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Abstract

One unit of an infinitely divisible and non-disposable commodity has to be allocated

among a group of agents with single-dipped preferences. We combine Pareto optimality

with equal treatment of equals, the equal division lower bound, the equal division core,

envy-freeness, and group envy-freeness. For each of these fairness requirements, we

provide a necessary and sufficient condition for compatibility with Pareto optimality

and we characterize all corresponding allocations for each preference profile.

Keywords: resource allocation, single-dipped preferences, Pareto optimality, fairness

JEL classification: D63, D71

1 Introduction

One unit of an infinitely divisible and non-disposable commodity has to be allocated among a

group of agents with single-dipped preferences, i.e. for each agent there exists a unique least

preferred share (the dip), and preferences increase in both directions away from the dip. This

type of preferences arise in situations where extremes are preferred over combinations, such as

teaching activities and management tasks at a university department, two-goods exchange

economies with fixed prices and strictly quasiconvex utility functions, and common-pool

resource allocation problems under increasing returns to scale.

Within this context, Klaus et al. (1997) characterized the Pareto optimal allocations,

i.e. allocations for which no other allocation is weakly preferred by each agent and strictly

preferred by some agent. On top of that, they imposed strategy-proofness, i.e. no agent has

an incentive to misrepresent preferences, and other robustness properties. Klaus (2001a)

and Klaus (2001b) continued this study by combining Pareto optimality with coalitional
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strategy-proofness, or with strategy-proofness and another robustness or solidarity property.

All the rules obtained in these studies assign the entire commodity to one of the agents, and

consequently violate various fairness requirements. Kranich (2019) showed that even the

divide-and-choose method is unfair in this context. To overcome the fairness issue, Ehlers

(2002) introduced probabilistic allocation rules. Doghmi (2013a), Doghmi (2013b), Gong

et al. (2022), and Inoue and Yamamura (2023) took a mechanism design approach and

focused on Nash implementation. Other studies focused on indivisible commodities: see for

instance the recent works of Fujinaka and Wakayama (2023) and Tamura (2023).1

Klaus (2001a) already observed that Pareto optimality is not always compatible with the

weak fairness requirement of equal treatment of equals, i.e. each agent is indifferent between

its own share and the share of any other agent with the same preferences. In this paper,

we provide a necessary and sufficient condition for compatibility of Pareto optimality and

equal treatment of equals. Moreover, we characterize for each preference profile all Pareto

optimal allocations that satisfy equal treatment of equals. We also study the compatibility

of Pareto optimality with other fairness requirements: the equal division lower bound, i.e.

each agent weakly prefers the allocation to an equal share, the equal division core, i.e. for

each group of agents, no redistribution of equal shares is weakly preferred by each group

member and strictly preferred by some group member, envy-freeness, i.e. each agent weakly

prefers its own share to the share of any other agent, and group envy-freeness, i.e. for each

group of agents, no redistribution of the share of any group of agents with the same size is

weakly preferred by each group member and strictly preferred by some group member. If an

allocation is group envy-free, then it is envy-free and belongs to the equal division core. If an

allocation is envy-free, then it satisfies equal treatment of equals and the equal division lower

bound. If an allocation belongs to the equal division core, then it satisfies the equal division

lower bound. For each of these fairness requirements, we provide a necessary and sufficient

condition for compatibility with Pareto optimality and we characterize all corresponding al-

locations for each preference profile. Among the fairness requirements we consider, only the

equal division lower bound is compatible with Pareto optimality for each preference profile.

This paper is organized as follows. Section 2 introduces the model and defines Pareto

optimality. Section 3 characterizes the Pareto optimal allocations that satisfy equal treat-

ment of equals. Section 4 characterizes the Pareto optimal allocations that satisfy the equal

division lower bound or belong to the equal division core. Section 5 characterizes Pareto

optimal allocations that are envy-free or group envy-free. Section 6 concludes.

