Summary

Neural tube defects (NTD) are among the most distressing congenital anomalies. They arise when neurulation (= the formation of the neural tube) during the embryonic period is disturbed. Neurulation comprises four subsequent events: formation of the neural plate, elevation of the neural walls, convergence and fusion of the neural folds. The initial closure is in the cervical region and zippers to the cranial and caudal direction. The openings at both ends are the final closure sites and are called the anterior neuropore and the posterior neuropore (PNP). In each of these events, several processes as cell migration and proliferation are involved. Recently, another process has been recognized, axial curvation of the embryo, but its impact upon neural tube closure is hitherto studied insufficiently. In this thesis, the extent of the relationship between axial curvature and closure of the PNP is determined in embryos of several species, among which the mouse strain curly tail, mutant for spina bifida. In the past decade, it became obvious that this strain can serve as a model to study the role of axial curvature in spinal neurulation.

In Chapter 2.1, the curly tail mouse colony which was used throughout the thesis is described in more detail. The mutation arose spontaneously in 1950, but up to now neither the ct gene nor one of its modifiers has been characterized. In 55% of the newborns an affected phenotype, i.e. kinked or curled tail and spina bifida aperta, was observed. This phenotype is thought to be the result of a disturbed neurulation. The penetrance appeared independent of parental phenotype and parental penetrance, but seemed to be influenced by environmental conditions. Since penetrance and phenotypes of this colony resemble those of the other curly tail colonies, the data obtained from different colonies complete each other.

A good control strain was missing for the curly tail mouse. Not only a difference with respect to the ct gene and its modifiers was present, but also with respect to the genetic background of other strains. Therefore, a background-matched BALB/c - curly tail recombinant strain was constructed via a cross-intercross design (Chapter 2.2). The penetrance after each intercross amounted to 2-4%. An increase in penetrance up to 48% was achieved by five subsequent inbreeding cycles of the intercross offspring with selection in favor of affected phenotypes. The results suggest that, besides the ct gene, more than 3 modifier genes are involved in the curly tail trait. Since this recombinant mouse strain exhibits the curly tail trait on a known genetic background, the strain will be helpful in revealing the curly tail pathogenesis, and is used as such in the studies of Chapter 4.

The central theme of Chapter 3 is the relationship between axial curvature and neural tube closure. The observed tail anomalies and spina bifida aperta in newborn curly tail mice are thought to be the result of a delayed closure of the PNP, as
observed in about half of the embryos at embryonic days 9.5, more specifically from the developmental stage of 25 somites onwards. These affected embryos had previously been reported to exhibit an increased axial curvature in the region of the PNP. Since the region of increased curvature and its development were unknown, these have been determined (Chapter 3.1). In control mouse embryos, a general axial unbending of the embryonic axis was observed during subsequent stages of PNP closure. An additional marked decrease in curvature occurred at the final stages of PNP closure, indicating that this unbending facilitates the completion of PNP closure. In affected curly tail embryos, however, curvature appeared increased between somite levels 26 and presumptive 34. This increase turned out to be only temporally, since a normal curvature was observed from the 32 somite stage onwards. Thus, the aberrant curvature in the curly tail embryo coincided spatially and temporally with the start of PNP closure delay. The enhanced curvature probably delays the closure by counteracting the elevation and convergence of the neural walls.

The increased curvature in curly tail embryos could be prevented by culture at an elevated temperature (Chapter 3.2). This yielded a normalization of PNP closure. In order to determine whether aberrant axial curvature in control mouse embryos would also result in a delayed PNP closure, axial curvature was experimentally altered in those embryos. The increased curvature appeared indeed to correlate with a higher frequency of embryos with an open PNP.

In contrast to the mouse embryo, the rabbit embryo has a straight axis for a considerable period of PNP closure. Based on the experience with mouse embryos that an increased curvature would delay the closure of the PNP, it was expected that the straight axis would be associated with a fast neural tube closure. Since neurulation in the rabbit was hardly documented in literature, such a study was performed (Chapter 3.3). As hypothesized, closure of the neural tube closure occurred fast except for the final phase of PNP closure.

