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Pricing Network Edges to Cross a River

Alexander Grigoriev * Stan van Hoesel * Anton F. van der Kraaij *

Marc Uetz * Mustapha Bouhtou |

April 5, 2004

Abstract

We consider a Stackelberg pricing problem in directed networks: Tariffs (prices) have to
be defined by an operator, the leader, for a subset of the arcs. Clients, the followers, choose
paths to route their demand through the network selfishly and independently of each other,
on the basis of minimal total cost. The problem is to find tariffs such as to maximize the
operator’s revenue. We consider the case where each client takes at most one tariff arc to
route the demand. The problem, which we refer to as the river tarification problem, is a
special case of problems studied previously in the literature.

We prove that the problem is strongly NP-hard. Moreover, we show that the polynomially
solvable case of uniform tarification yields an m—approximation algorithm, and this is tight.
We suggest a new type of analysis that allows to improve the result to O(log m), whenever the
input data is polynomially bounded. We furthermore derive an O(mlfa)finapproximability
result for problems where the operator must serve all clients, and we discuss some polynomial
special cases. Finally, a computational study with instances from France Télécom suggests
that uniform pricing performs better in practice than theory would suggest.

1 Introduction

The general setup for the tarification problem involves two non-cooperative groups, operators
that set tariffs, the leaders of the Stackelberg game, and clients that have to pay these tariffs,
the followers of the Stackelberg game. More precisely, we assume that a network is given, and a
subset of the arcs is owned by an operator. Being the owner of an arc, the operator can set the
tariffs on these arcs for renting capacity to one or several clients. Each client wishes to route a
certain amount of flow (a commodity) on a path connecting two vertices. Such a path can involve
one or several arcs belonging to the operator, and we assume that each client selfishly selects a
path with minimum total cost to route his demand. Before the clients select their paths, however,
the operator has to set the tariffs, which he does in order to maximize total revenue.

In general, tarification strategies can be used to distribute traffic over a network in order to
minimize some measure of system performance that does not coincide with the objectives of the
individual clients. In this context, the structural analysis of (Nash) equilibria versus system op-
tima has been heavily researched recently. The papers by Roughgarden and Tardos [13], and Cole
et al. [2, 3] are some of the recent references. In the mentioned references, it is the phenomenon
of network congestion what makes the clients interact with each other, thus introducing a Game
Theoretic setting. In the same direction, Fortz and Thorup [5, 6] analyze pricing strategies em-
pirically in order to prevent overloaded IP links in internet traffic routing. Notice that, in these
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contexts, pricing need not take place before the routing of the traffic (for example, marginal cost
pricing).

The problem we consider here is different in two aspects. First, we assume that there is no
congestion, hence the clients do not influence each other. They choose minimum cost paths to route
their commodities, independent of each other. The Game Theoretic setting is only introduced by
the fact that there exist an operator trying to maximize revenue using high tariffs, and the clients
try to avoid high tariffs by choosing minimal cost paths. Second, the pricing is assumed to take
place before the users choose their paths, so we are faced with a Stackelberg game, where the
operator (leader) first sets the tariffs, and then, subject to these tariffs, the clients (followers)
react selfishly.

A natural formulation of the problem, referred to as the (general) tarification problem, is the
bilevel formulation of Labbé et al. [11]: At one level the operator strives to maximize his revenue,
while at the other level the clients seek to minimize the cost of routing their demands. In this
formulation, the objective functions of the operator and the clients are bilinear. Roch et al. [12]
show that the problem is strongly NP-hard, even when restricted to a single client. In the same
paper, a polynomial time O(logm)-approximation algorithm for the problem with a single client
is proposed, where m is the number of tariff arcs.

In this paper, we consider the problem with multiple clients. However, we assume that the
path taken by any client utilizes at most one tariff arc. Several applications of this particular
tarification problem, to which we refer as the river tarification problem (RTP) are briefly discussed
in Section 2. Section 3 describes the model in detail. In Section 4, we show that the river
tarification problem is strongly NP-hard. The quality of uniform tarification policies, where all
arcs are priced with the same tariff, is analyzed in section 5. Uniform tarification is well-known
to be solvable in polynomial time, even for the general tarification problem [14]. We show that
uniform tarification is an m-—approximation, and we also show that this analysis is tight. We
then propose a new type of analysis, not based on the usual geometric interval arguments, which
allows to improve this to a O(logm)—approximation whenever the input is polynomially bounded
(in terms of m). If the operator is forced to serve all clients, we show in Section 6 that the river
tarification problem is not approximable to within a factor O(m!~¢), unless ZPP = NP. We
discuss some polynomially solvable special cases in Section 7, and finally, we empirically analyze
the quality of uniform tarification policies in Section 8.

