more than the available k units of the resource may be allocated to the set of jobs
in process. Moreover, the amount of resources assigned to any job must be the
same along its processing. In other words, if s units of the resource are allocated
to some job j, tj and t′j denote j’s starting and completion time, respectively,
only k − s of the resources are available for other jobs between tj and t′j .

We finally introduce an additional piece of notation. Since we do not assume
that the functions pijs (pjs), in dependence on s, are strictly decreasing, the only
information that is effectively required is the breakpoints of pijs (pjs), that is,
indices s where pijs < pij,s−1 (pjs < pj,s−1). Hence, for the unrelated parallel
machine case define the ‘relevant’ indices for job j on machine i as

Sij = {0} ∪ {s | s ≤ k, pijs < pij,s−1} ⊆ {0, . . . , k} .

For the special cases of dedicated or identical parallel machines, equivalently
define the ‘relevant’ indices for job j as

Sj = {0} ∪ {s | s ≤ k, pjs < pj,s−1} ⊆ {0, . . . , k} .

Considering these index sets obviously suffices, since in any solution, if s units
of the resource are allocated to some job j, we may as well only use s′ units,
where s′ ≤ s and s′ ∈ Sij(Sj), without violating feasibility.

4. Unrelated parallel machines

Integer programming relaxation. Let xijs denote binary variables, indicating
that an amount of s resources is used for processing job j on machine i. Then
the following integer linear program, referred to as (IP), has a feasible solution
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if there is a feasible schedule of length C for the original scheduling problem.

m
∑

i=1

∑

s∈Sij

xijs = 1 , ∀ j ∈ V , (1)

∑

j∈V

∑

s∈Sij

xijs pijs ≤ C , ∀ i = 1, . . . ,m , (2)

∑

j∈V

m
∑

i=1

∑

s∈Sij

xijs s pijs ≤ k C , (3)

xijs = 0 , if pijs > C, (4)

xijs ∈ {0, 1} , ∀ i, j, s. (5)

Here, C represents the schedule makespan. Equalities (1) make sure that every
job is assigned to one machine and uses a constant amount of resources during
its processing. Inequalities (2) express the fact that the total processing on each
machine is a lower bound on the makespan. Inequalities (3) represent the aggre-
gated resource constraints: In any feasible schedule, the left-hand side of (3) is
the total resource consumption of the schedule. Because no more than k resources
may be consumed at any time, the total resource consumption cannot exceed
k C. Finally, constraints (4) make sure that we do not use machine-resource pairs
such that the job processing time exceeds the schedule makespan. These con-
straints are obviously redundant for (IP), but they will be used later in rounding
a solution for the linear relaxation of (IP). Notice that this integer program may
have a feasible solution for some integer value of C, although no feasible schedule
with makespan C exists; see Example 1 further below.

Linear programming relaxation. The integer linear program (IP) with the 0/1-
constraints on x relaxed to

xijs ≥ 0 , j ∈ V , s ∈ Sij , i = 1, . . . ,m

also has a solution for value C if there is a feasible schedule for the original
scheduling problem with makespan C. We note that it can be solved in polyno-
mial time, because it has a polynomial number of variables and constraints. Since
we assume integrality of data, we are actually only interested in integral values
C. Moreover, an upper bound for C is given by

∑

j∈V mini=1,...,m{pijk}. There-
fore, by using binary search on possible values for C, we can find in polynomial
time the smallest integral value C* such that the linear programming relaxation
of (1)–(5) has a feasible solution xLP. We therefore obtain the following.