1A majority of the literature has focused on single-dipped preferences in situations with public commodi-
ties. These problems arise when for instance a public facility with strongly negative externalities needs to
be located along a road. For more details on those problems, we refer to Barberà et al. (2012), Öztürk et al.
(2013), Öztürk et al. (2014), Manjunath (2014), Tapki (2016), Ayllón and Caramuta (2016), Yamamura
(2016), Lahiri et al. (2017), Han et al. (2018), Alcalde-Unzu and Vorsatz (2018), Lahiri and Storcken (2019),
Feigenbaum et al. (2020), and Thomson (2023).
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2 Model

Let N be a finite set of at least two agents. One unit of an infinitely divisible and non-

disposable commodity has to be allocated among the agents. Each agent i ∈ N has complete,

transitive, continuous, and single-dipped preferences represented by the binary relation Ri

over [0, 1], i.e. there exists d(Ri) ∈ [0, 1] such that xi Pi yi for all xi, yi ∈ [0, 1] with xi < yi ≤
d(Ri) or d(Ri) ≤ yi < xi. Here, xi Pi yi denotes xi Ri yi and ¬yi Ri xi. Moreover, xi Ii yi

denotes xi Ri yi and yi Ri xi. As usual, the interpretation is that agent i ∈ N weakly prefers

xi to yi if xi Ri yi, strictly prefers xi to yi if xi Pi yi, and is indifferent between xi and yi if

xi Ii yi. The set of such preferences is denoted by R, and RN = R× · · · × R is the set of

preference profiles.

Remark

Let i ∈ N , Ri ∈ R, and xi, yi ∈ [0, 1]. The following statements hold:

• If xi Ri yi, then xi Pi zi for each zi ∈ [0, 1] with min{xi, yi} < zi < max{xi, yi}.

• If xi Ri yi and xi < yi, then zi Pi xi for each zi ∈ [0, xi).

• If xi Ri yi and xi > yi, then zi Pi xi for each zi ∈ (xi, 1].

Let R ∈ RN be a preference profile. The set of agents that strictly prefer 0 to 1 is

denoted by N0(R) = {i ∈ N | 0 Pi 1}, the set of agents that are indifferent between 0 and 1

is denoted by N0,1(R) = {i ∈ N | 0 Ii 1}, and the set of agents that strictly prefer 1 to 0 is

denoted by N1(R) = {i ∈ N | 1 Pi 0}. Note that N0(R) ∪N0,1(R) ∪N1(R) = N .

An allocation is an x ∈ [0, 1]N such that
∑

i∈N xi = 1. The set of allocations is denoted

by X. Throughout this paper, we focus on Pareto optimal allocations, i.e. allocations for

which no other allocation is weakly preferred by each agent and strictly preferred by some

agent. Formally, for preference profile R ∈ RN , an allocation x ∈ X is Pareto optimal if

there does not exist y ∈ X such that yi Ri xi for each i ∈ N and yi Pi xi for some i ∈ N .

The set of Pareto optimal allocations is denoted by P (R). Klaus et al. (1997) characterized

the Pareto optimal allocations. The proof is provided by Klaus (2001a).

Theorem 1 (Klaus et al. 1997 and Klaus 2001a)

Let R ∈ RN be a preference profile and let x ∈ X be an allocation. Then x is Pareto optimal,

i.e. x ∈ P (R), if and only if the following statements hold:

• If N1(R) ̸= ∅, then xi = 0 or xi Pi 0 for each i ∈ N .

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N , then xi = 1 or xi Pi 1 for each i ∈ N .

Corollary 1

Let R ∈ RN be a preference profile. Then a Pareto optimal allocation exists, i.e. P (R) ̸= ∅.
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3 Equal treatment of equals

This section studies Pareto optimal allocations that satisfy equal treatment of equals, i.e.

allocations for which each agent is indifferent between its own share and the share of any

other agent with the same preferences. Formally, for preference profile R ∈ RN , an allocation

x ∈ X satisfies equal treatment of equals if xi Ii xj for all i, j ∈ N with Ri = Rj . The

set of allocations satisfying equal treatment of equals is denoted by E(R).

The following example shows that Pareto optimal allocations satisfying equal treatment

of equals do not necessarily exist.