2 Applications

Given the restriction that each client uses at most one of the tariff arcs, we can essentially re-
strict ourselves to specific traffic networks that resemble the situation of a town that is divided
by a river. To cross the river, several possibilities exist, such as bridges, tunnels, or boats. Local
government may decide to put tolls for each crossing on several of these transportation possi-
bilities, thus creating an instance of the river tarification problem. Besides its application in
transportation networks, we illustrate some actual applications of the river tarification problem in
telecommunication networks, as they occur for a large global operator.

Network structure. First, the network structure may be such that we know a priori that
the path of each client takes at most one tariff arc. Consider for example the international
interconnections market, where several operators offer connections inside a particular country. If
we focus on the market for this particular country, we can assume that it is not profitable for any
client to enter the country twice. This gives rise to an instance of the river tarification problem.

Autonomous systems. Consider a TCP/IP network. Whenever an autonomous system
(represented by some subnetwork) has to transit data, the data may enter and exit the autonomous
system at different points. Clients have to pay a price for sending data through the autonomous
system, yielding revenue for its owner. The data flow can be modelled such that once it is routed
through the autonomous system, it does not pass a second time. See Figure 1(a), where the clients
have the choice between two different autonomous networks (AS1 and AS2) with two entry and
exit points to route their demand from source to target. This situation can be modelled as a river
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(a) Autonomous systems. (b) Point-to-point markets.

Figure 1: Applications of the river tarification problem.

tarification problem, introducing a tariff arc for each entry-exit combination.

Point-to-point markets. Consider a telecommunications operator that is offering bandwidth
capacity between two points A and B at a certain price. Other operators are active in this market
as well. Their prices for bandwidth capacity are known. Clients can choose between different
levels of Quality of Service (QoS) from each operator, and clients have an ordered preference for
the QoS-levels. We can model this problem as an instance of the river tarification problem, too.
Figure 1(b) shows a small example with two customers, represented by two commodities (s1,¢1)
and (s2,t2). The operator has three QoS levels, represented by the subnetwork between the nodes
gis and g;;, where ¢ € {1,2,3}. In this example, customer (s1,¢1) is interested in two QoS levels,
namely QoS1 and QoS2, whereas customer (s2, t2) is interested in QoS2 and QoS3. The preference
of each customer k with regard to each QoS level is determined by the cost of the edge from the
source si to the node ¢;s, i € {1,2,3}, smaller cost indicating a higher preference for the QoS
level. The prices of other operators for the same QoS level is given by the cost on the (fixed cost)
arcs (gis, qit), ¢ € {1,2,3}. The revenue for the operator for each QoS level i, ¢ € {1,2,3} is then
determined by setting appropriate tariffs on the tariff arcs (dashed arcs in the figure).

3 Model

An instance of the general tarification problem is a directed graph G = (N, A), where the arc set
A is partitioned into a set of m tariff arcs T'C A and a set of fixed cost arcs F = A\ T. There
are n clients (or commodities) k € {1,...,n}, where each client k has a demand dj, that has to be
routed from source node si to target node t;. Because there is no congestion involved, we may
assume without loss of generality that all demand values dj, are scaled to be integral. We define
for a commodity k the set of all possible paths from si to tx by Px. The tariff on a tariff arca € T
is denoted by 7., and the vector of all tariffs is given by 7 = (7,)acr. The cost of a fixed cost arc
a € F is denoted by c,.

The clients route their demands from source to destination according to a path with minimal
total cost, where the total cost of a path is defined as the sum of the tariffs and fixed costs on the
arcs of the path. Whenever the client has a choice among multiple paths with the same total cost
but with different revenues for the operator, we assume that the client takes the path that is most
profitable to the operator. This can always be achieved with arbitrary precision by reducing all
tariffs by some small value e. We assume that an {sg, t; }-path exists that consists only of fixed
cost arcs for every client k € {1,...,n}, since the problem is otherwise unbounded.
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Figure 2: River tarification problem with n = 2 and m = 3.

