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Abstract

This paper studies the routing of multiple commodities (shipments) through a

network with the aim to minimize the total cost. To transport these commodities

from their origin to their destination hub, a combination of different services can

be used, including scheduled trucks (following a dedicated trajectory, similar to bus

routes) and express delivery. Each commodity starts its itinerary at its origin hub

and needs to arrive at its destination hub before its deadline. The following cost

factors are considered in the model: a fixed cost as well as a distance-based travel

cost for the scheduled truck services, a cost for express delivery between each pair

of hubs based on the size of the commodity, and the inventory holding cost at each

hub.

We first define the problem as a mixed-integer linear program (MILP). To solve

this MILP, we apply a branch-and-price algorithm that relies on column generation.

In a second phase, we extend our model formulation to also deal with demand uncer-

tainty (i.e., the size of each shipment varies) and present a two-stage, scenario-based

stochastic model which we also solve using the branch-and-price algorithm. To gener-

ate the scenarios for the stochastic model, we apply Sample Average Approximation

(SAA). Extensive computational experiments, including a sensitivity analysis are

presented.

Keywords: network design problem, vehicle routing, branch-and-price, column genera-

tion, sample average approximation, stochastic optimization.
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1 Introduction and research context

In today’s international context, the planning and coordination of all necessary logistics

operations within a supply network is a tedious task. As supply chain partners often

established strong dependencies on each other — with the aim to improve overall efficiency

of the network —, any delay or disruption in the transport flows between these partners

will create a significant impact on the underlying operations [3, 21, 14].

To plan and execute all required logistical operations within the supply chain, compa-

nies rely on third party logistics service providers (3PLs). These 3PLs manage the flow

of goods between the different supply chain entities by either dispatching their own vehi-

cles or by subcontracting logistics service providers to execute the required transportation

requests [45, 41, 31].

The problem presented in this paper is motivated by a case study in which a 3PL

is responsible for coordinating all material flows that belong to the supply network of a

large construction company within Europe (company names are confidential). The network

consists of multiple hubs, which either take the form of transhipment points within the

supply network or represent a local supply or demand node (potentially uniting multiple

suppliers / customers within a certain region for simplicity). The flow density between

each pair of hubs varies significantly over time (some connections are used only seldom,

others have high volumes every day) and is uncertain (exact volumes are only known last-

minute). As the 3PL does not have its own fleet of trucks, it relies on — often local —

subcontractors (carriers) to execute the transports.

We distinguish two types of agreements between the 3PL and its subcontractors. First,

there is a long-term agreement to establish a periodic fixed capacity on some of the network

connections. For example, a truck is chartered every Monday and Thursday to drive a fixed

trajectory. As these long-term commitments are valuable to the carriers (these provide

a predictable income), competitive prices can be negotiated for the service. However,

sufficient flow should be guaranteed over the link, as one should always pay for a full

truckload, independent from the actual load. Second, the 3PL can book an ad-hoc express

delivery on the spot market. This service is more flexible and its cost depends solely on the

volume and trajectory of the actual load at a particular time (i.e., there is no long-term

commitment here).

To model the decisions faced by the 3PL, we use a service network design problem

(SNDP) formulation. SNDPs mainly support tactical decisions (e.g., fleet size, transport

modes, . . . ) for the routing of commodities (such as goods, data, people, . . . ) within
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a network that consists of interconnected hubs and where the transport of a commodity

occurs between its source and destination node. Variants of the SNDP have been success-

fully applied to many problems in, e.g., road transportation planning [34, 17, 44], railway

planning [8, 32, 5, 57], flight scheduling [27, 10, 35] and telecommunication [39, 38, 36].

This paper contributes to the academic literature in the following ways. First, we

consider a service network design model over time to allow differentiation between the

(periodic) scheduled truck services and the ad-hoc express delivery option. To the best

of our knowledge, we are the first to distinguish these two transport modes with their

individual cost structure. Second, we enrich the current state-of-the-art formulations by

accounting for hub capacities and manage inventory levels accordingly. Third, we develop

competitive solution approaches based on a branch-and-price algorithm with a column

generation algorithm in each node to solve this realistic variant of the SNDP. Moreover, we

extend our models and results to a setting with uncertain demand and present a two-stage,

scenario-based stochastic model which is solved using the sample average approximation

method. Finally, a broad range of managerial insights have been generated by means of

an extensive sensitivity analysis.

The remainder of the paper is organized as follows. In Section 2, the relevant liter-

ature is discussed. We present a formal problem statement and a mathematical model

formulation in Section 3. Section 4 details a column generation solution approach for

the deterministic problem variant. This model is extended towards stochastic demands

in Section 5. The implementation of the models and an extensive set of computational

experiments are presented in Section 6, after which we summarize the main conclusions

and limitations of our research in Section 7.

2 Literature review

2.1 Service network design problem

In this section, we review the literature on the service network design problem (SNDP)

as we identified this problem is most closely related to the main topic of this manuscript.

Early research on the service network design problem dates back to Crainic and Rousseau

[16] and Farvolden and Powell [22]. Since then, many researchers have been attracted to

extend these models to incorporate more realistic problem features [47].

Since our focus is on exact solution approaches, we will limit ourselves to contributions

from the literature in which such methods have been presented. For an overview of the
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state-on-the-art on heuristic and metaheuristic solution procedures, we refer the interested

reader to Salimifard and Bigharaz [47].

Within the exact solution approaches, we distinguish two main research directions.

First, there are methods that rely on branching strategies, such as branch-and-bound,

branch-and-price(-and-cut) and column generation (see, e.g., Andersen et al. [4], Sarubbi

et al. [49], Akyüz, Öncan, and Altınel [2], Boccia et al. [11] and Canel et al. [13]). Second,

there are the contributions that focus on decomposition-based methods (see, e.g., Teypaz,

Schrenk, and Cung [51], Oğuz, Bektaş, and Bennell [42], Rahmaniani et al. [43], Çakır [12]

and Moradi, Raith, and Ehrgott [40]). In what follows, we highlight the most related and

relevant contributions.

Boccia et al. [11] propose a multi-commodity location routing problem which they solve

using a branch-and-cut algorithm. Given a set of potential facility locations and a set of

demands (commodities), the multi-commodity location routing problem is about deciding

how many and which of these facilities to open in order to minimize the total cost (i.e., a

fixed cost for opening a facility and a variable cost based on the routing of the commodities)

while covering all demand.

Wang et al. [56] propose a service network design model in which the routes for a

heterogeneous fleet of vehicles should be determined, given a set of delivery points with

predefined demand. The authors present both arc-based and path-based mathematical

formulations to model the problem. To solve the problem, a hybrid algorithm is used that

combines exact and heuristic techniques (including column generation, cutting planes and

local search) to solve large-scale instances. The exact solvers within the algorithm are

responsible for providing lower bounds and feasible solutions, whereas local search is used

to generate feasible upper bounds. The presented computational experiments demonstrate

the potential of a heterogeneous fleet in tactical planning, as this provides higher vehicle

loading rates less unused capacity. In contrast to this paper, the authors did not consider

delivery times (deadlines), capacities in the hubs and demand uncertainty.