Example 1

Let R ∈ RN be a preference profile with Ri = Rj for all i, j ∈ N such that 1 Pi 0 Pi
1
2 for

each i ∈ N . Then P (R) ∩ E(R) = ∅. △

For an agent i ∈ N and a preference profile R ∈ RN , the maximum share that 0 is weakly

preferred to is denoted by k1i (R) = max{xi ∈ [0, 1] | 0 Ri xi}, and the minimum share that 1

is weakly preferred to is denoted by k0i (R) = min{xi ∈ [0, 1] | 1 Ri xi}. Note that k1i (R) = 1

if and only if i /∈ N1(R), and k0i (R) = 0 if and only if i /∈ N0(R).

We characterize the Pareto optimal allocations that satisfy equal treatment of equals.

Theorem 2

Let R ∈ RN be a preference profile and let x ∈ P (R) be a Pareto optimal allocation. Then

x satisfies equal treatment of equals, i.e. x ∈ E(R), if and only if the following statements

hold:

• If N1(R) ̸= ∅, then

– xi = 0 or xi > k1i (R) for each i ∈ N ;

– xi = xj for all i, j ∈ N with Ri = Rj.

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N , then

– xi = 1 or xi < k0i (R) for each i ∈ N ;

– xi = xj for all i, j ∈ N with Ri = Rj.

Proof. Clearly, if the statements hold, then x ∈ E(R). We prove the only-if part. By

Theorem 1, it suffices to show that if x ∈ E(R), then the following statements hold:

(i) If N1(R) ̸= ∅, then xi = 0 or xi > k1i (R) for each i ∈ N , and xi = xj for all i, j ∈ N

with Ri = Rj .

(ii) If N0(R) = N , then xi = 1 or xi < k0i (R) for each i ∈ N , and xi = xj for all i, j ∈ N

with Ri = Rj .
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(i) Assume that N1(R) ̸= ∅. By Theorem 1, xi = 0 or xi Pi 0 for each i ∈ N . For the sake

of contradiction, assume that there exists i ∈ N such that 0 < xi ≤ k1i (R). Then 0 Ri k
1
i (R)

implies that 0 Ri xi. This contradicts that xi Pi 0. Hence, xi = 0 or xi > k1i (R) for each

i ∈ N . For the sake of contraposition, assume that there exist i, j ∈ N with Ri = Rj such

that xi ̸= xj . Assume without loss of generality that xi > xj . Then xi Pi 0 implies that

xi Pi xj , so x /∈ E(R). Hence, xi = xj for all i, j ∈ N with Ri = Rj .

(ii) Assume that N0(R) = N . By Theorem 1, xi = 1 or xi Pi 1 for each i ∈ N . For

the sake of contradiction, assume that there exists i ∈ N such that k0i (R) ≤ xi < 1. Then

1 Ri k
1
i (R) implies that 1 Ri xi. This contradicts that xi Pi 1. Hence, xi = 1 or xi > k1i (R)

for each i ∈ N . For the sake of contraposition, assume that there exist i, j ∈ N with Ri = Rj

such that xi ̸= xj . Assume without loss of generality that xi < xj . Then xi Pi 1 implies

that xi Pi xj , so x /∈ E(R). Hence, xi = xj for all i, j ∈ N with Ri = Rj .

Theorem 2 provides a necessary and sufficient condition for compatibility of Pareto op-

timality with equal treatment of equals.

Corollary 2

Let R ∈ RN be a preference profile. Then a Pareto optimal allocation satisfying equal

treatment of equals exists, i.e. P (R)∩E(R) ̸= ∅, if and only if one of the following statements

hold:

• N1(R) ̸= ∅ and
∑

j∈N :Ri=Rj
k1j (R) < 1 for some i ∈ N1(R).

• N1(R) = ∅ and N0,1(R) ̸= ∅.

• N0(R) = N and there exists i ∈ N such that Ri ̸= Rj for each j ∈ N \ {i}.

• N0(R) = N and
∑

i∈N k0i (R) > 1.

