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A TIGHT KERNEL FOR COMPUTING THE TREE BISECTION
AND RECONNECTION DISTANCE BETWEEN TWO

PHYLOGENETIC TREES∗

STEVEN KELK† AND SIMONE LINZ‡

Abstract. In 2001 Allen and Steel showed that, if subtree and chain reduction rules have been
applied to two unrooted phylogenetic trees, the reduced trees will have at most 28k taxa where k
is the tree bisection and reconnection distance between the two trees. Here we reanalyze Allen and
Steel’s kernelization algorithm and prove that the reduced instances will in fact have at most 15k−9
taxa. Moreover we show, by describing a family of instances which have exactly 15k − 9 taxa after
reduction, that this new bound is tight. These instances also have no common clusters, showing that
a third commonly encountered reduction rule, the cluster reduction, cannot further reduce the size
of the kernel in the worst case. To achieve these results we introduce and use “unrooted generators”
which are analogues of rooted structures that have appeared earlier in the phylogenetic networks
literature. Using similar arguments we show that, for the minimum hybridization problem on two
rooted trees, 9k−2 is a tight bound (when subtree and chain reduction rules have been applied) and
9k − 4 is a tight bound (when, additionally, the cluster reduction has been applied) on the number
of taxa, where k is the hybridization number of the two trees.

Key words. fixed-parameter tractability, tree bisection and reconnection, generator, kerneliza-
tion, phylogenetic network, phylogenetic tree, hybridization number
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1. Introduction. In the study of evolution phylogenetic trees are often used to
depict the evolution of a set of species (or more abstractly, taxa) X. These are trees
in the usual graph-theoretical sense where the leaves are bijectively labeled by X and
the internal vertices represent hypothetical (common) ancestors of X [25]. Phyloge-
netic trees are typically constructed from genetic markers, such as DNA alignments,
and under many objective functions the goal of constructing the “best” phylogenetic
tree is NP-hard [22]. This has stimulated the development of heuristics which ex-
plore the space of phylogenetic trees using topological rearrangement moves [11, 17].
One popular such move is the tree bisection and reconnection (TBR) move which,
informally, deletes some edge of the tree and then reattaches the two induced com-
ponents by a newly introduced edge. In attempting to understand the connectivity
of phylogenetic tree space under the action of TBR moves, it is natural to ask the
following: what is the smallest number of TBR moves required to transform one tree
T into another tree T ′? This is known as the TBR distance of the two trees, denoted
dTBR(T, T ′). It is NP-hard to compute [1, 15]. In 2001 Allen and Steel showed the
following kernelization result: if common pendant subtrees and common chains in the
two trees are repeatedly collapsed, then this preserves dTBR, and upon termination
the reduced trees will contain at most 28 · dTBR(T, T ′) taxa [1]. This result was used
to prove that the computation of dTBR is fixed-parameter tractable (FPT); see [10]
for an introduction to FPT.
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A TIGHT KERNEL FOR TBR DISTANCE 1557

Here we strengthen the bound given by Allen and Steel. We show that the reduced
trees obtained from their kernelization algorithm in fact have at most 15 · dTBR − 9
taxa, and that this result is “best possible”: for every k ≥ 2, we demonstrate two trees
with TBR distance k such that, after the kernelization procedure has terminated,
they have exactly 15 · dTBR − 9 taxa. This proves that, if smaller kernels are to
be obtained, additional reduction rules will be required. One natural candidate for
a third reduction rule is the common cluster reduction rule [5]. However, using a
slightly modified construction, we show that this rule (when applied in addition to
the subtree and chain reduction rules) cannot improve upon the 15 · dTBR− 9 bound.

A novel feature of our proofs is that they leverage recent insights from the phy-
logenetic networks literature, where networks are essentially the generalization of
phylogenetic trees to graphs [16]. Specifically, it was recently shown that if one em-
beds two trees T and T ′ into an unrooted phylogenetic network N = (V,E), then the
minimum value of |E|− (|V |−1) ranging over all such N will be equal to dTBR(T, T ′)
[29]. This is significant because it attaches a static, graph-based interpretation to the
TBR distance: it allows us to view its computation as a graph/network-construction
problem. In turn, this allows us to define and use unrooted analogues of generators
(i.e., backbone topologies) [19, 26] which have been used extensively in the FPT lit-
erature on rooted phylogenetic networks (see, e.g., [27] and references therein). Once
viewed this way, the strengthened 15 · dTBR − 9 bound can be derived via a fairly
straightforward counting argument. The generators also turn out to be invaluable in
proving the tightness of the bound.

As a spin-off to these results we show that the earlier-identified upper bound of
9k − 2 [21] on the size of the standard hybridization number weighted kernel [7] for
rooted trees is also tight, and that in this case the cluster reduction can only improve
the bound slightly, to 9k − 4, which as we demonstrate is also tight.

In the final part of the article we devote a discussion section to summarizing
the (new) state of the algorithmic landsdcape for TBR distance and reflect upon the
broader consequences of our strengthened bound on the size of the TBR kernel. We
also list a number of related phylogenetics problems where there is still quite some
potential for improving bounds on kernel sizes.

2. Preliminaries. Unrooted phylogenetic trees and networks. Through-
out this paper X denotes a finite set (of taxa) with at least two elements. An unrooted
binary phylogenetic network on X is a simple, connected, and undirected graph N with
|X| vertices, called leaves, of degree one and bijectively labeled with X, and all other
vertices of degree 3. We define the reticulation number of N as r(N) = |E|−(|V |−1),
where E and V are the edge and vertex sets of N , respectively. If r(N) = 0, then N
is called an unrooted binary phylogenetic tree on X.

Subtrees, chains, and clusters. Let N be an unrooted binary phylogenetic
network on X. A pendant subtree of N is an unrooted binary phylogenetic tree on
a proper subset of X that can be obtained from N by deleting a single edge. For
n ≥ 1, let C = (`1, `2, . . . , `n) be a sequence of distinct leaves in X and, for each
i ∈ {1, 2, . . . , n}, let pi denote the unique neighbor of `i in N . We call C an n-chain
of N if there exists a path p1, p2, . . . , pn in N such that p2, . . . , pn−1 is a simple path.
That is, we optionally allow that p1 = p2 (i.e., `1 and `2 have a common parent)
and/or pn−1 = pn (i.e., `n−1 and `n have a common parent). Furthermore, n is
referred to as the length of C. By definition, note that each element in X is a chain
of length 1 in N . Last, for Y ⊂ X, we say that Y is a cluster of N if there exists a
single edge in N whose deletion disconnects N into two parts such that the leaves of
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1558 STEVEN KELK AND SIMONE LINZ

one part are bijectively labeled by elements in Y while the leaves of the other part are
bijectively labeled by elements in X − Y . If |Y |=1, then the cluster is called trivial
and, otherwise, it is called nontrivial. Note that, if Y is a cluster of N , then X − Y
is also a cluster of N . We say that Y,X − Y is a bipartition of N .

