Risk assessment after acute myocardial infarction

Citation for published version (APA):

Document status and date:
Published: 01/01/2017

DOI:
10.26481/dis.20170412ds

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 01 Nov. 2023
Chapter 12

Valorisation

In The Netherlands, coronary artery disease (CAD) in 2012 was responsible for more than 80,000 annual hospital admissions of more than 24 hours. As a consequence, CAD is accompanied by relatively high costs (2.3% of the total Dutch healthcare costs in 2011), largely contributed to hospital care. In addition, 35% of admissions are the result of acute myocardial infarction (AMI). Although length of hospital stay declined by approximately 40% between 1995 and 2010, mean hospital stay for AMI in 2012 was 5 days in men and 6 days in women. Furthermore, it is estimated that the number of patients affected by CAD will increase from 610,000 to 840,000 between 2011 and 2030 as a result of aging and demographic growth.1

As a consequence, AMI makes that our society faces a serious healthcare issue today as well as for the future. At present, Dutch AMI patient care has been regulated very properly. STEMI patients are supposed to be transferred as soon as possible to the nearest PCI center, whereas in NSTEMI patients, particular importance is attached to risk-based decision making. This established approach has become the norm for AMI treatment. As a consequence Dutch hospitals have to provide statistics about the percentage of patients undergoing PPCI or risk-based revascularization in order to meet quality requirements. Although this policy quite rightly focuses attention on high-risk patients, lower-risk patients often go unnoticed.

In this thesis, we demonstrated that the Zwolle Risk Score (ZRS) was able to identify PPCI patients who were eligible candidates for next day discharge when protocolized outpatient care was provided. Compared to controls, short-stay patients had similar outcomes, but their stay in hospital was significantly shorter. Furthermore, it was demonstrated that ZRS and NT-proBNP measured between 18–24 h after PPCI had comparable predictive accuracy for 30-day mortality. However, combined use considerably improved discrimination of low- and higher-risk patients and could provide decision rules to target the largest patient groups (up to 75% of the study population) who would be eligible for discharge 48 h after admission, with very low occurrence of adverse events and readmissions. Finally, NT-proBNP and the GRACE risk score also demonstrated comparable, good predictive value in NSTEMI patients.

Although mortality risk and hospital early discharge are closely related, many other circumstances have to be taken into account. In this thesis we also demonstrated that
Valorisation

NT-proBNP has predictive value for the occurrence of both ischemic and bleeding events. In addition, NT-proBNP and high-sensitivity troponin T (hs-TnT) may serve as biomarker for prediction and prognostication of new onset atrial fibrillation in PPCI patients.

In conclusion, this thesis established the value of NT-proBNP over and beyond current risk strategies. Despite the fact that at present low-risk AMI patients have an excellent prognosis, several standard procedures such as a stay in hospital of several days, driving disqualification for 4 weeks, initiation of rehabilitation several weeks after discharge and annual outpatient department visits are applied to many patients by protocol. Although prospective validation of our findings will have to be performed, the presented research enables the development of more accurate risk strategies in order to optimize patient management and to control healthcare expenses.