% Maastricht University

Routing trains through a railway station based on a
node packing model

Citation for published version (APA):

van Hoesel, C. P. M., Zwaneveld, P. J., & Kroon, L. G. (2001). Routing trains through a railway station
based on a node packing model. European Journal of Operational Research, 128, 14-33.
https://doi.org/10.1016/S0377-2217(00)00087-4

Document status and date:
Published: 01/01/2001

DOI:
10.1016/S0377-2217(00)00087-4

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

« A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 06 Oct. 2024


https://doi.org/10.1016/S0377-2217(00)00087-4
https://doi.org/10.1016/S0377-2217(00)00087-4
https://cris.maastrichtuniversity.nl/en/publications/9c94814e-0027-4bd5-8271-f3ee81b96dec

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

ELSEVIE European Journal of Operational Research 128 (2001) 14-33

www.elsevier.com/locate/dsw

Theory and Methodology

Routing trains through a railway station based on a node packing
model ™

Peter J. Zwaneveld 2, Leo G. Kroon >“*, Stan P.M. van Hoesel ¢

& TNO Inro, P.O. Box 6041, NL-2600 JA Delft, Netherlands
® Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, Netherlands
¢ Netherlands Railways, Department of Logistics, P.O. Box 2025, 3500 HA Utrecht, Netherlands
9 Department of Quantitative Economics, Faculty of Economics, University of Limburg, P.O. Box 616, NL-6200 MD Maastricht,
Netherlands

Received 20 July 1998; accepted 25 February 1999

Abstract

In this paper, we describe the problem of routing trains through a railway station. This routing problem is a sub-
problem of the automatic generation of timetables for the Dutch railway system. The problem of routing trains through
a railway station is the problem of assigning each of the involved trains to a route through the railway station, given the
detailed layout of the railway network within the station and given the arrival and departure times of the trains. When
solving this routing problem, several aspects such as capacity, safety, and customer service have to be taken into ac-
count. In this paper, we describe this routing problem in terms of a weighted node packing problem. Furthermore, we
describe an algorithm for solving this routing problem to optimality. The algorithm is based on preprocessing, valid
inequalities, and a branch-and-cut approach. The preprocessing techniques aim at identifying superfluous nodes which
can be removed from the problem instance. The characteristics of the preprocessing techniques with respect to prop-
agation are investigated. We also present the results of a computational study in which the model, the preprocessing
techniques and the algorithm are tested based on data related to the railway stations Arnhem, Hoorn and Utrecht CS in
the Netherlands. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Railway transportation; Timetabling; Routing trains; Node packing problem

1. Introduction

- In this paper we consider the problem of rout-
" This research is sponsored by Nederlandse Spoorwegen ing trains through a railway station. This routing
(Netherlands Railways) and Railned. problem is a subproblem of the generation of a
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the latter problem is an important one, which is
very hard to solve. Fig. 1 gives a rough represen-
tation of the Dutch railway network.

In order to generate a timetable for a railway
company, usually a hierarchical approach is fol-
lowed. In a first step, a tentative timetable is gen-
erated, based on the rough layout of the railway
network between the railway stations together with
the desired lines, their frequencies and their con-
nection requirements. Then, in a second step, it is
checked whether the tentative timetable is feasible
within the railway stations with respect to capacity,
safety, and customer service. In order to carry out
this feasibility check, detailed routes and schedules
for the trains through the railway stations are
generated.

Since the generation of a timetable is a task
consuming quite a lot of time when carried out
manually, the project Design Of Network Sched-
ules (DONS) was initiated by Netherlands Rail-
ways ! and by Railned. ? The aim of this project is
to develop a decision support system (DSS), also
called DONS, that will assist the planners of
Netherlands Railways and Railned in generating
timetables. DONS contains two complementary
optimization modules which are linked together by
a database module and a graphical user-interface.
The two optimization modules correspond to the
two steps of the timetable generation process
mentioned above.

The first optimization module, called CA-
DANS, assists the planners in generating a tenta-
tive timetable based on the constraints deduced
from the rough layout of the railway network be-
tween the stations, the line system, and the con-
nection requirements at the railway stations. The
timetable determined by CADANS is cyclic with a
cycle length of one hour. CADANS was developed
by Schrijver and Steenbeek [11], see also [12].

The second optimization module, called STA-
TIONS, assists the planners in solving the problem

! Netherlands Railways is the main operator of trains on the
Dutch railway network. Netherlands Railways contains,
amongst others, a passengers division and a cargo division.

2 Railned has the task, amongst others, to advise the Dutch
Ministry of Traffic with respect to the capacity of the Dutch
railway infrastructure that will be necessary in the future.

of routing trains through a railway station. STA-
TIONS considers the stations one-by-one. The
output of STATIONS is a detailed assignment of
trains to routes and platforms within the observed
station. Such an assignment serves as a local fea-
sibility check for the tentative timetable generated
by CADANS. If not all trains can be routed
through the station, then STATIONS also points
at the blocking trains. STATIONS was developed
by Zwaneveld et al. [7,15].

In this paper we discuss the model and the al-
gorithm that is used within STATIONS for solving
this routing problem to optimality. This paper is
complementary to Kroon et al. [6] in which the
computational complexity of several variants of
this routing problem are discussed. Furthermore,
this paper is a follow-up of Zwaneveld et al. [14].
In the current paper, we improve the model and
the algorithm of [14] in several ways. In particular,
we improve the model by including also shunting
decisions and preferences of trains for platforms
and routes, and we improve the algorithm by ex-
tending the preprocessing techniques. The algo-
rithm described in [14] was not sufficient for
solving the routing problem within the largest
Dutch railway stations such as Amsterdam Cen-
tral Station (CS) and Utrecht CS. The algorithm
presented in the current paper can handle the
routing problem for all railway stations in the
Netherlands efficiently. The algorithm is imple-
mented in the previously mentioned DSS STA-
TIONS. This DSS is used on a daily basis by
planners of Netherlands Railways and Railned to
generate potential future timetables for the Dutch
railway network.

2. Description of operational processes

In this section, we give a description of the
operational processes within a railway station.
This description is necessary for a complete un-
derstanding of the next sections. The characteris-
tics of the operational processes that we describe
here pertain to the railway system in the Nether-
lands, which is very similar to most European
railway systems.
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Fig. 1. The Dutch railway network.

A railway station can be entered by a train at a
number of entering points, and it can be left
through a number of leaving points. We only
consider the detailed layout of a railway station
between these entering and leaving points. In
general, each entering point can also serve as a
leaving point, and vice versa. Furthermore, each of
these points corresponds to a direction of travel.
For example, the directions of travel of the Dutch
railway station Utrecht CS are Amersfoort, Am-
sterdam, Rotterdam/The Hague, Arnhem and
Eindhoven, see Fig. 2.

The railway infrastructure of a railway station
consists of a large number of track sections and a
number of platform tracks. An inbound route is a
sequence of sections linking an entering point to
a platform track. Similarly, an outbound route is a
sequence of sections linking a platform track to
a leaving point. A platform track may be adjacent
to a platform, but may also be a parking track or a
track by-passing all platforms. Thus, given this
definition of a platform track, each train visits at
least one platform track. The platform tracks are
part of the corresponding inbound and outbound
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Fig. 2. Layout of the railway station Utrecht CS.

routes. A complete route is a combination of an
inbound route and an outbound route using the
same platform track. There are often many dif-
ferent routes between an entering point or leaving
point and a platform track, as can be observed in
Fig. 2.