The revenue associated with a path p € P, induced by a client k with demand dj, is defined by

71—17(7—adk):dk: Z Ta (1)

ac€TNp

whereas the fixed cost of the path p is given by

cp(d) =d Y ca. (2)

aceFNp

Then l,(7,dy) := cp(di) + mp(7, di;) is the total cost of the path p € Py for a client k. Obviously,
l,(T,dy) is a piecewise linear, non-decreasing function in 7, and linear, non-decreasing in dj. The
(general) tarification problem can now be described by the following bilevel program; see [11, 1].

max  y. ﬁpZ(T,dk)
T keK (3)
st.  pp =argminl,(7,dg) for all k € {1,...,n}.
PE Py

For the bilevel program in (3), at the upper level the revenue of the operator is maximized,
while at the lower level the clients take the shortest path, given the tariffs determined at the
upper level. Since the demands are known a priori, objective functions of both the operator and
the clients in (3) are linear and hence we are dealing with a so-called linear-linear bilevel program.
Jeroslow [9] showed that linear-linear bilevel problems are NP-hard in general. For references on
bilevel programming, see Dempe [4] and Vicente and Calamai [15] who have compiled an annotated
bibliography on this subject.

The additional assumption in the river tarification problem is that, independent of the tariffs,
any client routes his demand only on paths which include at most one tariff arc. This will allow
us to assume without loss of generality that the network has a very special structure. Replacing
shortest paths using only fixed cost arcs by direct arcs, and possibly introducing some dummy
arcs with zero or infinite cost, we obtain a shortest path graph model (SPGM) as defined by
Bouhtou et al. [1]: All tariff arcs are disjoint, and there exists an arc from any source node s
to the tail node of any tariff arc, and from the head node of any tariff arc to any target node t.
Moreover, there exists a a fixed cost arc (sg, ) for all k =1,...,n, and the cost ¢ is the highest
acceptable price for client k. Figure 2 shows the shortest path graph model of an instance of the
river tarification problem with three tariff arcs and two clients. The tariff arcs a;,¢ € {1,2,3} are
given by the dashed arcs in the network. We may also assume without loss of generality that all
fixed cost arcs incident with the target nodes t; have zero cost (by adding their costs to the fixed
cost arcs incident with sg).

The essential parameters that define an instance of river tarification problem are therefore the
number of tariff arcs m, the number of clients n, the demand values di, k € {1,...,n}, and the
costs ¢, of the fixed cost arcs a € F. Due to the fact that any path taken by a client involves



Figure 3: Subnetwork for variable z;, i € {1,...,n}.

exactly one fixed cost arc with non-zero cost, we may assume without loss of generality that the
costs ¢, of the fixed cost arcs a € F' are integral. Moreover, due to the integrality of the costs of
the fixed cost arcs, it is immediate that any reasonable solution will adopt only tariffs which are
integral, too. Notice, however, that this is not true for the general tarification problem, where a
path chosen by a client can consist of several tariff arcs. There, even if the costs of the fixed cost
arcs are integral, it may be that an optimal solution utilizes fractional tariffs.

4 Complexity

Roch et al. [12] show that the general tarification problem is NP-hard in the strong sense, even
when restricted to a single client, using a reduction from the NP-complete problem 3-SAT [7].
Their reduction works for tarification problems where paths are allowed to use (and indeed, must
use) several tariff arcs. We show that the tarification problem with multiple clients, but restricted
to at most one tariff arc per path, is NP-hard in the strong sense, too.

We also use a reduction from 3-SAT. Therefore, consider a boolean function f : {0,1}" — {0,1}

on n variables x1, ..., T,, in conjunctive normal form. Such a function f is the conjunction of m
clauses CY,
m
k=1
each clause Cj being the disjunction of three literals, C = (g1 V Lya V €i3). Any literal £y,
represents either a variable x;, or its negation Z,;, ¢ € {1,...,n}. Then f is satisfiable if there
exists a truth assignment x1,..., x, such that at least one literal per clause is true.
Any function of the form (4) can be polynomially transformed to an instance of the river
tarification problem as follows. For each variable x;, i € {1,...,n}, we construct a constant-size

subnetwork as shown in Figure 3. Each of these subnetworks has three clients with unit demand,
with origin-destination pairs {s;;,t;;}, j € {1,2,3}. Moreover, each subnetwork has two tariff arcs,
a; representing the truth assignment z; = 1, and a; representing z; = 0, as depicted in Figure 3.

