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Abstract

Problem definition: Streaming platforms such as Spotify are popular media ser-

vices where content creators may offer their content. Because these platforms operate

in a highly competitive market, content creators may leave the platform and join else-

where. This paper studies conditions under which content creators have no incentives

to leave the platform and thus stability can be preserved. Methodology/results: We

introduce a stylized model for streaming platform situations and associate these situa-

tions with a cooperative game. We focus on the (non)emptiness of the core to analyze

the stability of the streaming platforms. It turns out that both stable and unstable

streaming platforms exist. We show that for streaming platforms operating in a market

where users have completely opposite streaming behavior, stability cannot always be

preserved. However, in markets where users are more similar in their streaming behav-

ior, stability can be preserved. We further analyze the stability of streaming platforms

by means of numerical experiments. Our results indicate that stability of streaming

platforms generally is a delicate matter. Managerial implications: Streaming plat-

forms are more likely to be stable in markets where users are similar in their streaming

behavior. To avoid that content creators leave the platform, it is therefore recommended

to focus on particular market segments where these similarities occur.
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1 Introduction

With more than 400 million active users monthly in 2021, Spotify is one of the most used

streaming platforms in the world. Despite its popularity among users, Spotify has been

criticized by content creators (artists) who believe that they should earn more from providing

their content on the platform. In 2021, a group of content creators held a series of protests in

front of Spotify and various famous artists such as Sting, Kate Bush, and Paul McCartney

spoke out against too low payments. Because Spotify operates in a highly competitive

market, with competitors such as Apple Music, Deezer, and Soundcloud, it is important

to take these signals seriously. Otherwise artists, or record labels that hold their rights,

may switch to other streaming platforms or decide to collaborate and start a platform by

themselves. In other words, it is important for Spotify to allocate the streaming revenues in

such a way that stability of the streaming platform is preserved. In this paper, we analyze

in what type of situations stability can be preserved.

We introduce a stylized model for streaming platform situations where content creators

offer their content to users on a platform. In this model, users pay a fixed premium fee per

subscription period to get unlimited access to all content of all creators on the platform. The

total revenue of the platform is the product of this premium fee and the number of subscribed

users. The streaming platform tries to allocate the total revenue among the content creators

in such a way that stability of the platform is preserved.

To define stability, we use concepts from cooperative game theory. We say that a stream-

ing platform is stable if it is able to divide the total revenue in such a way that no group of

content creators has incentives to leave the platform. Here, content creators have incentives

to leave the platform if they receive less than what they could obtain by starting their own

streaming platform. We determine the total revenue of such a streaming platform as follows.

First, we identify the streaming matrix of the streaming platform and the reservation prices

of all users. The streaming matrix describes the average number of streams of each con-

tent creator for each user per subscription period and the reservation price of a user is the

maximum amount of money (s)he is willing to pay per stream per period. The latter infor-

mation can, for instance, be estimated from marketing data. Based on this streaming matrix

and the reservation prices of all users, we determine which users are willing to subscribe to

the new platform for any given premium fee, taking into account that only the content of

the content creators in the group is offered. We assume that the group of content creators

charges a premium fee on their own platform that maximizes the total revenue (i.e., that

maximizes the product of the premium fee and the number of users that would subscribe

to their platform). We introduce a cooperative game that lists the total revenue for each

group of content creators and identify the core of this game to analyze the stability of the

streaming platform.
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By means of two examples, we illustrate that both stable and unstable streaming plat-

forms exist. In particular, we show (in Proposition 1) that for streaming platforms operating

in disjoint market segments (i.e., streaming platforms operating in a market where users have

completely opposite streaming behavior), stability cannot always be preserved. However, in

markets where users are more similar in their streaming behavior, stability can be preserved.