Lemma 1. The smallest integral value value C* such that the linear program-
ming relaxation of (1)–(5) has a feasible solution is a lower bound on on the
makespan of any feasible schedule, and it can be computed in polynomial time.
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Rounding the LP solution. Given a pair (C*, xLP) we next define an integer
solution x∗ from xLP by the following, 2-phase rounding procedure. In the first
rounding phase, we transform a fractional solution xLP to another fractional
solution x̄, in such a way that for every machine-job pair (i, j) there is exactly
one index s (amount of resource) such that x̄ijs is nonzero. Intuitively, we decide
for every machine-job pair on the amount of resources it may consume. By doing
this, we effectively get rid of the index s. This new fractional solution in fact
defines a fractional solution for an LP relaxation for the generalized assignment
problem discussed by Shmoys and Tardos [18]. Therefore, we will be able to use
their rounding procedure as our second rounding phase, and thus we eventually
obtain an integral solution x∗ from xLP.

First, let us choose an arbitrary ε such that 0 ≤ ε ≤ 1 . Then, for every
machine i and job j individually, define

ỹij =
∑

s∈Sij

xLP
ijs (6)

as the total fractional value allocated by the LP solution xLP to the machine-job
pair (i, j). Then let index tij ∈ Sij be chosen minimal with the property that

∑

s∈Sij ,s≤tij

xLP
ijs ≥ (1 − ε) ỹij . (7)

Then, for every machine i and job j define index sij ≥ tij as the minimizer of
s · pijs, for s ≥ tij ,

sij = arg mins≥tij s · pijs . (8)

By definition, it follows that sij ∈ Sij . We now consider a fractional solution x̄
defined by

x̄ijs =

{

ỹij s = sij ,

0 otherwise .
(9)

By definition, this solution fulfills (1). Moreover, we claim that it is an approxi-
mate solution for inequalities (2) and (3) in the following sense.

Lemma 2. Let C* be the lower bound on the makespan of an optimal solution
as defined in Lemma 1, and let x̄ = (x̄ijs) be the fractional solution obtained by
the above described rounding procedure. Then

∑

j∈V

∑

s∈Sij

x̄ijs pijs ≤ 1

1 − ε
C* , i = 1, . . . ,m , (10)

∑

j∈V

m
∑

i=1

∑

s∈Sij

x̄ijs s pijs ≤ k

ε
C* . (11)
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Proof. The proof of both claims is based on proving the statement for every
machine-job pair. First, recall that xLP denotes the optimal fractional solution
for the linear programming relaxation of (1)–(5), for C = C*. Validity of (10)
can be seen as follows. We know that

(1 − ε) x̄ijsij = (1 − ε) ỹij ≤
∑

s∈Sij ,s≤tij

xLP
ijs

by definition of tij in (7). By the fact that pijtij ≤ pijs for all s ≤ tij , we therefore
have

(1 − ε) x̄ijsij pijtij ≤
∑

s∈Sij ,s≤tij

xLP
ijs pijs ≤

∑

s∈Sij

xLP
ijs pijs

for every machine i and job j ∈ V . Again due to monotonicity, pijsij ≤ pijtij for
all j ∈ V and i = 1, . . . ,m, and we obtain

∑

s∈Sij

x̄ijs pijs = x̄ijsij pijsij ≤ x̄ijsij pijtij

≤ 1

1 − ε

∑

s∈Sij

xLP
ijs pijs

for all jobs j ∈ V and machines i = 1, . . . ,m. Summing over j ∈ V , and using
(2), inequalities (10) follow for any machine i.

To see (11), first observe that ε x̄ijsij = ε ỹij ≤ ∑

s∈Sij ,s≥tij xLP
ijs by definition

of tij , since tij is the minimal index with property (7). Therefore,

ε x̄ijsij sijpijsij ≤
∑

s∈Sij ,s≥tij

xLP
ijs s pijs ≤

∑

s∈Sij

xLP
ijs s pijs

for every machine i and job j ∈ V , where the first inequality follows because sij

was chosen among all s ≥ tij such as to minimize s pijs. Hence, we obtain

∑

s∈Sij

x̄ijs s pijs = x̄ijsij sij pijsij ≤ 1

ε

∑

s∈Sij

xLP
ijs s pijs ,

for all jobs j ∈ V and machines i = 1, . . . ,m. Summing over j ∈ V and all
machines i = 1, . . . ,m, and using (3), eventually yields (11). ⊓⊔