The arrival time of a train is the time at
which the train stops at a platform, after having
travelled along an inbound route. Similarly,
the departure time is the time at which the train
leaves the platform along an outbound route. In
practice, one can distinguish between the sched-
uled arrival and departure time, and the actual
arrival and departure time. However, in the
planning context of generating a timetable, only
scheduled arrival and departure times are
considered.

Clearly, the routing of a train through a rail-
way station depends on the routing of other
trains. Most importantly, the safety rules of the
Dutch railway system dictate the following pro-
cedure, called the route locking and sectional re-
lease system [2,3]. As soon as a train arrives at a
certain point in the neighbourhood of a station, it
claims an inbound route to a platform. Since any
track section can be claimed by only one train at
the same time, a route is not feasible for a par-
ticular train if any section of the route has been
claimed already by another train. When a train

traverses its claimed route, it sequentially releases
each of the track sections comprising the route. A
similar procedure is followed for an outbound
route, or for a complete route if a train does not
stop at a platform.

If a railway station is one of the terminal
stations of a train, and the length of the train’s
standstill interval at the arrival platform exceeds
a certain (train-dependent) lower bound, then the
train may be shunted towards a parking area
in order to release the arrival platform. Later
on, the train is shunted back towards its de-
parture platform, which may be different from
its arrival platform. Sometimes, a train’s depar-
ture direction may be different from its arrival
direction.

Finally, a number of service considerations
have to be taken into account. First, convenience
considerations towards the passengers may dictate
that certain groups of trains all leave from the
same platform. For instance, such a group may
consist of all trains leaving into the same direction.
Secondly, one may wish to incorporate certain
transfer possibilities between trains into the
schedule. That is, pairs of trains have to use plat-
forms that are close to each other (preferably
cross-platform). Moreover, there must be a certain
minimum overlap in the time intervals spent at the
corresponding platforms.
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3. Problem definition

In this section we present a description of the
routing problem that is solved by the DSS STA-
TIONS. The involved timetables are cyclic in na-
ture, and represent a potential operating plan for
one hour. As was described in the introduction,
these timetables have been generated by CA-
DANS. STATIONS always considers one railway
station at the same time. The problem that is
solved for this railway station can be stated as
follows:

Given the detailed layout of the involved
railway station, and given the scheduled ar-
rival and departure times of a set of trains,
STATIONS aims at routing as many trains
as possible through the station, taking into
account the capacity of the station, the safety
system, and several service requirements. The
routing of the trains should minimize the
number of shunting operations, and it should
maximize the total preference for the plat-
forms and routes.

In this problem description a hierarchy of ob-
jectives is included. The first objective is to find a
feasible route for as many trains as possible. Since
we need to comply with the overall timetable, ba-
sically all trains have to be routed. However, the
problem has been formulated as a maximization
problem, because STATIONS should point at the
blocking trains if a solution for all trains can not
be obtained.

Furthermore, if all trains can be routed through
the railway station, then the second objective is to
minimize the number of shunting movements. A
shunting movement is expensive, since personnel
(a train driver and assisting personnel) must be
allocated. Furthermore, a shunting movement also
uses capacity of the railway station, because the
routes towards and from the parking area need to
be claimed by the safety system. This may lead to
delays for the regular train movements.

The last objective is to maximize the preferences
of the trains for certain platforms or routes. The
preference of a train for a certain route mainly
depends on the total number of switches in the

route, and on the total number of switches in the
non-preferred direction. Also the walking distances
for passengers may play a role here.

4. Model formulation

In this section, we describe the integer linear
programming model that is used to solve the
problem of routing trains through a railway sta-
tion. We start with the characteristics of this
problem and with some basic assumptions that are
made to model these. We also show that the
problem can be described in terms of a weighted
node packing problem (WNPP).

4.1. Assumptions

A first assumption that is used in the model is
that for all trains arriving at the railway station
both the departure time and the destination are
known. Of course, if the station is one of the in-
termediate stations of a train, then these data are
provided by CADANS. However, the latter is not
true if the station is one of the terminal stations of
a train. In this case the train may be assigned to
one of the return trips of the same line, or the train
may be assigned to a trip of a different line into a
different direction. In our model, it is assumed that
this joining of the outbound trips to the inbound
trips has been made a priori. We are forced to
make this assumption because, in practice, this
joining is determined in a later stage than the
routing of the trains through the railway station.
However, it should be noted that the model can be
modified in such a way that it also covers these
joining decisions.

If the railway station is a terminal station of a
train and the length of the train’s standstill at the
arrival platform is too long, then it may be decided
to shunt the train temporarily towards a parking
area. In our model, for each train that may be
shunted, only the decision whether or not to shunt it
is considered. The detailed shunting movements
themselves are not taken into account explicitly.
That is, if it has been decided that a train is to be
shunted towards a parking area, then the train is
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assumed to have a standstill of a certain length at
its arrival platform, to have a standstill of a certain
length at its departure platform, and to be at a
certain parking area between these standstills. On
the other hand, if a train is not to be shunted, then
it has a standstill at its arrival platform from its
arrival time until its departure time. In this case,
the train’s departure platform is necessarily the
same as its arrival platform.

4.2. Notation

The layout of the railway station consists of a set
S of track sections. The set of sections included in a
platform track is denoted by P C S. The set R of
routes through the railway station can be deter-
mined from the set of sections. We distinguish the
set R' C R of inbound routes leading from an en-
tering point towards a platform, and the set R° C R
of outbound routes departing from a platform to-
wards a leaving point. Furthermore, we distinguish
the set R? C R of platform routes. These platform
routes represent the sections of the platform tracks.

The set of trains to be routed through the
railway station is denoted by 7. The set of trains
that may be shunted is denoted by 75 C T. For
each train 1€ 7, CADANS has determined a
scheduled arrival time g, and a scheduled depar-
ture time d;, usually in minutes. We consider these
arrival and departure times as given and fixed.

Each train has a known entering point and a
known leaving point. The inbound, outbound and
platform routes that may be chosen by train ¢ are
denoted by Ri, R°, and R respectively. The com-
plete set of all routes allowed for train ¢ is denoted
by R, = RIUR° URY. The routes that are allowed
for train ¢ are selected based on attributes such as
the involved arrival and departure direction and
the length of the platform.

The safety rules described in the previous sec-
tion are represented by defining a set F;, for each
pair of trains ¢,¢ € T. These sets contain allowed
combinations of routes (r,7). In other words,
(r,7') € F;» means that, if train ¢ is routed along
route r and train ¢ is routed along route #, then
there is no common section of the routes r and #/
that is claimed by both trains at the same time.

Thus, in order to check whether (r,7) € F,,, it is
necessary to calculate the exact claim and release
times of the track sections of routes r and » by
trains ¢ and #. These calculations are based on the
well-known formulas from the theory of dynamics.
For the details of the train dynamics we refer to
Zwaneveld [13].