We identify two such types of markets (in Proposition 2 and Proposition 3). The first ones

are called inclusive markets, where each group of content creators would charge a premium

fee on its own streaming platform such that all users subscribe. The second ones are called

homogeneous markets, where all users are willing to pay the same amount of money to stay

on the platform.

We further analyze the stability of streaming platforms by means of numerical experi-

ments. In particular, we focus on streaming platforms that do not operate in disjoint market

segments, inclusive markets, or homogeneous markets. The numerical experiments indicate

that stability of streaming platforms generally is a delicate matter. In particular, we observe

that streaming platforms switch multiple times from stable to unstable and vice versa when

we gradually turn an inclusive market into disjoint market segments.

The remainder of this paper is organized as follows. Section 2 provides a literature

overview of the main advancements in the related research disciplines. In Section 3, we

introduce streaming platform situations and associated streaming platform games. The

stability of streaming platforms is investigated in Section 4 and numerical experiments are

presented in Section 5. We conclude this paper in Section 6.

2 Literature review

Our work contributes to the new stream of literature on operations management (OM)

problems for music streaming platforms, as well as to the stream of literature on applications

of cooperative game theory.

2.1 OM problems for music streaming platforms

One of the first papers in this new stream of literature is Li et al. (2020). This work

investigates whether it is beneficial for music streaming platforms to offer both free and

subscribed services. Free services come with advertisements (e.g., a short commercial break

after a certain number of songs) and/or functionality limitations such as lower sound quality.

It is shown that a music streaming platform should offer only subscribed services if the

advertisement rate (i.e., the revenue the platform makes from one unit of advertisements) is

relatively low. For moderate advertisement rates, it is better to offer both services, while it is

optimal to offer only free services for high advertisement rates. A similar problem has been

addressed in Amaldoss et al. (2021), except that multiple music streaming platforms are

now competing in a market for users and content creators. In such a competitive market, it
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is never optimal to offer subscribed service only. As suggested in DeValve and Pekeč (2022),

music streaming platforms can also offer multiple types of subscribed services that vary in

the level of advertisement, where services with more advertisements are charged for a lower

price. The authors show that streaming platforms can benefit from offering such a menu of

services.

Alaei et al. (2022) is the most recent study in the stream of literature on OM prob-

lems for music streaming platforms. In this paper, two well-known allocation rules, namely

the pro-rata and user-centric rule, are studied. The pro-rata rule pays content creators

proportionally to their share of the overall streaming volume, whereas the user-centric rule

divides each user’s subscription fee proportionally among the content creators based on the

streaming behavior of that user. The authors show that the pro-rata rule is preferable if a

streaming platform wants to maximize its revenue. They do so by taking into account that

content creators and users can decide to join, but also leave, the platform based on individual

considerations.

The four mentioned papers have something in common: they all focus on optimizing the

performance of streaming platforms (e.g., offering the best menu of services or selecting the

allocation rule that maximizes total revenue). Our paper deviates in that regard: we focus

on evaluating the performance of a streaming platform. That is, we evaluate whether an

existing streaming platform is able to divide the total revenue in such a way that no group of

content creators has incentives to leave the platform. As such, we contribute to the literature

on OM problems for streaming platforms by offering an evaluation method that determines

the stability of an already existing streaming platform.

From a modelling perspective, we are not the first ones that incorporate individual con-

siderations of content creators. In particular, in Alaei et al. (2022), content creators may

leave the streaming platform if their individual revenue share is smaller than an outside

option value. In our paper, we also allow for this, but on top of that allow content creators

to leave the platform collectively and to start an own streaming platform themselves. We are

the first ones that incorporate this group behavior and illustrate that exactly this possibility

may make streaming platforms unstable.

2.2 Applications of cooperative game theory

Cooperative game theory has been applied to various domains. In this section, we discuss

some of these recent applications in more detail.

A recent application of cooperative game theory to the healthcare sector is Westerink-

Duijzer et al. (2020). Here, multiple countries together decide how a limited number of doses

of vaccine have to be distributed among the inhabitants of these countries. The authors derive

sufficient conditions under which the total return from such a cooperation can be allocated

among the countries in a stable way.