4 Equal division lower bound

This section studies Pareto optimal allocations that satisfy the equal division lower bound,

i.e. allocations weakly preferred to an equal share allocation by each agent. Formally, for

preference profile R ∈ RN , an allocation x ∈ X satisfies the equal division lower bound

if xi Ri
1

|N | for each i ∈ N . The set of allocations satisfying the equal division lower bound

is denoted by Bed(R).

The following example shows that Pareto optimal allocations satisfying equal treatment

of equals do not necessarily satisfy the equal division lower bound.

Example 2

LetR ∈ RN be a preference profile withRi ̸= Rj for all i, j ∈ N such that 1
|N | Pi 0 for each i ∈

N . For each x ∈ X with xi = 1 for some i ∈ N , it holds that x ∈ (P (R)∩E(R))\Bed(R). △

5



For preference profile R ∈ RN , the set of agents that strictly prefer 1
|N | to 0 is denoted

by M1(R) = {i ∈ N | 1
|N | Pi 0}, and the set of agents that strictly prefer 1

|N | to 1 is denoted

by M0(R) = {i ∈ N | 1
|N | Pi 1}. Note that M1(R) ⊆ N1(R) and M0(R) ⊆ N0(R).

We characterize the Pareto optimal allocations that satisfy the equal division lower bound.

Theorem 3

Let R ∈ RN be a preference profile and let x ∈ P (R) be a Pareto optimal allocation. Then

x satisfies the equal division lower bound, i.e. x ∈ Bed(R), if and only if the following

statements hold:

• If N1(R) ̸= ∅, then

– xi ≥ 1
|N | for each i ∈ M1(R);

– xi = 0 or xi Pi 0 for each i ∈ N \M1(R).

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N and M0(R) ̸= N , then xi = 1 for some i ∈ N \M0(R).

• If M0(R) = N , then xi =
1

|N | for each i ∈ N .

Proof. Clearly, if the statements hold, then x ∈ Bed(R). We prove the only-if part. By

Theorem 1, it suffices to show that if x ∈ Bed(R), then the following statements hold:

(i) If N1(R) ̸= ∅, then xi ≥ 1
|N | for each i ∈ M1(R).

(ii) If N0(R) = N and M0(R) ̸= N , then xi = 1 for some i ∈ N \M0(R).

(iii) If M0(R) = N , then xi =
1

|N | for each i ∈ N .

(i) Assume that N1(R) ̸= ∅. For the sake of contraposition, assume that there exists

i ∈ M1(R) such that xi <
1

|N | . Then
1

|N | Pi 0 implies that 1
|N | Pi xi. Hence, x /∈ Bed(R).

(ii) Assume that N0(R) = N and M0(R) ̸= N . Let x ∈ Bed(R). For each i ∈ M0(R),
1

|N | Pi 1 implies that xi ≤ 1
|N | . For each i ∈ N \M0(R), 0 Pi 1 Ri

1
|N | implies that xi = 1

or xi <
1

|N | . Hence, xi = 1 for some i ∈ N \M0(R).

(iii) Assume that M0(R) = N . Let x ∈ Bed(R). For each i ∈ N , 1
|N | Pi 1 implies that

xi ≤ 1
|N | . Hence, xi =

1
|N | for each i ∈ N .

Theorem 3 implies that Pareto optimal allocations satisfying the equal division lower

bound always exist.

Corollary 3

Let R ∈ RN be a preference profile. Then a Pareto optimal allocation satisfying the equal

division lower bound exists, i.e. P (R) ∩Bed(R) ̸= ∅.
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A stronger requirement than the equal division lower bound is the equal division core. An

allocation belongs to the equal division core if for each group of agents, no redistribution of

equal shares is weakly preferred by each group member and strictly preferred by some group

member. The equal division core can be understood as a group version of the equal division

lower bound. Formally, for preference profile R ∈ RN , an allocation x ∈ X belongs to the

equal division core if for each S ⊆ N there does not exist y ∈ RS
+ with

∑
i∈S yi = |S|

|N |
such that yi Ri xi for each i ∈ S and yi Pi xi for some i ∈ S. The equal division core is

denoted by Ced(R). Note that Ced(R) ⊆ P (R) ∩Bed(R).

