

An Empirical Evaluation of Two General Game
Systems: Ludii and RBG
Citation for published version (APA):

Piette, E., Stephenson, M., Soemers, D., & Browne, C. (2019). An Empirical Evaluation of Two General
Game Systems: Ludii and RBG. In 2019 IEEE CONFERENCE ON GAMES (COG): (COG'19) (pp. 626-
629). IEEE. https://doi.org/10.1109/CIG.2019.8847994

Document status and date:
Published: 23/08/2019

DOI:
10.1109/CIG.2019.8847994

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 24 May. 2024

https://doi.org/10.1109/CIG.2019.8847994
https://doi.org/10.1109/CIG.2019.8847994
https://cris.maastrichtuniversity.nl/en/publications/3a461b51-6c1e-421d-9125-1f86487b7352

An Empirical Evaluation of Two
General Game Systems: Ludii and RBG

Éric Piette, Matthew Stephenson, Dennis J.N.J. Soemers and Cameron Browne
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, the Netherlands

{eric.piette,matthew.stephenson,dennis.soemers,cameron.browne}@maastrichtuniversity.nl

Abstract—Although General Game Playing (GGP) systems can
facilitate useful research in Artificial Intelligence (AI) for game-
playing, they are often computationally inefficient and somewhat
specialised to a specific class of games. However, since the start
of this year, two General Game Systems have emerged that
provide efficient alternatives to the academic state of the art –
the Game Description Language (GDL). In order of publication,
these are the Regular Boardgames language (RBG), and the Ludii
system. This paper offers an experimental evaluation of Ludii.
Here, we focus mainly on a comparison between the two new
systems in terms of two key properties for any GGP system:
simplicity/clarity (e.g. human-readability), and efficiency.

Index Terms—General Game Playing, knowledge representa-
tion, General Game AI.

I. INTRODUCTION

Playing games has been such a long standing aspect of
human culture that it can certainly be considered an integral
part of our history. Strategic games can provide a complex
challenge for even the most skilled human player, often requir-
ing a precise and forethought sequence of response actions to
win. As an alternative to creating specialised algorithms for
specific games like Chess [1], or Go [2], developing artificial
agents capable of playing a broad variety of games is the
goal of General Game Playing (GGP) [3]. The modern era
of GGP was launched in 2005 with the annual International
General Game Playing Competition (IGGPC) announced by
the Stanford’s Logic Group [4].

The General Game System GGP-BASE 1 using the Game
Description Language (GDL) [5] has become the standard for
academic research in GGP. Games in GDL are described in
terms of simple instructions based on first-order logic clauses,
designed for deterministic games with perfect information.
Extensions to this language also allow for imperfect infor-
mation and epistemic games [6], [7]. The general intelligence
required by GDL agents has led to several important research
contributions [8], with one of the most popular and effective
techniques being Monte Carlo tree search [9], [10], while the
last winner of the IGGPC uses an approach based on constraint
programming and symmetry detection [11].

Funded by a e2m ERC Consolidator Grant (http://ludeme.eu).
1GGP-BASE https://github.com/ggp-org/ggp-base

However, defining games using GDL currently has several
problems. Writing and debugging game descriptions requires
an adept understanding of first order logic, making such
tasks difficult for people who are not computer scientists or
mathematicians. The equipment and rules for each game are
also typically interconnected, and the structural aspects of each
game, such as the board, deck, or arithmetic operators, must be
explicitly defined from scratch each time. This makes game
creation a lengthy and time-consuming process. Even small
modifications to existing games, such as changing the size of
the board, require many lines of code to be changed or added.
Processing such descriptions is also computationally expensive
as it requires logic resolution, making the language difficult
to integrate with other external applications and limiting the
potential of GDL outside of game AI.