It is clear that this model can accommodate a
large variety of safety rules (including the current
Dutch ones). Actually, many other constraints can
be modeled in the same way. First of all, we have
to guarantee that for each train ¢ the selected in-
bound, outbound, and platform route fit together.
These constraints can also be handled by the sets
F;;. Indeed, only compatible pairs of routes are
included in a set £;,.

Next, convenience considerations towards the
passengers may request that all trains in a certain
group leave from the same platform, or that cer-
tain transfer possibilities between trains are creat-
ed. Obviously, these constraints and requests can
also be modeled by adjusting the sets F;, appro-
priately.

Finally, the preferences of a train for certain
platforms or routes are recorded as the preferences
of the train for certain routes, since each route
includes a platform route. The preference of train ¢
for route r is denoted by p,,.

4.3. Integer linear program

In this section the routing problem is formu-
lated as an integer linear program. The model of
the routing problem that we present in this section
is an extension of the model described by Zwane-
veld et al. [14]. In the latter model the decisions
whether or not to shunt trains have not been in-
cluded.

In order to model the routing problem as an
integer linear program, a binary decision variable
is introduced for each allowed combination of a
train and a route. Thus the decision variables are
the following:

1 if train ¢t € T is routed
along route » € R,,
0 otherwise.

AthAr =
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Recall that R, = RIUR° UR}. Thus, a train that
may not be shunted should be assigned to an in-
bound route, a platform route, and an outbound
route. A train that may be shunted should be as-
signed at least to an inbound route and an out-
bound route. If such a train is actually shunted,
then it is assigned to an inbound route and an
outbound route only. Otherwise, it is assigned to
an inbound route, a platform route, and an out-
bound route. The following constraints have to be
respected by the decision variables:

ZX” <1 forallteT, (1)
reRi
ZX,, <1 forallteT, (2)
reRrY
ZX” <1 forallzeT, (3)
reR;’
X, +Xop <1 foralle,/ €T; reRy;

¥ € Ry; (r,/)%F}y, (4)
X, €{0,1} forallteT;reR,. (5)

Constraints (1)-(3) ensure that each train 7 is as-
signed to at most one inbound, one outbound, and
one platform route, respectively. Constraints (4)
guarantee that only routes are selected that are
allowed with respect to the safety rules, the con-
nection requirements, and the connections of in-
bound, outbound, and platform routes. Finally,
constraints (5) declare the decision variables X, as
binary.

The objective function of the model has the
following form:

max» > p, X (6)

teT reRr,

As was mentioned already in the problem de-
scription, the first objective is to maximize the
number of trains that can be routed through the
railway station. The second objective is to mini-
mize the number of shunting movements, and the
third objective is to maximize the preferences for
the routes and platforms. Thus, we consider the
selection of a required route for a certain train as
more valuable than not shunting any number of
other trains. For a train that may not be shunted,

an inbound route, an outbound route and a plat-
form route are required. For a train that may be
shunted, only an inbound route and an outbound
route are required. Second, we prefer to select a
required route for a certain train over selecting a
more preferred route for all other trains. And, fi-
nally, we prefer to avoid shunting a certain train
over selecting a more preferred route for all other
trains. This hierarchical character of the objectives
can be reflected in the objective function by
choosing the coefficients p,, appropriately, see
Zwaneveld [13].

4.4. Weighted node packing problem

In this section, we show that the problem of
routing trains through a railway station can be
formulated as a WNPP. Formally, the WNPP
reads as follows:

Let G=(V,E) be an undirected graph,
where V' is the set of nodes and F is the set
of edges. Each node v € V' has a weight p,.
Then a node packing is a set S C V such that
no edge in E joins two nodes in S. The total
weight of a node packing S is given by
> ves Po- Now the WNPP is the problem to
find a node packing of maximum total
weight.

The WNPP is thus characterized by an undi-
rected graph and corresponding weights for the
nodes. For the problem of routing trains through a
railway station, we define a node for each variable
X,,. The weight of the node X,, is identical to the
objective function value p,,. Then the following
edges are added to the graph:

(1) Every node X, is connected with all nodes

associated with the same train ¢ and route type,

i.e., inbound, outbound or platform.

(i) Every pair of nodes X,, and X,, with

(r,7) € F,, is connected with each other.

Here (i) ensures that each train is assigned to at
most one route of each type, and (ii) excludes
conflicting combinations of trains and routes.

Obviously, a node packing represents a feasible
routing of a number of trains through the railway
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station. Similarly, a node packing of maximum
weight represents a feasible routing of trains with
maximum value.

5. Relevant sections and routes

In this section, we show that only a subset of
the sections has to be considered in order to check
whether a proposed assignment of trains to routes
is feasible from a safety point of view. Further-
more, we also describe that it is not necessary to
consider the so-called detour routes in a problem
instance.

5.1. Relevant sections

A section is called relevant if it contains (i) a
switch or (ii) an intersection of tracks, or if it
corresponds to (iii) an entering point, (iv) a leaving
point, or (v) a platform.

The set of relevant sections is denoted by S*.
Usually S* contains significantly less elements than
the set S containing all sections. Note that, by
definition of S$*, each section s € S\ §* is located
between two sections s’,s” € §*, since at least the
first and the last section of each route is a relevant
section.

The set of sections within route r is denoted by
S,. The time instants at which a section s is claimed
and released by train ¢ over route r is denoted by
S(t,r,s) and F(¢,r,s) respectively. We apply the
following conventions for determining the claim
and release times: 0<S(z,r,s) <60, S(t,r,s)
< F(t,r,s) and the length of the reservation inter-
val should be equal to F(¢,r,s) — S(¢,7,s). These
conventions are necessary since we consider a cy-
clical timetable with a cycle length of one hour.
Note that it may happen that F(¢,r,s) = 60. Note
further that the length of each unsplittable time
interval has to be less than 60 minutes, due to the
cycle length of 60 minutes.

As was mentioned before, the safety rules are
represented using a set F;, for each pair of trains
t,¢ € T. Such a set contains the pairs of allowable
routes (r,#') for trains ¢ and . That is, (r,7) € F,,
implies that route r for train ¢ is compatible with
route # for train #. By definition, route r for train ¢ is

compatible from a safety point of view with route »/
for train 7 if the following conditions are satisfied:

Vse S, NSy :
[S(t,r,s),F(t,r,s)) NS, 7¥,s),F({,r,s)) =0,
(7)
[S(t,r,s),F(t,r,s))
NS, r,s) —60,F(¢,r,s) —60) =0, (8)
[S(¢,7,s) — 60,F(¢t,r,s) — 60)
NS, r,s),F({,r,s)) =0. 9)

Lemma 5.1 shows that only relevant sections have
to be taken into account for determining the fea-
sibility of a solution from a safety point of view.

Lemma 5.1. Route r € R, for train t is compatible
from a safety point of view with route ¥ € R, for
train ¢ if and only if Vs € S, NS, NS* Egs. (7)—9)
are satisfied.

Proof. Since the ‘only if’ part of the statement
is obvious, we only prove the ‘if’ part. To that
end, suppose conditions (7)—(9) are satisfied for
all seS.NS.NS* and choose a section s, €
(S, NS.) \S.