An upper bound on the cost of routing commodities 1 and 3 is given by fixed cost arcs (s;1,%1)
and (s;3,t;3), both with cost 3. For commodity 2, the upper bound on the cost is given by a fixed
cost arc (8;2,ti2), with cost 2. The maximal revenue for each subnetwork is thus given by setting
one of the tariffs to 2, and the other to 3, yielding a revenue of 2 -2+ 3 = 7. In all other cases,
the revenue is not more than 6.

Next, for each clause Cy, k € {1,...,m}, we create a clause-commodity k with origin destina-
tion pairs {sg,tr}, with unit demand. Whenever a variable x; (Z;, respectively) appears as one
of clause Cy’s literals, we connect s to s;1 (s;3, respectively), and ¢;; (¢;3, respectively) to tg,
using arcs of zero cost. In addition, we introduce a fixed cost arc (sg,tx) with cost 2, defining an
upper bound of 2 for the cost of routing clause-commodity k. The so-defined instance of the river



tarification problem has 2n tariff arcs, 3n + m commodities (or clients), and 7m + 11n fixed cost
arcs, hence the transformation is indeed polynomial. Example 1 illustrates the transformation.

Example 1. The boolean function f = (z1 V @2 V x3) A (T1 V T2 V x4) on 4 variables x1,..., 24
can be transformed to the network displayed in Figure 4. A tariff arc a; (resp. @;) represents the
truth assignment x; = 1 (resp. x; =0), 4 € {1,...,4}.

Theorem 1. The river tarification problem is strongly NP-hard.

Proof. Consider the polynomial transformation defined previously. We show that a satisfying
truth assignment for f exists if and only if the revenue for the river tarification problem is equal
to 2m 4+ Tn. Suppose there exists a satisfying truth assignment. Then at least one literal in each
clause Cy, k € {1,...,m} is fulfilled. Take for each C}, one fulfilled literal and set the tariff on its
corresponding tariff arc to 2. The complementary tariff arc receives tariff 3. Due to the fact that
we start with a valid truth assignment, this is indeed well-defined, since either z; = 1 or z; = 0,
but never both. This way, the total revenue from all clause-commodities is 2m. For all remaining
subnetworks, if any, the two tariffs can be set arbitrarily to 2 and 3, respectively. The revenue
from all subnetworks is thus 7n. Hence, the total revenue is 2m + 7n.

Conversely, suppose there exists a set of tariffs such that the total revenue is 2m + Tn. The
maximal possible revenue created by all except the clause-commodities is 7n, only achievable by
setting one tariff arc per subnetwork to 2 and the other to 3. On the other hand, the maximal
possible revenue created by the clause-commodities is 2m. Hence, in order to achieve a revenue of
exactly 2m+ 7n, we must have both, 2m from the clause-commodities, and 7n from the remaining
commodities. We now define a truth assignment, setting ‘true’ all literals that correspond to tariff
arcs of cost 2. This is a well-defined truth assignment, since we know that in each subnetwork one
tariff is 2 and the other 3. Moreover, each of the m clause-commodities contributes a revenue of
2, hence it must use a path with a tariff-arc of cost 2. In other words, for each clause at least one
literal is ‘true’, hence the truth assignment satisfies all clauses. O

The reduction used for the proof of Theorem 1 shows that the river tarification problem remains
NP-hard even for unit demands, a fixed number of tariff values and when the operator is forced
to use tariffs such that he serves (a given subset of) all clients.

5 The quality of uniform tarification policies

The uniform tarification problem (UTP) is the same problem as the general tarification problem,
with the additional restriction that all tariffs are required to be identical. As shown by van Hoesel
et al. [14], the uniform tarification problem can be solved in polynomial time, even in the general
setting where clients may use paths with several tariff arcs. The algorithm described in van Hoesel
et al. [14] uses the parametric shortest path algorithm of Young et al. [16] and Karp and Orlin
[10] to determine the tariff values (i.e. breakpoints) for which the shortest path tree changes for
any client. Calculating the revenue for the operator at each breakpoint and maintaining the best
solution yields the optimal uniform tarification policy in polynomial time.

We are interested in the loss that can be experienced by adopting a uniform tarification policy.
Apart from pure theoretical interest, the question is motivated out of the desire to — in the long
run — extend to models with more than one operator. In that situation, we have a Game Theoretic
setting between operators for the determination of the tariffs. In that context, the quality of an
operator’s strategy moves into the foreground - uniform tarification being a strategy that can be
implemented efficiently (i.e., in polynomial time).