The capacitated multi-commodity network design problem is presented by Katayama

[28]. In this problem variant, the arcs in the network have limited capacity. The decision

maker also decides which arcs (and thus which of their corresponding capacities) to make

available within the network. The total cost of the network — which is to be minimized — is

given by the routing cost for shipping all commodities from their source to their destination

and the activation of an arc. The authors present a path-based formulation augmented

with strong inequalities. They use column generation in combination with an arc capacity
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scaling (i.e., a linear approximation on the use of arc capacity) and local branching (i.e.,

improve the quality of the relaxed model by also considering neighbouring solutions) to

solve the problem. In this paper, we do not restrict the arc capacity — even though

individual vehicles do have capacities, we do not restrict the amount of vehicles that can

travel on a certain arc. However, we do consider capacity restrictions in the hubs. As the

opening of hubs is a long-term (strategic) decision, we do not consider the opening/closing

of hubs nor flexibility in the available capacity.

Trivella et al. [53] develop a mathematical path based model formulation for the multi-

commodity network flow problem with soft transit times. The model explicitly discourages

the use of long commodity routes by means of a penalty for delays. The authors present

a column generation approach to solve the problem. The economic implications on costs

and delays for different definitions of the penalty functions are discussed within a context

of the liner shipping industry.

In Çakır [12], the authors use Benders decomposition to solve the multi-commodity,

multi-mode distribution planning problem. In this multi-commodity flow problem, com-

modities do not have a dedicated source node but some nodes are labeled as general source

node. Consequently, the demand of each destination node can be fulfilled from any source

node.

2.2 Demand uncertainty and stochastic models

In this section, we review the most relevant research contributions concerning stochastic

network design and network flow optimization models under uncertainty.

Most stochastic models that focus on demand uncertainty make use of two-stage stochas-

tic programming [15]. In a first stage — before the realization of the stochastic demand —

these models (partially) set the values of some of the decision variables that are not di-

rectly influenced by the uncertainty while considering also the expected cost of the second

stage model (i.e., after the realization of the stochastic demand). Two-stage stochastic

programming was introduced by Dantzig [19] and has been applied successfully to tackle

different supply chain problems [30, 6].

The multi-commodity redistribution problem with stochastic supply, demand and net-

work is studied by Gao and Lee [23]. The authors focus on the redistribution of commodi-

ties to respond to different realizations of the demands. To solve the problem, the authors

make use of a two-stage, scenario-based stochastic programming model. In the first stage,

the authors minimize the total dissatisfaction cost (unmet demand and oversupply) over
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different demand and supply scenarios. In the second stage, the authors vary the network

availability and minimize the total response time.

Barbarosoǧlu and Arda [9] use a two-stage stochastic programming model to optimize

the transport of first-aid commodities to disaster-affected areas. A multi-commodity, multi-

modal network flow formulation is developed to describe the flow of material over an urban

transportation network. The random variables in this study are dedicated to the resource

requirements, which are assumed uncertain after a disaster has occurred.

Hamdan and Diabat [25], then, apply a two-stage stochastic model to plan the pro-

duction, inventory and location decisions in a red blood cell supply chain under demand

uncertainty. Similarly, Dillon, Oliveira, and Abbasi [20] propose a two-stage stochastic

model for inventory management in a blood supply chain by considering uncertain de-

mand.

The generation of scenarios — as well as determining the optimal number of scenar-

ios — largely affects the performance of stochastic programming models. These decision

should therefore be taken with care. Löhndorf [33] review the most common methods for

scenario generation in the context of stochastic programming, including the quasi-Monte

Carlo method, moment matching, methods based on probability metrics, and the Voronoi

cell sampling method. The Monte Carlo method — better known as Sample Average Ap-

proximation (SAA) — is a well-known approach to reduce the size of stochastic optimiza-

tion problems by considering a subset of (preferably independent) scenarios after which a

deterministic problem is solved for each of these. For a clear guide to SAA, we refer the

interested reader to Kim, Pasupathy, and Henderson [29].

Within the context of supply chain network design, Santoso et al. [48] make use of the

SAA scheme. In combination with an accelerated Benders decomposition algorithm, they

can compute solutions to large-scale problems with a huge number of scenarios.

Sörensen and Sevaux [50] study a stochastic vehicle routing problem. The authors

propose a method to combine a sampling-based approach to estimate the robustness or

flexibility of a solution with a metaheuristic optimization technique, which allowed them

to solve large problems with more complex stochastic structures.

Mendoza et al. [37] propose a bi-objective multi-commodity vehicle routing problem

with stochastic demand. The goal is to simultaneously minimize the total expected cost of

a set of routes and the coefficient of variation. The authors use chance constraints to make

sure that the probability of a route duration is less than its maximum given threshold.

Monte Carlo simulation is applied for the feasibility check of these chance constraints.
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Based on the presented literature review, we conclude that only few mathematical pro-

gramming models for variants of the service network design problem have been proposed.

Moreover, these models lack the inclusion of important real-life problem features such as

heterogeneous vehicles (more specifically the inclusion of the possibility to use express

delivery services), multi-commodity problems over time in which commodities have dedi-

cated release times and deadlines, capacitated hubs and periodicity of the planning over

time. The current manuscript aims to fill this research gap by considering the mentioned

elements in the context of a multi-commodity service network design problem.

3 Single-period service network design problem

In this section, we formally present the multi-commodity service network design problem

with regular and express deliveries for a single period (typically a week). This period is

subdivided in multiple time intervals (e.g., days) for each of which a decision has to be

made regarding the capacity on the individual network links and the flow over each link.

For now, we will limit ourselves to a deterministic variant of the problem.

3.1 Mathematical notation and model assumptions

We are given a network, represented by the complete graph G(V ,A) in which V is the

set of vertices (hubs) and A the set of arcs. For each (i, j) ∈ A, cij and τij represent the

cost associated with traversing the arc and the travel time, respectively.

Inside each hub, we distinguish two different processes: storage and cross-docking.

Storage refers to the possibility to store shipments over multiple time intervals (i.e., the

arrival time interval of the shipment is different from the departure time interval). For each

vertex i ∈ V , the storage capacity is limited and denoted by QV
i . Cross-docking refers to

the process of receiving, sorting, recombining and dispatching incoming shipments within

the same time interval, usually within a few hours [46]. As these activities do not make

use of the internal storage space of the hub, we do not limit these by the hub capacity.

Let K be the set of all shipments (commodities) that should be served by the network.

For each shipment k ∈ K, Ok and Dk denote the source (origin) and destination node,

respectively. The volume of the shipment is denoted by qk. We allow the splitting of this

volume such that partial customer orders can be transported via a different route through

the network, if desirable. Furthermore, each shipment has a release time lk, defined as

the time at which the shipment becomes available at its source, and a dispatching time
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uk, at which the shipment will be send from its destination hub to the customer. This

dispatching time can be interpreted as a hard deadline for the transport activities within

the network related to this shipment. In case the shipment arrives at the destination hub

before its dispatching time, it will be temporarily stored in inventory.

To execute the necessary transportation requests, the logistics service provider can

choose between the following three transport options:

1. Scheduled truck service: based on long-term contracts, a dedicated capacity is avail-

able on certain routes in the network. Because of the long-term stability of these

routes, competitive prices can be negotiated for installing the capacity. Let F denote

the fleet of scheduled trucks, each with a capacity QF . For this service, we incur

both a fixed cost for establishing a truck connection and a distance-based variable

cost, denoted by cF and cij, respectively. There should not be a one-to-one relation-

ship between a shipment and a scheduled truck service as a shipment can switch to

another truck at any hub.

2. Express delivery : The full transport of the shipment can be outsourced to a third-

party logistics provider at a fixed rate based on the origin – destination as well as

the volume of the shipment. This option is more expensive than using the capacity

of the scheduled truck service, but offers more flexibility.