Without loss of generality S(¢,r,s;) >
S(t,r,s2). Thus, condition (9) is valid as soon
as condition (7) is valid. Let s; be the previous
relevant section of route r before section s,, and let
s3 be the next relevant section of this route. Note
that route # also contains the sections s; and s3.
Train ¢ may traverse the sections {si,s,,s3} in the
order (sy,ss,53), or in the order (s3,s,s1). These
possibilities are considered separately:

Order (sy,s2,s3): Conditions (7) and (9) are
valid because F(t,r,s,) <S(¢,7,s,). This follows
from F(t,r,s2) <F(t,r,s83), S(,7,82) = S(¢', 7, 83),
and, by assumption, F(¢t,r,s3)<S(,7,s3).
Condition (8) is valid because F(¢,7,s;) —60<
S(t,r,s2). This follows from F(¢,7,s;)<
F(t,r,s;3), S(t,r,sy) = S(t,r,s3), and, by as-
sumption, F (¢, 7, s;) — 60 < S(¢, r,s3). The claim
and release times are shown in Fig. 3.

Order (s3,s2,51): Conditions (7) and (9) are
valid because F(t,7,5,) <S(¢,7,s,). This follows
from F(¢,r,50) <F(t,r,83), S(t',r,s2) =S(¢,7,s3),
and, by assumption, F(¢,r,s3) <S(,7,s3).



22 P.J. Zwaneveld et al. | European Journal of Operational Research 128 (2001) 14-33

S(t, T, 81) F(t, T -’1) )
S(t,r,s2) F(t,r, 32))

S(t,r, 33) F(t; T, 33))

B

—

S(t',T’,S]) F(t',r',:51)>
S(t', 7', 52) F(t':f',sz)D
S(t',r',sa) i;‘(t"f’,33))

60

Fig. 3. Claim and release times for routes in identical directions.
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Fig. 4. Claim and release times for routes in opposite directions.

Condition (8) is valid because F(¢, #, s;) — 60 <
S(t,r,s7). This follows from  F(¢,r,s;)
<F(,r,s1), S(tr,s;)=S(t,r,s1), and, by as-
sumption, F(¢,7,s;) —60<S(t,r,s1). The claim
and release times are illustrated in Fig. 4. It
follows that Eqgs. (7)-(9) are satisfied for all
ses.NS.. O

5.2. Detour routes

A route r is called a detour route if it is a detour
in comparison with one of the other routes. The

latter route is called the corresponding straight
route. The detour routes are easily identified based
on the relevant sections that were defined in the
previous section. By definition, route r is a detour
route if the following condition holds:

31 (S, NS C(S,NS)ANVEET: p,, < poy)-

In other words, route r is a detour route in com-
parison with route /' if route ' contains only a
subset of the relevant sections of route r, and if all
trains prefer route 7 over route r. An example of a
detour route and a corresponding straight route is
given in Fig. 5.
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Platform

Fig. 5. An example of a detour route r and a corresponding
straight route 7.

In practice, trains should not be assigned to a
detour route, since the reservation of a detour
route puts a greater claim on the capacity of the
relevant sections than the reservation of a corre-
sponding straight route. Therefore, the decision
variables involving a detour route are superfluous
and can be deleted from the model. As will be
explained in Section 6.1.1, a detour route is also
node-dominated by a straight route. Therefore the
detour route condition is a special case of the
node-dominance condition.

6. An LP-based algorithm for the WNPP

In this section, we present a solution method
for the problem of routing trains through a rail-
way station. This method is based on the formu-
lation of the problem in terms of the WNPP as
described earlier.

Thus, we have a graph G = (V,E) in which
each node represents a combination of a train and
a route. An edge between two nodes indicates that
the two corresponding combinations of routes and
trains conflict with each other. Furthermore, we
have a positive weight function on the nodes:
p:V — R*. In this graph G we have to find a
maximum weight node packing or independent set.

In the sequel we also use the following notation.
For any subset I of the nodes, p(I) =), p;
Furthermore, for a set S and an element i, let
S+i=SU{i} and S—i=S\{i}. Finally, G—i
is the graph G from which node i has been re-
moved, together with the edges incident to node i.
The neighbours of node i are denoted by
N(@i)={j e V:{ij} € E}. Moreover, N,(i) is the
set of nodes at distance at most d, where distance is
measured as the number of edges on the shortest
path. Thus, Ny(i) = {i}, N, (i) is the set of neigh-

bours of i, i included, etc. These definitions are
extended to sets. For example, N(S) is the set of
nodes connected to some node of S.

We solve the WNPP with a branch-and-cut
method using the LP-relaxation of the problem,
strengthened with valid inequalities, as an upper
bound in each of the subproblems that are created
in the branching process. Before this process
starts, we try to remove as many variables from
the model formulation as possible, using several
preprocessing techniques. Although all developed
techniques may be used in all subproblems of the
branch-and-cut tree, only one of the techniques is
applied to all subproblems.

In the sequel, the components of the algorithm
are described. We start with the ideas developed
for preprocessing, then we describe the branch-
and-cut procedure. Illustrative, real-life computa-
tional results are added to each of the described
components.

6.1. Preprocessing

Instance reduction by preprocessing receives
more and more attention as an indispensable part
of optimization methods. It is usually cheap in
computation time and it may be very effective on
specific practical problems. For example, instance
reduction for the unweighted version of the node
packing problem has been applied by Hoffman
and Padberg [5] in their crew-scheduling applica-
tion. More complicated ideas have been used by
Mannino and Sassano [8] and by Hertz [4], who
shows that certain substructures of a graph can be
replaced by smaller structures without changing
the maximum size of a node packing. The condi-
tions on such substructures, however, secem to be
rather restrictive, and therefore we decided to de-
velop some simple preprocessing methods that are
applicable to our instances of the WNPP.

All methods presented here aim at removing
nodes from the graph, i.e., fixing variables at the
value zero, based on combinatorial arguments.
The basic idea is to show that a certain node i is
dominated, i.e., for each solution of the WNPP
containing node i we can find an alternative solu-
tion that is at least as good and that does not
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contain node i. Although this dominance is hard to
check in general, we consider some special cases,
which drastically reduce the number of variables in
our instances. And, equally important, the linear
programming relaxation can be solved much
faster.

6.1.1. Node-dominance

The node-dominance technique determines
whether a node i can be replaced by a single other
node j in all node packings containing node i. If
this is possible, then the variable corresponding to
node i can be removed from the problem instance.
The definition of node-dominance is as follows:

Definition 6.1. Node i € V' is node-dominated in
the graph G = (V,E) by node j € V if for each
node packing S containing node i, node i can be
replaced by node j without weight reduction. That
is, the node packing §' =S + j — i is feasible and
p($) < p(S).

Clearly, if node j node-dominates node i, then
we can remove node i from G without reducing the
optimal value of the underlying WNPP. This
simple idea of node-dominance turns out to have a
dramatic effect on the size of the instances of the
problem of routing trains through a railway sta-
tion. Due to the special structure of these in-
stances, simple node-dominance reduces the
number of variables with more than 70%. More-
over, it is easily checked, since there are trans-
parent necessary and sufficient conditions
specifying which node is node-dominated by an-
other. This is described in the following theorem.

