The influence of environment, behavior, and attention deficits on cognitive development in school-aged children

Citation for published version (APA):

Document status and date:
Published: 01/01/2003

DOI:
10.26481/dis.20031003ph

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 14 Oct. 2023
Summary
Over the last decades, many articles have been written about the processes underlying childhood development. Additional research in this field is, however, still needed and should focus specifically on certain domains, as stated earlier by several authors (e.g., Verhulst (1999)). First, it is important to understand the processes underlying normal development and to examine the factors that influence these processes. Secondly, more needs to known of the etiology, course, prevalence, and treatment of abnormal functioning. In this thesis, childhood development was investigated by studying healthy children as well as children in whom development was deviant. An overview of this thesis is given below.

ADHD is one of the most frequently monitored developmental disorders worldwide and is known to occur in different cultures. Prevalence estimates fluctuate between 1% and 20% (with an average of 3 - 5% for the general population [Barkley, 1998; Kroes et al., 2001]), depending on the strictness with which criteria are applied, cultural differences, and the degree of consensus between caregivers, teachers, and physicians (Dinklage & Barkley, 1997). According to the latest edition of the DSM (American Psychiatric Association, 1994), the syndrome can be defined best with comprehensive terms such as attention deficits, impulsive behavior, and hyperactivity. However, because almost all children will show some of the predefined characteristics at some stage, one can only speak of ADHD under strict conditions, including preset definitions related to the duration of symptomatology (over at least 6 months), its severity (at least in two domains e.g. at home and at school) and concordance between relatives of the child (e.g. teacher and parent). Over the years, many researchers have studied the etiology of ADHD. Although information is at times inconsistent, much has been learned in the past decades. Preliminary results lead to the conclusion that no single etiological factor can explain all cases of the clinical syndrome ‘ADHD’, and that more likely an interaction between both psychosocial and biological factors leads to a final common pathway of the syndrome. However, ADHD is often related to localized hemispheric structural abnormalities and/or dysfunctions in, for instance, the frontal-striatal areas and connections, the cerebellum, and the basal ganglia. Also, the behavior of these children reflects these underlying brain deviations. For instance, cognitive deficits are hypothesized to be a core part of ADHD in school-aged children and are thought to play a major role in the difficult adaptation of children suffering from this disorder (Seidman, Biederman, Faraone, Weber, & Ouelette, 1997). As a group, these children exhibit sub-average or relatively weak performance on various tasks measuring both input- and output-related information processing (Barkley, 1998; Perugini, Harvey, Lovejoy, Sandstrom, & Webb, 2000). In contrast to what was thought earlier, follow-up studies have consistently documented that ADHD symptoms tend to persist into adolescence and young adulthood (Barkley, 1996; Hechtman, Weiss, Perlman, & Amsel, 1984; Weiss & Trokenberg Hechtman, 1993). Although relatively little is known about the long-term outcome of ADHD, available data sug-
gest that the problems that adults have to face as a result of earlier ADHD symptoms in childhood range from residual ADHD symptoms that impair home or work adjustment to depression, substance abuse, low self-esteem, accident proneness, and anti-social personality (Weiss & Trokenberg Hechtman, 1993; Wender, Reimherr, & Wood, 1981). In summary, ADHD is a prevalent and serious disorder affecting the entire life span of the affected individual as well as that person’s social environment, and thus it is important to learn more about the etiology, developmental profile, diagnostic trademarks, and treatment of this disorder. Unfortunately, even though an explosion of media and scientific attention has served to increase our awareness and knowledge of ADHD, there is still confusion or misunderstanding about the disorder. In chapter 1 of the thesis, an outline is presented of current knowledge of ADHD in terms of history, prevalence rates, sex differences, etiology, and outcome. The limitations of presently available data are discussed and a link is made to new research that increases knowledge about the etiology and developmental profile of children suffering of ADHD. In order to learn more about ADHD, it is essential to increase simultaneously our understanding of the executive control functions in healthy development, from a neurocognitive and behavioral point of view. Knowledge of healthy cognitive development and of the influence of behavioral, biological, and contextual characteristics of the child is important to future research of ADHD.

The present thesis consists of two parts. In the part I (chapters 2 – 4), several aspects of behavior (e.g., sleep, externalizing and internalizing behavior) and cognition (e.g., verbal fluency, visuomotor preparation) were investigated in a general population of 5- to 9-year-old Dutch children. Secondly, because another main goal of the thesis was to increase knowledge of the cognitive development of children with ADHD, the data collected in the first part and of studies conducted by other researchers were used to generate a number of new research questions. These research questions were discussed more thoroughly in the second part of the thesis, namely, in chapters 5 to 9.

PART I

The term ‘development’ can be defined as ‘a long-term, irreversible process, leading to an organization on a higher and integrated level’ (Mönks & Knoers, 1978). Human development can be seen in this perspective as a dynamic-interactive process, in which both genetically determined autonomic factors and external factors (e.g., experience, and environment) are important. Many clinicians and researchers have studied the concept of ‘development’ from diverse perspectives (for instance, a biological, social, medical, or cognitive perspective). Below, the focus is on specific aspects of development (in terms of cognition and behavior).
The goal of the study presented in chapter 2 was to elucidate risk factors relevant for identifying children at risk of failure at school (academic delay or transfer to special education) in a general population. Data related to the biological and contextual characteristics and the behavior of the child were collected for 1317 preschool-aged children living in the Limburg area in the Netherlands. After deletion of missing data on the continuous and non-continuous predictors, data from 1235 children were available for analysis. Subsequently, 3 years later, the school career of these children was mapped. Based on these data, three mutually exclusive categories were created: (I) Children who had passed through school successfully (n = 924); (II) Children who had stayed down at least one class (before or after inclusion in the study at kindergarten) but who were still learning within the normal school environment (n = 277); (III) Children who were transferred, after inclusion in the study at preschool age, from a normal school to a school for children with special needs (n = 34). The approach used in this study was new with regard to (a) the longitudinal component of the study, (b) the earlier mentioned benefit of the inclusion of a general population sample, and (c) that the children were assessed in early childhood, at the time when they had just entered the first classes of a normal school. Data analysis revealed that a model predictive for school outcome consisted of biological, contextual, and behavioral factors. Behavioral variables registered at kindergarten that appeared to be predictive for later school career were scores on the Child Behavior Checklist (CBCL) attention problems scale and the CBCL delinquency scale. In addition, the level of occupational achievement, sex of the child, age of mother at birth, number of children in the family, living area, and family status appeared to be a predictor of school career.