3. Mixed scenario: To execute the required transport operations, a combination of

scheduled truck services and express delivery can be used. This means that for

certain connections the scheduled truck service will be used, whereas other parts of

the itinerary will be covered using the express service.

The goal is to decide on the required capacity for the scheduled truck service and design

the corresponding routes for these vehicles. Here, the decision maker trades-off installing

more capacity on the scheduled truck service versus accepting the (higher) costs of express

delivery. Over high demand connections, we likely prefer the scheduled truck service as

loading rates can be high and the fixed cost of establishing the connection can be divided

over a larger volume. For low demand connections, it might not be worth installing a

scheduled truck service and an express delivery will then be preferred.
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3.2 Mixed Integer Linear Programming formulation

We now model the deterministic network design problem with express deliveries as a mixed

integer linear problem. Assuming that each period is identical, we will focus on a single

period with T time intervals. For example, T can represent one week, which can be

subdivided in 7 days, denoted by t = {1, . . . , 7}. By imposing that the status of the

network (i.e., amount of truck available in each hub) at the end of the period equals the

initial status, the logistics plan can easily be repeated for each consecutive period.

The following decisions have to be made:

1. The total number of scheduled trucks available at hub i at time t, denoted by fit.

2. The routes covered by the scheduled trucks, represented by decision variable zijt,

denoting the number of scheduled trucks traversing arc (i, j) at time t.

3. The itinerary for each shipment k ∈ K, based on the following decision variables:

• The quantity of shipment k shipped over arc (i, j) using a scheduled truck service

at time t denoted by xk
ijt.

• The quantity of shipment k shipped over arc (i, j) using the express delivery

service at time t, denoted by ekijt.

4. Inventory decisions within each hub, given by the quantity of shipment k kept in

inventory at hub i at time t, denoted by Iikt.

To allow tractability of the model and avoid (unnecessary) complexity, the model is

built according to the assumption that no partial shipments can be handed over to the

next period. This means that all shipments must be handled within the period under

consideration and — consequently —- that all shipments are assumed to have a release

time and delivery date within the current period T . Within our model formulation, this

also means that all inventory levels will equal zero at the start and the end of the period

T . The assumption can be justified by the fact that the presented model has the purpose

to support tactical (or even strategical) decisions with respect to the long-term contracts

and required capacities for the scheduled truck services. In this respect, shipments can

be generated (e.g., based on historical traffic data) such that they represent the partial

trips typically covered within a single period. For operational decision support (e.g., the

day-to-day dispatching of shipments), other methods can be used that take the established

9



Table 1: Mathematical notation for the MILP formulation of the deterministic multi-commodity network
design problem with express deliveries.

Sets

V The set of all vertices (hubs) in the network.
A The set of all arc (i, j), with i, j ∈ V .
K The set of all shipments that should be served by the network.
T The set of all time intervals.

Parameters

QV
i The storage capacity of hub i.

hi Inventory cost per time interval per unit of volume at hub i.
cij The cost to traverse arc (i, j) with a scheduled truck.
τij The travel time over arc (i, j) for a scheduled truck.
τEij The travel time for shipping by express over arc (i, j).
Ok The source node (origin) for shipment k.
Dk The destination node for shipment k.
qk The volume of shipment k.
lk The release time of shipment k.
uk The time at which the shipment will be dispatched from its destination hub to the customer.
cEij The cost per volume-unit to use express delivery on arc (i, j).
QF Capacity of a scheduled truck.
cF Fixed cost for establishing a scheduled truck.

Decision variables

f0
i The number of scheduled trucks available at hub i at the beginning of the time horizon.
fit The total number of scheduled trucks that remain at hub i at the end of time t.
zijt The number of scheduled trucks traversing arc (i, j) at time t.
ekijt The volume of shipment k shipped by express mode over arc (i, j) at time t
xk
ijt The volume of shipment k shipped over arc (i, j) at time t.

Iikt The volume of shipment k kept in inventory at hub i at time t.
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capacity of the scheduled truck service as given and optimize loading rates and costs based

on, e.g., a rolling time window approach.

The full MILP formulation of the deterministic network design problem with express

deliveries is given below. We summarize all notation in Table 1.

min

∑
i∈V

cF f0
i +

∑
t∈T

 ∑
(i,j)∈A

cijzijt +
∑

(i,j)∈A

∑
k∈K

cEije
k
ijt +

∑
i∈V

∑
k∈K

hiIikt

 (1)

s.t.∑
k∈K

xk
ijt ≤ QF zijt ∀(i, j) ∈ A;∀t ∈ T (2)

fit = fi(t−1) +
∑

(j,i)∈A|t−τji≥1

zji(t−τji) −
∑

(i,j)∈A

zijt ∀i ∈ V ;∀t ∈ T \{1} (3)

fi1 = f0
i −

∑
(i,j)∈A

zij1 ∀i ∈ V (4)

f0
i = fiT ∀i ∈ V (5)

Iikt − Iik(t−1) +

 ∑
(i,j)∈A

xk
ijt −

∑
(j,i)∈A

xk
ji(t−τji)


︸ ︷︷ ︸

scheduled truck

+

 ∑
(i,j)∈A

ekijt −
∑

(j,i)∈A

ekji(t−τE
ji)


︸ ︷︷ ︸

Express

=


0 ∀k ∈ K;∀t ∈ [lk, uk]; ∀i ∈ V \{Ok, Dk}

qk ∀k ∈ K; t = lk; i = Ok

−qk ∀k ∈ K; t = uk; i = Dk

(6)

Iikt = 0 ∀i ∈ V ;∀k ∈ K;∀t /∈ [lk, uk] (7)∑
k∈K

Iikt ≤ QV
i ∀i ∈ V ;∀t ∈ T (8)

ekijt, x
k
ijt, Iikt ≥ 0 ∀i, j ∈ V ;∀t ∈ T ;∀k ∈ K (9)

f0
i , fit, zijt ∈ N ∀i, j ∈ V ;∀t ∈ T (10)

Objective function. The goal is to minimize the total cost of running the network over

the full planning horizon T , given in Equation (1). This objective function contains the

following terms: the sum of the fixed and variable cost related to the scheduled trucks,

the cost of using express deliveries for the (partial) shipments that are not transported

using the scheduled truck and the inventory holding costs at the hubs. Note that the total

amount of scheduled trucks established in the network is given by the sum of all trucks

initiated at the hubs at the start of the period, denoted by
∑

i∈V f 0
i .
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Constraints. To ensure feasibility of the network, the following constraints with respect

to the truck routes, the itineraries of the commodities and the inventories in the hubs should

be satisfied. Constraints (2) ensure that for each arc at each time the total flow dedicated

to the scheduled truck service does not exceed the scheduled truck capacity available on

the arc. Constraints (3) take care of the allocation of scheduled trucks over the different

hubs in the network at each time interval. The number of trucks available at hub i at the

end of time t is given by the amount trucks stationed at this hub at the end of t− 1 plus

the incoming trucks minus the outgoing trucks. The initial allocation of trucks at the start

of the period is given by constraints (4). To allow the schedule to be repeated over time,

the starting configuration is set equal to the ending configuration in constraints (5).