Due to these limitations of GDL, an alternative GGP lan-
guage is useful which allows games to be defined in an easier
and human understandable manner, whilst also being efficient
enough to facilitate future AI research in many other areas
of GGP, like developing universal agents, learning, procedural
content generation, or game analysis. Apart from AI research,
developing such software can provide an efficient tool for work
in related fields such as game design, history, or education.

II. TWO ALTERNATIVE GENERAL GAME SYSTEMS

Recently, two alternatives to GDL have been proposed: the
Regular Boardgames language (RBG) [12], and Ludii [13].

A. Regular Boardgames (RBG)

The idea behind RBG comes from an initial work proposed
by [14] for using a regular language to encode the movement
of pieces for a small subset of chess-like games called Simple
Board Games. However, as the allowed expressions are sim-
plistic and applied only to one piece at a time, it cannot express
any non-standard behavior. RBG [12] extended and updated
this idea to be able to describe the full range of deterministic
board games.

The RBG system uses a low-level language given as an
input for programs (agents and game manager), which is
easy to process, and a high-level language, which allows for
more concise and human readable descriptions. The high level
version can be converted to the low level version in order

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

1 #players = white(100), black(100)
2 #pieces = e, w, b, x
3 #variables =
4 #board = rectangle(up,down,left,right,
5 [e, e, e, b, e, e, b, e, e, e]
6 [e, e, e, e, e, e, e, e, e, e]
7 [e, e, e, e, e, e, e, e, e, e]
8 [b, e, e, e, e, e, e, e, e, b]
9 [e, e, e, e, e, e, e, e, e, e]

10 [e, e, e, e, e, e, e, e, e, e]
11 [w, e, e, e, e, e, e, e, e, w]
12 [e, e, e, e, e, e, e, e, e, e]
13 [e, e, e, e, e, e, e, e, e, e]
14 [e, e, e, w, e, e, w, e, e, e])
15

16 #anySquare = ((up* + down*)(left* + right*))
17

18 #queenShift = (
19 (up left {e}) (up left {e})* +
20 (up {e}) (up {e})* +
21 (up right {e}) (up right {e})* +
22 (left {e}) (left {e})* +
23 (right {e}) (right {e})* +
24 (down left {e}) (down left {e})* +
25 (down {e}) (down {e})* +
26 (down right {e}) (down right {e})*
27)
28

29 #turn(piece; player) = (
30 anySquare {piece} [e]
31 queenShift
32 [piece]
33 queenShift
34 ->> [x]
35)
36

37 #rules = ->white (
38 turn(w; white)
39 [$ white=100, black=0] -> black
40 turn(b; black)
41 [$ white=0, black=100] -> white
42)*

Fig. 1. Game description of Amazons with RBG.

to provide the two main aspects of a GGP system: human-
readability and efficiency for AI programs. The technical
syntax specification of RBG can be found in [15]. Thanks
to this distinction between two languages, it is possible to
model complex games (e.g. Amazons, Arimaa or Go), and
apply the more common AI methods (minimax, Monte-Carlo
search, Reinforcement Learning, etc.) to them. Indeed, in the
previous languages used for GGP (including the academic
state of the art GDL), it was difficult to model any complex
games and impossible to play or reason on any of them in a
reasonable amount of time. As an example, Figure 1 presents
a complete description of Amazons for the RBG system. RBG
has been demonstrated to be universal for the class of finite
deterministic games with full information, and more efficient
than the state of the art using GDL [12].

B. Ludii

Within the context of the Digital Ludeme Project2 [16] –
which aims to model the world’s traditional strategy games

2Digital Ludeme Project: www.ludeme.eu

1 (game "Amazons"
2 (mode 2)
3 (equipment
4 {
5 (chessBoard 10)
6 (queen
7 Each
8 (slide (in (to) (empty))
9 (then (replay))

10)
11)
12 (dot None)
13 }
14)
15

16 (rules
17 (start
18 {
19 (place "Queen1" {3 6 30 39})
20 (place "Queen2" {60 69 93 96})
21 }
22)
23

24 (play
25 (if (even (turn))
26 (byPiece)
27 (shoot (in (to) (empty)) "Dot0"))
28)
29

30 (end
31 (stalemated (mover))
32 (result (next) Win)
33)
34)
35)

Fig. 2. Game description of Amazons with Ludii.

in a single, playable digital database – using GDL as the
game description language to model games was not feasible
due to the inherent complexity of modelling games with first-
order logic, and the difficulty of integrating this language with
other external applications. For this reason, a new General
Game system based on Browne’s thesis [17] and the notion of
ludemes, called Ludii [13] was implemented.