The first aim of the study presented in chapter 3 was to study the association between contextual, biological, and behavioral characteristics of a child on the one hand and sleep on the other. For this purpose, several aspects related to sleep (e.g., presence of nightmares, amount of sleep, sleep problems in general) were examined in a non-clinical population of 5- to 6-year-old Dutch preschool-aged children (n = 1258). The results of this first experiment showed that sleep problems were commonly observed in preschool-aged children. Rates of parental reports of sleep problems, as observed in their child at least sometimes, ranged from 3.9% for an increased amount of sleep to 17.9% for nightmares, with general sleep problems (11.8%), sleep walking/talking (14.9%), and a decreased amount of sleep (11.4%) being intermediate. In addition, it was found that certain behavioral (e.g., physical complaints, thought problems, aggressive behavior, and anxiety/depression) and contextual (e.g., the level of occupational achievement of the caregiver, the number of children in the family, family status, and the age of the mother at birth) characteristics of preschool-aged children were correlated highly with specific parent-reported sleep problems. The second research ques-
tion addressed the stability of sleep as a function of time. A sample of the children screened at preschool age (286 of the 1258 children) was screened again 3 years later by means of the CBCL. Data obtained were compatible with the notion that problematic sleep and specific behavioral aspects (such as having attention problems) measured at preschool age were predictive of sleep problems 3 years later. This finding emphasizes the relevance of teaching parents about good sleep hygiene for their child in the hope of preventing more serious or chronic sleep-related problems.

The study presented in chapter 4 evaluated the performance on Semantic Category Fluency (SCF) versus Initial Letter Fluency (ILF) tasks of 91 healthy children aged 8.4 - 9.7 years. Verbal fluency was operationalized as the number of words produced in a restricted category in 60 seconds. In addition, word production in the first 15 seconds of either type of fluency task was taken as a measure of automatic information processing, whereas production from 15 seconds through 1 minute was taken as a measure of controlled information processing. Data revealed that in 60 seconds children produced significantly more words on the SCF tasks than on the ILF tasks, a pattern that differed from that known for adults. Furthermore, word production decreased significantly as a function of time on both SCF and ILF tasks. Data for performance over time suggested that children tended (equally for both types of fluency) to produce more correct answers over the first 15 seconds of a specific test compared to later time intervals (with equal duration). Also, word production on both types of fluency tasks was not identical across time intervals, suggesting that production is a function of both type of task and time samples. Finally, no sex or age differences were found for all measures of performance on either type of fluency tasks. In contrast, the level of occupational achievement of the caregiver (LOA) appeared to be a significant determinant of the child’s performance on either type of fluency, indicating that LOA affected higher-order processes, such as the automation of newly learned verbal skills and effortful processing.

PART II

Over the past decades, ADHD has received increased attention from both clinicians and researchers. Although there has been a virtual explosion of media and public interest in the subject, there is still confusion and misunderstanding about the disorder. Therefore, there is a continuing need for discussion about ADHD. From this perspective, the primary goal of the earlier studies of this thesis was to examine risk factors and cognitive developmental profiles of children suffering from ADHD and to measure the specificity of these profiles by comparing the profiles of ADHD children with those of pathological controls and healthy individuals.
The performance of ADHD children on SCF versus ILF tasks was examined in chapter 5. For each participant, word production was recorded for each 15-s time slice on each task. Performance on both fluency tasks was compared to test the hypothesis that children with ADHD are characterized by a performance deficit on the ILF task because performance on this task is less automated than performance on the SCF. Children classified with ADHD (N = 20) were compared to children with other psychopathology (N = 118) and healthy controls (N = 130). Results indicated that the groups could not be differentiated by the total number of words produced in 60 seconds in either fluency task. As hypothesized, a significant interaction of group by productivity over time by type of fluency task was found: ADHD children had more problems finding words in the first 15 seconds of the IFL than did children in the other two groups, and as compared with their performance on the SCF. Results were taken to indicate that children with ADHD symptoms show a delay in the development of automating skills for processing abstract verbal information.

As far as we know, there have been no published investigations of visuomotor preparation in ADHD. This is unfortunate because ADHD research suggests that an output-related deficit and faulty or sub-optimal execution of tasks can be the result of faulty or incomplete preparation. Therefore, the main goal, as stated in chapter 6, was to study (automatic and controlled) visuomotor preparation in ADHD, as measured with the Finger Precuing Test (FPT). Two independent variables were manipulated, namely, preparation condition and preparation interval. The first variable reflects the type of cue given before the reaction stimulus was displayed (three cued conditions (hand-, finger-, neither-cued) vs. one uncued condition). The second variable reflects the time span between cue onset and reaction stimulus onset (100 ms (as a measure of automatic processing) vs. 1000 ms (effortful processing)). The data revealed that, for all cued conditions, healthy children and children with psychopathology other than ADHD were able to profit only from the unimanual hand-cued condition, both automatically and effortful. In contrast, ADHD children were able to benefit from a cue involving two fingers on one hand with a 100-ms preparation interval, but not with a 1000-ms preparation interval. This dissociation suggests that fast, automatic response preparation is not affected by ADHD, whereas attention-demanding or controlled response preparation is. Additionally, children with ADHD showed more variability in overall test performance than children in the other groups. No group differences were found in the accuracy of responses. In conclusion, ADHD seems to be associated with an impaired ability to engage in effortful, controlled visuomotor preparation activities.