The inventory levels are controlled by constraints (6). These constraints define the

(partial) amount of shipment k in different hubs (potential transshipment points, origin

and destination) over time. Once the shipment has been released into the system (t ≥ lk),

this amount equals the total volume of the shipment received in each hub minus what has

left the hub either via a scheduled truck or express delivery. By means of constraints (7),

we explicitly set all inventory levels to zero for times that the shipment is not active in

the network (i.e., before its release time and after its dispatching time). Constraints (8)

control the storage capacity of each hub.

Finally, the domain of the decision variables is set by constraints (9) and (10).

4 Branch-and-price algorithm

Branch-and-price (BP) algorithms embed dynamic column generation into a branch-and-

bound framework to solve a MILP. We apply a best-first branching strategy on the number

of trucks on each arc, denoted by zijt.

In each node of the search tree, we apply the column generation algorithm presented

above to solve the linear problem relaxation (relaxing the integrality constraint on the zijt

variable). Each time no additional columns (routes) improve the master problem and the

LP-relaxed solution does not satisfy the integrality conditions we use bounding on each

branch and solve two separate column generation algorithm for each branch as follows:

zijt < ⌊zijt⌋ and zijt ≥ ⌈zijt⌉.
In what follows, we will go deeper on the column generation approach that is at the

core of each node in our branch-and-price algorithm.

The presented MILP model presented above aims to integrate the routing decisions for
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the scheduled trucks and — if desirable — the use of the express delivery service with the

individual (partial) routes for each commodity flowing through the network. As a result,

it easily becomes intractable, even for small instances.

To decouple the complexity of finding good routes for the vehicles from the routes of

the commodities, we will rely on a Dantzig-Wolfe decomposition [58] and solve the problem

using a column generation framework in which a master problem and sub-problem (the

pricing problem) are solved in an iterative way.

To initialize the column generation procedure, we start with the situation in which

no scheduled truck routes are established and solve the master problem. As a result, all

shipments will be sent directly from source to destination via a dedicated express delivery.

Even though this solution is feasible, it is likely not optimal as no bundling opportunities

are seized, even not for shipments with the same origin and destination.

The sub-problem aims to find promising routes for each individual shipment for which

a scheduled truck service can be used. By focusing solely on the most promising routes

for an individual shipment, the size of the problem is kept as small as possible and many

high-quality routes can be added to the master problem in each iteration. Once routes have

been generated by the sub-problem, the master problem is run again with the aim to route

all shipments through the available network in an optimal way (i.e., select a combination

of routes, potentially complemented with one or multiple express connections, for each

shipment). This procedure is iterated until no more routes (columns) with negative reduced

cost can be found.

4.1 Master problem

The master problem determines the flow of all shipments through the network using a

combination of scheduled trucks or express delivery — defined as routes. These routes,

denoted by R, are dedicated to specific shipments (i.e., the set of routes available for

shipment k is denoted by Rk ⊂ R) and generated by the sub-problem.

Each route r ∈ Rk is characterized by a binary parameter wrt
ij , denoting whether the

route r runs over the link (i, j) at time t. The quantity of shipment k transported using

this route r is given by Xk
r . We summarize the additional notation for the master problem

in Table 2.

The master problem is defined mathematically as follows:
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Table 2: Additional mathematical notation for the master problem.

Sets

R The set of all routes in the master problem.
Rk ⊂ R The set of all routes of scheduled trucks for shipment k.
Ar The set of all arcs in route r.

Parameters

wrt
ij Binary parameter denoting whether route r runs over the link (i, j) at time t.

Decision variables

xk
r The amount of shipment k ∈ K shipped via route r ∈ Rk.

min

∑
i∈V

cF f0
i +

∑
t∈T

 ∑
(i,j)∈A

cijzijt +
∑

(i,j)∈A

∑
k∈K

cEi,je
k
ijt +

∑
i∈V

∑
k∈K

hiIikt

 (11)

s.t.

∑
k∈K

∑
r∈Rk

xk
rw

rt
ij ≤ QF zijt ∀(i, j) ∈ A;∀t ∈ T (12)

Iikt − Iik(t−1) +
∑
r∈Rk

xk
r

 ∑
(i,j)∈Ar

wrt
ij −

∑
(j,i)∈Ar

w
r(t−τji)
ji

+

 ∑
(i,j)∈A

ekijt −
∑

(j,i)∈A

ekji(t−τE
ji)



=


0 ∀k ∈ K;∀t ∈ [lk, uk]; ∀i ∈ V \{Ok, Dk}

qk ∀k ∈ K; t = lk; i = Ok

−qk ∀k ∈ K; t = uk; i = Dk

(13)

xk
r ≥ 0 ∀k ∈ K;∀r ∈ R (14)

Constraints (3), (4), (5), (7), (8), (9) and (10).

Objective function. The objective function of the master problem is equal to the ob-

jective function of the global MILP formulation, presented in Section 3.2. The function

minimizes the total cost of the network, including the fixed and variable cost of the sched-

uled trucks, the cost for all express deliveries and the inventory holding cost in the hubs.

Constraints. To comply with the route-based formulation required for connecting the

master and its sub-problem, we slightly adapted some of the constraints from the global
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MILP formulation.

Constraints (12) set the required amount of scheduled trucks that drive over arc (i, j)

at time t, given by zijt, based on the total flow over the routes that make use of this arc.

Similar to our global MILP, we assume that each shipment can be split in a continuous

way. In other words, we do not consider any bin packing formulation for splitting the

(partial) shipments over multiple trucks.

Constraints (13) are the flow balancing constraints in which we account for the inventory

at the hubs. The third term of the equation accounts for changes in the inventory related

to the shipment flowing through the available scheduled truck routes. The last (fourth)

term on the left-hand side of the equation accounts for express deliveries of the shipment

from the current hub to other hub(s) in the network.

Finally, constraints (14) set the domain for the newly added decision variable xk
r .

4.2 Route generation sub-problem

The aim of the sub-problem is to generate additional routes that can be added to the set

R and considered by the master problem. A route is defined as a path of one or multiple

arcs in our network. To generate many promising routes fast, we run the sub-problem for

each shipment separately.

Let z be the objective function of Master Problem (MP). Moreover, let µijt be the dual

variables corresponding to the capacity constraint (12) and γikt the dual variables for the

flow balancing constraints (13).

We also define yijt as a binary variable that takes the value 1 if arc (i, j) is used at

time t in the generated route, 0 otherwise. For modelling purposes, we also introduce Sit

and Eit to represent the starting and ending node of the route, respectively. As the final

itinerary of a shipment in the master problem can be defined as a combination of routes

— potentially also including one or multiple express arcs —, we do not impose that the

starting (or ending) hub of the generated routes coincide with the source (or destination)

hub of the shipment.

Finally, let IBit be an auxiliary binary variable that takes the value 1 if there is a positive

inventory in hub i at time t, 0 otherwise. Again, we summarize the additional mathematical

notation in Table 3.

The total reduced cost for shipment k is computed using equation (15), which accounts

for all reduced costs for the master problem constraints with the non-basic variable xk
r , i.e.,

constraints (12) and (13).
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Table 3: Additional notation for the sub-problem.

Parameters

µijt Dual variable for constraints (12) of the master problem (capacity constraint).
γikt Dual variable for constraints (13) (inventory and flow balancing constraint).

Decision variables

yijt Binary variable that equals 1 if arc (i, j) is traversed at time t, 0 otherwise.
IBit Binary variable that equals 1 if there is a positive inventory in hub i at time t (

∑
k∈K Iikt > 0),

0 otherwise.
Sit Binary variable that equals 1 if the current route starts in hub i at time t, 0 otherwise.
Eit Binary variable that equals 1 if the current route ends in hub i at time t, 0 otherwise.