Next, we want to use a rounding procedure by Shmoys and Tardos [18] in
order to end up with an integer solution.
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Lemma 3 (Shmoys & Tardos [18, Theorem 2.1]). Given a feasible frac-
tional solution ỹ = (ỹij) to the linear program

m
∑

i=1

yij = 1 , ∀ j ∈ V , (12)

∑

j∈V

yijτij ≤ T , ∀ i = 1, . . . ,m , (13)

∑

j∈V

m
∑

i=1

yijλij ≤ Λ , (14)

yij ≥ 0 , ∀ i, j. (15)

with nonnegative parameters T,Λ, τ = (τij), and λ = (λij), there is a polynomial
time algorithm which computes an integral solution ȳ to (12), (14), (15), and

∑

j∈V

ȳijτij ≤ T + τmax , ∀ i = 1, . . . ,m , (16)

where τmax = maxi,j{τij | ỹij > 0}. ⊓⊔

The fractional solution ỹ defined in (6), however, is nothing but a feasible
fractional solution for linear program (12)–(15), namely with parameters T =
1/(1 − ε)C*, Λ = k/εC*, τij = pijsij , and λij = sijpijsij for all job-machine
pairs (i, j). Therefore, combining Lemma 2, the above result of Shmoys and
Tardos, and the fact that

τmax = max
i,j

pijsij ≤ max
i,j,s

{pijs | xLP
ijs > 0} ≤ C* (17)

by constraints (4), we can show the following.

Lemma 4. Let C* be the lower bound on the makespan of an optimal solution
as defined in Lemma 1, then we can find a feasible solution x∗ = (x∗

ijs) for the
following integer linear program in polynomial time.

m
∑

i=1

∑

s∈Sij

xijs = 1 , ∀ j ∈ V, (18)

∑

j∈V

∑

s∈Sij

xijs pijs ≤
(

1 +
1

1 − ε

)

C* , ∀ i , (19)

∑

j∈V

m
∑

i=1

∑

s∈Sij

xijs s pijs ≤ k

ε
C* , (20)

xijs ∈ {0, 1} , ∀ i, j, s . (21)
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Proof. We briefly summarize the previously described steps. First, recall that
xLP denotes the optimal fractional solution for the linear programming relax-
ation of (1)–(5), for C = C*. Using xLP = (xLP

ijs), define ỹ = (ỹij) as in (6), and
apply the rounding defined by (9). This yields a fractional solution x̄ = (x̄ijs)
that is nonzero only for one resource index s = sij , for any pair of i and j, as de-
fined in (8). Interpreting ỹ as fractional solution for the generalized assignment
problem (12)–(15), use Lemma 3 to round it to an integral solution ȳ = (ȳij).
Now define the integral solution x∗ by

x∗
ijs =

{

ȳij s = sij ,

0 otherwise .

With the help of Lemmas 2 and 3, and utilizing (17), it is now straightforward
to verify that x∗ fulfills (18)–(21). ⊓⊔

LP based greedy algorithm. Our approach to obtain a constant factor approxi-
mation for the scheduling problem is now the following. We first use the rounded
0/1-solution from the previous section in order to decide both, on the amount
of resources allocated to every individual job j, and on the machine where this
job must be executed. More precisely, job j must be processed on machine i and
use s additional resources iff x∗

ijs = 1, where x∗ is the feasible integral solution
of (18)–(21) obtained after the 2-phase rounding. Then the jobs are scheduled
according to the greedy list scheduling algorithm of Graham [5], in arbitrary
order.

Algorithm LP-Greedy: With the resource allocations and machine as-
signments as determined by the LP based rounding, do until all jobs are
scheduled: Starting at time 0, iterate over completion times of jobs, and
schedule as many jobs as allowed, obeying the machine assignments and
the resource constraints.