Although many theories have been proposed to explain ADHD symptomatology, one of the main theories is that prefrontal circuits are dysfunctional in children
suffering from ADHD. Research results provide evidence of a deficit in some aspects of executive functioning in ADHD children. Unfortunately, these results are not always consistent within the ADHD sample, possibly reflecting sample differences within the ADHD spectrum or differences in the definition of ADHD used between studies. To further our insight into this topic, an extensive study described in chapter 7 was performed according to a design in which several confounders were taken into consideration, to test executive functioning in ADHD and the specificity of a possible deficit. Children classified with ADHD were compared to children with Conduct Disorder or Oppositional Defiant Disorder (CD/ODD), children with pathology other than ADHD, CD, or ODD (Pathological controls), and normal controls. Five tests were administered to test diverse aspects of executive functioning, that is, the Stroop test, a concept shifting task, verbal fluency tasks, and working memory tasks. To reduce the numerous executive functioning measures to their principal dimensions, a principal components factor analysis was conducted. Five factors were identified, accounting for 74.1% of the variance, namely, attention capacity, Stroop inhibition, simple motor performance, cognitive flexibility, and working memory. In contrast to our expectations, some aspects of executive functioning (e.g., inhibition, working memory, and simple motor performance) did not differentiate between groups (ADHD, CD/ODD, pathological controls, and normal controls). In contrast, aspects of executive functioning that did differentiate between groups were attention capacity and cognitive flexibility. However, significant interactions of sex by group membership were found for these last-mentioned functions. Post-hoc analyses indicated that attention deficits were more prevalent in girls with ADHD, whereas boys with ADHD tended to perform significantly worse on tasks measuring cognitive flexibility and concept shifting. Furthermore, the deficits found in ADHD on tasks measuring executive functioning were specific for ADHD and not for childhood psychopathology in general and were not influenced by general ability and reading skills.

Although the additive value of neuropsychological tests for diagnosing ADHD is increasingly acknowledged, more research into the cognitive functioning of these children is still needed. Therefore, the first objective of the study presented in chapter 8 was to test the value of cognitive tests in differentiating ADHD children from control children. The second objective was related to comorbidity in ADHD. From the literature it is known that ADHD often co-occurs with other disabilities (such as learning disabilities) and that these co-occurring disabilities by themselves can affect the cognitive abilities of a child. Distinguishing between the neuropsychological performance of children with ADHD and learning disabilities (LD) on the one hand and children with ADHD without LD on the other is therefore crucial. By studying this distinction, it can be concluded with more certainty whether a certain cognitive profile is specific for ADHD. Therefore, the
second aim of the study presented in this chapter was to study the specificity of a certain profile of cognitive functioning for ADHD. To fulfill these aims, three groups were included in the analyses, namely (i) a group of children with ADHD (aged 8.9 ± 1.9 years), (ii) a group of children with ADHD and co-occurring learning disabilities in either mathematics or reading (ADHD/LD; aged 9.3 ± 1.5 years), and (iii) a group of control children (aged 9.1 ± 1.8 years). As a main outcome variable, information processing as measured by the Kaufman Achievement Battery of Children (K-ABC) was chosen. Results indicated that children with ADHD (with or without Learning Disabilities) performed significantly worse on the Mental Processing scale of the K-ABC (as a measure of general abilities) than the controls. Additional analyses revealed that, while controlling for sex, age, and type of school the child attended, the groups did not differ in performance on tasks measuring perceptual abilities, reasoning, and visual-constructive abilities. In contrast, children with ADHD and with ADHD/LD scored significantly less well than the controls on tests measuring (verbal) working memory and temporal processing skills. With respect to the second objective of the study, no significant differences were found between children with ADHD and children with ADHD/LD. Based on this last result, it can be concluded with more certainty that the cognitive deficits in working memory and temporal processing skills seen in children with ADHD are caused primarily by ADHD and that learning disabilities have only a minor role.

An aspect of research that has received limited coverage is the cognitive development of children with ADHD. It is still unclear whether the neuropsychological abnormalities found in relation to ADHD reflect an underlying brain dysfunction that endures over a longer period in the life of the individual, or whether, in contrast, it is possible that a child suffering from ADHD outgrows the neuropsychological abnormalities. The aim of chapter 9 was, therefore, to study the cognitive performance of children suffering from ADHD in a longitudinal design. In total, three groups were selected, namely (a) a group of children classified as having ADHD, (b) a group of children classified with psychopathology other than ADHD, and (c) a group of healthy control children. All groups were subjected to two neuropsychological evaluations (evaluation I when the children were approximately 5/6 years old and evaluation II at 9/10 years of age). Three cognitive tasks were included in the design as within-subjects variables, measuring either working memory or visual-motor integration capabilities. Within-group analyses showed that the performance of all groups improved as time passed. Between-group comparisons revealed that children with ADHD performed at neuropsychological evaluation I significantly less well than children in both control groups on tasks measuring working memory and/or visual-motor integration. Three years later (at evaluation II) this trend was only still observable for tasks measuring working memory. No differences in test performance at follow-up
were found on the task measuring visual motor integration. In summary, it can be concluded that while children with ADHD outgrow certain deficits (e.g., cross-modal transfer of information) as they grow up, other deficits remain.