Zk =
∑
t∈T

−
∑

(i,j)∈A

yijtµijt −
∑

(i,j)∈A

yijtγikt +
∑

(j,i)∈A

yji(t−τji)γikt

 (15)

Then, the route generation sub-model is given by the following mathematical program.

min
[
Zk

]
(16)

s.t.

∑
i∈V

(uk−τE
iDk

)∑
t=(lk+τE

Oki)

Sit = 1 (17)

∑
i∈V

(uk−τE
iDk

)∑
t=(lk+τE

Oki)

Eit = 1 (18)

Sit + Eit ≤ 1 ∀i ∈ V ;∀t ∈ T (19)

IBit − IBi(t−1) − Sit + Eit =
∑

(j,i)∈A

yji(t−τji) −
∑

(i,j)∈A

yijt ∀i ∈ V ;∀t ∈ T (20)

yijt, I
B
it , Sit, Eit ∈ {0, 1} ∀i, j ∈ V ;∀t ∈ T (21)

Objective function. The objective function of the sub-problem is the minimization of

the reduced cost. If this optimal reduced cost is negative, the corresponding route will be

added to the set of routes considered by the master problem.

Constraints. Constraints (17) and (18) ensure that routes have exactly one starting and

one ending node, which are visited within a feasible time window for the shipment under
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consideration. Constraints (19)) force the starting hub and time to be different from the

ending hub and time.

The generated route should not only represent a path from start to end node, also the

time at which different links are used should be consistent by considering intermediate

storage in a hub if necessary, as seen in constraints (20).

Finally, constraints (21) take care of the domain constraints for the decision variables.

Once the sub-problem is solved for all shipments, the generated routes will be added to

the master problem. This is done via the parameters wrt
ij , which represent the yijt variables

for each route.

5 Multi-period service network design problem

In the previous sections, we determined scheduled truck routes for a single period (e.g.,

week) with multiple time intervals. As these routes are established through long-term

collaboration with dedicated carriers, they will be repeated every period. For example, if

a scheduled truck connection is installed between two hubs during the first time interval

of the period (e.g., Monday), this service will be provided every Monday. In this Section,

we therefore extend the problem definition to a multi-period time horizon.

As demand is not constant, but might differ between periods, we need to establish the

scheduled truck routes such that the overall long-term cost is minimized. If for most Mon-

days, e.g., the demand for connection A-B is rather low, we rather not install a scheduled

truck over this connection on Monday (as this leads to large unused capacities during most

weeks) but cover the demand with occasional express deliveries. If, on the other hand,

demand is consistently high on Mondays, it might be beneficial to install a (less expensive)

scheduled truck service that covers this connection.

To determine the optimal configuration of the scheduled truck services over multiple

periods, we make use of a stochastic optimization model to account for the variability

(and thus uncertainty) in the demand over time. More specifically, we employ a two-stage

scenario-based stochastic programming model for this purpose.

5.1 Two-stage scenario-based stochastic programming model

The main idea behind the two-stage stochastic programming model is that we separate

decision variables that depend directly on the scenario (i.e., what will remain constant

over the different periods) from the decision variables that are impacted directly by the
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realization of the demand (i.e., what will change every period). The first set of variables

are related to the scheduled truck routes, as these are part of a long-term collaboration

and thus cannot be altered every period. The second set of variables relates to the volumes

transported via the express delivery service as well as the inventories at the different hubs,

as these will vary every period depending on the demand scenario.

The formulation of the two-stage problem assumes that the second-stage data (i.e.,

the demand realization) can be modelled as a random vector with a known probability

distribution which remains constant over time. Consequently, one may reliably estimate

the underlying probability distribution after which the optimization on the expected value

could be justified by the law of large numbers [55, 24, 52].

We will model the demand realization by means of a finite set of scenarios. Let Ω be

the set of scenarios (indexed by s). The probability of each scenario is denoted by P (s),

∀s ∈ Ω. Additionally, we extend the decision variables denoting the flow in the network

with an index s to account for the differences in demand for each shipment k between each

scenario. For an overview of the additional notation, we refer to Table 4.

Table 4: Additional notation for the two-stage scenario-based stochastic programming model.

Sets

Ω The set of all scenarios, indexed by s.

Parameters

qks The total volume of shipment k under scenario s.

Decision variables

ekijts The (partial) volume of shipment k shipped by express mode over arc (i, j) at time t under
scenario s.

xk
ijts The (partial) volume of shipment k shipped over arc (i, j) at time t under scenario s.

Ikits The (partial) volume of shipment k kept in inventory at hub i at time t under scenario s.

We extend our original mathematical problem to a two-stage stochastic programming

model as follows.

min


∑

i∈V

cF f0
i +

∑
(i,j)∈A

∑
t∈T

cijzijt


︸ ︷︷ ︸

First stage

+E [φ]

 (22)
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s.t.∑
k∈K

xk
ijts ≤ QF zijt ∀(i, j) ∈ A;∀t ∈ T ;∀s ∈ Ω (23)

Ikits − Iki(t−1)s +

 ∑
(i,j)∈A

xk
ijts −

∑
(j,i)∈A

xk
ji(t−τji)s

+

 ∑
(i,j)∈A

ekijts −
∑

(j,i)∈A

ekji(t−τE
ji)s



=


0 ∀k ∈ K;∀t ∈ [lk, uk]; ∀i ∈ V \{Ok, Dk};∀s ∈ Ω

qks ∀k ∈ K; t = lk; i = Ok;∀s ∈ Ω

−qks ∀k ∈ K; t = uk; i = Dk;∀s ∈ Ω

(24)

Ikits = 0 ∀i ∈ V ;∀k ∈ K;∀t /∈ [lk, uk]; ∀s ∈ Ω (25)∑
k∈K

Ikits ≤ QV
i ∀i ∈ V ;∀t ∈ T ;∀s ∈ Ω (26)

ekijts, x
k
ijts, I

k
its ≥ 0 ∀i, j ∈ V ;∀t ∈ T ;∀k ∈ K;∀s ∈ Ω (27)

Constraints (3), (4), (5), and (10).

Objective function. Equation (22) minimizes the cost associated with the first stage

variables (i.e., the scheduled truck service) plus the expected value for the second stage

cost. The latter cost is defined as a weighted sum of the cost of the outcome for each

scenario multiplied by its respective probability, such that

E [φ] =
∑
s∈Ω

P (s)φs. (28)

The second stage cost of scenario s, denoted by φs, is given by the following equation.

The first term accounts for the cost of all required express deliveries for the shipments that

could not be transported entirely by the scheduled truck services. The second term relates

to the inventory holding costs in each hub.

φs =
∑
t∈T

 ∑
(i,j)∈A

cEije
k
ijts +

∑
i∈V

∑
k∈K

hiI
k
its

 (29)

Constraints. Some constraints of the original model are updated to account for the dif-

ferent demand scenarios. Equation (23) ensures that under no scenario, the capacity of the

arcs (with respect to the installed scheduled truck capacity) is violated. Constraints (24)

connect the flows over the network links — both using scheduled trucks as well as express

19



delivery — with the inventory at the different hubs over time. The inventory is initial-

ized to zero for all time intervals a shipment is not in the system by constraints (25).

Constraints (26) ensure the capacity of the hub is never exceeded. Finally, the domain

constraints for the newly added decision variables are denoted by constraints (27).