Therefore, denote by IIYTF the revenue for an optimal uniform tarification, and by ITOFT the
revenue for an optimal non-uniform tarification. By definition, ITYVTF < ITOPT,

Lemma 1. If an optimal tarification for the river tarification problem with revenue IIOFT utilizes
at most v different tariffs, then for the optimal uniform tarification, TIVTY > TIOFT /p.
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Figure 4: Network for (z1 V za V a3) A (T1 V Za V 24).
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Figure 5: Staircase function f(z) with inscribed rectangle.

The proof of this lemma is quite trivial once the structure of an optimal solution to the river
tarification problem is clear. To this end, consider an optimal non-uniform tarification with tariffs
71 < -+ < 7y, and let D; be the total demand on an arc a; with tariff 7;, i € {1,...,m}. By
D =3>"", D, we denote the total demand served by the operator. Then the revenue created by
this solution is the area under the following ‘staircase’ function f : [0, D] — [0, oo, illustrated in
Figure 5.

f(z) =7; for all x with ZD]-S T <ZDj’ ie{l,...,m}. (5)

J<i J<i

Proof of Lemma 1. Consider any of the rectangles inscribed under the graph of function f(x), with
area T} :=7;- Zj>i D;. Then it holds that TIVTF > T for all i € {1,...,m}, since the area of any
such rectangle is a lower bound for the revenue yielded by the optimal uniform tariff IIVT?. This
claim is true because, starting with the optimal set of tariffs 71, ..., 7,,, and levelling all tariffs to
some value 7;, creates a revenue loss of at most Zm’i<7'j DT + Zi:T,;>7'j D;(1; — 7). (Notice
that this does not hold for the general tarification problem.) Hence, if only r different tariffs are
utilized, we consider the 7 (inclusion-)maximal rectangles under function f, say T;,,...,T;,, and
get r- HUTP > Z;:l fIvij > HOPT.

O

Since r < m, Lemma 1 yields the following theorem. Tightness of the result will be shown
below, using Example 2.

Theorem 2. Uniform tarification is an m-approzximation for the river tarification problem, and
this bound is tight.

We next derive an improved bound on the quality of uniform tarification policies for the case
of bounded input data. To this end, denote by 7T,ax an upper bound on the maximal possible
tariff. For example, a trivial value for 7.« is given by the maximal cost of any fixed cost arc,
Tmax = MaXgcp Cq- Then, if D is the total demand captured by the operator in an optimal

non-uniform tarification,
U:=D - Thax (6)

is an upper bound for the optimal revenue ITOFT.

Lemma 2. If II°PT is the revenue for an optimal tarification for the river tarification problem,
and U is the upper bound on TI°FT as defined in (6), then for the optimal uniform tarification,
HUTP > HOPT/(l + log U)l

IWith log z we denote the natural logarithm, i.e., el°8% = z.
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Proof. Indeed, we will even prove a slightly stronger result than claimed in Lemma 2. First recall
the definition of the staircase function f in (5), as well as the inscribed rectangles, with areas
T =75 Zpi Dj;. Let £ be the index of the maximal of these m rectangles, with area T,. Let
Ty = ijz D; =Ty/7¢. We show

HOPT

UTP -, .
~ 1+ 1log(U/Ty)

(7)

Lemma 2 then follows, because we know that the optimal tariff only adopts integral values, and
T, > 1. To prove (7), we define the function

gla) =

.:Dixforate[O,D). (8)

We claim that g(z) > f(x) for = € [0, D). To see this, take any x with )
then f(x) = 7; by definition. However,

D;<z <>, Dj,

j<i

Tg Tg TZ TZ
g(z) = > = = >
D—z~ D- Zj<i Dj ZjZi D;  Ti/7

Ti:f(x)a

where the first inequality follows by choice of x, and the last follows by choice of £ as the index of
the largest rectangle.

Hence, the area under the staircase function, which equals , can be upper bounded in
terms of the area defined by the function g(z), as depicted in Figure 6. To compute this area, we
partition it into three parts, namely the rectangle Tj itself, the area under g(x) on the domain
x € [0,D — xy], as well as the area to the right of g(x) on the domain 7 € [Ty, Tmax]. The latter
is the integral of the function D — ¢g~!(7) = T;/7 on the domain [Ty, Timax]. We thus obtain the
following.

HOPT

oPT D—z, Ty T max T,
II < T, + / D dx + / —dr = Ty[1+1ogD +10g Tmax
0 — T

—log 7y — log ]
= Ty[1+1logU —logTy]
= T;[1+1og(U/Ty)] ,

and since Ty < TTY™P | claim (7) follows.