Theorem 1. Algorithm LP-Greedy is a (4 + 2
√

2)–approximation algorithm
for unrelated parallel machine scheduling with resource dependent processing
times.

The fact that the algorithm requires only polynomial time follows directly from
the fact that both, solving and rounding the LP relaxation, as well as the list
scheduling, can be implemented in polynomial time.

To verify the performance bound, we first need some additional notation.
Consider some schedule S produced by algorithm LP-Greedy, and denote by
CLPG the corresponding makespan. Denote by COPT the makespan of an optimal
solution. For schedule S, let t(β) denote the earliest point in time after which
only big jobs are processed, big jobs being defined as jobs that have a resource
consumption larger than k/2. Moreover, let β = CLPG − t(β) be the length of
the period in which only big jobs are processed (note that possibly β = 0).

Next, we fix a machine, say machine i, on which some job completes at
time t(β) which is not a big job. Due to the definition of t(β), such a machine
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must exist, because otherwise all machines were idle right before t(β), contradict-
ing the definition of the greedy algorithm. Note that, between time 0 and t(β),
periods may exist where machine i is idle. Denote by α the total length of busy
periods on machine i between 0 and t(β), and by γ the total length of idle periods
on machine i between 0 and t(β). We then have that

CLPG = α + β + γ . (22)

Due to (19), we get that for machine i

α ≤
∑

j∈V

∑

s∈Sij

x∗
ijs pijs ≤

(

1 +
1

1 − ε

)

C* . (23)

The next step is an upper bound on β + γ, the length of the final period
where only big jobs are processed, together with the length of idle periods on
machine i.

Lemma 5. We have that

β + γ ≤ 2

ε
C* .

Proof. First, observe that the total resource consumption of schedule S is at least
β k

2
+ γ k

2
. This because, on the one hand, all jobs after t(β) are big jobs and

require at least k/2 resources, by definition of t(β). On the other hand, during all
idle periods on machine i between 0 and t(β), at least k/2 of the resources must
be in use as well. Assuming the contrary, there was an idle period on machine i
with at least k/2 free resources. But after that idle period, due to the selection
of t(β) and machine i, some job is processed on machine i which is not a big job.
This job could have been processed earlier during the idle period, contradicting
the definition of the greedy algorithm. Next, recall that (k/ε)C* is an upper
bound on the total resource consumption of the jobs, due to (20). Hence, we
obtain

k

ε
C* ≥ β

k

2
+ γ

k

2
.

Dividing by 2/k yields the claimed bound on β + γ. ⊓⊔

Now we are ready to prove the performance bound of Theorem 1.

Proof (of Theorem 1). First, use (22) together with (23) and Lemma 5 to obtain

CLPG ≤
(

1 +
1

1 − ε

)

C* +
2

ε
C* ≤

(

1 +
1

1 − ε
+

2

ε

)

COPT .

Solving for the best possible value for ε gives ε = 2−
√

2 ≈ 0.5858, which yields
the claimed performance bound of 4 + 2

√
2 ≈ 6.83. ⊓⊔
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5. Dedicated parallel machines

As a special case of the unrelated machine scheduling model considered so far,
let us assume that the jobs are assigned to machines beforehand. Recall that
the set of jobs V is partitioned into m subsets V1, . . . , Vm a priori, Vi being
the jobs that must be processed on machine i, and pjs, s = 0, . . . , k, denotes
the resource dependent processing time of job j. Such problems are also called
dedicated parallel machine scheduling problems [13,14].

By letting all but one machine assignment result in very large processing
times, this is obviously a special case of the unrelated machine scheduling model.
Hence, our above analysis also yields a (4+2

√
2)–approximation for this model.