5.2 Scenario generation using Sample Average Approximation

As the size of the network, the amount of shipments and the number of time intervals

per period increase, the number of required scenarios to realistically represent the possible

demand outcomes grows fast. To keep the model tractable, we make use of Sample Average

Approximation (SAA). This technique relies on the generation of scenarios by means of

Monte Carlo simulation [54]. Assuming that each scenario occurs with the same probability,

we can rewrite equation (28) to

E [φ] =
1

|Ω|
∑
s∈Ω

φs. (30)

To construct our scenarios, we draw the volume of each shipment k, denoted by qks,

from a normal probability N(µ, σ).

Following Verweij et al. [54], Bagaram and Tóth [7], and Ahmed, Shapiro, and Shapiro

[1], the steps that are considered within our SAA implementation are summarized in Ta-

ble 5.

To test the relationship between the number of scenarios in the two-stochastic opti-

mization model and the optimality gap, we conducted a computational experiment which

is discussed in detail in Section 6.2.

6 Model implementation and computational experi-

ments

6.1 Test instances

The algorithms presented in this paper are tested extensively on a variant of the Canad

problem instances1 for the multi-commodity network design problem [18, 26]. In total, 41

1The original instances can be downloaded via https://commalab.di.unipi.it/datasets/mmcf/

#Canad or https://zenodo.org/record/4050442.
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Table 5: Different steps of the SAA implementation.

Step 1. Initialize the number of independent samples (SAA replications), denoted by M , as well
as the sample size n. For defining the value of the M , we used the method presented in
Ahmed, Shapiro, and Shapiro [1] which is based on the probability of the best improve-
ment in the objective value. The sample size dictates the number of scenarios you will
consider. The larger this value, the better the accuracy (lower optimality gap) at the
expense of larger computing times. n is set to a small number such that n << N , in
which N is defined as the largest sample size for which the stochastic model is tractable.

Step 2. Generate M independent samples — each of size n — and solve the two stage stochastic
problem for each sample.

Step 3. Compute the mean and the variance of the results obtained in step 2. The average
objective value is used as a lower bound for the stochastic problem.

Step 4. Solve the stochastic model with N scenarios to find a (close to) optimal solution x̂. Use
this solution to set the first stage variables of the two-stage stochastic model for the M
independent samples. Solve these models and again take the average objective function
value now as an upper bound for the stochastic problem.

Step 5. Compare the lower and upper bound computed in steps 3 and 4, respectively by deter-
mining the optimality gap.

Step 6. If the optimality gap found in step 5 is small enough, you stop. Otherwise, increase the
sample size n and return to step 2.

instances are considered (from which 14 R and 27 C instances), which we altered to comply

with our problem definition.

More specifically, we added a release and dispatching time (deadline) for each shipment

as follows: First, we scale the time horizon to ensure that no dispatching time (deadlines)

falls beyond the length of the period T . Then, for each shipment, we randomly select

a release time such that the time difference the release time and deadline is at least the

transit time given in Hellsten et al. [26].

Furthermore, we also changed the cost structure of the instances to match the difference

between the scheduled truck service and the express delivery option in the following way:

the express cost per volume unit per arc is set in such a way that if the shipped volume

is less than half of the truckload, then transporting the commodity by express mode is

cheaper than shipping it by scheduled truck and vice versa. The scheduled truck capacity

is fixed to 30 tons (based on long-haul transportation trucks). In Hellsten et al. [26], the

fixed costs are given for each arc. To transform these into a fixed cost for a vehicle, we

compute the shortest path for each shipment and take the average of the corresponding

fixed costs of the respective arcs. For the variable cost, we take the unit flow costs given in

the benchmark instances. The express costs, finally, is set in such a way that the following
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equality holds:

∑
(i,j)∈Ak

cEij =
cF +

∑
(i,j)∈Ak

cij

0.5QF

Here, Ak is the set of all arcs in the shortest path of shipment k. As a result of this

procedure, the costs are instance-dependent.

In all instances, a single period (week) contains 7 consecutive time intervals (days), so

t = {1, 2, . . . , 7}. The hub capacity is assumed to be 1000, and inventory cost per unit per

day is 2.

All instances are solved using cplex 12.8 with default parameters on a Macbook

Air with an Apple Silicon M1 chip and 16GB of RAM. Computational time is limited

to 7200 seconds (2 hours).

6.2 Impact of the number of scenarios on the optimality gap

To test the impact of the number of scenarios on the optimality gap, we conducted a small

computational experiment. We set M (the number of independent replications) equal to

30 and, given our hardware setup, N was found to be around 60 scenarios. We then varied

the sample size n from 5 to 60. The results are summarized in Figures 1 and 2.

Figure 1: Gap percentage for different number of scenarios n (with N = 60 and M = 30).

Figure 1 shows the average optimal gap value for all the instances for different numbers

of scenarios. The figure shows that as the number of scenarios increases, the solutions
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Figure 2: (Relative) solution time vs number of scenarios

converge toward the optimal value, meaning that larger number of scenarios result in a lower

optimality gap. However, as shown in Figure 2, larger sample sizes lead to a significant

increase in solution time. The value on the y-axis represents the average solution time for

all the instances (stochastic variant), divided by the objective function of the deterministic

model (with only one scenario).

Based on this experiment, we conclude for our experiments that solving with up to 30

scenarios is sufficient to obtain close-to-optimal solutions (1.5% gap on average).

6.3 Results for the deterministic single-period problem variant

6.3.1 Performance analysis of the branch-and-price algorithm

We analyse the performance of the branch-and-price algorithm on the different instances.

A detailed overview of the results is presented in Tables 6 and 7.

Each instance is characterized by the number of hubs (nodes in the network), the

number of arcs, and the number of shipments, denoted by |V |, |A| and |K|, respectively.
Next to the objective function value, we report on the number of columns added to the

model (#col), the number of nodes in the branch-and-price tree (#nodes), the optimality

gap (Gap(%)) and the computation time (Time (s)). The optimality gap is computed

as follows:

23



Optimality Gap (%) =
OptValue − Lower bound

OptValue
∗ 100

Table 6: Results for the branch-and-price algorithm on the deterministic single-period problem
variant (R instances).

Inst. |V | |A| |K| Obj. #col #nodes Gap (%) Time (s)

R04.1 10 60 10 10200.95 148 216 0% 182.3
R07.1 10 82 10 10402.83 387 414 0% 489.4
R05.1 10 60 25 24442.39 500 392 0% 448.6
R08.1 10 83 25 22084.3 671 531 0% 232
R09.1 10 83 50 37401.92 498 706 0% 1318.2

# optimal 5/5
Average 0% 534.1

R10.1 20 120 40 32728.53 1100 1822 0% 2193.6
R13.1 20 220 40 31497.12 2672 4263 0% 4058.5
R16.1 20 314 40 32549.78 3049 2544 0% 6244.7

# optimal 3/3
Average 0% 4165.6

R11.1 20 120 100 81768.7 1290 3074 0% 6916.9
R14.1 20 220 100 74208.35 1033 935 2.6% 7200
R17.1 20 318 100 74266.11 2841 5029 4.8% 7200

# optimal 1/3
Average 2.47% 7105.6

R12.1 20 120 200 152209.11 1528 1118 1.7% 7200
R15.1 20 220 200 133881.56 2924 3812 5% 7200
R18.1 20 315 200 132956.13 2002 3684 4% 7200

# optimal 0/3
Average 3.57% 7200

# optimal 9/14
Average 1.29% 4148.87

Based on the results in Tables 6 and 7, we see that the smaller instances (with ≤ 20

hubs and ≤ 50 shipments) are all solved to optimality within the two-hour time limit.