Theorem 6.2. Let i and j be two nodes in
G = (V,E). Node i is node-dominated by node j, if
and only if

L. p; < p; (weight condition).

2. Ni(j) € Ny (i) (neighbour condition).

Proof. The necessity of both conditions is easily
established. If p;, > p;, then any node packing
containing node i deteriorates by replacing node i
by node j. Furthermore, if k£ € N;(j) \ N, (i) then
{i,k} & E. Therefore, the solution consisting of the

node packing S = {i, k} does not have the property
that node i can be replaced by node j, since the
distance of node j and node & is at most 1: if k = j,
then there is only one node left in the new node
packing and thus it has smaller weight; otherwise
{j,k} € E, and thus S’ = {j,k} is not a feasible
node packing.

Both conditions are also sufficient. Suppose
that nodes i and j satisfy them. Consider any node
packing S containing node i. Then S’ =8 —i+jis
a feasible node packing: indeed, suppose that for
keS—i we have {j,k} €E. Then ke N(j)
C N, (i), and therefore {i,k} € E. This is a con-
tradiction with the feasibility of S. Finally, p(S') =
p(S) — p; + p; = p(S). So, we can replace node i by
node j. O

Note that the neighbour condition implies that
{i,j} € E, since j € Ny(j) C N,(i).

By the removal of a node-dominated node,
other nodes, that were not node-dominated earlier,
may become node-dominated. This effect is called
propagation. Propagation of node-dominance is
illustrated in the example shown in Fig. 6.

In this example all nodes have the same weight.
Thus, the node-dominance relation is equivalent to
the neighbour condition. Node 1 node-dominates
node 2, and there is no other pair involved in a
node-dominance relation. However, after the re-
moval of node 2 from the graph, node 5 node-
dominates node 8, and thus node 8 can be removed
as well.

Next, we will prove that the final result of the
node-dominance technique is not dependent on the
order in which node-dominated nodes are removed
from the graph. We will prove this using the fol-
lowing two lemmas. Lemma 6.3 proves the tran-
sitivity of node-dominance, and Lemma 6.4 shows
that a node-dominated node looses this property
during the process of deleting nodes only under
special circumstances.

Lemma 6.3. Consider three different nodes i, j, and
k. If node i node-dominates node j and node j node-
dominates node k, then node i node-dominates node k.

Proof. According to the assumptions, p; = p; = py,
and N, (i) C N(j) C Ny (k). O
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Fig. 6. Propagation of node-dominance.

The following lemma plays a key role in the
proof of the order independence.

Lemma 6.4. Consider two nodes i and j, which are
both node-dominated in a graph G. Then node i is
node-dominated in G — j, or nodes i and j are iden-
tical in G, i.e., p; = p; and N (i) = Ni(j).

Proof. If 3k # j such that node k node-dominates
node i in G, then clearly node i is node-dominated
in G — j by node k. Otherwise, node i is only node-
dominated by node j. Moreover, node j is only
node-dominated by node i, since otherwise, by
transitivity, node i would have been node-domi-
nated by a node other than node j. However, this
implies that p; = p; and N, (i) = Ni(j). O

Two graphs G, = (V1,E)) and G, = (W3, E,)
with weight functions p' and p? on the nodes are
said to be weight-isomorphic, if there is a one-
to-one mapping f of the nodes from G; to G,
that preserves adjacency and weight, i.e., for all
i€Vi:pl=pj,andforalli,jeV:{ij} ek if
and only if {f(i),f(j)} € E,. Note that weight-
isomorphism is a symmetric relation.

Theorem 6.5. Consider a problem instance of the
WNPP on a graph G. Consider two maximal se-
quences of node-dominated nodes a = (ay,...,a)
and b= (by,...,b,), i.e., G—a and G—b do not
contain any node-dominated nodes. Then G — a and
G — b are weight-isomorphic.

Proof. Consider a node-minimal counter example
(G, p). We will show that we can transform the
sequence b to a sequence b’ such that q; is the first
node in &', and G — b and G — b’ are weight-iso-
morphic. This proves the theorem, since G — a;
contains fewer nodes than G, and thus G — a and
G — b’ are weight-isomorphic.

First, suppose that a; € b. Since a; is node-
dominated in G and not in G — b, there is an index
i with 1 <i<m such that a, is node-dominated in
G — (by,...,b;_1) and not in G — (by,...,b;). By
Lemma 6.4, this means that a; and b, are identical
in G — (by,...,b;i_1). Therefore, if we exchange b,
and q; in b, then the resulting graph is weight-
isomorphic with G — b. Thus we may suppose that
a; € b.

If a; = b;, then we are done since we assumed
that (G, p) was a node-minimal counter example.
Therefore, suppose that a; # by, say a; = b, for
some j > 1. We will show that we can exchange b;
and b; for some i < j. Doing this repeatedly leads
to a; = b, which finishes the proof by the argu-
ment given above. If b; is not node-dominated in
G — (b1,...,b;_»), then there is an index i with
1<i<j—2 such that a; is node-dominated in
G—(by,...,b;_1) and not node-dominated in
G — (by,...,b;). By Lemma 6.4, this means that a,
and b; are identical in G — (by, ..., b;_y). Therefore,
we can exchange b; and b; in b without making any
actual changes. Finally, suppose that b; is node-
dominated in G — (by,...,b;—2). Then both
b,y and b; are node-dominated. If b, is
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node-dominated in G — (by,...,b;»,b;), then we
can exchange b;_; and b;. Otherwise, by Lemma 6.4,
b;_y and b; are identical, and again we can exchange
b;_; and b;. Concluding, we can rearrange the order
of the nodes in b so that a; is the first one. [

Implementing node-dominance is fairly
straightforward. If we order the nodes in order of
non-increasing weight, breaking ties by ordering
the nodes in order of non-decreasing degree, then
it suffices to check whether a node node-dominates
later nodes in the list. Checking node-dominance
for each node pair takes @(|V]) time. The overall
running time is O(|V||E|), since we only need to
check neighbouring pairs of nodes. As this may
still be quite a lot of time, and propagation may
force us to restart the process, we reduce the run-
ning time by comparing only nodes corresponding
to the same train, the same direction (inbound,
outbound, or platform), and the same platform.

6.1.2. Set-dominance

Set-dominance determines whether a certain
node i can be replaced by one of the nodes of a
given set R in all node packings containing node i.
If this is possible, then node i can be removed from
the problem instance. This idea generalizes node-
dominance in the sense that the node that replaces
node i can be taken arbitrarily from the set R.

Definition 6.6. A node i € V is set-dominated in
graph G = (V,E) by a set R C V —i if for each
feasible node packing S containing node i, there is
a node j € R such that the set S'=S—i+jis a
feasible node packing and has weight greater than
or equal to the weight of S, 1,8 =S+ j—iisa
feasible node packing, and p(S) < p(S").

Obviously, node-dominance is a special case of
set-dominance, where the set R consists of one
node only. Below we give an example that shows
that set-dominance truly generalizes node-domi-
nance.