Subsequently, the closure of the PNP was related to axial curvature in five species: mouse, rat, rabbit, man and chick (Chapter 3.4). The closure of the PNP was first completed in the embryos with a flat appearance (i.e. rabbit and chick), subsequently in embryos with a moderately curved axis (i.e. rat and man) and finally in the most strongly curved species (i.e. mouse). Moreover, another general relationship emerged: the more the axial curvature decreased during neurulation, the more the rate of closure increased. Based on these studies, it is concluded that axial curvation is an important process in neural tube closure.

Enhanced axial curvature in the curly tail embryo has been proposed to result from a reduced cell proliferation in the ventral tissues of the PNP region. It might be expected, however, that proliferation is also disturbed in the progenitor structure of this region, i.e. the tail bud, at stages preceding the aberrant curvature. Therefore, proliferation was determined in the dorsal and ventral halves of the tail bud.
(Chapter 4.1). It appeared that, at the stage preceding the aberrant curvature, the ventral half, when compared to dorsal, comprised an increased proportion of G_0/G_1 phase cells and a decreased proportion of S phase cells in both the curly tail and recombinant mutant strain. The proliferation appeared re-balanced at the stage preceding the normalized axial curvature. This indicates that the temporally imbalanced proliferation in the tail bud results in a reduced number of cells ventrally and subsequently evokes the temporally increased axial curvature. This imbalanced proliferation is now considered the earliest event in the pathogenic sequence leading to NTD in the curly tail mouse.

Glucose is reported to be important for embryonic growth at the respective stages of neurulation. Its role in the curly tail pathogenesis has been determined as well (Chapter 4.2). Both in a long-term and short-term embryo culture, glucose uptake seemed to be reduced for the curly tail and recombinant mouse embryos compared to non-mutant ones. This was accompanied by a reduced amount of DNA in the mutant embryos, resulting in a normal uptake per cell. The gene for the glucose transporter GLUT-1 is mapped to the same region on chromosome 4 as the non-characterized et gene. It was determined whether et and GLUT-1 could be alleles of the same gene. Such a relationship was excluded based upon the results of restriction fragment length polymorphism and cDNA sequence analyses. Moreover, since GLUT-1 is important for glucose transport across the cell membranes during neurulation, these GLUT-1 results together with the normal expression of the GLUT-1 protein as immunohistochemically determined support the idea that the glucose uptake per cell is normal in the curly tail mouse embryo. Thus, the imbalanced proliferation in the PNP region and tail bud, as part of the curly tail pathogenesis, is unlikely due to aberrant glucose handling. The aberrant proliferation results, presumably, in a reduced cell number and, consequently, in a reduced glucose uptake.

The results presented in this thesis indicate that the progression of neural tube closure in several species is affected by axial curvature. Most likely, axial curvature is important in human NTD as well. Because of similarities in e.g. location, appearance and influence of potential teratogens, the mouse mutant curly tail is currently considered a valuable model for the folate-resistant subgroup of human NTD. Therefore, the new insights in the pathogenesis of the curly tail, alike the imbalanced proliferation in the tail bud, may elucidate pathogenetic pathways in this subcategory of human NTD.
Samenvatting

Neurale buis defekten (NBD) behoren tot de zeer ernstige aangeboren afwijkingen. Ze ontstaan als de neurulatie (= de vorming van de neurale buis) tijdens de embryonale periode verstoord is. Neurulatie bestaat uit vier opeenvolgende gebeurtenissen: vorming van de neurale plaat, elevatie van de neurale wallen, convergentie en fusie van de neurale vouwen. De sluiting begint in het cervicale gebied, en breidt van daar uit naar craniaal en caudaal. De openingen aan beide uiteinden heten neuroporus anterior en neuroporus posterior (NP), en sluiten als laatste. Bij ieder van deze gebeurtenissen zijn diverse processen betrokken zoals lokale cell migratie en proliferatie. Recent is een ander proces ondersocht, de askromming van het embryo, maar de invloed ervan op de neurale buissluiting is tot nu toe onvoldoende bestudeerd. In dit proefschrift wordt de relatie tussen askromming en sluiting van de NP nader onderzocht in embryo's van diverse species, waaronder de muizenstam curly tail, mutant voor spina bifida. Van deze stam is in het afgelopen decennium duidelijk geworden dat ze als model kan dienen om de rol van askromming in spinale neurulatie te bepalen.