In the last chapter of the thesis (namely chapter 10), an overview is provided of the main results of the thesis, limitations of current data on the subjects’ ‘normal and subclinical development’ and ‘ADHD’, and the implications of findings for scientific research and their possible clinical application. Emphasis is on the increasingly accepted role of the neuropsychologist, and neuropsychological tools and insights used for cognitive assessment and training. Based on the data presented in this final chapter, it can be concluded that research performed over the years has provided new insights into normal and abnormal development, but also new theories and ideas that still need to be tested. In the future, in addition to the fundamental research presented in this thesis, applied research should provide more insight into ADHD, with the main goal of improving the health services (in terms of the diagnosing and treating individuals) that can be provided to the children, adolescents, and adults suffering from the consequences of attention disorders.

References
Ontwikkeling is inherent aan het leven zelf. Desalniettemin is de groei, zowel op lichamelijk, cognitief, als sociaal niveau, nergens zo uitgesproken als op jonge leeftijd. Verhulst (1999) gaf eerder aan, dat de kennis t.a.v. de ontwikkeling in de kindertijd middels twee typen van onderzoek uitgebreid dient te worden. Ten eerste moet het onderzoek zich richten op het verbreden van de kennis omtrent het begrip ‘normale ontwikkeling’ en de factoren die daarop van invloed zijn. Ten tweede is het van belang om inzicht te verwerven in het ontstaan, het beloop, de prevalentie en de behandeling van abnormaal functioneren, zoals bijvoorbeeld het geval is wanneer een kind lijdt aan een aandachtsstoornis. In het huidige proefschrift is er voor gekozen om het inzicht t.a.v. ontwikkeling bij kinderen te vergroten door zowel gezonde kinderen als kinderen met een deviante ontwikkeling te onderzoeken. In de volgende paragrafen zal een overzicht gegeven worden van de hoofdstukken, op basis waarvan het proefschrift opgebouwd is.

Een van de meest voorkomende stoornissen gediagnosticeerd op jonge leeftijd is ‘ADHD’ (of voluit: Attention-Deficit/Hyperactivity Disorder). Volgens het classificatiesysteem DSM-IV (American Psychiatric Association, 1994), is er bij ADHD sprake van een verstoorde aandacht, een hyperactiviteit, een impulsief handelen, of een combinatie van deze kenmerken. Er kan echter enkel gesproken worden van ADHD als het inefficiënte of afwijkende handelen van het kind leidt tot een ernstige verstoring in het sociaal, cognitief of schools functioneren. Daarnaast dient het afwijkende gedrag reeds op jonge leeftijd in twee of meer situaties (bijvoorbeeld op school en thuis) en over een periode langer dan 6 maanden aanwezig te zijn. Lange tijd is er verondersteld dat kinderen met ADHD over hun problemen heen groeien naarmate zij ouder worden. Echter, toenemend blijkt het tegenovergestelde waar te zijn: kinderen met ADHD nemen in veel gevallen hun problemen mee in de adolescentie en de volwassenheid (Barkley, 1996; Hechtman, Weiss, Perlman, & Amsel, 1984; Weiss & Trokenberg Hechtman, 1993). Daarnaast blijkt toenemend dat het gedrag kenmerkend voor ADHD verklaard kan worden door o.a. abnormaliteiten en/of disfunctioneren van specifieke hersenstructuren, zoals bijvoorbeeld de prefrontaal cortex, het cerebellum, en de basale ganglia. Aanwijzingen voor afwijkingen in hersenstructuren en het funktioneer ervan worden ook gevonden wanneer men kijkt naar het cognitief functioneren van kinderen met ADHD. Voorbeelden van specifieke cognitieve problemen in ADHD zijn: problemen t.a.v. de volgehouden aandacht (uitgedrukt in een hoge mate van variabiliteit in testprestaties en een afgenomen accuraatheid) en slechtere prestaties op taken die diverse aspecten van executief functioneren meten (zoals het internaliseren van spraak, de zelfregulatie en het werkgeheugen) (Barkley, 1998; Perugini, Harvey, Lovejoy, Sandstrom, & Webb, 2000). Kort samengevat, is ADHD dan ook een complexe stoornis die grote invloed heeft op de ontwikkeling van het kind en zijn omgeving. Het verkrijgen van inzicht in pathogenese en de ontwikkeling van kinderen met ADHD is van groot belang, mede met het oog op de ontwikkeling van optimale diagnostiek en het vroegtijdig
kunnen behandelen van deze doelgroep. Inzicht in de ontwikkeling van het kind met ADHD in de tijd en de specificiteit van deze bevindingen t.a.v. ADHD ontbreken echter nog veelal in de mondiale literatuur. Vanuit deze overwegingen worden er in hoofdstuk 1 van het proefschrift een aantal aanbevelingen gedaan om dit inzicht te vergroten. Om dit laatste echter te bereiken zal er tegelijkertijd meer inzicht in de ontwikkeling van gezonde kinderen en kinderen met een subklinisch niveau van aandachts- en gedragsproblemen verkregen moe ten worden. Derhalve is er voor gekozen om de hoofdstukken 2 t/m 10 van het proefschrift onder te verdelen in enerzijds een gedeelte dat betrekking heeft op de normale en subklinische ontwikkeling en aspecten van de kind en zijn omgeving die deze ontwikkeling kunnen beïnvloeden (deel I: hst. 2 t/m 4) en anderzijds een gedeelte dat betrekking heeft op de pathologische ontwikkeling en meer specifiek de ontwikkeling van kinderen met ADHD (deel II: hst. 5 t/m 10).