Generators. Rooted generators have played an important role in establishing
kernelization results for problems on rooted trees [21, 28, 30], but have only received
very little attention [14] as a tool to tackle problems on unrooted trees. Here we give
a definition of an unrooted generator that we will subsequently use to establish an
improved kernel for the problem of computing the TBR distance (formally defined
below) between two trees. Let k be a positive integer. For k ≥ 2, a k-generator (or
short generator when k is clear from the context) is a connected cubic multigraph with
edge set E and vertex set V such that k = |E| − (|V | − 1). Furthermore, for k = 1,
we define the graph that consists of a single vertex u and a loop edge {u, u} to be
the unique 1-generator. The edges of a generator are also called its sides. Intuitively,
the sides are the places where leaves can be attached in order to obtain an unrooted
binary phylogenetic network from a generator. We now formalize this concept. Let G
be a k-generator, let {u, v} be a side of G, and let Y be a set of leaves. The operation
of subdividing {u, v} with |Y | new vertices and, for each such new vertex w, adding
a new edge {w, `}, where ` ∈ Y such that Y bijectively labels the new leaves, is
referred to as attaching Y to {u, v}. Additionally, if G is the 1-generator, then the
degree-2 vertex u is suppressed after attaching Y to {u, u}. Moreover, if at least two
new leaves are attached to G in a way that at least one new leaf is attached to each
loop and to each pair of parallel edges, then the resulting graph is an unrooted binary
phylogenetic network N with r(N) = k. Note that N has no pendant subtree with
more than a single leaf. Conversely, we obtain G from N by deleting all leaves and,
repeatedly, suppressing any resulting degree-2 vertices. We say that G underlies N .
In summary, we make the following observation.

Observation 1. Let N be an unrooted binary phylogenetic network with r(N) =
k ≥ 2 and with no pendant subtree of size at least two. Then the graph G that
is obtained from N by deleting all leaves and, repeatedly, suppressing any resulting
degree-2 vertices is a k-generator. Conversely, we obtain N from G by attaching to
each side s = {u, v} of G a (possibly empty) set of leaves.

Tree bisection and reconnection. Let T be an unrooted binary phylogenetic
tree on X. Apply the following three-step operation to T :

1. Delete an edge in T and suppress any resulting degree-2 vertex so that two
new unrooted binary phylogenetic trees, say T1 and T2, are obtained.

2. If T1 (resp., T2) has at least one edge, subdivide an edge in T1 (resp., T2) with
a new vertex v1 (resp., v2) and otherwise set v1 (resp., v2) to be the single
isolated vertex of T1 (resp., T2).

3. Add a new edge {v1, v2} to obtain a new unrooted binary phylogenetic tree
T ′ on X.

We say that T ′ has been obtained from T by a single TBR operation. Furthermore,
we define the TBR distance between two unrooted binary phylogenetic trees T and
T ′ on X, denoted by dTBR(T, T ′), to be the minimum number of TBR operations
that is required to transform T into T ′. It is well known that, for any such pair of
trees, one can always obtain one from the other by a sequence of TBR operations.
In particular, dTBR is a metric [1]. By building on an earlier result by Hein et
al. [15, Theorem 8], Allen and Steel [1] established NP-hardness of computing the
TBR distance.
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A TIGHT KERNEL FOR TBR DISTANCE 1559

Unrooted minimum hybridization. In [29], it was shown that computing the
TBR distance for a pair of unrooted binary phylogenetic trees T and T ′ is equivalent
to a problem that is concerned with computing the minimum number of extra edges
required to simultaneously explain T and T ′. To describe this problem precisely,
let N be an unrooted binary phylogenetic network on X, and let T be an unrooted
binary phylogenetic tree on X. We say that N displays T if T can be obtained from a
subtree of N by suppressing degree-2 vertices. Furthermore, for two unrooted binary
phylogenetic trees T and T ′ on X, we set

hu(T, T ′) = min
N
{r(N)},

where the minimum is taken over all unrooted binary phylogenetic networks on X
that display T and T ′. The value hu(T, T ′) is known as the hybridization number of
T and T ′ [29].

Unrooted-Hybridization-Number (UHN)
Input. Two unrooted binary phylogenetic trees T and T ′ on X.
Output. An unrooted binary phylogenetic network N on X that displays T and T ′

and such that r(N) = hu(T, T ′).

We are now in a position to formally state the aforementioned equivalence that
was established in [29, Theorem 3].

Theorem 1. Let T and T ′ be two unrooted binary phylogenetic trees on X. Then

dTBR(T, T ′) = hu(T, T ′).

Reductions and kernelization. While computing the TBR distance is NP-
hard, it was also shown in [1] that the problem is FPT when parameterized by dTBR.
For two unrooted binary phylogenetic trees T and T ′ on X, the authors used the
following two reductions to kernelize the problem.

Subtree reduction. Replace a maximal pendant subtree with at least two leaves
that are common to T and T ′ by a single leaf with a new label.

Chain reduction. Replace a maximal n-chain with n ≥ 4 that is common to T and
T ′ by a 3-chain with three new leaf labels correctly oriented to preserve the direction
of the chain. For an illustration of this reduction, see Figure 1.

If T and T ′ cannot be reduced under the subtree (resp., chain) reduction, we say
that T and T ′ are subtree (resp., chain) reduced.

The next theorem, which is due to [1, Theorem 3.4], shows that both reductions
are safe, i.e., they do not change the TBR distance.

Theorem 2. Let T and T ′ be two unrooted binary phylogenetic trees on X, and
let S and S′ be two trees obtained from T ′ and T ′, respectively, by applying a single
subtree or chain reduction. Then dTBR(T, T ′) = dTBR(S, S′).

Repeated applications of the previous lemma allow us to obtain two trees, say S
and S′ on X ′, from T and T ′, respectively, that are subtree and chain reduced such
that dTBR(T, T ′) = dTBR(S, S′). The importance of S and S′ lies in the following
kernelization result that we have alluded to in the introduction and that is a direct
consequence of [1, Lemmas 3.6 and 3.7].

Theorem 3. Let T and T ′ be two unrooted binary phylogenetic trees on X, and
let S and S′ be a subtree and chain reduced tree pair on X ′ that has been obtained
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Fig. 1. A chain reduction applied to the common n-chain C = (`1, `2, . . . , `n) with n � 4 of two unrooted
binary phylogenetic trees T and T 0. In the reduced trees S and S0, C is replaced with the 3-chain (a, b, c). As
shown in (ii) and (iii), C may be pendant in one or both of T and T 0 and, hence, `1 and `2 have the same
parent and/or `n�1 and `n have the same parent. Note that, if T and T 0 both have the property that `1 and `2
have the same parent, then C is in fact a common pendant subtree and reduced under the subtree reduction.

Theorem 3. Let T and T 0 be two unrooted binary phylogenetic trees on X, and let S and
S0 be two trees obtained from T 0 and T 0, respectively, by applying a single subtree or chain
reduction. Then dTBR(T, T 0) = dTBR(S, S0).

Repeated applications of the previous lemma allow us to obtain two trees, say S and S0 on
X 0, from T and T 0, respectively, that are subtree and chain reduced such that dTBR(T, T 0) =
dTBR(S, S0). The importance of S and S0 lies in the following kernelization result that we have
alluded to in the introduction and that is a direct consequence of [1, Lemmas 3.6 and 3.7].

Theorem 4. Let T and T 0 be two unrooted binary phylogenetic trees on X, and let S and
S0 be a subtree and chain reduced tree pair on X 0 that has been obtained from T and T 0 by
repeated applications of the subtree and chain reduction. Then |X 0|  28dTBR(T, T 0).