In Hoofdstuk 2.1 wordt de curly tail kolonie die in dit onderzoek gebruikt is in detail beschreven. De mutatie ontstond spontaan in 1950, maar tot op heden zijn noch het ct gen noch zijn modifier genen gekarakteriseerd. Een aangedaan fenotype, d.w.z een krul of knik in de staart en/of spina bifida aperta, werd bij 55% van de pasgeboren waargenomen. Dit fenotype wordt waarschijnlijk veroorzaakt door een verstoorde neurulatie. De penetrantie bleek onafhankelijk te zijn van het fenotype of penetrantie van de ouders, maar leek wel beïnvloed te worden door omgevingsfaktoren. Omdat de penetrantie en fenotypen van deze kolonie overeenkomen met die van andere curly tail kolonies, kunnen de data vanuit de verschillende kolonies elkaar aanvullen.

Voor de curly tail ontbrak een goede controle-stam. Er was namelijk niet alleen een verschil voor wat betreft het ct gen en zijn modifiers, maar ook met de genetische achtergrond van andere stammen. Daarom werd een BALB/c - curly tail recombinante stam geconstrueerd via een cross-intercross kruisingsschema (Hoofdstuk 2.2). De penetrantie na iedere intercross bedroeg 2 tot 4%. Een stijging in de penetrantie tot 48% werd bereikt door vijf opeenvolgende inkruisingscycli van de intercross-nakomelingen met selectie van de aangedane fenotypen. Deze resultaten suggereren dat, naast het ct gen, meer dan drie modifier genen betrokken zijn bij de curly tail expressie. Omdat deze recombinante muizenstam de curly tail eigenschappen vertoont en een bekende genetische achtergrond bezit, is zij geschikt voor het ontrafelen van de curly tail pathogenese, en als zodanig gebruikt voor de studies welke zijn gerapporteerd in Hoofdstuk 4.
Het centrale thema in Hoofdstuk 3 is de relatie tussen askromming en neurale buissluiting. De staartafwijkingen en spina bifida aperta die in pasgeboren curly tail muizen waargenomen worden, zijn waarschijnlijk het resultaat van een vertraagde sluiting van de NP. Deze vertraging wordt in ongeveer de helft van de embryo's van 9.5 dag waargenomen, ofwel vanaf het ontwikkelingsstadium van 25 sommeten. In de literatuur is bekend dat deze aangedane embryo's een toegenomen askromming in de regio van de NP vertoonden. Omdat de locatie en het verloop van deze krommingsafwijking tijdens de ontwikkeling niet bekend was, werd deze bepaald (Hoofdstuk 3.1). In controle embryo's werd een algemene ontkromming van de embryonale as waargenomen tijdens opeenvolgende stadia van NP-sluiting en tijdens de laatste stadia trad bovendien een extra afname in kromming op. Dit is een aanwijzing dat ontkromming de voltooing van de NP-sluiting faciliteert. In aangedane curly tail embryo's bleek de kromming echter tijdelijk toe te nemen tussen somieteniveau 26 en toekomstig niveau 34. Vanaf somitenstadium 32 werd weer een normale kromming waargenomen. De toegenomen kromming in het curly tail embryo valt dus zowel in plaats als tijd samen met de vertraging van de NP-sluiting. De extra kromming verhindert waarschijnlijk mechanisch de elevatie van de neurale wallen en de convergentie van de neurale vouwen, waardoor de fusie gememd wordt.

De extra kromming in curly tail embryo's kon worden voorkomen door de embryo's te kweken bij een verhoogde temperatuur (Hoofdstuk 3.2). Dit resulteerde in een normalisatie van de NP-sluiting. Om te bepalen of in controle embryo's een toegenomen askromming ook zou resulteren in een vertraagde NP-sluiting, werd de askromming in deze embryo's experimenteel veranderd. De toegenomen kromming bleek inderdaad positief te correleren de frequentie van embryo's met een niet-gesloten NP.

In tegenstelling tot het muizenembryo heeft het konijnenembryo tijdens een aanzienlijke periode van de NP-sluiting een rechte as. Vanuit de bevinding bij de muis dat een toegenomen kromming de sluiting van de NP vertraagt, werd verwacht dat de rechte as geassocieerd zou zijn met een snelle neurale buissluiting. Omdat de neurulatie in het konijn nauwelijks gedocumenteerd was in de literatuur, werd zo'n studie uitgevoerd (Hoofdstuk 3.3). Zoals verondersteld, bleek de sluiting van de neurale buis snel te verloopen, met uitzondering van de laatste fase van de NP-sluiting.