DEEL I

De term ‘ontwikkeling’ wordt in de literatuur gedefinieerd als ‘een langdurig, onomkeerbaar proces, dat leidt tot een organisatie op een hoger en geïntegreerd niveau’ (Mönks & Knoers, 1978). De ontwikkeling van de mens kan daarbij gezien worden als een dynamisch-interactief proces, waarbij zowel genetisch vastgelegde, autonome factoren als wel de op de ontwikkeling inwerkende externe factoren, als ervaring, training en omgevingsinvolucerd, een belangrijke rol spelen. Vele klinische en wetenschappelijke disciplines hebben vanuit hun eigen invalshoek (o.a. vanuit een medisch, biologisch, sociaal, en cognitief perspectief) gekeken naar het concept ‘ontwikkeling’. In dit eerste gedeelte van het proefschrift wordt slechts een beperkt aantal vragen beantwoord, op basis waarvan geconcludeerd kan worden dat o.a. vroegtijdig gesignaleerde aandachtsproblematiek een grote invloed heeft op de ontwikkeling van kinderen.

Zo is er in hoofdstuk 2 gepoogd om reeds op jonge leeftijd kinderen te identificeren, die een verhoogd risico hebben op het falen op school. Kan er bijvoorbeeld op basis van kenmerken van het kind of zijn/haar omgeving, zoals gemeten op kleuterleeftijd, voorspeld worden welke kinderen naar verloop van tijd blijven zitten en/of welke kinderen uiteindelijk overgeplaatst worden naar het speciaal basisonderwijs? Om een antwoord te kunnen geven op deze vraag, zijn een groot aantal kinderen geïncludeerd, die alle ten tijde van inclusie in groep 2 van het reguliere basisonderwijs zaten. Van deze groep is data verzameld met betrekking tot de biologische en gedragskarakteristieken van het kind enerzijds en zijn/haar omgeving anderzijds. Drie jaar na inclusie is de school carrière van deze kinderen in kaart gebracht. Op basis van deze data, is vervolgens bepaald welke kinderen nominaal hun schooltijd doorlopen hebben (groep I; n = 924), welke kinderen zijn blijven zitten binnen het reguliere basisonderwijs (groep II; n = 277) en wel-
ke kinderen naar het speciaal basisonderwijs overgeplaatst zijn (groep III; n = 34). De data analyse laat zien dat een model aan de hand waarvan het schools functioneren op kleuterleeftijd voorspeld kan worden, moet bestaan uit factoren die betrekking hebben op de omgeving, het gedrag als wel de biologische eigenschappen van een kind. Gedragsvariabelen gemeten op kleuterleeftijd die voor-spellend zijn voor school carrière later, zijn onder meer aandacht en delinquent gedrag gemeten m.b.v. de Child Behavior Checklist (CBCL). Daar-naast is aan-toond dat het beroep en de leeftijd van de moeder bij geboorte, het aantal kinderen in het gezin, de familie status, en de omgeving en het geslacht van het kind tevens bepalend zijn voor de school carrière. Een ander aspect dat belangrijk is wanneer men kijkt naar ontwikkeling is slaap. Hoewel slaap problemen vaak gesignaleerd worden bij kinderen, staan er nog altijd relatief veel vragen omtrent dit onderwerp open. Voorbeelden van dergelijke vragen hebben betrekking op (a) de invloed van gedragsmatige, biologische en omgevings-factoren op slaapproblemen bij kinderen en (b) de stabilité van slaapgedrag over tijd. Om deze vragen te kunnen beantwoorden, is in hoofdstuk 3 slaap nader bestudeerd binnen een niet-klinische populatie kinderen. T.b.v. de eerste vraag, zijn diverse aspecten van slaap (o.a. de aanwezigheid van nachtmerries, hoeveelheid slaap en slaap problemen in het algemeen) onderzocht in een niet-klinische populatie 5/6-jarige kleuters (n = 1258). De resultaten van dit eerste experiment lieten zien dat slaapproblemen relatief vaak voorkomen bij kleuters. De rap-portage van ouders m.b.t. slaapproblemen bij hun kind, wanneer deze minimaal ‘soms’ aanwezig zijn, varieerde van 3,9% voor ‘een toegenomen mate van slaap’ tot 17,9% voor ‘nachtmerries’, met ‘globale slaap problemen’ (11,8%), ‘slaap wandelen/praten’ (14,9%), en ‘een verminderde hoeveelheid slaap’ (11,4%) daar tussen in. Daarnaast blijken bepaalde gedragingen van het kind (zoals lichame-lijke klachten, denk-problemen, agressief gedrag, en angst/depressie gedrag) als wel de omgeving (beroep van de ouders, het aantal kinderen in het gezin, de gezinssituatie, en de leeftijd van de moeder bij geboorte) te correleren met de scores op specifieke slaap parameters gemeten op kleuterleeftijd. Om vervolgens een uitspraak te kunnen doen over de stabilité van slaap bij kinderen over de tijd, is een sub-groep van de kinderen, die getest zijn op kleuterleeftijd (286 van de 1258 kinderen), drie jaar na inclusie nogmaals onderzocht a.h.v. de Child Behavior Check-list (CBCL). Op basis van deze longitudinale data kan geconclusieerd worden dat verstoorde slaap gemeten op kleuterleeftijd evenals bepaalde aspecten van het gedrag van het kind (zoals aandachtsproblemen) gemeten op kleuterleeftijd voor-spellend zijn voor slaap en/of slaapproblemen drie jaar later. Deze bevindingen bevestigen de relevantie van vroegtijdige voorlichting aan ouders omtrent slaap met de hoop om meer serieuze of chronische slaap-gerelateerde problemen te voorkomen.