O

Notice that claim (7) confirms the following geometric intuition: The closer the staircase
function f(x) is to the straight line © — (Tmax/D) - x, the closer is Ty to U/4, which yields
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Figure 7: The analysis of uniform tarification policies is tight.

an approximation ratio of (1 + log4) ~ 2.4 for uniform tarification. Geometric intuition indeed
suggests a ratio of roughly 2, the additional 0.4 being caused be the difference between the functions
g(z) and f(x). In Section 8, we compare the quality of uniform versus non-uniform tarification,
based on instances obtained from France Télécom.

Theorem 3. If both demand per client d, k € {1,...,n}, and mazimal tariff Tmax are polynomi-
ally bounded in terms of m (the number of tariff arcs), then uniform tarification is an O(logm)-
approximation for the river tarification problem.

Proof. Since dy, € poly(m) for all k and Ty,ax € poly(m), we have that 1+logU € O(logm). Thus,
the theorem follows from Lemma 2.
O

Finally, let us show tightness of the bounds in Lemmas 1 and 2, and thus also tightness of
Theorem 2.

Example 2. Given m commodities and m tariff arcs. Every commodity is operating its own
subnetwork with one tariff arc, that is, the entire network consists of m disjoint subnetworks and
each of them contains one commodity and one tariff arc. Fix an integer b > 3 and let the demand
in subnetwork k be given by dy = - bk_l7 ke {1,...,m}. This way, the total demand D equals
b™ — 1. Moreover, the maximal revenue for subnetwork k is limited by a fixed cost arc (s, tx),
with cost ¢ = b*™ %, Hence, the maximal tariff 7.y equals 621,

In the optimal solution, the tariff for each subnetwork k is set to its maximal value, b>™ = Each
subnetwork therefore contributes a revenue of b*™ — b*” ! and II°PT = m(b*™ — b*™~'). The
optimal uniform tarification consists in setting the tariff on all tariff arcs to b™. This way, every unit
of demand creates a profit of b™, yielding a total revenue of b*™ — b™. Other (reasonable) uniform
tariffs would be values b*™ 7%, k e {1,...,m — 1}. This yields a total revenue of b*™ — p>mk,
which is less. Therefore, we obtain

b2m —pm - b2m B l b
m(me _ b2m—1) — m(me - me—l) - m b—1 .

HUTP/HOPT —

Now, observe that in the optimal solution m different tariffs are utilized. Lemma 1 (Theorem 2,
respectively) suggests that uniform tarification provides an m—approximation. Example 2 proves
that this is best possible, since b can be chosen arbitrarily large.

Moreover, Lemma 2, respectively claim (7), suggests that uniform tarification yields a (1 +
log(U/Ty))—approximation. Here, T is the largest rectangle under the function f; see the proof
of Lemma 2. In Example 2, U = Typax - D = (0™ — 1) - b1 and T, = b*™. We thus have
U/T, = (b™ —1)/b. Hence, (141og(U/Ty)) = 1 +1log(b™ —1) —logb < 14 (m —1)logb < mlogb.
Hence, Lemma 2 yields that uniform tarification is an O(m)-approximation on this example (the
hidden constant being log b), while the same Example 2 shows that O(m) is indeed best possible.
Notice that this does not contradict the claim of Theorem 3, since in Example 2 neither tariffs
nor demands are polynomially bounded in terms of m, the number of tariff arcs.
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Figure 8: Reduction of INDEPENDENT SET to all-service RTP.

6 Inapproximability of the river tarification problem

In this section, we consider the following variation of the river tarification problem: The operator
must set tariffs in order to capture the demand of all clients, that is, tariffs must be such that no
client k is forced to use the arc (sg, t). We refer to this problem as the all-service river tarification
problem. NP-hardness of this problem follows by our previous reduction presented in Section 4.
We show:

Theorem 4. For any € > 0, the existence of a polynomial time approximation algorithm for the
all-service river tarification problem with with n clients and m tariff arcs

e with worst case ratio O(m'/?>=¢) implies P = NP;

(
o with worst case ratio O(m!~¢) implies ZPP = NP;
e with worst case ratio O(n*/*=¢) implies P = NP;

e with worst case ratio O(n/>=¢) implies ZPP = NP.

Proof. The proof uses an approximation preserving reduction from INDEPENDENT SET [7] to the
all-service RTP.