Except for instance C36, a 3% optimality gap remains.

For the larger R instances (see Table 6) with more than 50 shipments, 1 instance (out

of 6) is still solved to optimality (R11.1). An average optimality gap of 2.47% and 3.57%

is found for the R instances with 100 and 200 shipments, respectively. With an overall

average optimality gap of 1.29%, we obtain competitive results for the R instances.

For the larger C instances (see Table 7) we see that the branch-and-price model is viable

for most instances with 20–30 hubs and 100–200 shipments with optimality gaps below or

around 10%. The average results are impacted heavily by the high optimality gaps for

instance C48 (108%) and C59 (129%). The two-hour time limit is clearly insufficient to

solve instances with ≥ 30 hubs or ≥ 200 shipments to optimality.
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Table 7: Results for the branch-and-price algorithm on the deterministic single-period problem
variant (C instances).

Inst. |V | |A| |K| Obj. #col #nodes Gap (%) Time (s)

C33 20 228 40 148638.88 2343 3574 0% 3752
C35 20 230 40 113698.45 1222 926 0% 4020.7
C36 20 230 40 139436.73 1217 1603 3% 7200
C41 20 288 40 137455.48 3112 5161 0% 3085.8
C42 20 294 40 161605.96 2533 2117 0% 3102.9
C43 20 294 40 137794.95 3205 5008 0% 3371.4
C44 20 294 40 153048.34 1844 1962 0% 3241.4

# optimal 6/7
Average 0.43% 3967.74

C37 20 228 200 12172.44 1170 2409 5% 7200
C38 20 230 200 14931.77 1966 3277 0% 4422.6
C39 20 229 200 14436.66 1233 1493 6.9% 7200
C40 20 228 200 12703.92 1890 2855 4.5% 7200
C45 20 294 200 13589.56 2736 2719 10% 7200
C46 20 292 200 14197.69 2349 3901 13% 7200
C47 20 291 200 14376.92 1721 1355 4.4% 7200
C48 20 291 200 25285.64 2439 3984 108% 7200

# optimal 1/8
Average 18.98% 6852.83

C49 30 518 100 14318.39 6928 13722 9.5% 7200
C50 30 516 100 13897.58 5821 7407 11% 7200
C51 30 519 100 14973.29 3829 3365 7.1% 7200
C52 30 517 100 16721.7 3271 7691 3.8% 7200
C57 30 680 100 13810.24 7419 21502 5.4% 7200
C58 30 680 100 13771.14 5516 7921 5.2% 7200
C59 30 687 100 26641.45 4528 11829 129% 7200
C60 30 686 100 13855.5 7709 22640 5.9% 7200

# optimal 0/8
Average 22.11% 7200

C53 30 520 400 63779.25 4080 10428 169.2% 7200
C54 30 520 400 66407.1 2592 6116 184.1% 7200
C55 30 516 400 67828.75 6982 15208 187.5% 7200
C56 30 518 400 65287.05 4090 10382 178.4% 7200

# optimal 0/4
Average 179.8% 7200

# optimal 7/27
Average 38.92% 6259.14
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For the largest instances with 30 hubs and 400 shipments, we even notice very large

optimality gaps. From this point onwards, the branch-and-price algorithm becomes really

intractable.

6.3.2 Impact of express delivery option

A unique feature of our problem formulation is the possibility to make use of an express

delivery service if the costs for establishing all required capacities within the network

becomes too high. In this section, we study the impact of including the express option by

varying the express cost. To simulate changes in the express cost, we multiply its value by

a coefficient which we vary between 0.2 and 2.

Figure 3: Number of scheduled trucks for different values of the express cost coefficient.

Figure 3 reveals that with high express costs, the decision maker is reluctant to use

it as installing a scheduled truck service will be cheaper although its capacity will not be

used efficiently (see below). As a result, more scheduled trucks will be installed such that

all hubs are connected to the scheduled truck network. However, if express costs are low,

the volume shipped via express will increase and scheduled trucks will only be established

on the connections where loading rates are very high (up to the point where no scheduled

trucks will be installed as they are never competitive against the express service).

The relationship between the capacity utilization of the scheduled truck service and the

express cost is visualized specifically in Figure 4. In the case express costs are too high, and

therefore the service is hardly used, we observe that the unused capacity of the scheduled

truck service ranges between 10 and 30 percent (on average slightly below 20%). By making
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Figure 4: Capacity utilization of the scheduled truck service, measured as the percentage of
unused volume.

the express service more attractive, inefficient scheduled truck transports are replaced by

express delivery up to the point where we see a close to 100% capacity utilization (≥ 95%)

of all scheduled trucks in the system.

6.3.3 Impact of hub capacity and inventory holding cost

Another unique feature of our model is the consideration of capacity restrictions in the hubs.

We expect that the more we restrict the capacity of the hubs, the higher the operational

cost will be as it is more likely that shipments will have to deviate from their shortest /

cheapest route from source to destination to avoid capacity violations in the hubs.

For each instance, we first determine the maximum hub capacity QV
MAX . This is the

minimum capacity for which the capacity constraints become non-binding (i.e., capacity

is no longer a constraint in our optimization model and the solution matches the solution

with infinite capacity in the hubs). We now run different simulation experiments in which

we set the hub capacity equal to a percentage of the maximum hub capacity.

Figure 5 visualises the relationship between QV
MAX and the total network cost. The base

line is given by the scenario with infinite capacity. The more we restrict the hub capacity,

the higher the total network cost. We see that the total cost increases slightly, with an

average cost increase of around 10% if only one fifth of the non-binding hub capacity is

available in the network.

Further analysis reveals that this increase is mainly due to an increase in fleet size

for the scheduled truck service and a slightly higher utilization of the express delivery

option (see Figure 6). The reason is twofold. First, the lack of capacity requires shipments
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Figure 5: Total network cost as a function of the hub capacity, measured as a percentage of the
maximum hub capacity QV

MAX .

Figure 6: Different cost factors as a function of the hub capacity, measured as a percentage of
the maximum hub capacity QV

MAX .
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to deviate from their shortest path more often. To accommodate these detours, more

capacity is required in the scheduled truck service. Second, these detours increase the cost

of a shipment when shipped via the scheduled truck service. Consequently, the express

delivery option becomes more attractive to cover certain connections.

Figure 7: Vehicle utilization of the scheduled truck service as a function of the hub capacity,
measured as a percentage of the maximum hub capacity QV

MAX .

The fact that the additional truck capacity installed when the hub capacities are very

restrictive is mainly used to accommodate additional transport operations is also corrobo-

rated by the relationship between the capacity utilization of the scheduled trucks (measured

as the percentage of unused volume) and the maximum hub capacity QV
MAX given in Fig-

ure 7. The Figures shows that despite the increase in fleet size, the vehicle utilization

increases slightly, from around 85% to close to 90%. This shows that due to limited hub

capacities, it becomes more attractive to have the shipments ‘stored’ during transport.