Verder is binnen een gezonde groep kinderen naar het cognitieven
Samenvatting | 213

gekeken. Zo is één aspect van cognitief functioneren, zoals beschreven in hoofdstuk 4, gemeten a.h.v. de fluency test: een taak die veelvoudig gebruikt wordt binnen de neuropsychologie om de vloeiendheid van taal te meten. Als algemene instructie wordt de kinderen gevraagd om gedurende een periode van 60 seconden zoveel mogelijk woorden te produceren die behoren tot een bepaalde categorie (bijvoorbeeld dieren en/of eetbare producten). Binnen de fluency tests kan een tweedeling gemaakt worden, resp. (A) de semantische categorie fluency (het kind moet bijvoorbeeld zoveel mogelijk dieren noemen) en (B) de letter fluency (het kind moet zoveel mogelijk woorden opnoemen die met een bepaalde letter beginnen). Relatief nieuw is het idee om de woordproductie als een functie van tijd te meten, waarbij woord productie over de eerste 15 seconden van een 1-minuutdurende test gekozen is als een maat van geautomatiseerde informatie verwerking, terwijl woord productie gedurende de 16 - 60 seconden van de test gekozen is als een maat van gecontroleerde informatieverwerking. A.h.v. deze uitkomstmaten, is de prestatie op beide types fluency tests gemeten bij 91 gezonde kinderen. De resultaten zijn als volgt: Over 60 seconden blijken gezonde kinderen significant meer woorden te kunnen genereren op de semantische categorie fluency taak dan op de letter fluency taak, terwijl volwassenen juist de meeste woorden noemen op de letter fluency taak. Verder blijkt dat de productie van woorden bij kinderen significant afneemt naarmate de 60 seconden verstrijken. Dit laatste geldt zowel voor de semantische categorie als de letter fluency. Addtioneel zijn enkele biologische en omgevingsgebonden factoren, zoals leeftijd, geslacht, en het beroep van de ouders, bekeken in relatie tot dit specifieke aspect van cognitief functioneren, terwijl er gecontroleerd wordt voor intermediërende factoren als de verbale intelligentie en het leesniveau van het kind. De resultaten zijn als volgt: geslacht en leeftijd blijken niet te differentiëren op taken die de verbale vloeiendheid meten. Daarentegen blijkt het beroep van de ouders een significante determinant van het presteren van kinderen op beide soorten fluency tests, waarbij meer specifiek blijkt dat het beroep van de ouders van invloed is op de hoger-order processen, zoals het automatiseren van nieuw aangeleerde verbale vaardigheden en de meer gecontroleerde processen.

DEEL II

Een ontwikkelingsstoornis, die toenemende bekendheid krijgt middels de media, gezondheidszorg en wetenschap, is ADHD. De laatste jaren is er een forse toeneming in artikelen waarin vanuit de cognitieve invalshoef gekeken wordt naar deze stoornis. Toenemend blijkt in dit verband dat de gedragsexpressie van ADHD verklaard kan worden door een anatomische afwijking c.q. een hersendysfunctioneren. Helaas is het nog altijd zo dat er een groot aantal vragen onbeantwoord zijn. Derhalve is in de resterende hoofdstukken van het proef-schrift nader gekeken naar de cognitieve ontwikkeling van kinderen met ADHD en de
vraag hoe specifiek deze bevindingen zijn voor de stoornis ‘ADHD’.

Zo is in hoofdstuk 5 de eerder uitgebreid besproken methode, ten behoeve van het scoren van de fluency tests, getoetst binnen een populatie kinderen met ADHD. In de praktijk wordt de fluency taak vaak geïnterpreteerd als een taak die de taal, aandacht en de executieve vaardigheden van een kind meet. Omdat deze cognitieve functies in kinderen met ADHD veelal aangedaan lijken te zijn, wordt de fluency taak vaker gekozen als instrument ten behoeve van het klinisch en/of wetenschappelijk onderzoek naar ADHD. Echter, de resultaten van de diverse studies zijn niet eenduidig. Verder nemen de wetenschappers vaker enkel, als uitkomstmaat, het totaal aantal woorden gegenereerd over een periode van 60 seconden. Binnen het experiment, beschreven in hoofdstuk 5, wordt dan ook opnieuw de prestatie van ADHD kinderen op zowel de semantische categorie als de letter fluency vergeleken met gezonde kinderen en kinderen met andersoortige pathologie. Als uitkomstmaten zijn meegenomen: de totaal score over 60 seconden en het aantal woorden genoemd als een functie van tijd (in samples van 15 seconden). Kort samengevat, wijzen de resultaten uit dat de groepen (ADHD, pathologische controles, en gezonde controles) niet gedifferentieerd kunnen worden op basis van het totaal aantal woorden geproduceerd over 60 seconden: een bevinding die geldt voor beide typen van de fluency taak (semantische categorie en letter fluency). Daarentegen, wordt er wel een significante interactie van groep met tijd samples en met type fluency taak gevonden. Meer specifiek, vertonen kinderen met ADHD significant meer problemen bij het genereren van woorden beginnend met een specifieke letter gedurende de eerste 15 seconden. Deze bevindingen blijven aanwezig na correctie voor de verbale intelligentie van het kind, het leesvermogen van het kind en het beroep van de ouders. Resultaten worden geïnterpreteerd als dat er bij ADHD een stoornis in de automatische verwerking van abstracte verbale informatie optreedt.