Ludemes are the conceptual elements of a game. In Ludii,
games are composed of ludemes in order to distinguish the
game’s form (rules and equipment) and its function (its
emergent behaviour). An important benefit of the ludemic
approach is that it encapsulates key game concepts and gives
them meaningful labels. Thanks to this property, it is possible
to use the class grammar approach [18] to derive the game
description language directly from the class hierarchy of
the underlying source code library used by the system. For
this reason, the game description language used by Ludii is
automatically generated from the constructors in the class
hierarchy of the Ludii source code. Game descriptions ex-
pressed in the grammar are automatically instantiated back
into the corresponding library code for compilation, giving
a guaranteed 1:1 mapping between the source code and the
grammar.

This approach produces an efficient tool to model, play and
analyse any strategical games as a structure of ludemes. More-

over, it is also possible to associate any kind of information
like the kind of game state (e.g. stacking, boardless, stochastic,
etc) to each ludeme in order to optimise the reasoning on
games and to provide a playable interface for each game.
Ludii makes its programming language the game description
language. It can theoretically support any rule, equipment or
behaviour that can be programmed, but the implementation
details are hidden from the user, who only sees the simplified
grammar which summarises the code to be called. A more
complete description of the Ludii system is given in [13],
and an example, Figure 2 presents a complete description of
Amazons for Ludii.

Like RBG, Ludii has been demonstrated to be universal for
the class of finite deterministic games with full information,
and more efficient than GDL [13]. However, due to the novelty
of the two new GGP systems, they were not yet compared to
each other. We remedy this in the next section.

III. EXPERIMENTS

The two new GGP Systems – as most other GGP systems
– use MCTS as the core method for AI move planning, which
has proven to be a superior approach for general games in the
absence of domain specific knowledge [10]. MCTS playouts
require fast reasoning engines to achieve the desired number
of simulations. Hence, we use flat Monte Carlo playouts as the
metric for comparing the efficiency between Ludii and RBG.

In order to make a comparison between the human-
readability of the two systems we use two main criteria:
clarity and simplicity. Clarity refers to the degree to which
game descriptions would be self-explanatory to non-specialist
readers, and simplicity refers to the ease with which game
descriptions can be created and modified, and can be estimated
by the number of tokens required to define games.

A. Setup
In the following comparison, we compare RBG and Ludii

based on the numbers of tokens used to describe each game,
and the number of random playouts obtained per second by
each of them. All experiments were conducted on a single
core of an Intel(R) Core(TM) i7-8650U CPU @ 1.90 GHz,
2112 MHz with 16GB RAM, spending 10 min per test. The
RBG system is implemented in C++ and compiled with g++
8.3 and Ludii is implemented in Java and compiled with the
Java SE Development Kit 11. The RBG system provides an
interpreter and a compiler to perform reasoning, consequently
we compare Ludii to each of them.

B. Results
The results of our experiments for the same set of games

implemented on the two systems are shown in Table I. The left
section of the table is dedicated to the number of tokens used
to describe the games, and the right section to the number of
playouts obtained per second (the highest number of playouts
obtained for each game is coloured in blue). The rightmost
columns of each section shows the rate of Ludii on RBG.
Note that results are also given for GDL in order to highlight
the gap between it and the new alternatives.