In Fig. 7 all nodes have the same weight. There
are two maximal node packings containing node 1,
namely, {1,4} and {1,5}. In {1,4} we can replace
node 1 by node 3 and in {1, 5} we can replace node
1 by node 2. Thus in both cases we do not need

Fig. 7. Set-dominance.

node 1. After node 1 has been removed, node 4 is
node-dominated by node 2, and node 5 is node-
dominated by node 3. So, this instance can be
solved completely by dominance techniques, al-
though in the initial graph no node is node-dom-
inated by another one.

Clearly, if the set R set-dominates node i, then
we can remove node i from G, without reducing
the optimal value of the WNPP. Set-dominance
may reduce the size of the instances of the problem
of routing trains through a railway station with a
substantial amount, even after the application of
node-dominance. However, it is more difficult to
find conditions that are necessary and sufficient for
a node to be set-dominated.

On the other hand, we can restrict the number
of sets to be taken into account for checking set-
dominance of a node i. The following lemma
shows that the weights of the elements of the set R
should be sufficiently large.

Lemma 6.7. If i is a node and R is a set of nodes,
then for all nodes j&€ R with p; <p, the next
statement holds: if R set-dominates node i, then
R — j set-dominates node i.

In the sequel we consider only sets R in which
all elements have weight at least p,. Using this
result, the definition of set-dominance becomes
equivalent with the following statement: for each
node packing S C N(R) \ N,(i), there is a node
J € R such that N,(j) NS = (). The following lem-
ma shows that we can restrict ourselves to sets
containing only neighbours of node i.

Lemma 6.8. If i is a node and R is a set of nodes,
then for all nodes j € R\ N(i) the next statement
holds: if R set-dominates node i, then R — j set-
dominates node i.
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Proof. Suppose that R set-dominates node i and
that R — j does not set-dominate node i, for some
Jj € R\ N(i). Then, according to the definition of
set-dominance, there is a node packing S con-
taining node 7, such that S’ = § — i + j is a feasible
node packing. Moreover, there is no other node k
in R—j such that S—i+ 4k is a feasible node
packing. However, since nodes i and j are not
connected, S + j is a feasible node packing as well.
By the fact that R set-dominates node i, there
should be a node k& € R — j that can replace node i
in §+ /. This is a contradiction, since this partic-
ular node k would then be able to replace node i in
Saswell. O

From this lemma it follows that we can restrict
set-dominant sets to contain only neighbours of
the set-dominated node. The following lemma
shows that we can restrict set-dominant sets to all
neighbours of node i with sufficient weight, i.e., to

R ={jeN(): p; = 0}

Lemma 6.9. If i is a node and R is a set of nodes,
then for all nodes j € N(i) with p; > p; the next
statement holds: if R set-dominates node i, then
R + j set-dominates node i.

Proof. The condition that for each node packing S
including node i this node can be replaced by an
element of R holds trivially for R + j if it holds for
R. Note that j ¢ S since node j is connected to
node i. [

Contrary to the node-dominance technique,
the final result of the set-dominance technique
may be sequence dependent. However, the result
of the set-dominance technique is sequence inde-
pendent if all weights of connected nodes are

@
®

Fig. 8. Sequence dependent propagation.

different. The proof of this result can be found in
Zwaneveld [13]. An example of a sequence de-
pendent problem instance for set-dominance is
given in Fig. 8.

In this example all nodes have the same weight.
Clearly, node 1 node-dominates nodes 2 and 3.
After the removal of nodes 2 and 3, node 4 node-
dominates node 5, so that node 5 can be removed
as well, and we are left with two unconnected
nodes. On the other hand, the set {2,3} set-dom-
inates node 1. If we remove node 1 we are finished.
Thus the different orders result in one of the
graphs shown in Fig. 9, in which no further set-
dominance can be detected.

We conclude the description of set-dominance
with an algorithm that determines for a node
whether it is set-dominated by a subset of its
neighbours. Consider an arbitrary node i for which
we want to determine whether it is set-dominated.
Let R ., = {/ € Ni(i) : p; = p,;}. The recursive al-
gorithm described below determines whether or
not node i is set-dominated by R! ..

The algorithm maintains a partial node packing
Sin N,(i) \ N1 (i). If S is a so-called blocking node
packing, i.e., a node packing in which each node is
connected with a node from R/ . then the algo-
rithm stops: we have a proof that node i is not set-
dominated by R’ , since it can not be replaced by
a node of R, in the node packing S + i. Other-

wise, we try to show that any extension of S has no

Fig. 9. The results.
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edge with at least one node from R/, ie., no
extension of S is blocking.

In this algorithm we use three sets. Besides the
set S, the set R C R’ is used to show that any
extension of S is set-dominated. Finally, we
maintain a set O which contains the nodes from
N>(i) \ Ny (i) that need not be considered in ex-
tensions of S.

The procedure AUGMENT(S, O, R) deter-
mines if any extension of S with nodes from
Ny (i) \ {M:(i) — O} is a blocking node packing. Its
first call is with empty sets only: AUGMENT(®, 0,
0).

AUGMENT(S, O, R)
if vjER{nax\R . S ON(J) ;A @
then STOP: S is a blocking node packing

LetjeR  \R:SNN(j)=10
Let K = {k € (Ma(i) \ Ni1(i)) "N (j) : k € N(S) U O}
while K # ()
do
Select k € K;

AUGMENT (S 4k, O,R + j);
O+ =k K— =k

return The extensions of S (not using O) are not
blocking.

In this algorithm, we select a node j from R’
and we consider all extensions of S using
neighbours of node j. If all neighbours of node j
have been checked, then we are finished since
any other extension of S contains only nodes
that are not connected to node j. Note that the
selection of node j € R\ R is not specified. If
we select node j such that K is minimal, then we
determine immediately whether a node is node-
dominated by another one. Thus, node-domi-
nance is a special case of set-dominance, as was
noted earlier.

The running time of the algorithm to deter-
mine set-dominance for a single node by a set R
is 0(|V|"™). We implemented two versions of the
set-dominance technique. In the first implemen-
tation we restrict the set R of alternatives to

nodes corresponding to the same train, the same

direction and the use of the same platform. In
the other implementation the set R holds nodes
corresponding to the same train and the same
direction. In the latter implementation we allow
a maximum CPU time of 0.01 seconds per vari-
able. For test instances the obtained number of
set-dominated variables was not increased when
we allowed a maximum of 300 seconds per
variable.

6.1.3. Iterative set-dominance

If the set-dominance algorithm fails to find set-
dominated nodes, then for each node i and corre-
sponding set R . there is at least one blocking
node packing S. We may, however, be able to alter
such a blocking node packing, without changing
its weight or extendibility, in such a way that the
resulting node packing is not blocking anymore.
Consider the following example.

In Fig. 10, the nodes 1, 2, and 3 have weight 2;
the other nodes have weight 1. No node is set-
dominated by some set of other nodes. If one tests
the set-dominance of node 1 by the set {2, 3}, then
the node packing S causing trouble would be
{4,5}. However, suppose that we want to replace
node 1 by node 2. In the node packing {4,5}, we
may replace node 4 by node 6. Thereafter we may
replace node 1 by node 2. Thus it may be con-
cluded that the node packing {4,5} is not a
problem after all, and thus node 1 can be removed
from the graph.