Another application domain is the humanitarian sector. Typically, humanitarian sup-
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ply chains involve many different entities, such as government, military, private, and non-

governmental organizations. Well-coordinated interactions between entities can lead to syn-

ergies and improved humanitarian outcomes. An example of such a coordinated interaction

is discussed in Ergun et al. (2014). The authors study the distribution of costs or benefits

from multi-agency coordination and obtain insights about the conditions under which this

distribution is stable.

Cooperative game theory has also been applied to the public transport sector. For in-

stance, Algaba et al. (2019) investigates how revenues from an all-in-one travel card should

be distributed among participating public transport companies (e.g., metro or bus). The

authors introduce two rules that distribute these revenues in a stable way. A collaborative

initiative in the transport sector is discussed in Van Zon et al. (2021). The authors consider

several transport companies that can pool their fleet to reduce transportation costs and/or

pollution. They model a corresponding cooperative game and introduce a row generation

algorithm for either determining a core element or concluding that the core is empty.

Bergantiños and Moreno-Ternero (2020) applied cooperative game theory to the television

broadcasting industry. They analyze the problem of sharing the revenues from broadcast-

ing sports leagues among participating teams. They introduce two allocation rules: the

equal-split rule and the concede-and-divide rule. Both an axiomatic approach and a game-

theoretical approach are used to analyze these two rules.

Cooperative game theory has also been applied to the retail sector. For instance, Nip

et al. (2022) illustrate how retailers can benefit when coordinating the assortment planning.

In particular, each retailer possesses a couple of products and the common objective is to

select a subset of those products, to offer to the customers, that maximizes the expected

revenue. They show that nonemptiness of the core depends on the behavior of the players

outside the coalition. Another example is discussed in Chen and Zhang (2016). The authors

show that retailers can benefit by placing joint orders to a supplier. Under the assumption

of linear holding and backorder costs, they show nonemptiness of the core. Inspired by

shipments for fashion products with long supplier lead times, Özen et al. (2008) illustrate

how retailers can benefit by coordinating their orders for delivery into one or more supply

nodes, and subsequently reallocating their orders after the demand realization. The authors

show that the associated cooperative game has a nonempty core and provide a complete

description of this set.

The final application domain we discuss is the service industry. In this industry indepen-

dent service providers may collaborate by pooling their resources into a joint service system.

These service providers may represent diverse organizations such as hospitals that pool beds

or maintenance firms that pool repairmen or spare parts. Karsten et al. (2015) illustrates

that the costs of such a pooled setting can be allocated in a stable way if resources are pooled

completely and service providers are symmetric. Schlicher et al. (2020) shows that stability

can always be achieved when optimal pooling of resources is applied.
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In summary, cooperative game theory has been applied to several domains for analyzing

the stability of collaborations. Our paper contributes to this stream of literature by applying

cooperative game theory to the music streaming industry and providing sufficient conditions

for stability.

3 The model

3.1 Streaming platform situations

Consider a streaming platform (e.g., Spotify) with a nonempty and finite set N of content

creators offering their content (e.g., songs). On top of that, there is a nonempty and finite set

U of users subscribed to this platform. All streams of these users are tracked by a streaming

matrix V ∈ ZN×U
+ , where Vij denotes the number of streams of content creator i ∈ N by

user j ∈ U . We assume that each content creator is streamed by at least one user, and each

user streams at least one content creator. As a result,
∑

j∈U Vij > 0 for all i ∈ N , and∑
i∈N Vij > 0 for all j ∈ U . Each user j ∈ U has a reservation price rj ∈ R++, reflecting the

maximum amount of money that this user is willing to pay per stream. Finally, each user

pays the same premium fee pN ∈ R++ to the streaming platform in order to get unlimited

access to all content of all creators on the platform. This premium fee is determined by the

maximum amount of money that can be charged per user, in such a way that all users are

willing to stay on the platform. Note that the maximum amount of money that user j ∈ U

is willing to pay to stay on the platform is rj ·
∑

i∈N Vij , so all users are willing to stay on

the platform by charging the minimum of these maximum amounts, i.e.,

pN = min
j∈U

{
rj ·

∑
i∈N

Vij

}
.