The following example shows that equal division core allocations do not necessarily satisfy

equal treatment of equals.

Example 3

Let R ∈ RN be a preference profile with Ri = Rj for all i, j ∈ N such that 0 Pi 1 Pi
1

|N | for

each i ∈ N . For each x ∈ X with xi = 1 for some i ∈ N , it holds that x ∈ Ced(R)\E(R). △

We characterize the equal division core allocations.

Theorem 4

Let R ∈ RN be a preference profile and let x ∈ P (R) be a Pareto optimal allocation. Then

x belongs to the equal division core, i.e. x ∈ Ced(R), if and only if the following statements

hold:

• If M1(R) = N , then xi =
1

|N | for each i ∈ N .

• If M1(R) ̸= N and N1(R) ̸= ∅, then there exists i ∈ N1(R) such that xi = 1 and

0 Rj
|N |−1
|N | for each j ∈ N \ {i}.

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N and M0(R) ̸= N , then xi = 1 for some i ∈ N \M0(R).

• If M0(R) = N , then xi =
1

|N | for each i ∈ N .

Proof. Clearly, if the statements hold, then x ∈ Ced(R). We prove the only-if part. Let

x ∈ Ced(R). By Theorem 3, it suffices to show that if M1(R) ̸= N and N1(R) ̸= ∅, then
there exists i ∈ N1(R) such that xi = 1 and 0 Rj

|N |−1
|N | for each j ∈ N \ {i}. Assume that

M1(R) ̸= N and N1(R) ̸= ∅. Define N+ = {i ∈ N | xi > 0}. By Theorem 3, M1(R) ⊆ N+

and xi Pi 0 for each i ∈ N+.
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Moreover, it holds that

|N | − |N+|+ 1

|N |
=

|N | − |N+|+ 1

|N |
− 1

|N+|
+

1

|N+|

=
|N ||N+| − |N+||N+|+ |N+| − |N |

|N ||N+|
+

1

|N+|

=
(|N | − |N+|)(|N+| − 1)

|N ||N+|
+

1

|N+|

≥ 1

|N+|
,

with strict inequality if and only if 1 < |N+| < |N |.
For the sake of contradiction, suppose that xi ̸= 1

|N+| for some i ∈ N+. Then there

exists i ∈ N+ such that xi < 1
|N+| . Define y ∈ RN\(N+\{i})

+ by yi = |N\(N+\{i})|
|N | and

yj = 0 for each j ∈ N \ N+. Then xi Pi 0 and yi =
|N\(N+\{i})|

|N | ≥ 1
|N+| > xi imply that

yi Ri
1

|N+| Pi xi. Moreover, yj Rj xj for each j ∈ N \N+. This contradicts that x ∈ Ced(R).

Hence, xi =
1

|N+| for each i ∈ N+.

For the sake of contradiction, suppose that |N+| > 1. If N+ = N , then xi =
1

|N | and

xi Pi 0 contradict that 0 Ri
1

|N | for each i ∈ N1(R) \M1(R). Hence, 1 < |N+| < |N |. Let

i ∈ N+ and define y ∈ RN\(N+\{i})
+ by yi =

|N\(N+\{i})|
|N | and yj = 0 for each j ∈ N \ N+.

Then xi Pi 0 and yi =
|N\(N+\{i})|

|N | > 1
|N+| = xi imply that yi Pi xi. Moreover, yj Rj xj for

each j ∈ N \N+. This contradicts that x ∈ Ced(R). Hence, |N+| = 1.

For the sake of contradiction, suppose that there exists i ∈ N \N+ such that |N |−1
|N | Pi 0.

Define y ∈ RN\N+

+ by yi =
|N |−1
|N | and yj = 0 for each j ∈ N \ (N+ ∪ {i}). Then |N |−1

|N | Pi 0

and xi = 0 imply that yi Pi xi. Moreover, yj Rj xj for each j ∈ N \ (N+ ∪ {i}). This

contradicts that x ∈ Ced(R). Hence, 0 Ri
|N |−1
|N | for each i ∈ N \N+.

Theorem 4 provides a necessary and sufficient condition for nonemptiness of the equal

division core.