In general, we can check for each blocking node
packing S whether it is possible to replace some of
its nodes by other nodes until the obtained node
packing is not blocking anymore. Although we do
use this technique in the implementation of our

© O, 9

@ ® ©

Fig. 10. Iterative set-dominance.
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algorithm, we refer the reader interested in the
further details to Zwaneveld [13].

6.1.4. Combining nodes
Two nodes are combined into one node if the

selection of one of the nodes in the node packing
implies that the other node has to be selected in the
node packing as well, and vice versa. The argu-
ments for combining nodes are based upon the
interpretation of the problem as the problem of
routing trains through a railway station. We
identify the following situations:

o If, for a certain train that may not be shunted,
only one inbound and one outbound route lead
to and from a certain platform, then the nodes
corresponding to the inbound, outbound and
platform route can be replaced by one new node
for this train. This newly generated node repre-
sents a compatible combination of an inbound,
a platform and an outbound route for this train.

e For a certain train that may not be shunted,
each remaining node corresponding to an in-
bound route can be combined with a node cor-
responding to a compatible platform route.
The newly generated node represents a compat-
ible combination of an inbound and a platform
route for this train.

o If, for a certain train that may not be shunted,
only one node corresponding to an inbound
route towards a specific platform remains, then
this node can be combined with all compatible
nodes corresponding to an outbound route for
this train. The newly generated nodes represent
compatible combinations of an inbound, a plat-
form, and an outbound route for this train.

o A similar procedure applies if, for a certain train
that may not be shunted, only one node corre-
sponding to an outbound route from a specific
platform remains.

The result is that for each train that may not be
shunted the nodes corresponding to the platform
routes do not longer exist and the nodes corre-
sponding to the inbound and outbound routes
have been combined as much as possible. For
each train that may be shunted, combining nodes
in this way is not possible, since for these trains it
should remain possible to choose a platform
route or not.

6.1.5. Effects of preprocessing
In this section, we present computational re-

sults for the preprocessing techniques that were

described in the previous sections. The computa-
tional results are obtained on a SUN LX work-
station with 50 MHz, and we used ANSI C for
programming. The computational results are pre-
sented for three railway stations in the Nether-
lands, namely Arnhem (Ah), Hoorn (Hn), and

Utrecht CS (Ut). For the geographical locations of

these stations we refer to Fig. 1.

e Arnhem is a medium sized railway station in the
eastern part of the Netherlands. This station is
visited by about 40 trains per hour. Arnhem
has 16 platform and through-going tracks
and consists of 102 track sections of which 74
are relevant.

e Hoorn is a small railway station in the north-
western part of the Netherlands. This station is
visited by about 12 trains per hour. Hoorn has
6 platform and through-going tracks and
consists of 61 track sections of which 32 are
relevant.

e Utrecht CS is the largest railway station in the
Netherlands, located in the center of the coun-
try. This station is visited by about 80 trains
per hour. Utrecht CS has 40 platform and
through-going tracks, and consists of 264 track
sections of which 201 are relevant.

The problem instances are taken from studies of

the Capacity Planning department of Railned,

which involve future railway network designs for
the year 2005. For each railway station three in-
stances (timetables) have been generated and an-
alyzed. It turned out that for each railway station
the sizes of these problem instances were almost
identical.

The sequence in which the preprocessing tech-
niques are applied is as follows:

1. Detour routes.

2. Node-dominance.

3. Combining variables.

4. Set-dominance with the set R restricted to
nodes representing the same train, the same di-
rection, and the use of the same platform. We
refer to this set R as R*™!,

5. Iterative set-dominance.

6. Set-dominance with the set R restricted to
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nodes representing the same train and the same
direction. We refer to this set R as R®, The
maximum CPU time spent on each variable is
set to 0.01 seconds.
All preprocessing techniques are repeated when-
ever a preprocessing technique has removed one or
more variables. Before any technique is repeated,
all previously mentioned techniques are executed
as well.

It turns out that the order in which the pre-
processing techniques are executed influences the
number of removed variables. However, the size of
the remaining problem instances after applying the
techniques in different orderings did not differ
more than 4% from each other. The sequence that
we apply is determined by the effect of each pre-
processing technique and the CPU time necessary
for executing each technique.

Table 1 presents the effects of the preprocessing
techniques with their corresponding CPU times.
For each railway station the results are an average
over the three generated problem instances. The
percentages in this table are in comparison with
the average initial problem size.

In most cases the preprocessing techniques are
able to reduce the initial problem size by over 90%.
Furthermore, the effects of the preprocessing
techniques differ over the railway stations. In
general, set-dominance and iterating set-domi-
nance have the largest effect on the larger problem
instances. Node-dominance is the largest con-
sumer of CPU time, because it has to consider
much more nodes than the techniques which are
applied later on. Propagation is very important for

node-dominance: about 25% of the node-domi-
nated nodes are node-dominated due to propaga-
tion. Node-dominance is repeated up to 10 times
to remove all node-dominated variables. Table 1
shows that the increase of the CPU time for the
larger problems is acceptable.

6.2. The complete algorithm

In this section we describe the complete algo-
rithm for solving the problem of routing trains
through a railway station, based on the formula-
tion of the problem as a WNPP. Very generally,
the algorithm reads as follows:

The complete algorithm

Step 0. Initialization: generate all routing possi-

bilities (¢,7), and determine all conflicting com-

binations of routing possibilities.

Step 1. Preprocessing: try to reduce the problem

instance in advance, thereby using the tech-

niques that were described earlier in this section.

Step 2. Formulate the routing problem as an in-

teger programming problem and tighten its LP-

relaxation by adding valid inequalities.

Step 3. Apply a branch-and-cut procedure to

obtain an optimal solution.

In Step 0 of the algorithm the (useful) routing
possibilities for all trains as well as the admissible
pairs of them are determined. This step involves
many travel time calculations and searching for
overlapping reservation intervals of sections. For
the implementation details of this step we refer
to Zwaneveld [13]. The computing time for

Table 1

Cumulative effect on the number of variables by each preprocessing technique and the CPU times in seconds
Station Ah Hn Ut Average

Nodes CPU Nodes CPU Nodes CPU Perc. (%) CPU

Initial 5930 165 9328 100%
Detour —-3053 3 -9 0.01 —-1025 3 -26% 2
Node -2389 22 -38 0.02 —6695 117 -59% 46
Comb. var —-168 1.6 =71 0.2 =779 10 =7% 4
Set, small —47 0.2 -0.3 0.00 -55 1 -1% 0.4
Iter. set -3 0.1 -0 0.00 -36 1 —-0.3% 0.4
Set, large -33 0.4 -2 0.01 -32 10 —0.4% 3
Final 215 27 45 0.2 706 142 6% 56
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performing this step is linear in the number of
conflicting routing possibilities or, equivalently, in
the number of edges of the node packing for-
mulation.

In Step 1 we apply the previously explained
preprocessing techniques in the order as described
in Section 6.1.5.