Because each user pays this premium fee, the total revenue of the streaming platform is given

by pN · |U |. We summarize this streaming platform situation as a quadruple θ = (N,U, V, r).

We now illustrate a streaming platform situation by means of an example. Note that the

parameters are not selected to represent reality, but to keep calculations simple and easy to

follow.

Example 1. Let θ = (N,U, V, r) be a streaming platform situation with content creators

N = {i1, i2, i3}, users U = {j1, j2, j3}, streaming matrix

V =

j1 j2 j3 i1 2 2 0

i2 4 0 4

i3 6 4 0

,
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and reservation prices r = (1, 2, 3). User j1 is willing to pay at most rj1 ·
∑

i∈N Vij1 =

1 · (2+4+6) = 12, user j2 is willing to pay at most rj2 ·
∑

i∈N Vij2 = 2 · (2+0+4) = 12, and

user j3 is willing to pay at most rj3 ·
∑

i∈N Vij3 = 3 · (0 + 4+ 0) = 12. Hence, the streaming

platform charges a premium fee of pN = min{12, 12, 12} = 12 to each user, leading to a total

revenue of pN · |U | = 12 · 3 = 36. △

3.2 Streaming platform games

In a streaming platform situation θ = (N,U, V, r), a nonempty and strict subset of content

creators S ⊂ N could decide to leave the platform and start its own streaming platform

where it offers all content of the creators in S. The nonempty set of users that stream the

content of creators in S is given by

US =

{
j ∈ U

∣∣∣∣∣ ∑
i∈S

Vij > 0

}
.

The positive maximum amount of money that user j ∈ US would be willing to pay to

subscribe to this new streaming platform of S is given by

tSj = rj ·
∑
i∈S

Vij .

Consequently, for a premium fee p ∈ R++, the corresponding set of subscribing users is given

by

QS(p) =
{
j ∈ US

∣∣ tSj ≥ p
}
.

Note that a higher premium fee never leads to additional subscribers, i.e., QS(p) ⊆ QS(p′)

if p > p′. The group of content creators charges a premium fee p ∈ R++ that maximizes the

total revenue, i.e., maximizes the premium fee multiplied by the corresponding number of

subscribing users, so

max
p∈R++

{
p · |QS(p)|

}
.

This maximization problem boils down to comparing at most |US | local optima with each

other. The locations of these local optima correspond to the maximum amount of money

that one (or some) of the users in US would be willing to pay to subscribe to the platform

of S. As a result,

max
p∈R++

{
p · |QS(p)|

}
= max

j∈US

{
tSj · |QS(tSj )|

}
.

The nonempty set of optimal premium fees PS ⊆ R++ is given by

PS = argmax
p∈R++

{
p · |QS(p)|

}
.
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As a result, PS ⊆ {tSj | j ∈ US}. The following example illustrates that the optimal premium

fee does not need to be unique.