Noting that the subtree and chain reduction can be applied in time that is polynomial
in the size of X, it immediately follows that computing the TBR distance is fixed-parameter
tractable when parameterized by this minimum distance.

Cluster reduction. In [5] it is shown that if T and T 0 have a common non-trivial cluster,
computation of dTBR(T, T 0) can be reduced to the computation of dTBR on two new smaller
pairs of trees obtained by decomposing T and T 0 around the common cluster. (Compared to
the subtree and chain reductions the cluster reduction involves a number of subtleties; for
brevity we do not describe them here.) This decomposition procedure can be continued until
trees are obtained without non-trivial common clusters. If T and T 0 do not have a non-trivial
common cluster, we say that T and T 0 are cluster reduced.

Maximum Parsimony distance. A character f on X is a function f : X ! C, where
C = {c1, c2, . . . , cr} is a set of character states for some positive integer r. Let T be an un-
rooted phylogenetic tree on X with vertex set V , and let f be a character on X whose set of
character states is C. An extension g of f to V is a function g : V ! C such that g(`) = f(`)

5

Fig. 1. A chain reduction applied to the common n-chain C = (`1, `2, . . . , `n) with n ≥ 4 of
two unrooted binary phylogenetic trees T and T ′. In the reduced trees S and S′, C is replaced with
the 3-chain (a, b, c). Triangles indicate subtrees of T , T ′, S, and S′. As shown in (ii) and (iii), C
may be pendant in one or both of T and T ′ and, hence, `1 and `2 have the same parent and/or `n−1

and `n have the same parent. Note that, if T and T ′ both have the property that `1 and `2 have the
same parent, then C is in fact a common pendant subtree and reduced under the subtree reduction.

from T and T ′ by repeated applications of the subtree and chain reduction. Then
|X ′| ≤ 28dTBR(T, T ′).

Noting that the subtree and chain reduction can be applied in time that is poly-
nomial in the size of X, it immediately follows that computing the TBR distance is
FPT when parameterized by this minimum distance.

Cluster reduction. In [5] it is shown that if T and T ′ have a common nontrivial
cluster, computation of dTBR(T, T ′) can be reduced to the computation of dTBR on
two new smaller pairs of trees obtained by decomposing T and T ′ around the common
cluster. (Compared to the subtree and chain reductions the cluster reduction involves
a number of subtleties; for brevity, we do not describe them here.) This decomposi-
tion procedure can be continued until trees are obtained without nontrivial common
clusters. If T and T ′ do not have a nontrivial common cluster, we say that T and T ′

are cluster reduced.

Maximum parsimony distance. A character f on X is a function f : X → C,
where C = {c1, c2, . . . , cr} is a set of character states for some positive integer r. Let
T be an unrooted phylogenetic tree on X with vertex set V , and let f be a character
on X whose set of character states is C. An extension g of f to V is a function
g : V → C such that g(`) = f(`) for each ` ∈ X. Given an extension g of f , let lg(T )
denote the number of edges {u, v} in T such that g(u) 6= g(v). Then the parsimony
score of f on T , denoted by lf (T ), is obtained by minimizing lg(T ) over all possible
extensions g of f . Last, for two unrooted phylogenetic trees T and T ′ on X, we define
the maximum parsimony distance dMP as

dMP(T, T ′) = max
f
|lf (T )− lf (T ′)|.

Importantly, for two unrooted binary phylogenetic trees, the maximum parsimony
distance is a lower bound on the TBR distance as noted in the discussion of [12]. We
will freely use this fact throughout the rest of this paper. For more details on the
maximum parsimony distance, we refer the interested reader to [12, 18, 23].
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3. Tight kernels for computing the TBR distance. In this section, we use
generators to reanalyze the TBR distance kernelization result by Allen and Steel [1]
and establish a kernel for the problem whose size is significantly smaller. Let T and
T ′ be two unrooted binary phylogenetic trees on X, and let N be an unrooted phy-
logenetic network on X that displays T and T ′. Furthermore, let C = (`1, `2, . . . , `n)
be an n-chain of N , and for each i ∈ {1, 2, . . . , n}, let pi be the unique neighbor of `i
in N . Since each embedding of T (resp., T ′) into N uses either all or all but one edge
in {{p1, p2}, {p2, p3}, . . . , {pn−1, pn}}, it is straightforward to check that exactly one
of the following three cases holds.

1. C is a chain of T and T ′

2. There exists a breakpoint i ∈ {1, 2, . . . , n− 1} such that

C1 = (`1, `2, . . . , `i) and C2 = (`i+1, `i+2, . . . , `n)

are chains of T and C is a chain of T ′, or C is a chain of T and C1 and C2

are chains of T ′.
3. There exist two not necessarily distinct breakpoints i, j ∈ {1, 2, . . . , n − 1}

such that
(`1, `2, . . . , `i) and (`i+1, `i+2, . . . , `n)

are chains of T and

(`1, `2, . . . , `j) and (`j+1, `j+2, . . . , `n)

are chains of T ′.
We say that C has 0, 1, or 2 breakpoints relative to T and T ′ depending on whether
C is not cut (Case (1)), cut once (Case (2)), or cut twice (Case (3)). Intuitively, the
number of breakpoints indicates how many trees of T and T ′ do not have C as a
chain.

Lemma 1. Let N be an unrooted binary phylogenetic network with r(N) = k ≥ 2
and with no pendant subtree of size at least two. Furthermore, let G be the generator
that underlies N . Then G has 3(k − 1) sides.

Proof. Let E be the edge set of G, and let V be the vertex set of G. By construc-
tion of G from N , recall that each vertex of G has degree 3 and that |E|− |V |+1 = k.
Hence,

2|E| = 3|V | = 3(|E| − k + 1),

where the first equality is due to the handshaking lemma. Now, solving for |E|, we
have |E| = 3(k − 1). Since E is equal to the set of sides of G, the lemma follows.

Lemma 2. Let S and S′ be two unrooted binary phylogenetic trees X, and let N
be an unrooted phylogenetic network on X that displays S and S′. Furthermore, let C
be an n-chain of N . Depending on the number of breakpoints of C relative to S and
S′, n is bounded from above in the following way.

1. Suppose that S and S′ are subtree and chain reduced. Then n ≤ 3 if C has 0
breakpoints, n ≤ 6 if C has 1 breakpoint, and n ≤ 9 if C has 2 breakpoints.

2. Suppose that S and S′ are subtree, chain, and cluster reduced. Then n ≤ 3
if C has 0 breakpoints, n ≤ 6 if C has 1 breakpoint, and n ≤ 7 if C has 2
breakpoints.

Proof. We establish the lemma for when C has two breakpoints. The other cases
are similar and omitted. Let C = (`1, `2, . . . , `n), and let i and j be the two break-
points of C relative to S and S′. Without loss of generality, we may assume that
i ≤ j. Since C has two breakpoints, one of the following two cases applies.
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(a) If i = j, then the chains (`1, `2, . . . , `i) and (`i+1, `i+2, . . . , `n) are common to
S and S′.

(b) If i < j, then the chains (`1, `2, . . . , `i), (`i+1, `i+2, . . . , `j), (`j+1, `j+2, . . . , `n)
are common to S and S′.