However, noting that the machine index i can be eliminated from the formulation
(1)–(5), we can use variables xjs where xjs = 1 if job j is processed with s units
of the resource. We thus obtain the following LP relaxation.

min. C (24)

s. t.
∑

s∈Sj

xjs = 1 , ∀ j ∈ V , (25)

∑

j∈Vi

∑

s∈Sj

xjs pjs ≤ C , ∀ i = 1, . . . ,m , (26)

∑

j∈V

∑

s∈Sj

xjs s pjs ≤ k C , (27)

xjs ≥ 0 , ∀j, s . (28)

Here, recall that Sj are the breakpoints of the function pjs as defined in Section 3.
The interpretation of the constraints is the same as in the previous section. The
only difference is that we do not need the explicit constraints (4), and therefore
can just minimize C instead of using binary search on C. Now, the accordingly
adapted first phase rounding of (9) already yields an integral solution. More
precisely, given a fractional solution (C*, xLP) for the above LP relaxation, we
choose index tj minimal with the property that

∑

s∈Sj ,s≤tj xLP
js ≥ 1 − ε and

define index sj = arg mins≥tj s · pjs. Again, it follows that sj ∈ Sj . Then the

solution x̄, defined by x̄js = 1 if s = sj and x̄js = 0 otherwise, is already integral.
Hence, Shmoys and Tardos’ rounding is not required, and instead of using the
bounds (19) and (20), we now have an integral solution x̄ = (x̄js) which fulfills
the constraints

∑

j∈Vi

∑

s∈Sj

x̄js pjs ≤ 1

1 − ε
C* , ∀ i = 1, . . . ,m ,

∑

j∈V

∑

s∈Sj

x̄js s pjs ≤ k

ε
C* .

Validity of these bounds is proved along the same lines as Lemma 2. This even-
tually yields an improved performance bound for the dedicated machine model.
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Theorem 2. Algorithm LP-Greedy is a (3 + 2
√

2)–approximation algorithm
for dedicated parallel machine scheduling with resource dependent processing
times.

6. Identical parallel machines

We can further improve the performance guarantee for the case that jobs are
not assigned to machines beforehand, but each jobs can be processed on any
machine, and all machines are identical. Hence, any job j has a processing time
pjs whenever s units of the resource are assigned to the job, independent of the
machine where the job is processed on. As the problem with dedicated parallel
machines, this identical parallel machine problem is a special case of the problem
with unrelated parallel machines, hence Section 4 yields an approximation ratio
of (4 + 2

√
2). For the identical parallel machine case, however, we next derive a

performance guarantee of (5 + ε), for any ε > 0.

Like in the previous section, let xjs denote binary variables, indicating that
an amount of s resources is used for processing job j. Then the following integer
linear program, referred to as (IPM), has a feasible solution if there is a feasible
schedule of length C for the original scheduling problem.

∑

s∈Sj

xjs = 1 , ∀ j ∈ V , (29)

∑

j∈V

∑

s∈Sj

xjs pjs ≤ mC , (30)

∑

j∈V

∑

s∈Sj

xjs s pjs ≤ k C , (31)

xjs = 0 , if pjs > C, (32)

xjs ∈ {0, 1} , ∀ j, s. (33)

Here, as in the previous section, Sj are the breakpoints of the function pjs as
defined in Section 3. Again, C represents the schedule makespan. Equalities (29)
make sure that every job uses a constant amount of resources during its pro-
cessing. Inequalities (30) express the fact that the average total processing time
per machine cannot be more than the makespan C. Inequalities (31) again rep-
resent the aggregated resource constraints, as in the two previous sections, and
condition (32) is required later in the proof.

In order to decide on feasibility for the above program (IPM) for any given
value of C, we can equivalently solve the following linear integer program

min.
∑

j∈V

∑

s∈Sj

xjs s pjs (34)
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s.t.
∑

s∈Sj

xjs = 1 , ∀ j ∈ V , (35)

∑

j∈V

∑

s∈Sj

xjs pjs ≤ mC , (36)

xjs = 0 , if pjs > C, (37)

xjs ∈ {0, 1} , ∀ j, s . (38)

Clearly, if the optimal objective of (34)–(38) does not exceed k C, (29)–(33) is
feasible, and otherwise infeasible.