Step 2 involves the derivation of many clique
inequalities. As is well-known, the LP-relaxation of
a WNPP is rather bad in general, and needs im-
provement by the addition of valid inequalities.
Standard valid inequalities for the node packing
problem are clique inequalities and (lifted) odd-
hole inequalities, see Padberg [10]. Hoffman and
Padberg [5], and Nemhauser and Sigismondi [9]
give implementations based on these inequalities.
Due to the special structure of our problem (a high
edge-density), we will be concerned with generat-
ing (violated) clique inequalities in successive LP-
relaxations only. For more details on the genera-
tion of these clique inequalities we refer to
Zwaneveld [13].

The corresponding cliques cover all edges, such
that the inequalities (4) (and (1)-(3)) can be re-
moved from the problem formulation, see Section
4.3. Cliques are initially based on nodes repre-
senting two trains with the same direction. Each
clique is lifted by extending it to a maximal clique.
The sequence in which the connected variables are
considered is chosen randomly, based on a uni-
form distribution over these variables.

The branch-and-cut procedure in Step 3 may
require an exponential amount of time. The main
aspects of this procedure are:

1. Applying set-dominance with the set R™a!l,

2. Solving the LP-relaxation.

3. Applying a rounding heuristic to the solution of
the LP-relaxation to obtain a feasible solution.

4. Searching for violated clique inequalities.

5. Selecting the branching variable.

All LP-relaxations are solved from scratch by the

simplex LP-solver of CPLEX 3.0 [1]. Since the

objective function coefficients of the variables dif-

fer from each other, degeneracy hardly occurs.

Moreover, the differences between these coeffi-

cients help the LP-solver to select the optimal set

of basic variables and therefore they speed up the

calculation of the LP-relaxation.

The rounding heuristic greedily constructs a
node packing by considering the variables in order
of decreasing value. When all variables with a
strictly positive value have been considered, the
constructed node packing is lifted to a maximal
node packing by considering all other variables
(i.e., with value zero in the solution of the LP-re-
laxation) in random order.

The search for violated clique inequalities can
be restricted to the set of variables with a frac-
tional value. The fractional variables are ordered
in order of non-increasing value. Starting with the
first variable, we try to find a violated clique in-
equality containing this variable by adding the
variables in the given order. If a clique of frac-
tional variables is found with total value exceeding
one, then we have found a violated clique in-
equality. Subsequently, we lift this clique ran-
domly to a maximal clique, remove the fractional
variables from the list, and continue the search. If
no violated clique with the first variable from the
list exists, then we remove this variable from the
list and we also continue our search. When all
variables from the list have been considered as part
of a violated clique, then we add the corresponding
constraints to the LP formulation and recalculate
the LP-relaxation.

The branching scheme follows the depth-first-
search strategy. The branching variable is the
variable with a fractional value in the solution to
the LP-relaxation and with the smallest index.

6.3. Computational results of the complete algo-
rithm

The results of the complete algorithm with re-
spect to the problem instances that were described
in Section 6.1.5 are presented in Table 2. Again,
the computational results are obtained on a SUN
LX workstation with 50 MHz and the presented
result are averages over three instances per railway
station.

On average, the clique inequalities reduce the
number of constraints from 4733 initial constraints,
see m in Table 2, to 532, see m,. The initial con-
straints are the constraints (1)—(4). The resulting
LP-formulation is quite tight, as can be observed
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Table 2

Results of the cutting-plane algorithm
Timetable Ah Hn Ut Average
m 2452 118 11629 4733
m, 324 40 1231 532
Size tree 4 1 21 9
Depth tree 2 1 3 2
Cuts 1 0 4 2
# Set in tree 1 0 50 0.3%
|LP| — Opt 6995 2664 23993 11217
Opt 2103514 581879 13899361 5528251
|T] 39 15.3 79 44
|T| routed 29 14.6 75 40
CPU prep. (s) 27 0.2 142 56
CPU b&ec (s) 4 0.1 116 40
CPU total (s) 37 0.4 287 108

from the small difference, see |LP| — Opt, between
the truncated solution value of the LP-relaxation
and the optimal solution. We are allowed to use the
truncated value of the LP-solution, since we re-
stricted the objective function coefficients to integer
values. In the table, ‘size tree’ indicates the number
of branches which are investigated in the branch-
and-cut tree. The maximum depth of the tree is
denoted by ‘depth tree’ and the number of useful
violated clique inequalities, which existed in the
branch-and-cut tree is indicated by ‘cuts’. The total
number of set-dominated nodes is indicated by ‘#
set in tree’. The number of trains in the timetable is
denoted by ‘|T|’. The number of routed trains in the
optimal solution is denoted by ‘|T| routed’. The
CPU time for the branch-and-cut algorithm is in-
dicated by ‘CPU b&c’. The total CPU time, see
‘CPU total’, includes the time to read all input data
from file, the time to generate the problem instance
and the clique inequalities, and the time to apply all
solution techniques.

Furthermore, it can be mentioned that the de-
scribed model formulation and algorithm have
been implemented in the DSS STATIONS that
was described in Section 1. This DSS is in opera-
tion within Netherlands Railways and Railned.
STATIONS has been used to solve lots of practical
problem instances. The planners reported an av-
erage computing time of about 1 minute for the
larger railway stations. These computing times are
quite acceptable for them when they use STA-
TIONS interactively.

Altogether, it can be concluded that the com-
plete algorithm is very well able to solve even the
largest practical problem instances in the Dutch
railway network.

7. Summary and conclusion

In this paper, we explained the problem of
routing trains through a railway station as well as
its practical context. We described the relevant
aspects of the operational processes that have to be
taken into account to solve the routing problem in
practice. We showed that these aspects can ade-
quately be taken into account in the formulation
of the problem as a WNPP. Furthermore, we de-
veloped a branch-and-cut algorithm to solve the
problem to optimality.

We described several preprocessing techniques
to reduce the problem size a priori. Three tech-
niques, namely node-dominance, set-dominance,
and iterating set-dominance, are applicable to all
WNPPs. These techniques aim to prove that a
certain node can be replaced by some other node
in all feasible solutions. We derived several char-
acteristics of the techniques with respect to prop-
agation. The techniques had a large effect on the
sizes of the problem instances for which we pre-
sented computational results in this paper. Due to
the high effectiveness of the preprocessing tech-
niques, all problem instances that we studied could
be solved to optimality. An interesting direction
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for further research is the application of these
techniques to other problems that can be formu-
lated as a WNPP.

Based on their experiences with the DSS STA-
TIONS so far, the planners have formulated sev-
eral desirable extensions of the system. One
extension involves the possibility to solve the
routing problem for two railway stations at the
same time. This is particularly interesting if two
railway stations are located close to each other.
Another extension involves the possibility to use
different safety systems than the route locking and
sectional release system. A final extension involves
the possibility that STATIONS provides the
planners with suggestions for the modification of
the arrival and departure times of trains if a fea-
sible solution for all trains with the given arrival
and departure times does not exist. For the details
of the latter extension we refer to Zwaneveld [13].

Although the mentioned extensions do not
change the mathematical formulation of the
routing problem, they may enlarge the instance of
the WNPP to be solved. Therefore, it will be in-
teresting to further investigate the range of the
sizes of the routing problem that can be handled
by the described techniques.
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