First, suppose that S and S′ are subtree and chain reduced and, towards a contra-
diction, assume that n > 9. Regardless of whether (a) or (b) applies, it follows by
the pigeonhole principle that one of the smaller chains has length at least 4 and is
common to S and S′, thereby contradicting that S and S′ are chain reduced. Second,
suppose that S and S′ are subtree, chain, and cluster reduced and, towards a contra-
diction, assume that n > 7. If i < j, observe that {`i+1, `i+2, . . . , `j} is the leaf set of
a pendant subtree in S and S′. Hence {`i+1, `i+2, . . . , `j} is a cluster that is common
to S and S′. Since S and S′ are cluster reduced, this implies that i + 1 = j. Now,
regardless of whether (a) or (b) applies, it follows again by the pigeonhole principle
that one of the other chains that is common to S and S′ has length at least 4; a
contradiction.

Let T and T ′ be two unrooted binary phylogenetic trees. Using generators, the
next lemma exploits the equivalence between computing the TBR distance and UHN
to establish a new and improved upper bound on the number of leaves of a pair of
subtree and chain reduced trees.

Lemma 3. Let S and S′ be two unrooted binary phylogenetic trees on X that are
subtree and chain reduced, and dTBR(S, S′) ≥ 2. Then, |X| ≤ 15dTBR(S, S′)− 9.

Proof. Let N be an unrooted binary phylogenetic network on X with edge set E
and vertex set V that displays S and S′ such that

r(N) = hu(S, S′) = dTBR(S, S′) = k ≥ 2.

By Theorem 1, such a network exists. Let G be the generator that underlies N .
Furthermore, let D and D′ be two subdivisions of S and S′, respectively, in N . Since
N displays S and S′, such subdivisions exist. If D is a spanning tree of N , then set
B = D and, otherwise, set B to be a spanning tree of N obtained from D by greedily
adding edges. Similarly, if D′ is a spanning tree of N , then set B′ = D′ and, otherwise,
set B′ to be a spanning tree of N obtained from D′ by greedily adding edges. (Observe
that B and B′ may have unlabeled leaves.) Moreover, as |E| = |V | − 1 + k, observe
that each of B and B′ has |V | − 1 = |E| − k edges, where the left-hand side of the
equation follows from the definition of a spanning tree.

Now, as S and S′ are subtree reduced, it is sufficient to attach leaves to the sides
of G in the process of obtaining N from G (see Observation 1). Let s = {u, v} be a
side of G. We next assign a cut count cs to s. First, if s is decorated with at least
one leaf in obtaining N from G, let Y = {`1, `2, . . . , `n} be the set of leaves that
are attached to s. By construction, N has a maximal n-chain C whose leaves are
bijectively labeled with the elements in Y . Let P be the path from u to v in N that
has length n+1 and whose vertices (except for u and v) are neighbors of the elements
in Y . We define cs to be the number of trees in {B,B′} that do not use all edges of
P . Since B and B′ both span N , note that there is at most one edge that is not used
by B and at most one (not necessarily distinct) edge that is not used by B′. Hence,
relative to C, we have bC ≤ cs, where bC is the number of breakpoints of C relative
to S and S′. It follows from Lemma 2.1 that, if cs = 0, then at most 3 taxa can be
attached to s in obtaining N from G. Similarly, if cs = 1, then at most 6 taxa can be
attached to s and, if cs = 2, then at most 9 taxa can be attached to s in this process.
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Second, if s is not decorated with any leaf when obtaining N from G, then {u, v}
is an edge in N , and we define cs to be the number of trees in {B,B′} that do not
use {u, v}. Since we are establishing an upper bound on |X|, we may assume for the
remainder of this proof that the bounds established in Lemma 2 also apply for when
s is not decorated. By assigning a cut count to each side of G, and recalling that both
B and B′ contain |E| − k edges, it is easily checked that∑

s

cs = 2k,

where the sum is taken over all sides of G.
Now, let 0 ≤ q ≤ k be the number of sides of G whose cut count is equal to two.

Consequently, by leveraging the above equality, there are 2(k − q) sides whose cut
count is equal to 1 and, by Lemma 1, 3(k − 1)− (k + k − q) sides whose cut count is
zero. Hence, as S and S′ are subtree and chain reduced, this implies that

|X| ≤ 9q + 6 · 2(k − q) + 3(3(k − 1)− (k + k − q)) = 15k − 9 = 15dTBR(S, S′)− 9,

thereby establishing the lemma.

Remark. Let S and S′ be two unrooted binary phylogenetic trees on X that are
subtree, chain, and cluster reduced. Clearly, Lemma 3 holds for S and S′. Alterna-
tively, by using an argument that is similar to that in the proof of Lemma 3 as well
as the bounds derived in Lemma 2.2, we obtain

|X| ≤ 7q + 6 · 2(k − q) + 3(3(k − 1)− (k + k − q)) = −2q + 15k − 9.

Now noting that the right-hand side of the last inequality is maximized for q = 0, we
again have

|X| ≤ −2q + 15k − 9 ≤ 15k − 9 = 15dTBR(S, S′)− 9.

For k ≥ 4, we will see in the next section that 15k − 9 is a tight upper bound on
the size of the leaf set X of two unrooted binary phylogenetic trees S and S′ with
dTBR(S, S′) = k and that are reduced under all three reductions. To establish this
result, the fact that no side has a cut count of two (i.e., q = 0) gives us some important
clues about the properties of S and S′. In particular, it turns out that S and S′ are
displayed by an unrooted binary phylogenetic network N on X with r(N) = k such
that N has no chain of length 7. For full details, see section 4.

In comparison to Theorem 3 that was first established in [1], the next theorem,
which is an immediate consequence of Theorem 2 and Lemma 3, establishes a signif-
icantly improved linear kernel for computing the TBR distance.

Theorem 4. Let T and T ′ be two unrooted binary phylogenetic trees on X, where
dTBR(T, T ′) ≥ 2, and let S and S′ be a subtree and chain reduced tree pair on X ′ that
has been obtained from T and T ′ by repeated applications of the subtree and chain
reduction. Then |X ′| ≤ 15dTBR(T, T ′)− 9.

4. Tight examples. In this section, we show that the upper bounds on the
size of the leaf set of two unrooted binary phylogenetic trees that do not contain any
common subtree and chain (and cluster) as established in Lemma 3 are tight. To this
end, we provide two families of constructions. Throughout this section, we attach
leaves to a side s of a generator that is depicted in Figures 2 or 3. If s connects two
vertices of a generator that lie on a horizontal line, we attach leaves to s from left to
right. Otherwise, we attach leaves to s from top to bottom. Furthermore, for a set
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Fig. 1. The two unrooted binary phylogenetic trees Sk and S0
k as well as the generator Gk (and G2) that are

used to show that the upper bound given in Lemma 3 is tight for a pair of subtree and chain reduced trees.
Blocks A, B, and C indicate three chains each of length 3. For example, for k = 4, block A contains taxa 34,
35, and 36, block B contains taxa 37, 38, and 39, and block C contains taxa 40, 41, and 42. The edge {u, v}
of Sk is used to argue that k = dTBR(Sk, S0

k) in the proof of Lemma 5.

as established in Lemma 3 are tight. To this end, we provide two families of constructions.
Throughout this section, we attach leaves to a side s of a generator that is depicted in
Figure 1 or Figure 2. If s connects two vertices of a generator that lie on a horizontal line,
we attach leaves to s from left to right. Otherwise, we attach leaves to s from top to bottom.
Furthermore, for a set of leaves that is attached to s, we order the elements from small to
large and then attach from left to right or top to bottom in such a way that preserves the
ordering of the elements.