So assume we are given a graph G = (V, E), and the problem is to find a maximum cardinality
subset V/ C V of vertices such that no two vertices in V' are connected by an edge. The trans-
formation works as follows. For every vertex v € V we introduce a client with origin-destination
pair {s,,t,} and demand d, = |E|, and a corresponding tariff arc a,,. We connect the source s,
to the tail of the tariff arc a,, and the head of a, to the destination ¢,, using zero cost fixed cost
arcs. Moreover, there is a fixed cost arc (s,,t,) with cost (|V| + 1) for all vertices v € V. For
every edge e € E we introduce a client with origin-destination pair {s.,t.} and unit demand. The
upper bound on the cost of routing this demand is given by the fixed cost arc (s.,t.) with cost 1.
For all edges e € F and all vertices v € V with v € e, we furthermore introduce fixed cost arcs
(Se, tail(ay)) and (head(a,),te), with zero cost. This transformation results in an instance of the
all-service RTP with |V| tariff arcs, and |V| + |E| clients. Figure 8 gives an example of such a
transformation for a graph G = (V, E) with 3 nodes and 2 edges.

We claim that G has an independent set of cardinality at least k if and only if there exists a
tariff policy for the all-service RTP with a total revenue of |V||E|(k + 1) + |E|.

First, assume that G has an independent set V' of cardinality k. For all v € V', set the tariff
on the corresponding tariff arc a, to |V| + 1, and all other tariffs to 1. By the definition of an
independent set, for any edge e = (v,u) € F at least one of the vertices, v or u, is not in V’.
Therefore, the tariff of at least one of the tariff arcs, a, or a, is 1. All clients corresponding to an
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edge e can thus be served, using one of the tariff arcs a, or a,. The clients (s,,t,) corresponding
to the vertices v € V are also served, since the upper bound of |[V| + 1 is not exceeded with
the so-defined tariffs. Hence, all demands are served. The revenue consists of |E| from all clients
corresponding to the edges E of G, |E|(|V|+1)k from the clients corresponding to the independent
set V', and |E|(|]V] — k) from the clients corresponding to V' \ V’. That yields a total revenue of
BIVI(k+ 1) + |E].

Conversely, assume that there exists a set of tariffs that captures all demands, such that the
revenue is |E||V|(k+1)+|E|. We will show that this implies that the graph G has an independent
set of cardinality at least k. Since all demands are captured at this tarification strategy, for any
edge e = (v,u) € E, the tariff on at least one of the arcs, a, or a,, is 1. Consider the set
of vertices V' := {v € V : t,, > 1}. By definition, no pair of nodes v,u € V' is connected
by an edge. Hence, V' is an independent set in G. Let k' := |V’|. The revenue is equal to
|E|+ |E|(|V] = K)+|E|(|V]|+ 1)k = |E||V|(K +1) + |E|, which by assumption is at least as large
as |E||V|(k 4+ 1) 4+ |E|. This implies that &’ > k and thus that V' is an independent set in G of
cardinality k' > k.

Now, let us assume that we have an a-approximation algorithm A for the all-service RTP,
with @ > 1. Consider any instance G = (V, E) of INDEPENDENT SET, and the all-service RTP
resulting from the above reduction. We can assume that both the optimal solution and the solution
produced by A only utilize tariff values 1 or |V| + 1, because any tariff greater than 1 and not
equal to [V|+ 1 can be turned into |V| + 1 with a revenue gain. So IOFT = |E||V|(k + 1) + |E|
for some k, and TI* = |E||V|(K' + 1) + | E| for some k’. The first part of the proof yields that the
maximal independent set of G has size k, and algorithm A can be used to find an independent set
of size at least k’. Moreover,

1_EWVIK+)+IB| _ Tt tk 24w
a " |E|VI(k+1)+|E] 1+ +k  1+k’

Vi

hence k' > (k+ 1)/a — 2. In other words, we have an O(a)-approximation algorithm for the
INDEPENDENT SET problem.

It is now well known from work of Hastad [8] that the INDEPENDENT SET problem cannot have
a polynomial time approximation algorithm with worst case guarantee O(|V|'/2=) unless P = NP,
and that it cannot have a polynomial time approximation algorithm with worst case guarantee
O(JV|*~¢) unless ZPP = NP. Since the number of tariff arcs m in our transformation equals |V,
the first two claims of the theorem follow. Since the number of clients n in our transformation
equals |V| + |E| € O(|[V]?), the second two claims follow. O

It is probably worthy to mention that this inapproximability result still holds when all input
data is polynomially bounded (in terms of m); this follows directly from our reduction.