Example 1 (continued). Consider the group of content creators S = {i1, i2}. Then US = U ,

i.e., all users stream the content from the creators in S. The maximum amount of money

that users would be willing to pay to subscribe to the streaming platform of S is given by

tSj1 = rj1 ·
∑

i∈S Vij1 = 1 · (2 + 4) = 6 for user j1, t
S
j2

= rj2 ·
∑

i∈S Vij2 = 2 · (2 + 0) = 4 for

user j2, and tSj3 = rj3 ·
∑

i∈S Vij3 = 3 · (0 + 4) = 12 for user j3. Hence, for a premium fee p

with 0 ≤ p ≤ 4, all three users would subscribe to the platform and thus the total revenue

equals p · 3. For a premium fee p with 4 < p ≤ 6, only users j1 and j3 would subscribe to

the platform and thus the total revenue equals p · 2. For a premium fee p with 6 < p ≤ 12,

only user j3 would subscribe to the platform and thus the total revenue equals p · 1. For

a premium fee p with p > 12, no user is willing to subscribe to the platform and thus the

total revenue equals 0. This is summarized in the following figure, where we depict the total

revenue p · |QS(p)| as a function of the premium fee p.

p0 2 4 6 8 10 12

p · |QS(p)|

4

8

12

Hence, the maximum total revenue of 12 is obtained by charging a premium fee from PS =

{4, 6, 12}. △

Taking into account that each group of content creators could possibly leave and start its

own streaming platform, we associate to each streaming platform situation θ = (N,U, V, r) a

streaming platform game. This game is a pair (N, vθ) where the content creators in N take

the role as players and vθ assigns to each nonempty coalition S ⊆ N the maximum total

revenue it would obtain from its own streaming platform, i.e.,

vθ(S) =

pN · |U | if S = N ,

maxp∈R++

{
p · |QS(p)|

}
if S ⊂ N .

We conclude this section with an illustrative example of a streaming platform game.
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Example 1 (continued). The total revenue of the streaming platform is given by pN · |U | =
12 · 3 = 36 and thus vθ(N) = 36. For coalition {i1, i2}, the maximum total revenue it would

obtain from its own streaming platform is given by maxp∈R++{p · |Q{i1,i2}(p)|} = 12, so

vθ({i1, i2}) = 12. The total revenue of each other coalition can be determined in a similar

way. The resulting streaming platform game (N, vθ) is presented in the following table.

S {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3}
vθ(S) 4 12 12 12 16 24 36

△

4 Stable streaming platforms

4.1 The core

To analyze the stability of streaming platform situations, we focus on the core of the as-

sociated streaming platform games. Let θ = (N,U, V, r) be a streaming platform situation

and let (N, vθ) be the associated streaming platform game. The core C(N, vθ) consists of

all allocations x ∈ RN
+ that satisfy the following two conditions:

efficiency:
∑
i∈N

xi = vθ(N),

coalitional rationality:
∑
i∈S

xi ≥ vθ(S) for all nonempty S ⊂ N.

The efficiency condition states that the total revenue of the streaming platform is fully

divided among the content creators. The coalitional rationality condition states that no

coalition has an incentive to leave the streaming platform, so each coalition is allocated at

least the maximum total revenue it would obtain from its own streaming platform. Because

the core is a convex polytope, it consists of zero, one, or infinitely many elements. A stream-

ing platform is stable if the core of the associated streaming platform game is nonempty,

and unstable otherwise. The following two examples illustrate that there exist stable and

unstable streaming platforms.

Example 1 (continued). The allocation x = (6, 16, 14) satisfies efficiency because xi1 +

xi2 + xi3 = 36 = vθ(N), and satisfies coalitional rationality because xi1 = 6 ≥ 4 = vθ({i1}),
xi2 = 16 ≥ 12 = vθ({i2}), xi3 = 14 ≥ 12 = vθ({i3}), xi1 + xi2 = 22 ≥ 12 = vθ({i1, i2}),
xi1 + xi3 = 20 ≥ 16 = vθ({i1, i3}), and xi2 + xi3 = 30 ≥ 24 = vθ({i2, i3}). Hence,

x ∈ C(N, vθ), so C(N, vθ) ̸= ∅, and thus the streaming platform is stable. △

9



Example 2. Let θ = (N,U, V, r) be a streaming platform situation with content creators

N = {i1, i2}, users U = {j1, j2}, streaming matrix

V =

j1 j2[ ]
i1 3 0

i2 0 2
,

and reservation prices r = (1, 1). The streaming platform charges a premium fee of pN =

min{1 · 3, 1 · 2} = 2 to each user, so that the total revenue is given by pN · |U | = 2 · 2 = 4 and

thus vθ(N) = 4. Content creator i1 would charge a premium fee of 3 on its own platform,

leading to a total revenue of 3 · 1 = 3, so vθ({i1}) = 3. Content creator i2 would charge a

premium fee of 2 on its own platform, leading to a total revenue of 2 · 1 = 2, so vθ({i2}) = 2.