We now begin with the description of a family of pairs of unrooted binary phylogenetic
trees that are subtree and chain reduced (but not cluster reduced). For k � 2, consider the
two unrooted binary phylogenetic trees Sk and S0

k with leaf set Xk and |Xk| = 15k � 9 that
are shown in Figure 1. It is easy to check that Sk and S0

k do not contain any common subtree
of size at least 2 or any common n-chain with n � 4. Note however that Sk and S0

k do
contain k common clusters of size three. In particular, Sk and S0

k contain the common cluster
{15i� 8, 15i� 7, 15i� 6} for each i 2 {1, 2, . . . , k � 1} and, additionally, the common cluster
{15k � 14, 15k � 13, 15k � 12}.

9

Fig. 2. The two unrooted binary phylogenetic trees Sk and S′k as well as the generator Gk

(and G2) that are used to show that the upper bound given in Lemma 3 is tight for a pair of subtree
and chain reduced trees. Blocks A, B, and C indicate three chains each of length 3. For example,
for k = 4, block A contains taxa 34, 35, and 36, block B contains taxa 37, 38, and 39, and block C
contains taxa 40, 41, and 42. The edge {u, v} of Sk is used to argue that k = dTBR(Sk, S

′
k) in the

proof of Lemma 5.

of leaves that is attached to s, we order the elements from small to large and then
attach from left to right or top to bottom in such a way that preserves the ordering
of the elements.

We now begin with the description of a family of pairs of unrooted binary phy-
logenetic trees that are subtree and chain reduced (but not cluster reduced). For
k ≥ 2, consider the two unrooted binary phylogenetic trees Sk and S′k with leaf set
Xk and |Xk| = 15k − 9 that are shown in Figure 2. It is easy to check that Sk and
S′k do not contain any common subtree of size at least 2 or any common n-chain with
n ≥ 4. Note however that Sk and S′k do contain k common clusters of size three. In
particular, Sk and S′k contain the common cluster {15i− 8, 15i− 7, 15i− 6} for each
i ∈ {1, 2, . . . , k−1} and, additionally, the common cluster {15k−14, 15k−13, 15k−12}.

Lemma 4. For k ≥ 2, let Sk and S′k be the two unrooted binary phylogenetic trees
that are shown in Figure 2, and let Gk be the generator that is shown in the same
figure. There exists an unrooted binary phylogenetic network Nk with r(Nk) = k that
displays Sk and S′k and whose underlying generator is Gk.

Proof. The proof is constructive, i.e., starting with Gk, we attach leaves to the
sides of Gk to obtain a phylogenetic network that displays Sk and S′k. The lemma
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then follows from Observation 1. Obtain an unrooted binary phylogenetic network
Nk in the following way.

1. Attach {1, 2, 3} to the topmost horizontal side of Gk.
2. For each i ∈ {1, 2, . . . , k− 2} in increasing order, perform the following three

steps.
(a) Attach {15i− 11, 15i− 10, . . . , 15i− 3} to the topmost horizontal side of

Gk which is still undecorated.
(b) Attach {15i−2, 15i−1, 15i} to the topmost left-vertical side of Gk which

is still undecorated.
(c) Attach {15i+ 1, 15i+ 2, 15i+ 3} to the topmost right-vertical side of Gk

which is still undecorated.
3. Attach {15k − 26, 15k − 25, . . . , 15k − 18} to the second-to-lowest horizontal

side of Gk.
4. Attach {15k − 17, 15k − 16, . . . , 15k − 9} to the lowest horizontal side of Gk.

Observe that the label of each side s of Gk as depicted in Figure 2 refers to the
number of leaves that is attached to s. Furthermore, note that Nk has k chains of
length 9. Regarding each such chain as a sequence of three blocks where each block
contains three leaves of the chain, which is indicated by A, B, and C in Figure 2, Sk

can be obtained from Nk by breaking each 9-chain between A and B and suppressing
all resulting degree-2 vertices, and S′k can be obtained from Nk by breaking each
9-chain between B and C and suppressing all resulting degree-2 vertices. Hence, Nk

displays Sk and S′k. Moreover, by construction, Gk underlies Nk. Let Ek and Vk be
the edge and vertex set of Gk, respectively. We complete the proof by noting that, as
|Ek| − |Vk|+ 1 = k, it again follows by construction that r(Nk) = k.

Lemma 5. For k ≥ 2, let Sk and S′k be the two unrooted binary phylogenetic trees
that are shown in Figure 2. Then dTBR(Sk, S

′
k) = k.

Proof. Let Nk be the unrooted binary phylogenetic network whose construction
is described in the proof of Lemma 4. Then it follows from the same lemma and
Theorem 1 that

(1) dTBR(Sk, S
′
k) = hu(Sk, S

′
k) ≤ r(Nk) = k.

We complete the proof by showing that dTBR(Sk, S
′
k) ≥ k. Let Xk be the leaf set of

Sk and S′k, and let C = {0, 1}. Furthermore, let f : Xk → C be the character on
Xk defined as follows. Consider the bipartition of Xk induced by removing the edge
{u, v} as labeled in Figure 2. Give one side of the partition state 0 and the other
state 1. Clearly, lf (Sk) = 1. Moreover, by applying Fitch’s algorithm [13], we see
that lf (S′k) = k + 1. Hence, by definition of the maximum parsimony distance, we
have

(2) k = |1− (k + 1)| ≤ dMP(Sk, S
′
k) ≤ dTBR(Sk, S

′
k).

Combining inequalities (1) and (2) establishes the lemma.

We now turn to a construction for two unrooted binary phylogenetic trees that
are subtree, chain, and cluster reduced. For k ≥ 4, consider the two trees Sk and S′k
on leaf set Xk that are shown in Figure 3. As with the trees depicted in Figure 2,
note that |Xk| = 15k − 9.

Lemma 6. For k ≥ 4, let Sk and S′k be the two unrooted binary phylogenetic trees
that are shown in Figure 3. Then Sk and S′k are subtree, chain, and cluster reduced.
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Fig. 2. The unrooted binary phylogenetic trees Sk and S0
k as well as the generator Gk (and G4) that are used

to show that the upper bound given in Lemma 3 is tight for a pair of subtree, chain, and cluster reduced trees.
Blocks A and B indicate two chains each of length 3. For example, for k = 6, block A contains taxa 64, 65, and
66, and block B contains taxa 67, 68, and 69. The edge {u0, v0} of Sk is used to argue that k = dTBR(Sk, S0

k)
in the proof of Lemma 8.

We now turn to a construction for two unrooted binary phylogenetic trees that are subtree,
chain, and cluster reduced. For k � 4, consider the two trees Sk and S0

k on leaf set Xk that
are shown in Figure 2. As with the trees depicted in Figure 1, note that |Xk| = 15k � 9.