IV. DISCUSSION

A. Clarity and Simplicity

We argue that describing a game with the ludemic approach
is typically simpler than using regular expressions as in RBG.
Indeed, the number of tokens used by Ludii to describe a game
is always much smaller than RBG; the highest rate is 0.61 for
English Checkers and the lowest rate is 0.06 for Gomoku. On
average Ludii needs a third of the number of tokens used by
RBG to model a game.

In Ludii, the Java classes that define each ludeme use
convenient definitions for the concepts involved, which pro-
vide meaningful names for each class and are aligned with
human perception. For example, Container sub-classes include
Board, Hand, Deck, etc., move rules include Slide, Step, etc.,
and game properties include stacking, hidden information,
etc. These are common terms that most game players and
designers would recognise and understand. In RBG, the high-
level version allows predefined functions to generate regular
shaped boards, and it is possible to define a game using only
meaningful names with the assistance of some basic macros.

While the clarity of a game description is subjective, we
believe that most – in particular non-expert users – would
find Ludii game descriptions to be more clear in general
than RBG descriptions. See Figures 1 and 2 for a compar-
ison of the game descriptions for Amazons. In RBG, high-
level concepts such as the movement of a queen can be
summarised in a #queenShift macro, but the macro is
game-specific and its low-level details are still present in
the same game description. These low-level details can be
difficult to understand, especially without prior knowledge of
regular expressions. Similar details are completely hidden in
the Ludii game description, with the move rules being encoded
in ludemes with easily-understandable names such as “slide”
and “shoot”. Additionally, there is a clear demarcation between
starting rules, playing rules, and end conditions in Ludii.

B. Efficiency

Ludii outperforms RBG in terms of playouts per second in
all evaluated games, except for Breakthrough (where RBG’s
interpreter and compiler are both more efficient), and English
Checkers (where only RBG’s compiler performs better).

For the majority of the games, the number of playouts
per second computed by Ludii is significantly higher than
by the RBG interpreter. If we focus on complex games, like
Amazons, Chess or International Checkers, Ludii is at least
10 times faster. Moreover for Arimaa, the RBG interpreter
cannot compute a single playout per second, in contrast to
700 playouts per second for Ludii. In the original RBG paper,
a variant of Arimaa is used with a fixed position for all the
pieces on the initial state in order to minimise the branching
factor implied by that game, but Ludii does not need that to
reason on that game.

The RBG compiler is more efficient than the RBG inter-
preter in terms of reasoning and the rate between it and Ludii
is lower. When using the compiler version, RBG exceeds

TABLE I
AN EXPERIMENTAL COMPARISON BETWEEN GDL, RBG, AND LUDII (RATE = LUDII / RBG).

RBG RBG Rate Rate
Game GDL RBG Ludii Rate GDL Interpreter Compiler Ludii Interpreter Compiler

Number of tokens Playouts per second
Amazons 1158 195 51 0.26 185 307 625 4,349 14.17 6.96
Arimaa × 735 359 0.49 × 0.01 0.11 714 71,400 6,490.9
Breakthrough 670 134 65 0.49 1,123 4,962 16,694 4,741 0.96 0.28
Chess 4392 641 186 0.29 0.06 79 714 720 9.11 1.01
Chinese Checkers × 418 243 0.58 × 232 1090 1,105 4.76 1.01
Connect-4 751 155 31 0.20 13,664 41,897 84,124 94,077 2.25 1.12
English Checkers 1282 263 161 0.61 872 2,963 14,286 8,135 2.75 0.57
Double Chess × 790 202 0.26 × 6 50 81 13.5 1.62
Gomoku 514 324 21 0.06 927 1,330 2212 42,985 32.32 19.43
Hex × 245 81 0.33 × 2741 5787 11,077 4.04 1.91
International Checkers × 498 244 0.49 × 262 1,941 3,444 13.15 1.77
Reversi 894 311 103 0.33 203 1468 2,012 2,081 1.42 1.03
The Mill Game × 296 103 0.15 × 1,063 7,423 72,734 68.42 9.80
Tic-Tac-Toe 381 101 25 0.25 85,319 139,312 400,000 535,294 3.84 1.34

Ludii on English Checkers as well as Breakthrough. For all
the other games, Ludii still provides speedups over the RBG
compiler. The high performance of RBG on Breakthrough is
likely due to the use of only basic onboard operations in RBG’s
Breakthrough description.