Naast de vloeiendheid van taal zijn er diverse andere aspecten van informatieverwerking (zoals cognitieve processen binnen het domein van waarneming, korte termijn geheugen, motorische uitvoering e.d.) uitvoerig bestudeerd in relatie tot ADHD. Echter, een onontgonnen gebied binnen dit geheel is de visuomotorische preparatie van het handelen, en meer specifiek hoe goed kan een kind met ADHD een hint benutten om zich optimaal voor te bereiden op een motorische actie. Dit is zonde, daar eerder verricht onderzoek pretendeert dat ADHD een output-gereleerde stoornis is en een foutieve of suboptimale uitvoering het resultaat kan zijn van een foute of incomplete preparatie. Derhalve is het doel van de studie beschreven in hoofdstuk 6 om de (geautomatiseerde en gecontroleerde) visuo-motorische preparatie in ADHD te meten. Om dit zo optimaal mogelijk te kunnen meten is de Finger Precuing Test (FPT) als uitkomst maat in deze studie gekozen. Twee onafhankelijke variabelen kunnen binnen deze taak systematisch
gemanipuleerd worden, namelijk de *preparatie conditie* en het *preparatie interval*. De eerste variabelennaam verwijst naar het soort hints dat gegeven wordt voordat het kind de reactie stimulus aangeboden krijgt (het, d.m.v. een hint, kunnen prepareren van twee vingers van slechts één hand (hand cue) of het kunnen prepareren twee vingers van twee handen (vinger cue & neither cue) vs. het krijgen van geen hint (geen cue)). De tweede variabele weerspiegelt de tijdspanne tussen het geven van de hint en de doelstimulus, waarbij een preparatie interval van 100-ms gezien wordt als een maat voor automatische verwerking en een preparatie interval van 1000-ms, als een maat voor gecontroleerde verwerking.

De data laten zien dat, gezonde, negenjarige kinderen niet kunnen profiteren van de cues die wijzen naar vingers van de twee handen. Wanneer de kinderen meer tijd hebben om de cue te verwerken (1000-ms) worden ze zelfs door deze twee-handen-bevattende cues in verwarring gebracht. Negen jaar oude gezonde kinderen en kinderen met een pathologie kunnen wel effectief gebruik maken van de hand cue, over beide preparatie-intervallen (100- en 1000-ms) heen. Kinderen met ADHD laten daarentegen een ander patroon zien: Zij kunnen gemiddeld even goed als de controles gebruik maken van de hand-cue onder de 100-ms-conditie, maar maken geen gebruik van deze cue onder de 1000-ms-conditie. De resultaten suggereren dat de snelle, automatische respons preparatie niet beïnvloed wordt door ADHD, maar de gecontroleerde preparatie wel. Daarnaast vertoont de ADHD groep, over alle tests genomen, relatief meer variabiliteit in hun respons dan de andere groepen. Geen verschillen in accuraatheid worden gevonden. ADHD kinderen lijken dan ook primair een probleem in de bewuste allocatie van aandacht en effort te vertonen.

In de literatuur worden tekorten in executief functioneren vaker genoemd in relatie tot ADHD. Echter, wanneer deze studies nader bestudeerd worden, blijken er een aantal limitaties verbonden te zijn aan de onderzoekstudies gebruikt in deze studies. Zo worden er in de literatuur diverse aspecten van executief functioneren in relatie tot ADHD bekeken, waarbij de conclusies niet altijd eenduidig zijn. Daarnaast worden vaker slechts relatief kleine groepen met een relatief grote leeftijdsspanne bestudeerd. Tenslotte blijft de vraag veelal onbeantwoord of een eventueel tekort in executief functioneren specifiek is voor kinderen met ADHD en/of dat kinderen met een andersoortige stoornis (zoals Conduct Disorder) een soortgelijk tekort laten zien. Vrijwel nergens wordt een pathologische controle groep in het design van de studie opgenomen. Hierdoor is het niet mogelijk om een uitspraak te doen over of het tekort daadwerkelijk door het hebben van ADHD verklaard kan worden of door het hebben van een co-morbide stoornis als Conduct Disorder of een leerprobleem. Derhalve is er in *hoofdstuk 7* voor gekozen om opnieuw naar deze specifieke tak van cognitief functioneren te kijken. Meer specifiek zijn aspecten van het executief functioneren (cognitive flexibiliteit, aandacht, werkgeheugen, Stroop inhibitie) gemeten in kinderen met ADHD.
kinderen met Conduct Disorder dan wel Oppositioneel Opstandig Gedrag, kinderen met een andersoortige pathologie en gezonde controle kinderen. Vijf tests zijn binnen dit onderzoek afgenomen om diverse aspecten van executief functioneren te meten, namelijk de Stroop test, een Concept Shifting taak, een verbale vloeienheid taak, en een tweetal taken die het werkgeheugen meten. Om het vele aantal maten van executief functioneren te verminderen tot hun principale dimensies, is een principale componenten factor analyse uitgevoerd. Vijf factoren zijn uit deze analyse gegenereerd, die tezamen 74,1% van de variantie verklaren: aandacht, stroop inhibitie, simpele motorische vaardigheden, cognitieve flexibiliteit, en werkgeheugen. De volgende resultaten zijn hierbij gevonden: Ten eerste, in tegenstelling tot eerdere verwachtingen, zijn er geen groepsverschillen gevonden t.a.v. sommige aspecten van executief functioneren (zoals inhibitie gemeten a.h.v. de Stroop Kleur Woord Taak en het werkgeheugen). Daarentegen, wordt in de huidige studie een interactie van geslacht en pathologie gevonden, t.a.v. de prestaties op de manifeste variabelen ‘cognitieve flexibiliteit’ en ‘aandacht’. Zo blijken aandachtstekorten meer specifiek een rol te spelen bij meisjes met ADHD, terwijl jongens met ADHD meer een probleem met concept shifting blijken te hebben. Binnen deze vergelijkingen blijkt dat deze verminderde prestatie op de cognitieve tests specifiek is voor ADHD en niet zo zeer voor pathologie in het algemeen. Daarnaast blijken de afwijkende prestaties onafhankelijk te zijn van omgeving, intelligentie en leesvaardigheden.