11

Fig. 3. The unrooted binary phylogenetic trees Sk and S′k as well as the generator Gk (and G4)
that are used to show that the upper bound given in Lemma 3 is tight for a pair of subtree, chain,
and cluster reduced trees. Blocks A and B indicate two chains each of length 3. For example, for
k = 6, block A contains taxa 64, 65, and 66, and block B contains taxa 67, 68, and 69. The edge
{u′, v′} of Sk is used to argue that k = dTBR(Sk, S

′
k) in the proof of Lemma 8.

Proof. It is straightforward to check that Sk and S′k are subtree reduced. To see
that they are also chain reduced, notice that S′k has k maximal 6-chains. However,
none of these chains (or a subchain of size at least 4) is also a chain of Sk. We
complete the proof by showing that Sk and S′k are also cluster reduced. Let P be
the path from 15k − 18 to 15k − 17 in Sk. Furthermore, let e be an arbitrary edge
of Sk, and let Y1, Y2 be the bipartition of Xk such that one subtree obtained from
Sk by deleting e has leaf set Y1 while the other subtree has leaf set Y2. It suffices to
show that, if Y1 and Y2 both have size at least two, then Y1, Y2 is not a bipartition
of S′k, i.e., there exists no edge in S′k whose removal results in two subtrees with leaf
sets Y1 and Y2, respectively. First, suppose that e is an edge that does not lie on
P . Then for some i ∈ {1, 2}, we have |Yi| ≤ 3. Moreover, if |Yi| ∈ {2, 3}, then it
is easily verified that Y1, Y2 is not a bipartition of S′k. Second, suppose, that e lies
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on P . Then |{15k − 18, 15k − 17} ∩ Y1| = 1 and |{15k − 18, 15k − 17} ∩ Y2| = 1.
Now, let f be an edge of S′k whose removal results in two subtrees that both have
at least two leaves, the leaf set of one subtree contains 15k − 18 and the leaf set of
the other subtree contains 15k − 17. Clearly, the unique edge f in S′k that satisfies
all three properties is the second edge on the path from 15k − 18 to 15k − 17. Let
Z1, Z2 be the bipartition of Xk such that Z1 and Z2 are the leaf sets of the two trees
resulting from the deletion of f in S′k. Without loss of generality, we may assume
that {9, 15} ⊂ Z1 and {10, 16} ⊂ Z2. But Z1, Z2 is not a bipartition of Sk because we
can either separate 9 and 10, or 15 and 16 by removal of a single edge in Sk but not
both. It now follows that Sk and S′k are cluster reduced. This completes the proof of
the lemma.

Lemma 7. For k ≥ 4, let Sk and S′k be the two unrooted binary phylogenetic trees
that are shown in Figure 3, and let Gk be the generator that is shown in the same
figure. There exists an unrooted binary phylogenetic network Nk with r(Nk) = k that
displays Sk and S′k and whose underlying generator is Gk.

Proof. The proof is similar to that of Lemma 4. Starting with Gk, obtain an
unrooted binary phylogenetic network Nk in the following way.

1. Attach {1, 2, . . . , 6} to the topmost horizontal side of Gk.
2. Attach {7, 8, . . . , 12} to the topmost left-vertical side of Gk.
3. Attach {13, 14, . . . , 18} to the topmost right-vertical side of Gk.
4. For each i ∈ {2, . . . , k − 2} in increasing order, perform the following three

steps.
(a) Attach {15i− 11, 15i− 10, . . . , 15i− 6} to the topmost horizontal side of

Gk which is still undecorated.
(b) Attach {15i− 5, 15i− 4, . . . , 15i} to the topmost left-vertical side of Gk

which is still undecorated.
(c) Attach {15i+ 1, 15i+ 2, 15i+ 3} to the topmost right-vertical side of Gk

which is still undecorated.
5. Attach {15(k−2)+4, 15(k−2)+5, . . . , 15(k−2)+9} to the lowest horizontal

side of Gk.
6. Attach {15(k− 2) + 10, 15(k− 2) + 11, . . . , 15(k− 2) + 15} to the undecorated

curved side of Gk that connects the top-left vertex with the bottom-right
vertex.

7. Attach {15(k− 2) + 16, 15(k− 2) + 17, . . . , 15(k− 2) + 21} to the undecorated
curved side of Gk that connects the top-right vertex with the bottom-left
vertex.

With 15(k − 2) + 21 = 15k − 9, it follows that Nk has 15k − 9 leaves. Observe that
Nk has 2k chains of length 6. Regard each such chain as a sequence of two blocks
where each block contains three leaves of the chain, which is indicated by A and B
in Figure 3. In the following, we refer to the process of deleting the unique edge of
a 6-chain that has one vertex in block A and one in block B as breaking a chain.
Now, Sk can be obtained from Nk by breaking each of the k−1 6-chains whose leaves
decorate the k− 1 horizontal sides of Gk, breaking the 6-chain whose leaves decorate
the curved side of Gk that connects the top-left vertex with the bottom-right vertex,
and suppressing all resulting degree-2 vertices. Similarly, S′k can be obtained from Nk

by breaking each of the k − 2 6-chains whose leaves decorate the k − 2 left-vertical
sides of Gk, breaking the 6-chain whose leaves decorate the topmost right-vertical side
of Gk, breaking the 6-chain whose leaves decorate the curved side of Gk that connects
the top-right vertex with the bottom-left vertex, and suppressing all resulting degree-2
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vertices. Hence, Nk displays Sk and S′k. Moreover, by construction and Observation 1,
Gk underlies Nk. We complete the proof by noting that, as |Ek| − |Vk| + 1 = k, it
again follows by construction that r(Nk) = k, where Vk and Ek is the vertex and edge
set of Gk, respectively.

Lemma 8. For k ≥ 4, let Sk and S′k be the two unrooted binary phylogenetic trees
that are shown in Figure 3. Then dTBR(Sk, S

′
k) = k.

Proof. By considering the unrooted binary phylogenetic network Nk that is de-
scribed in the proof of Lemma 7 (instead of the one described in the proof of Lemma 4),
the proof of this lemma can be established in exactly the same way as the proof of
Lemma 5. Note that the edge {u′, v′} as depicted in Sk of Figure 3 plays the role of
the edge {u, v} that is used in the proof of Lemma 5.

We are now in a position to establish the main result of this section.

Theorem 5. Let S and S′ be two unrooted binary phylogenetic trees on X. If S
and S′ are subtree and chain reduced and dTBR(S, S′) ≥ 2, then |X| ≤ 15dTBR(S, S′)−
9 is a tight bound. Moreover, if S and S′ are subtree, chain, and cluster reduced and
dTBR(S, S′) ≥ 4, then |X| ≤ 15dTBR(S, S′)− 9 is again a tight bound.

Proof. Suppose that S and S′ are subtree and chain reduced. It immediately
follows from Lemma 3 that |X| ≤ 15dTBR(S, S′)− 9. To establish that the bound is
tight, it is sufficient to choose S and S′ such that they are subtree and chain reduced,
and |X| = 15dTBR(S, S′) − 9. For k ≥ 2, set S = Sk and S′ = S′k, where Sk and
S′k are the two trees shown in Figure 2. By construction, we have |X| = 15k − 9.
Moreover, by Lemma 5, we have k = dTBR(S, S′). The proof for when S and S′ are
subtree, chain, and cluster reduced can be established analogously by setting S and
S′ to be the two trees that are shown in Figure 3 for k ≥ 4 and considering Lemma 8
instead of Lemma 5.