7 Polynomially solvable special cases

Since the river tarification problem is a special case of the general tarification problem, the re-
spective results known for the general tarification problem hold. Among these are those discussed
by Labbé et al. [11]: the case with multiple commodities, but one tariff arc (single arc linear tari-
fication problem); and the case with one client where the path in the network taken by the client
in the optimal solution is known a priori (fixed path linear tarification problem). Furthermore
some special cases are discussed by Van Hoesel et al. [14]: the case with multiple commodities and
a linear pricing strategy, where the number of tariff arcs is constant (bounded arcs linear tarifi-
cation problem) and the case with multiple commodities and parametric tarification (parametric
tarification problem).

In addition, the river tarification problem is also polynomially solvable if the number of clients
n is bounded from above by a constant. In that case, the number of assignments of clients to
tariff arcs is bounded by m™ which is a polynomial for fixed n. Consider therefore the following
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Figure 9: Example of a special cost structure (n = 2,m = 3).

formulation, where the path taken by each client in the network is denoted by p;, € P;. Recall
that Py represents the set of all possible paths taken by a client k& € K.

max ». mpr (T, dy,)
T kEK

st Lp(r,dy) 2 1y (1,dy) Yk € K,¥p e P, (9)
7o >0 VaeT

Since for each client, there are at most m + 1 paths in the network, |Py| is bounded by m + 1.
Hence, the number of constraints is polynomial in the input data. Therefore, if we solve m™
instances of (9), we can retrieve the optimal solution in polynomial time.

Finally, for specific cost structures of the network, the river tarification problem is polynomially
solvable, too. Denote by uj the upper bound on the cost for each client k € {1,...,n}. For each
node v € N in the shortest paths network define a value ¢, > 0, and assume that the cost of each
fixed cost arc (4, ) is given by (c; + ¢;), except for the arcs (si,tx), which represent the upper
bounds ug. See Figure 9 for an example. We can now transform the costs of fixed cost arcs such
that the cost of using a tariff arc is the same for all commodities, by incorporating the costs c;,
and ¢, in the upper bound: uy «— u — (¢s, + ¢, ). For this new instance, in an optimal solution
all clients use the same tariff arc. We can thus find the optimal solution of this special case of
RTP by solving m instances of the single arc linear tarification problem.

8 Numerical Results

As stated previously, whenever the function that describes the total revenue in an optimal non-
uniform solution, i.e.the staircase function defined in (5), is close to a straight line, geometric
intuition suggests a worst-case ratio for uniform tarification of approximately 2. The worst case
Example 2 crucially hinges on a (staircase) function that approximates a hyperbola. Thus, it
can be conjectured that the empirical performance of uniform tarification policies outperforms the
theoretical bounds we have found. This is indeed confirmed in the following numerical experiments,
displayed in Table 1. The study is based on instances obtained from France Télécom.

These instances represent telecommunication networks for the international interconnections
market, as described in Section 2. We compare the optimal solutions for both uniform tariffs
(MYTF) and non-uniform tariffs (IT9F7). The optimal non-uniform solution is calculated using
the model and mixed integer programming formulation described in Bouhtou et al. [1]. The value
of TIVTF is calculated using the same formulation, requiring that all tariffs be equal. As such, we
do not compare the actual computation times, but are just interested in the effectiveness of the
optimal uniform tarification policies. Table 1 gives a brief description of each network, stating
the number of nodes, arcs, tariff arcs and clients. The optimal non-uniform and uniform solution
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Table 1: Quality of Uniform Tarification on France Télécom instances.

Instance ‘ IN| |[A] m n oorr  murTe %

RTN1 29 94 7 15 841 624 74%
RTN2 29 98 6 21 4099 3496 85%
RTN3 59 206 10 13 1118 880 79%
RTN4 59 204 10 20 2217 1512 68%
RTN5 49 120 9 21 74948 55968 74%
RTNG6 33 116 15 12 28166 20328 2%

values are displayed in the columns ITFT and YT, The final column is the approximation
ratio.

9 Conclusion

Several questions remain for further research. It remains open at this point if there exists a better
approximation algorithm than just uniform tarification, or if the problem is inapproximable even
without the all-service assumption. Moreover, it would be interesting to analyze which type of
results can be extended to the general tarification problem.
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