V. CONCLUSION

The ludemic General Game system Ludii and the Regu-
lar Boardgames system are two efficient alternatives which
outperform the current standard for academic AI research
into GGP in terms of reasoning and human-readability. In
term of efficiency, Ludii outperforms the RBG interpreter in
all evaluated games except one, and compared to the RBG
compiler, it provides some better results in all evaluated games
except two.

We argue that Ludii games are simpler to model, using
fewer tokens to describe them than RBG. We also believe
that Ludii game descriptions are easier to read, largely thanks
to meaningful ludeme names, whereas RBG requires the use
of game-specific macros to describe higher-level concepts.

ACKNOWLEDGMENT.
This research is part of the European Research Council-

funded Digital Ludeme Project (ERC Consolidator Grant
#771292) run by Cameron Browne at Maastricht University’s
Department of Data Science and Knowledge Engineering.

REFERENCES

[1] T. Romstad, M. Costalba, J. Kiiski, and G. Linscott, “Stockfish: Strong
open source chess engine,” https://stockfishchess.org/, 2008.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] J. Pitrat, “Realization of a general game-playing program,” in IFIP
Congress, 1968, pp. 1570–1574.

[4] M. R. Genesereth, N. Love, and B. Pell, “General game playing:
Overview of the AAAI competition,” AI Magazine, vol. 26, no. 2, pp.
62–72, 2005.

[5] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General game playing: Game description language specification,” 2008.

[6] S. Schiffel and M. Thielscher, “Representing and reasoning about the
rules of general games with imperfect information,” Journal of Artificial
Intelligence Research, vol. 49, pp. 171–206, 2014.

[7] M. Thielscher, “GDL-III: A description language for epistemic general
game playing,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, 2017, pp. 1276–1282.

[8] Y. Björnsson and S. Schiffel, “General game playing,” in Handbook of
Digital Games and Entertainment Technologies. Springer, 2016, pp.
1–23.

[9] H. Finnsson and Y. Björnsson, “Simulation-based approach to general
game playing,” in The Twenty-Third AAAI Conference on Artificial
Intelligence, 2008, pp. 259–264.

[10] ——, “Learning simulation control in general game-playing agents,” in
The Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp.
954–959.

[11] F. Koriche, S. Lagrue, É. Piette, and S. Tabary, “Constraint-based
symmetry detection in general game playing,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
2017, pp. 280–287.

[12] J. Kowalski, M. Maksymilian, J. Sutowicz, and M. Szykuła, “Regular
boardgames,” in The Thirty-Third AAAI Conference on Artificial Intel-
ligence, 2019.

[13] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii - the ludemic general game system,”
CoRR, vol. abs/1905.05013, 2019.

[14] Y. Björnsson, “Learning rules of simplified boardgames by observing,”
in Proceedings of the Twentieth European Conference on Artificial
Intelligence, 2012, pp. 175–180.

[15] J. Kowalski, M. Mika, J. Sutowicz, and M. Szykuła, “Regular
boardgames,” 2018. [Online]. Available: http://arxiv.org/abs/1706.02462

[16] C. Browne, “Modern techniques for ancient games,” in 2018 IEEE
Conference on Computational Intelligence and Games. IEEE, 2018,
pp. 490–497.

[17] C. B. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology, 2009.
[Online]. Available: https://eprints.qut.edu.au/17025/

[18] ——, “A class grammar for general games,” in Advances in Computer
Games, ser. LNCS, vol. 10068, 2016, pp. 167–182.