Corollary 4

Let R ∈ RN be a preference profile. Then an equal division core allocation exists, i.e.

Ced(R) ̸= ∅, if and only if one of the following statements hold:

• M1(R) = N .

• There exists i ∈ N1(R) such that 0 Rj
|N |−1
|N | for each j ∈ N \ {i}.

• N1(R) = ∅.
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5 Envy-freeness

This section studies Pareto optimal allocations that are envy-free, i.e. allocations for which

each agent weakly prefers its own share to the share of any other agent. Formally, for

preference profile R ∈ RN , an allocation x ∈ X is envy-free if xi Ri xj for all i, j ∈ N .

The set of envy-free allocations is denoted by F (R). We show that each envy-free allocation

satisfies both equal treatment of equals and the equal division lower bound.

Lemma 1

Let R ∈ RN be a preference profile. If an allocation is envy-free, then it satisfies equal

treatment of equals and the equal division lower bound, i.e. F (R) ⊆ E(R) ∩Bed(R).

Proof. For the sake of contraposition, let x ∈ X \ (E(R)∩Bed(R)). If x /∈ E(R), then there

exist i, j ∈ N with Ri = Rj such that xj Pi xi, which implies that x /∈ F (R). Suppose

that x /∈ Bed(R). Then there exists i ∈ N such that 1
|N | Pi xi. Assume without loss of

generality that xi <
1

|N | . Then there exists j ∈ N such that xj > 1
|N | . This implies that

xj Pi
1

|N | Pi xi. Hence, x /∈ F (R).

By Example 1, Pareto optimal and envy-free allocations do not necessarily exist. By

Example 3, allocations that belong to the equal division core are not necessarily envy-free.

For two agents, Lemma 1 implies that each Pareto optimal and envy-free allocation belongs

to the equal division core. However, the following example shows that this implication does

not hold for more than two agents.

Example 4

Let N = {1, . . . , |N |} with |N | > 2 and let R ∈ RN be a preference profile such that

N1(R) = M1(R) = {1, 2}. Then P (R) ∩ F (R) = {( 12 ,
1
2 , 0, . . . , 0)} and Ced(R) = ∅. △

Following Gong et al. (2022), for an agent i ∈ N and a preference profile R ∈ RN , the

sharing index (with respect to 0) si(R) ∈ {0, 1, . . . , |N |} is the maximum size of the group

of agents with whom equal sharing is preferred to 0, or zero otherwise, i.e.

si(R) =

max{k ∈ {1, . . . , |N |} | 1
k Pi 0} if i ∈ N1(R);

0 if i /∈ N1(R).

Note that si(R) = |N | if and only if i ∈ M1(R).

We characterize the Pareto optimal and envy-free allocations.

Theorem 5

Let R ∈ RN be a preference profile and let x ∈ P (R) be a Pareto optimal allocation. Then

x is envy-free, i.e. x ∈ F (R), if and only if the following statements hold:
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• If N1(R) ̸= ∅, then there exists S ⊆ N such that

– xi =
1
|S| and si(R) ≥ |S| for each i ∈ S;

– xi = 0 and si(R) < |S| for each i ∈ N \ S.

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N , then M0(R) = N and xi =
1

|N | for each i ∈ N .

Proof. Clearly, if the statements hold, then x ∈ F (R). We prove the only-if part. By

Lemma 1 and Theorem 3, it suffices to show that if x ∈ F (R), then the following statements

hold:

(i) If N1(R) ̸= ∅, then there exists S ⊆ N such that xi = 1
|S| and si(R) ≥ |S| for each

i ∈ S, and xi = 0 and si(R) < |S| for each i ∈ N \ S.

(ii) If N0(R) = N , then M0(R) = N .