The next corollary is an immediate consequence of the last theorem.

Corollary 1. The linear kernel as presented in Theorem 4 is tight.

5. Tight kernels for computing the rooted variant of the minimum
hybridization problem. In this section, we turn to rooted phylogenetic trees and
networks, and show that a previously published kernelization result that is concerned
with the rooted analogue of UHN is also tight. Before formally stating the problem,
we introduce some new definitions some of which are the rooted versions of their
counterparts introduced in section 2.

A rooted binary phylogenetic network N on X is a rooted acyclic digraph with no
edges in parallel and satisfying the following properties:

(i) the (unique) root ρ has out-degree two;
(ii) the set X labels the set of vertices of out-degree zero, each of which has in-degree

one (i.e., the leaves); and
(iii) all other vertices either have in-degree one and out-degree two or in-degree two

and out-degree one.
For two vertices u and v in N , we say that u is a parent of v and v is a child of u if (u, v)
is an edge in N . For a leaf `, we denote its unique parent by p`. Furthermore, a vertex
of in-degree two and out-degree one is called a reticulation, and we use r(N) to denote
the number of reticulations in N . Lastly, N is called a rooted binary phylogenetic
tree on X if r(N) = 0.

Let T be a rooted binary phylogenetic tree on X, and let Y ⊂ X. A subtree of T
is pendant in T if it can be obtained from T by deleting a single edge. Now, for n ≥ 2,
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let C = (`1, `2, . . . , `n) be a sequence of distinct leaves in X. We call C an n-chain of
T if p`1 = p`2 or p`1 is a child of p`2 and, for all i ∈ {2, 3, . . . , n − 1}, we have that
p`i is a child of p`i+1

. Furthermore, we say that Y ⊂ X is a nontrivial cluster of T if
|Y | ≥ 2 and there exists a vertex in T whose set of descendants is precisely Y .

Now, let N be a rooted binary phylogenetic network on X, and let T be a rooted
binary phylogenetic tree on X. We say that T is displayed by N if T can be obtained
from a subtree of N by suppressing vertices with in-degree one and out-degree one.
Furthermore, for two rooted binary phylogenetic trees T and T ′ on X, we set

h(T, T ′) = min
N
{r(N)},

where the minimum is taken over all rooted binary phylogenetic networks on X that
display T and T ′. Historically, this number is referred to as the hybridization number
for T and T ′ (see, e.g., [8, 28, 30, 31] and references therein).

We now formally state the rooted version of UHN.

Rooted-Hybridization-Number (RHN)
Input. Two rooted binary phylogenetic trees T and T ′ on X.
Output. A rooted binary phylogenetic network N on X that displays T and T ′ and
such that r(N) = h(T, T ′).

Solving RHN for a pair of rooted binary phylogenetic trees is NP-hard [8] and
FPT [7], when parameterized by the hybridization number. To establish a fixed-
parameter tractability result, the authors of the latter paper used rooted variants
of the subtree and chain reduction to kernelize the problem. Without detailing the
reductions for two rooted binary phylogenetic trees, we next give definitions of what
it means for two rooted binary phylogenetic trees to be reduced under any of the two
reductions. Specifically, for two rooted binary phylogenetic trees S and S′ on X, we
say that S and S′ are subtree reduced if they do not have a common pendant subtree
with at least two leaves and chain reduced if they do not have a common n-chain
with n ≥ 3. By building on the results of [7], the authors of [21] improved the kernel
size by using (rooted) generators. In the language of our paper, they established the
following lemma.

Lemma 9 (see [21, Theorem 3.2]). Let S and S′ be two rooted binary phy-
logenetic trees on X that are subtree and chain reduced and h(S, S′) ≥ 1. Then
|X| ≤ 9h(S, S′)− 2.

We next show, by describing a specific family of pairs of rooted binary phyloge-
netic trees, that the bound given in Lemma 9 is tight. For k ≥ 1, consider the two
rooted binary phylogenetic trees Sk and S′k on Xk that are shown in Figure 4. By
construction, we have |Xk| = 9k − 2; particularly, |X1| = 7 and |Xk| = 7 + 9(k − 1)
for each k ≥ 2. Moreover, it is easy to see that Sk and S′k do not have any common
pendant subtree with at least two leaves or any common n-chain with n ≥ 3. Thus,
Sk and S′k are subtree and chain reduced.

Lemma 10. For k ≥ 1, let Sk and S′k, be the two rooted binary phylogenetic trees
on Xk that are shown in Figure 4. Then h(Sk, S

′
k) = k.

Proof. Let Nk be the rooted binary phylogenetic network that is shown in Fig-
ure 4. Note that the leaf set of Nk is Xk. Moreover, observe that Sk can be obtained
from Nk by deleting the set {e1, e2, . . . , ek} of edges and, subsequently, suppressing all
resulting vertices with in-degree one and out-degree one. Similarly, S′k can be obtained
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Fig. 3. The rooted binary phylogenetic trees Sk and S0
k as well as the rooted binary phylogenetic network that

are used to show that the upper bound given in Lemma 9 is tight for a pair of subtree and chain reduced trees.
The edge (u0, v0) of Sk is used to argue that k = h(Sk, S0

k) in the proof of Lemma 10.

16

Fig. 4. The rooted binary phylogenetic trees Sk and S′k as well as the rooted binary phylogenetic
network that are used to show that the upper bound given in Lemma 9 is tight for a pair of subtree
and chain reduced trees. The edge (u′, v′) of Sk is used to argue that k = h(Sk, S

′
k) in the proof of

Lemma 10.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

37
.1

20
.1

45
.6

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TIGHT KERNEL FOR TBR DISTANCE 1571

from Nk by deleting the set {f1, f2, . . . , fk} of edges and, subsequently, suppressing
all resulting vertices with in-degree one and out-degree one. Hence, Nk displays Sk

and S′k. Since r(Nk) = k, we have

(3) h(Sk, S
′
k) ≤ r(Nk) = k.

We complete the proof by showing that k ≤ h(Sk, S
′
k). Let N∗k be a rooted binary

phylogenetic network on Xk such that r(N∗k ) = h(Sk, S
′
k). Furthermore, let S̄k and

S̄′k be the two unrooted binary phylogenetic trees on Xk that are obtained from Sk

and S′k, respectively, by suppressing the root ρ and ignoring the directions on the
edges. Then S̄k and S̄′k are displayed by the unrooted binary phylogenetic network
N̄∗k on Xk that is obtained from Nk by suppressing its root and ignoring the directions
on the edges. As r(N∗k ) = r(N̄∗k ), it follows that hu(S̄k, S̄

′
k) ≤ h(Sk, S

′
k). To show

that k ≤ hu(S̄k, S̄
′
k), we use the same approach as in the second half of the proof of

Lemma 5, where the edge (u′, v′) as depicted in Sk of Figure 4 plays the role of the
edge {u, v}. Hence, we have

k = |1− (k + 1)| ≤ dMP(S̄k, S̄
′
k) ≤ dTBR(S̄k, S̄

′
k) = hu(S̄k, S̄

′
k) ≤ h(Sk, S

′
k)

which, in combination with (3), establishes the lemma.