Similar conclusions are found when increasing the inventory holding costs. For increas-

ing values of the holding cost, keeping inventory in the hubs becomes less attractive and

more costly. As such, the same decision will be made as when inventory capacity is re-

stricted by the model. We prefer keeping shipments moving on the road by installing a

larger fleet of scheduled trucks to bridge the gap between their release time and dispatching

time and are willing to accept express deliveries from source to destination more often as

no intermediate inventory costs occur then.
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6.4 Results for the stochastic multi-period problem variant

6.4.1 Impact of demand variance

To generate the instances, the stochastic demand for shipment k under scenario s was

generated based upon a normal distribution as follows,

qks = N(qk, αqk)

in which qk represent the average demand of shipment k. The standard deviation is

defined as a proportion α of the mean value. In this section, we will vary the variability

in the data by changing the value for α within the interval [0, 0.5].

Figure 8: Total network cost as a function of the standard deviation of the demand, denoted by
α.

The relationship between the total network cost and the value of α is visualized in

Figure 8. When α equals zero — our baseline scenario— , there is no variability in the

demand (i.e., there is only one scenario with the demand for each shipment equal to qk). As

expected, the total network cost grows for increasing values of α, but the increase remains

relatively small (with up to 10% cost increase on average for α equal to 0.5).

Investigating the relationship between α and the network configuration, we see that

the demand uncertainty mainly impacts the need for express delivery. The volume shipped

via express delivery increases fast, even for small values of α. It is nice to see that our

simulation results align with the original motivation for considering express delivery as

an alternative transport mode. Whereas the scheduled truck service provides a baseline
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(a) Optimal fleet size under different standard deviations

(b) Expected express transportation volume under different standard devi-
ations

Figure 9: Commodity variance analysis for Canad benchmark cases
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capacity on the links of the network where a considerable flow is guaranteed, express

delivery offers the flexibility to absorb the variations above this baseline capacity.

6.4.2 The Expected Value of Perfect Information (EVPI) and Value of Stochas-

tic Solution (VSS)

expected value: You run the model only once, for an average scenario. -¿deterministic so-

lution perfect information: Compute the model for each individual scenario and obtain the

corresponding objective function value. Then take the average over all objective function

values found. Recourse = benchmark. two-stage stochastic model

In this section, we compare the performance of our two-stage stochastic model with

decision making based upon expected values or under perfect information. In decision

making based upon expected value, we solve the model only once for a single (average)

scenario, i.e., we would consider solely the scenario in which

qk =
1

|Ω|
∑
s∈Ω

qks.

To solve the model under perfect information, we first compute the total network cost

of each individual scenario. Then, we take the average over all objective function values

found as the expected cost under perfect information (recall that we assume each scenario

to occur with the same probability).

Figure 10: VSS and EVPI Percentage with respect to the ZRP

Figure 10 summarizes our main results. Here, we plot the expected value under perfect
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information (EVPI) as well as the value of stochastic solution (VSS). Both measures are

computed relative to the total network cost obtained when applying the two-stochastic

model. The value of perfect information relates to the decrease in total network cost

once the decision maker no longer faces uncertainty on the demand for each shipment. In

other words, having perfect information will lead to a decrease of 1.8% on average in total

network cost.

The value of stochastic solution compares decision making under expected value with

the stochastic model. In other words, if the decision maker would ignore the demand

variability and solely optimize for the expected values for qk, the average cost would be

around 3.2% higher.

7 Conclusion

Motivated by a real case study from the industry, We presented a periodic multi-commodity

service network design problem to model the decisions of a 3PL when managing all logistics

operations of a supply network using both scheduled truck services (representing long-term

agreements with carriers to provide regular capacities on specific network links) and ad-hoc

express delivery. Next to the multi-modal approach, we also include the time dimension,

hub capacities and account for stochastic demand.

Our computational experiments show that our proposed exact model performs very

well. For the small instances with up to 20 hubs and 50 commodities, the model finds the

optimal solution within the time limit. For the average instances with 20-30 hubs and up

to 100 commodities, our exact model gives very promising solutions with the maximum of

10% optimal gap, and for the large instances (30 hubs and more than 100 commodities)

the optimal gap within the time limit is 20% on average.

Adding the option of express delivery as an alternative to the scheduled truck service

leads to a lower network cost. This is due to the fact that express deliveries can replace low-

volume connections where installing a fixed capacity is not cost-effective. This is similar

to passenger transport, were bus services are replace by on-demand bus lines or taxi rides

in rural areas with very low demand.

Furthermore, we show that limiting the available hub capacity increases the fleet size for

the scheduled truck service and express delivery. At the same time, it leads to better vehicle

utilization for the scheduled truck service. Similar results were found when the inventory

holding cost is increase. In both scenarios, we observe that the available scheduled truck
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capacity is used as inventory capacity during transport to bridge the gap between release

time and dispatching time. Moreover, adding the express delivery improves the objective

function and decreases the total costs in comparison to the case where there exists no

express delivery and all the commodities are transported by the scheduled trucks.

We extend the deterministic single-period model to a stochastic multi-period variant in

which the variation in demand over the different periods in included explicitly in the model.

In contrast to a deterministic case, based on the average demand solely, the inclusion of

stochastic demand leads to a 3.2% network cost reduction on average.

As we present an exact solution method, based upon the principles of branch-and-price,

we see that the model lacks some scalability towards large (potentially more realistic)

instances. The development of an efficient heuristic and sample strategy that allows good

convergence to the optimal solution is a short computation time would be valuable.

Further promising extensions of the model left for further research are the addition of

a delivery time window (instead of a fixed dispatching time), a heterogeneous fleet for the

scheduled truck service (e.g., large trailers vs small(er) vans), social constraints related to

the drivers (e.g., breaks, route duration, etc.), and additional sources of uncertainty (e.g.

stochastic travel times,etc.). Another itinerary for further research could be the modelling

of the pricing decision of the scheduled truck services between the 3PL and the carrier or

set of potential carriers each covering a certain part of the envisaged network.
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[7] Martin B Bagaram and Sándor F Tóth. “Multistage sample average approximation

for harvest scheduling under climate uncertainty”. In: Forests 11.11 (2020), p. 1230.

[8] A Balakrishnan, TL Magnanti, and P Mirchandani. Annotated bibliographies in com-

binatorial optimization, chap. 18, Network Design. 1997.
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[33] Nils Löhndorf. “An empirical analysis of scenario generation methods for stochastic

optimization”. In: European Journal of Operational Research 255.1 (2016), pp. 121–

132.

[34] T Magnanti. “L., andWong R”. In: T.: Network Design and Transportation Planning:

Model and Algorithm Transportation Science 18 (1984).

[35] Binod Maharjan and Timothy I Matis. “Multi-commodity flow network model of

the flight gate assignment problem”. In: Computers & Industrial Engineering 63.4

(2012), pp. 1135–1144.

[36] Richard D McBride and John W Mamer. “Solving the undirected multicommod-

ity flow problem using a shortest path-based pricing algorithm”. In: Networks: An

International Journal 38.4 (2001), pp. 181–188.

[37] Jorge E Mendoza et al. “A simulation-based MOEA for the multi-compartment vehi-

cle routing problem with stochastic demands”. In: 8th Metaheuristics International

Conference (MIC). 2009.

[38] Michel Minoux. “Discrete cost multicommodity network optimization problems and

exact solution methods”. In: Annals of operations research 106.1 (2001), pp. 19–46.

[39] Michel Minoux. “Networks synthesis and optimum network design problems: Models,

solution methods and applications”. In: Networks 19.3 (1989), pp. 313–360.

[40] Siamak Moradi, Andrea Raith, and Matthias Ehrgott. “A bi-objective column gener-

ation algorithm for the multi-commodity minimum cost flow problem”. In: European

Journal of Operational Research 244.2 (2015), pp. 369–378.
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