(i) Assume that N1(R) ̸= ∅. Let x ∈ F (R). Define N+ = {i ∈ N | xi > 0}. By

Theorem 3, M1(R) ⊆ N+ and xi Pi 0 for each i ∈ N+. If there exist i, j ∈ N+ such that

xi < xj , then xi Pi 0 implies that xj Pi xi, which contradicts that x ∈ F (R), so xi =
1

|N+|
for each i ∈ N+. Then xi Pi 0 implies that 1

|N+| Pi 0 for each i ∈ N+, and x ∈ F (R)

implies that 0 Ri
1

|N+| for each i ∈ N \N+. This implies that si(R) ≥ |N+| for each i ∈ N+

and si(R) < |N+| for each i ∈ N \N+. Hence, there exists S ⊆ N such that xi =
1
|S| and

si(R) ≥ |S| for each i ∈ S, and xi = 0 and si(R) < |S| for each i ∈ N \ S.
(ii) Assume that N0(R) = N . For the sake of contraposition, assume that M0(R) ̸= N .

By Theorem 3, there exists i ∈ N \M0(R) such that xi = 1 and xj = 0 for each j ∈ N \ {i}.
Then i ∈ N0(R) implies that xj Pi xi for each j ∈ N \ {i}. Hence, x /∈ F (R).

Theorem 5 provides a necessary and sufficient condition for compatibility of Pareto op-

timality with envy-freeness.

Corollary 5

Let R ∈ RN be a preference profile. Then a Pareto optimal and envy-free allocation exists,

i.e. P (R) ∩ F (R) ̸= ∅, if and only if one of the following statements hold:

• There exists S ⊆ N such that

– si(R) ≥ |S| for each i ∈ S;

– si(R) < |S| for each i ∈ N \ S.

• N1(R) = ∅ and N0,1(R) ̸= ∅.

• M0(R) = N .
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A stronger requirement than envy-freeness is group envy-freeness. An allocation is group

envy-free if for each group of agents, no redistribution of the share of any group of agents

with the same size is weakly preferred by each group member and strictly preferred by some

group member. Formally, for preference profile R ∈ RN , an allocation x ∈ X is group

envy-free if for each S ⊆ N there does not exist y ∈ RS
+ with

∑
i∈S yi =

∑
i∈S′ xi for some

S′ ⊆ N with |S′| = |S| such that yi Ri xi for each i ∈ S and yi Pi xi for some i ∈ S. The

set of group envy-free allocations is denoted by G(R). Note that G(R) ⊆ P (R) ∩ F (R). By

Lemma 1, this implies that each group envy-free allocation satisfies both equal treatment of

equals and the equal division lower bound. We show that each group envy-free allocation

even belongs to the equal division core.

Lemma 2

Let R ∈ RN be a preference profile. If an allocation is group envy-free, then it belongs to the

equal division core, i.e. G(R) ⊆ Ced(R).

Proof. For the sake of contraposition, let x ∈ X \ Ced(R). Then there exist S ⊆ N and

y ∈ RS
+ with

∑
i∈S yi = |S|

|N | such that yi Ri xi for each i ∈ S and yi Pi xi for some

i ∈ S. If
∑

i∈S′ xi =
|S|
|N | for some S′ ⊆ N with |S′| = |S|, then x /∈ G(R). Suppose that∑

i∈S′ xi ̸= |S|
|N | for each S′ ⊆ N with |S′| = |S|. Assume without loss of generality that∑

i∈S xi <
|S|
|N | . Then there exists S′ ⊆ N with |S′| = |S| such that

∑
i∈S′ xi >

|S|
|N | . Define

z ∈ RS
+ with

∑
i∈S zi =

∑
i∈S′ xi such that zi = yi for each i ∈ S with yi ≤ xi, and zi > yi

for each i ∈ S with yi > xi. Then zi Ri yi Ri xi for each i ∈ S with yi ≤ xi, and zi Pi yi Ri xi

for each i ∈ S with yi > xi. Hence, x /∈ G(R).

We characterize the Pareto optimal and group envy-free allocations.

Theorem 6

Let R ∈ RN be a preference profile and let x ∈ P (R) be a Pareto optimal allocation. Then

x is group envy-free, i.e. x ∈ G(R), if and only if the following statements hold:

• If M1(R) = N , then xi =
1

|N | for each i ∈ N .

• If M1(R) ̸= N and N1(R) ̸= ∅, then xi = 1 or i /∈ N1(R) for each i ∈ N .