The main result of this section is the following theorem whose proof can be es-
tablished in the same way as was the proof of Theorem 5.

Theorem 6. Let S and S′ be two rooted binary phylogenetic trees on X and
h(S, S′) ≥ 1. If S and S′ are subtree and chain reduced, then |X| ≤ 9h(S, S′) − 2 is
a tight bound.

Similarly to UHN and Corollary 1, the last theorem implies that the upper bound
on the size of a kernel for RHN, as established in [21, Theorem 3.2], is also tight.

We now turn to the rooted version of the cluster reduction [2]. Informally, this
reduction breaks an instance, say T and T ′, of RHN into a number of smaller tree
pairs such that the sum of the hybridization number over all tree pairs equates to this
number for T and T ′. In what follows, we say that two rooted binary phylogenetic
trees are cluster reduced if they do not have any nontrivial cluster in common. Observe
that the two phylogenetic trees Sk and S′k as shown in Figure 4 have cluster Xk −
{9k−3, 9k−2} in common. By deleting 9k−3 and 9k−2 from the trees and network
of Figure 4 and their respective parents, we obtain two rooted binary phylogenetic
trees, say Rk and R′k, and a rooted binary phylogenetic network, say Mk. Clearly, Rk

and R′k are subtree, chain, and cluster reduced. Furthermore, Mk displays Rk and R′k
and r(Mk) = r(Nk) = k for any k ≥ 1. Reworking the proof of [21, Theorem 3.2], we
note that the edge side incident with ρ (this is a particular side of the generator used
in that proof, corresponding to the path from ρ to ρ′ as shown in Figure 3) cannot
be decorated with any leaf. This is because any two distinct trees displayed by the
network would then have a nontrivial common cluster. Hence, the counting argument
from [21, Theorem 3.2] goes through, with the exception that leaves 9k−3 and 9k−2
are no longer present in the network. This yields the following lemma.

Lemma 11. Let S and S′ be two rooted binary phylogenetic trees on X that are
subtree, chain, and cluster reduced and h(S, S′) ≥ 1. Then |X| ≤ 9h(S, S′)− 4.

Moreover, by repeating the argument to establish Theorem 6 but using Rk, R′k,
and Mk instead of Sk, S′k, and Nk as shown in Figure 4, it follows that the bound
given in Lemma 11 is tight.
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6. Discussion. Following the results in this article, the algorithmic state of
knowledge about computation of TBR distance can be summarized as follows. The
problem is NP-hard, but permits a polynomial-time 3-approximation [9], a branching
FPT algorithm with running time O(3k · poly(n)) (where k is the TBR distance and
n = |X|) [31], a kernel of size 15k−9, and an exponential-time algorithm with running
time O(2.619n ·poly(n)) [20]. An interesting consequence of the strengthened 15k− 9
bound is that results which indirectly use the size of the TBR kernel to compute
bounds, automatically improve. One concrete example of this is the result in [18]
which proves that after application of subtree and chain reduction rules, reduced
instances of dMP contain at most 4

3 · 28 · dTBR taxa. The 28 now improves to 15. Our
result implies a similar improvement on the kernel for computing the so-called subtree
prune and regraft (SPR) distance [32].

Returning to TBR distance, the natural question is whether through the intro-
duction of new polynomial-time reduction rules (in addition to subtree, chain, and
cluster reduction rules) the size of the kernel can be further reduced and, if so, what
the limit is of such an approach. This ties in with the FPT literature on (complexity-
theoretic) lower bounds on kernel size (see, e.g., [3]), which have not yet been explored
in the phylogenetics literature. Towards an easy lower bound we note that, if com-
putation of TBR distance is APX-hard, then there exists a constant c > 1 such that
a polynomial-time c-approximation for TBR distance is not possible (assuming P 6=
NP). Such a result would exclude the existence of a kernel of size c·k for TBR distance
(assuming P 6= NP). This is because the TBR distance of two trees on n taxa is at
most O(n) [1]; so simply returning a trivial solution for the kernelized instance would
yield a c-approximation.1 However, although it is likely that computing the TBR
distance is APX-hard, to the best of our knowledge the result has never been proven.
This is an interesting hole to close in the literature.

Beyond TBR distance we can ask whether existing bounds on kernels for other
phylogenetic distances and incongruency measures are tight and, if not, whether they
can be improved. Many such kernelizations use subtree reductions and variations of
chain reductions. The reductions typically have a common core but details differ from
case to case depending on the specific combinatorial nature of the problem at hand:
there are many subtle differences between TBR distance, SPR distance [4, 6, 32],
hybridization number [7, 29, 30], and agreement forests [24, 31], for example. Other
relevant factors include whether the input trees are unrooted or rooted, whether the
input trees are binary or nonbinary, and the number of trees allowed in the input (see
earlier references and [28]). In obtaining the tight 15k − 9 bound we were greatly
helped by our ability to reformulate the problem as a phylogenetic network construc-
tion problem, which in turn allowed us to make use of generators. Interestingly, the
generators not only helped us improve the upper bound, they also gave strong hints
concerning the topology of tight instances. Once discovered, we could use the max-
imum parsimony distance to argue lower bounds on dTBR distance. In how far do
these three ingredients exist simultaneously for other problems and, where they do
not exist, in which direction do we have to advance our knowledge to obtain tight
bounds on kernel sizes?

Acknowledgment. Both authors would like to thank the Lorentz Center in the
Netherlands for hosting the workshop Distinguishability in Genealogical Phylogenetic
Networks, where this work was initiated.

1Note that the kernel for RHN is weighted [21] and, so, returning a trivial solution for a kernelized
instance of RHN does not yield a c-approximation for this problem.
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[27] L. van Iersel, S. Kelk, N. Lekić, C. Whidden, and N. Zeh, Hybridization number on three
rooted binary trees is EPT, SIAM J. Discrete Math., 30 (2016), pp. 1607–1631.

[28] L. van Iersel, S. Kelk, and C. Scornavacca, Kernelizations for the hybridization number
problem on multiple nonbinary trees, J. Comput. System Sci., 82 (2016), pp. 1075–1089.

[29] L. van Iersel, S. Kelk, G. Stamoulis, L. Stougie, and O. Boes, On unrooted and root-
uncertain variants of several well-known phylogenetic network problems, Algorithmica, 80
(2018), pp. 2993–3022.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

37
.1

20
.1

45
.6

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1574 STEVEN KELK AND SIMONE LINZ

[30] L. van Iersel and S. Linz, A quadratic kernel for computing the hybridization number of
multiple trees, Inform. Process. Lett., 113 (2013), pp. 318–323.

[31] C. Whidden, R. G. Beiko, and N. Zeh, Fixed-parameter algorithms for maximum agreement
forests, SIAM J. Comput., 42 (2013), pp. 1431–1466.

[32] C. Whidden and F. Matsen, Calculating the unrooted subtree prune-and-regraft distance,
IEEE/ACM Trans. Comput. Biol. Bioinform., 16 (2019), pp. 898–911.

D
ow

nl
oa

de
d 

03
/0

3/
23

 to
 1

37
.1

20
.1

45
.6

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y


	Introduction
	Preliminaries
	Tight kernels for computing the TBR distance
	Tight examples
	Tight kernels for computing the rooted variant of the minimum hybridization problem
	Discussion
	References