Zoals eerder gemeld, lijken, binnen de groep van schoolgaande kinderen, m.n. cognitieve tekorten een kern probleem in ADHD te vormen. Helaas zijn de resultaten t.a.v. het verband tussen gedragkenmerken en aspecten van cognitief functioneren niet altijd eenduidig. Daarnaast ontbreekt vaker de motivatie voor het kiezen van specifieke taken die deze functies meten. Om deze redenen wordt in hoofdstuk 8 dieper ingegaan op de relatie tussen informatieverwerking en ADHD. Verder is het helaas zo dat kinderen met ADHD relatief vaak een leerstoornis hebben naast de ADHD-problematiek. Om te corrigeren voor het feit dat leerstoornissen tevens van invloed zijn op het niveau van informatieverwerking, is er binnen de studie een onderscheid gemaakt tussen kinderen met ADHD zonder leerverstoorin gen en kinderen met ADHD met leerproblematiek. Binnen de klinische setting zijn derhalve drie groepen kinderen geselecteerd, respectievelijk (A) een groep kinderen met ADHD zonder leerverstoringen (gemiddeld leeftijd is 8,9 ± 1,9 jaar), (B) een groep kinderen met ADHD en leerproblemen (ADHD/LD; gemiddeld 9,3 ± 1,5 jaar), en (C) een gezonde controle groep (gemiddeld 9,1 ± 1,8 jaar). Bij al deze kinderen is de Kaufman Achiement Battery voor Kinderen (K-ABC) afgenomen. Twee typen uitkomstmaten zijn op basis van de Kaufman ABC berekend: (1) het niveau van informatie verwerking (algemeen, simultaan en sequentieel) en (2) de prestatie op diverse taken representatief t.a.v. specifieke cognitieve functies. Resultaten laten zien dat kinderen met
ADHD (met of zonder leerproblemen) significant lager presteren op de Mentale Verwerkingschaal van de K-ABC (als een schatter van het algemene niveau van informatie verwerking) dan de gezonde controles. Additionele analyses van de subtaken van de K-ABC laten zien dat de groepen (ADHD, ADHD/LD, en controles) op 9-jarige leeftijd niet verschillen in hun prestaties op taken die de perceptuele vaardigheden, het redeneren, en de visuoconstructieve vaardigheden meten. Daarentegen behalen kinderen met ADHD en ADHD/LD significant lagerere prestaties in vergelijking tot hun controles op taken die het verbale werkgeheugen en het temporeel verwerken van informatie meten. Geen verschillen in testprestaties zijn er gevonden tussen kinderen met ADHD en kinderen met ADHD/LD. De bevindingen ondersteunen derhalve de hypothese dat ADHD kinderen een tekort in specifieke cognitieve functies tonen.

In de eerdere hoofdstukken van dit proefschrift zijn zowel aspecten van normale ontwikkeling als het functioneren van kinderen met een afwijkende ontwikkeling (meer specifiek ADHD) besproken. Vooral het cognitief functioneren van kinderen stond hierbij centraal. Echter, dit cognitief functioneren wordt in de meeste studies slechts op 1 moment in de ontwikkeling gemeten, iets dat tevens in de literatuur vaker gesignaleerd wordt. Relatief weinig is er nog altijd gekeken naar de prestaties van de kinderen op cognitieve tests gemeten op een aantal meetmomenten over de tijd heen. Derhalve wordt in hoofdstuk 9 het cognitief functioneren van gezonde kinderen, kinderen met ADHD, en kinderen met een andersoorlogs pathologie gemeten als een functie van tijd. De kinderen, geinclusieerd in deze studie, zijn hierbij onderworpen aan een tweetal neuropsychologische onderzoeken (dat is, meetmoment I toen het kind in groep 2 van het reguliere onderwijs zat en ca. 5/6 jaar oud was en meetmoment II op 9/10 jarige leeftijd). Drie cognitieve taken zijn op beide meetmomenten afgenomen, die een beroep doen op het auditieve werkgeheugen enerzijds en de visuo-motorische integratie anderzijds. De resultaten tonen aan dat gemiddeld alle groepen (onafhankelijk van groepsindelings) groeien in hun functioneren als een functie van tijd. Tussengroepenanalyses tonen verder aan dat kinderen met ADHD significant slechter presteren op meetmoment 1 in vergelijking tot beide controle groepen op taken die zowel het werkgeheugen als de visuo-motorische integratie meten. Drie jaar later (op meetmoment II) is deze trend alleen nog waarneembaar op taken die het werkgeheugen meten. Geen verschillen worden er dan ook tijdens de follow-up gevonden op de taak die de visuo-motorische integratie meet. Samenvattend kan geconcludeerd worden dat cognitieve groei voorkomt in alle groepen, maar dat specifieke tekorten gedurende de ontwikkeling aanwezig blijven in het cognitieve profiel van kinderen met ADHD, andere tekorten pas waarneembaar worden op latere leeftijd (bijvoorbeeld, het automatiseren van taalsevaardigheden) en andere tekorten (zoals de overdracht van informatie over diverse modaliteiten) met de tijd verdwijnen.
In het laatste hoofdstuk van het proefschrift (nl. hoofdstuk 10) wordt een overzicht gegeven van de bevindingen van de studies beschreven in het proefschrift, de implicaties hiervan en de nut hiervan voor de kliniek. Op basis van dit overzicht kan gesteld worden dat er veel onderzoek gedaan is, dat kan fungeren als basis voor toekomstig onderzoek. Echter, het doel voor de toekomst moet zijn: het verbeteren van de gezondheidszorg gegeven aan kinderen, adolescenten en volwassenen (in termen van diagnostiek, behandeling als wel de kwaliteit van leven).

References