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N , then M0(R) = N and xi =
1

|N | for each i ∈ N .

Proof. Clearly, if the statements hold, then x ∈ G(R). We prove the only-if part. Let

x ∈ G(R). By Lemma 2, Theorem 4, and Theorem 5, it suffices to show that if M1(R) ̸= N

and N1(R) ̸= ∅, then xi = 1 or i /∈ N1(R) for each i ∈ N . Assume that M1(R) ̸= N and

N1(R) ̸= ∅. By Theorem 4, there exists i ∈ N1(R) such that xi = 1. By Theorem 5, this

implies that sj(R) = 0 for each j ∈ N \{i}, so j /∈ N1(R) for each j ∈ N \{i}. Hence, xi = 1

or i /∈ N1(R) for each i ∈ N .
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Theorem 6 provides a necessary and sufficient condition for existence of group envy-free

allocations.

Corollary 6

Let R ∈ RN be a preference profile. Then a group envy-free allocation exists, i.e. G(R) ̸= ∅,
if and only if one of the following statements hold:

• M1(R) = N .

• |N1(R)| = 1.

• N1(R) = ∅ and N0,1(R) ̸= ∅.

• M0(R) = N .

6 Concluding remarks

This paper studied the compatibility of Pareto optimality with various fairness requirements

in the context of allocation problems where agents have single-dipped preferences. These

fairness requirements included equal treatment of equals, the equal division lower bound,

the equal division core, envy-freeness, and group envy-freeness. All logical relations between

them are summarized in Figure 1.

x ∈ G(R)

x ∈ F (R) x ∈ Ced(R)

x ∈ E(R) x ∈ Bed(R)

Figure 1: Let R ∈ RN be a preference profile and let x ∈ X be an allocation. All relations

between equal treatment of equals (E), the equal division lower bound (Bed), the equal

division core (Ced), envy-freeness (F ), and group envy-freeness (G) are presented.

For each of these fairness requirements, we provided a necessary and sufficient condition

for compatibility with Pareto optimality and we characterized all corresponding allocations

for each preference profile. Among them, only the equal division lower bound is compatible

with Pareto optimality for each preference profile.

We conclude this paper by introducing two procedures for selecting fair and Pareto op-

timal allocations for each preference profile.
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The first procedure selects a Pareto optimal allocation that is group envy-free whenever

possible, is envy-free whenever possible, and satisfies the equal division lower bound. For

preference profile R ∈ RN , select x ∈ P (R) in the following way:

• If N1(R) ̸= ∅, then for some S ⊆ N ,

– xi =
1
|S| and si(R) ≥ |S| for each i ∈ S;

– xi = 0 and si(R) ≤ |S| for each i ∈ N \ S.2

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N and M0(R) ̸= N , then xi = 1 for some i ∈ N \M0(R).

• If M0(R) = N , then xi =
1

|N | for each i ∈ N .

Then x ∈ G(R) if G(R) ̸= ∅, x ∈ F (R) if P (R) ∩ F (R) ̸= ∅, and x ∈ Bed(R).

The second procedure selects a Pareto optimal allocation that is group envy-free whenever

possible, belongs to the equal division core whenever possible, and satisfies the equal division

lower bound. For preference profile R ∈ RN , select x ∈ P (R) in the following way:

• IfM1(R) ̸= ∅, then xi =
1

|M1(R)| for each i ∈ M1(R), and xi = 0 for each i ∈ N \M1(R).

• If M1(R) = ∅ and N1(R) ̸= ∅, then xi = 1 for some i ∈ argmin{k1j (R) | j ∈ N}.

• If N1(R) = ∅ and N0,1(R) ̸= ∅, then xi = 1 for some i ∈ N0,1(R).

• If N0(R) = N and M0(R) ̸= N , then xi = 1 for some i ∈ N \M0(R).

• If M0(R) = N , then xi =
1

|N | for each i ∈ N .

Then x ∈ G(R) if G(R) ̸= ∅, x ∈ Ced(R) if Ced(R) ̸= ∅, and x ∈ Bed(R).
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