Observe that we could as well eliminate constraints (37) by redefining pjs =
mC + 1 whenever pjs > C. After this transformation, the problem is in fact
equivalent to the multiple-choice knapsack problem, for which Gens and Levner
derived a 4/5-approximation algorithm [4].

We next claim that problem (34)–(38) admits an FPTAS, a fully polynomial
time approximation scheme. Notice that this also implies an FPTAS for the
multiple-choice knapsack problem of [4]. Indeed, after the described transforma-
tion, problem (34)–(38) can also be interpreted as a single machine scheduling
problem with n jobs, each of them can be processed in a mode s ∈ Sj , with
associated processing time pjs and cost wjs := s pjs. The problem is to select
exactly one mode s for each job such that the due date constraint (36) is fulfilled,
and the goal is to minimize total costs

∑

j∈V wjs. It follows from Lemma 2 of
Grigoriev and Uetz [9] that such problems admit an FPTAS. In fact, this lemma
is just an application of a more general theorem about subset selection problems
by Pruhs and Woeginger [17]. We summarize as follows.

Lemma 6. For any δ > 0, a solution for problem (34)–(38) can be computed that
is not more than a factor (1+ δ) away from the optimum, in time polynomial in
the input size and 1/δ.

Now, for any δ > 0 we can use this FPTAS to design an approximate binary
search for the smallest integer value, say CIPM, for which the linear integer
program (IPM) has a feasible solution. To this end, we compute by binary search
the smallest integer value C* such that the above FPTAS yields a solution for
(34)–(38) with objective z

C* , such that

z
C* ≤ (1 + δ)k C* . (39)

By minimality of C* for property (39), for C ′ := C* − 1, the FPTAS yields a
solution with zC′ > (1 + δ)k C ′. Hence, by Lemma 6, the integer linear program
(IPM) has no feasible solution for value C ′. Therefore, the minimal integral
value for which the linear integer program (IPM) has a feasible solution is at
least C ′+1 = C*, or in other words, C* ≤ CIPM, and thus C is a lower bound on
the makespan of an optimal solution for the original scheduling problem. Using
the fact that the FPTAS delivers a solution with property (39), we conclude the
following.
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Lemma 7. For any δ > 0 we can compute a lower bound C* on the makespan
of an optimal schedule, and a solution x∗ of integer program (29)–(33) where
constraint (31) is relaxed to

∑

j∈V

∑

s∈Sj

x∗
js s pjs ≤ (1 + δ) k C* . (40)

The computation time is polynomial in the input size of the problem and 1/δ.

The next step is a modification of the greedy algorithm. For any job j fix the
resource consumption to sj , where sj is the amount of resources that the solution
x∗ of Lemma 7 assigns to job j, i.e., xjsj

= 1. Then the jobs are scheduled in any
order according to the traditional greedy list scheduling algorithm of Graham [5].
Finally, the obtained schedule is corrected as follows.

Algorithm IPM-Greedy:
Scheduling phase. With the resource allocations as determined above,
do until all jobs are scheduled: Starting at time 0, iterate over completion
times of jobs, and at any time schedule as many jobs as allowed, obeying
the machine and resource constraints.
Correction phase. Find all time periods when the total resource con-
sumption is less than k/2 and at least one machine is idle, say T is the
union of all such time periods. Now, each machine has at most one job in
total that is processed during one of the periods of T , since otherwise the
later job would have been scheduled earlier by the greedy algorithm on
the idle machine: it requires less than k/2 resources and these resources
are available on the idle machine. Next remove all jobs that are processed
in T , say this is set R. By the observation above, |R| ≤ m. Concatenate
the remaining parts of the schedule. To schedule the at most m remaining
jobs in R, we can now solve the minimum height two dimensional strip
packing problem with strip width k and rectangle sizes sj × pjsj

. This
is feasible since each job can be scheduled on an individual machine. To
solve the strip packing problem, use a polynomial time 2-approximation
algorithm of Steinberg [20]. Concatenate the obtained two schedules.