Vervolgens werd de relatie van de NP-sluiting en askromming bestudeerd in vijf diersoorten: muis, rat, konijn, mens en kip (Hoofdstuk 3.4). De sluiting van de NP was het eerst voltooid in de embryo's met een vlak uiterlijk (konijn en kip), vervolgens in embryo's met een licht gekromde as (rat en mens) en tenslotte in de meest gekromde diersoort (muis). Bovendien bleek dat er nog een algemene tendens aanwezig was: afname van de askromming tijdens de neurulatie was gecorreleerd met een toename van de sluitingssnelheid. Gebaseerd op deze studies
Samenvatting

werd geconcludeerd dat het krommen van de as een proces is die de neurale buissluiting beïnvloedt.

In de literatuur werd geopperd dat de toegenomen askromming in het *curly tail* embryo het resultaat zou zijn van een verminderde proliferatie in de ventrale weefsels van de NP-regio. Het kan echter verwacht worden dat proliferatie met name verstoord is in de voorloper van deze regio, dit is de staartknop, en op een stadium voorafgaand aan de afwijkende kromming. Daarom werd de proliferatie bepaald in de dorsale en ventrale helft van de staartknop (Hoofdstuk 4.1). Het bleek dat in het stadium voorafgaand aan de afwijkende askromming, de ventrale helft in vergelijking met dorsaal meer cellen in de G0/G1 fase en minder cellen in de S fase bevatte in zowel de *curly tail* als de recombinante muizenstam. De proliferatie bleek weer in balans te komen in het stadium voorafgaand aan de genormaliseerde askromming. Dit wijst erop dat de tijdelijke proliferatie-disbalans in de staartknop tot een verminderd aantal cellen ventraal leidt, welke vervolgens in een tijdelijk toegenomen askromming resulteert. Deze proliferatie-disbalans wordt nu beschouwd als de vroeegste stap in de pathogenese van NBD in de *curly tail* muis.

Glucose is belangrijk voor de embryonale groei tijdens de neurulatie. De rol van glucose in de *curly tail* pathogenese werd eveneens bepaald (Hoofdstuk 4.2). Zowel in lang-durende als kort-durende embryo-kweken, leek de opname van glucose door *curly tail* en recombinante muizenembryo's verminderd te zijn in vergelijking met controle embryo's. Dit ging echter gepaard met een verminderde hoeveelheid DNA in de mutante embryo's, waardoor de opname per cel normaal bleek te zijn. Het gen voor de glucose-transporter GLUT-1 is in dezelfde regio op chromosoom 4 gelokaliseerd als het nog niet gekarakteriseerde *ct* gen. Daarom werd bepaald of *ct* en GLUT-1 allelen konden zijn van hetzelfde gen. Deze relatie werd uitgesloten op basis van de resultaten van de restrictie-fragmentlengte polymorfisme en cDNA sequentie analyseren. De expressie van het GLUT-1 eiwit bleek immunohistochemisch normaal te zijn. Omdat GLUT-1 belangrijk is voor het glucosetransport over de cellmembrana tijdens neurulatie, bevestigen deze resultaten de bevinding dat de opname van glucose per cel normaal is in het *curly tail* embryo. Het is dan ook niet erg waarschijnlijk dat de proliferatie-disbalans in de NP-regio en in de staartknop wordt veroorzaakt door een afwijkende opname van glucose. De afwijkende proliferatie resulteert waarschijnlijk in een verminderd aantal cellen en derhalve in een verminderde opname van glucose.

De resultaten die in dit proefschrift gepresenteerd zijn duiden erop dat de sluiting van de neurale buis in diverse diersoorten beïnvloed wordt door askromming. Askromming is zeer waarschijnlijk ook belangrijk in humane NBD. Door overeenkomsten in bijvoorbeeld locatie, verschijning en invloed van potentiële teratogenen wordt de muismutant *curly tail* momenteel beschouwd als een waardevol model voor de folaat-resistente subgroep van humane NBD. Daarom
zullen nieuwe inzichten in de pathogenese van de *curly tail*, zoals de proliferatie-disbalans in de staartknop, stappen in de pathogenese van deze subcategorie van humane NBD kunnen gaan ophelderen.