Theorem 3. For any ε > 0, algorithm IPM-Greedy is a (5+ε)–approximation
algorithm for identical parallel machine scheduling with resource dependent pro-
cessing times. The computation time is polynomial in the input size of the prob-
lem and 1/ε.

Proof. The fact that the algorithm requires only polynomial time follows directly
from the fact that for deciding on the resource assignment we use Lemma 7, and
the list scheduling, finding the time periods T in the correction phase, and even-
tually the approximate solution of the strip packing problem can be implemented
in polynomial time.

To verify the performance bound, fix δ = ε/3, and consider some schedule
S produced by algorithm IPM-Greedy. Denote by CIPMG the corresponding
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makespan of schedule S, by γ the makespan for the job set R in the solution of
the strip packing problem obtained by the algorithm from [20], and by COPT

the (overall) makespan of an optimal solution. For the first part of schedule S,
let α be the total length of the intervals without idle machines, and β be the
total length of the intervals where at least k/2 units of the resource are assigned
to jobs. By construction of the first part of the schedule (i.e., by definition of
the periods T ), all time periods belong either to α or β. From (30) and (40), we
have that

α ≤ C* , and β ≤ 2 (1 + δ)C* ,

where C* is the lower bound on COPT from Lemma 7.

Next let us consider the second part of the schedule. Since in the strip packing
problem there are at most m rectangles, the corresponding schedule of the jobs
from R does not violate the constraint that the number of machines is m. By
Theorem 2.3 in [20], we get for the makespan γ ≤ L + max{L, pmax}, where
L =

∑

j∈R sjpjsj
/k and pmax = maxj∈R{pjsj

}. Now by (40), we have

L =
∑

j∈R

sjpjsj
/k ≤

∑

j∈V

sjpjsj
/k ≤ (1 + δ)C* ,

and by(32), pmax = maxj∈R{pjsj
} ≤ C*. Therefore, the makespan γ of the jobs

in R is bounded by γ ≤ 2C* + δC*.

Hence, by choice of δ = ε/3 we get that

CIPMG = α+β+γ ≤ C* +2(1+δ)C* +(2C* +δC*) = (5+ε)C* ≤ (5+ε)COPT,

as required. ⊓⊔

7. Lower bounds

Lower bound for the (integer) linear programs. We next give an instance to show
that the integer linear programs we use can be a factor (2 − ε) away from the
optimal solution, for any ε > 0. Hence, our LP-based analysis cannot yield
anything better than a 2-approximation, for all three versions, the unrelated,
dedicated, and parallel machine case.

Example 1 Consider a problem with m = 2 (dedicated or parallel ) machines
and k units of the additional resource, where k is odd. There are 2 jobs, with
resource-dependent processing times

pjs =

{

2k + 1 if s < k
2

k if s > k
2

for both jobs j. ⊓⊔
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Consider the integer solution x, where xjs = 1 if s = ⌈k/2⌉, and xjs = 0
otherwise, for both jobs j. With this setting of variables consider the program
(24)–(28), then the two inequalities (26) yield k ≤ C, and inequality (27) yields
k(k + 1) = 2k⌈k/2⌉ ≤ kC. With the same setting of variables, consider pro-
gram (29)–(33), then inequality (30) yields 2k ≤ 2C, and from inequality (31),
we get k(k + 1) = 2k⌈k/2⌉ ≤ kC, as above. Therefore, with C = (k + 1),
there exists a feasible, even integral solution for both, integer programming re-
laxation (24)–(28) for the dedicated machine case, and integer programming
relaxation (29)–(33) for the identical machine case. A fortiori, we know that for
the corresponding linear programming relaxations, C* ≤ k + 1. But in the opti-
mal solution, COPT = 2k. Hence, in both settings the gap between C* and COPT

can be as large as 2− ε, for any ε > 0. The bad quality of the LP lower bound is
obviously a consequence of the fact that we only use an aggregate formulation
of the resource constraints in (27) (or (31), respectively), whereas any schedule
has to respect the resource constraint at any time. We summarize as follows.

Observation 1 There are instances where the respective lower bounds provided
by the integer programming relaxations (24)–(28), (29)–(33), and a fortiori also
(1)–(5), have a feasible solution that is a factor 2 − ε away from the optimum,
for any ε > 0.

Lower bounds on approximation. The problem with unrelated machines cannot
be approximated within a factor smaller than 3/2 as a generalization of the
classical unrelated machine scheduling problem [15], as mentioned earlier. We
next show that the same inapproximability result holds for the problems with
dedicated or identical parallel machines.

Theorem 4. There is no polynomial time approximation algorithm for dedicated
or identical parallel machine scheduling with resource dependent processing times
that has a performance guarantee less than 3/2, unless P=NP.

Proof. The proof relies on a gap-reduction from Partition [3]: Given n in-
tegers aj , with

∑n

j=1
aj = 2k, it is NP-complete to decide if there exists a

subset W ⊆ {1, . . . , n} with
∑

j∈W aj = k. Let us define an instance of the
machine scheduling problem (either dedicated or identical machines) as follows.
Each aj gives rise to one job j with an individual machine. Hence, we have n
jobs and m = n machines (and in fact it does not matter for what follows if the
machines are dedicated or identical). There are k units available of the additional
resource. Any job j has a processing time defined by

pjs =

{

3 if s < aj

1 if s ≥ aj .

Hence, the aj ’s are the only breakpoints in the functions pjs, and the index set
Sj = {0, aj} for all jobs j. In other words, the functions pjs can be encoded
in O( log aj ) for all jobs j, and the transformation is indeed polynomial. We
claim that there exists a feasible schedule with makespan Cmax < 3 if and only
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if there exists a solution for the Partition problem. Otherwise, the makespan
is at least 3. To this end, observe that in any solution with makespan Cmax < 3,
we may assume that each job j consumes exactly aj units of the resource: If it
was less than aj for some jobs j, the makespan would be at least 3; if it was
more than aj for some job j, letting the resource allocation equal aj does not
violate feasibility, while maintaining the same processing time. Now, if and only
if there is a solution, say W , for the Partition problem, there exists a resource
feasible schedule with makespan 2, namely where jobs j ∈ W start at time 0,
and all jobs j 6∈ W start at time 1. ⊓⊔

Finally, it is not difficult to see that the above proof yields the same inap-
proximability result for the problems with dedicated or parallel machines, even
if the resource consumption of jobs is fixed beforehand.

Corollary 1. There is no polynomial time approximation algorithm for dedi-
cated or identical parallel machine scheduling with an additional resource con-
straint that has a performance guarantee less than 3/2, unless P=NP.

In contrast to this corollary, note that for dedicated machines, there exists a
polynomial time algorithm if the number of machines is 2 [14], and a PTAS if
the number of machines m is fixed and the resource is binary (i.e., k = 1) [13].

8. Concluding Remarks

The integer programming relaxations that we use may be a factor 2 away from
the respective optimal solutions, but we have not been able to design tighter
worst case examples for either of the three settings. It is not too difficult to
construct instances where the individual steps of the algorithms perform sub-
optimal, yet it seems difficult to design instances that indeed ‘withstand’ the
concatenations of the individual steps of the algorithms.

Moreover, it remains open at this point if the unrelated parallel machine
scheduling problem with resource dependent processing times admits a stronger
inapproximability results than 3/2. Since the problem adds an additional time-
resource tradeoff to the classical problem R| |Cmax, one could conjecture it to
be more difficult. Yet, the inapproximability results of 3/2 already holds for the
problem without additional resources, R| |Cmax.
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