The resulting streaming platform game (N, vθ) is presented in the following table.

S {i1} {i2} {i1, i2}
vθ(S) 3 2 4

Each core allocation x ∈ RN
+ fully divides the total revenue of the streaming platform, so

xi1 + xi2 = vθ({i1, i2}) = 4, in such a way that xi1 ≥ vθ({i1}) = 3 and xi2 ≥ vθ({i2}) = 2.

This is impossible, so C(N, vθ) = ∅, and thus the streaming platform is unstable. △

4.2 Stability analysis

In the previous subsection, we made the remarkable observation that streaming platforms

are not necessarily stable. This raises the following question:

Which conditions for streaming platform situations lead to (un)stable streaming platforms?

In this subsection, we address this question by providing several sufficient conditions.

Our first condition is inspired by the unstable streaming platform in Example 2. In this

example, the content creators are streamed by different users, meaning that the market con-

sists of disjoint segments. Moreover, if the content creators would start their own platform,

they charge different premium fees. These two characteristics together lead to an unstable

streaming platform in Example 2. In Proposition 1, we show that this is true in general, i.e.,

we show that disjoint market segments with distinct premium fees always lead to unstable

streaming platforms.

Disjoint market segments with distinct premium fees. A streaming platform in

situation θ = (N,U, V, r) operates in disjoint market segments with distinct premium fees if

there exists a nonempty S ⊂ N such that the following conditions are satisfied:

(i) US ∩ UN\S = ∅;

(ii) PS ∩ PN\S = ∅.
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Proposition 1. All streaming platforms operating in disjoint market segments with distinct

premium fees are unstable.

Proof. Let θ = (N,U, V, r) be a streaming platform situation and let nonempty S ⊂ N be

such that US ∩UN\S = ∅ and PS ∩PN\S = ∅. In order to prove that the streaming platform

is unstable, we first show that {US , UN\S} forms a partition of U and that {QS(p), QN\S(p)}
forms a partition of QN (p), defined by QN (p) = {j ∈ U | rj ·

∑
i∈N Vij ≥ p} for all p ∈ R++.

For all j ∈ U , we have
∑

i∈N Vij > 0, so
∑

i∈S Vij > 0 or
∑

i∈N\S Vij > 0. As a result,

j ∈ US or j ∈ UN\S , so j ∈ US ∪ UN\S and thus U ⊆ US ∪ UN\S . By definition we also

have US ∪ UN\S ⊆ U , and thus US ∪ UN\S = U . From this, together with the fact that

US ∩ UN\S = ∅, we conclude that {US , UN\S} forms a partition of U .

As a result, for all p ∈ R++, we have

QN (p) =

{
j ∈ U

∣∣∣∣∣ rj · ∑
i∈N

Vij ≥ p

}

=

{
j ∈ US

∣∣∣∣∣ rj · ∑
i∈N

Vij ≥ p

}
∪

{
j ∈ UN\S

∣∣∣∣∣ rj · ∑
i∈N

Vij ≥ p

}

=

{
j ∈ US

∣∣∣∣∣ rj ·∑
i∈S

Vij ≥ p

}
∪

j ∈ UN\S

∣∣∣∣∣∣ rj ·
∑

i∈N\S

Vij ≥ p


= QS(p) ∪QN\S(p),

where the second equality follows from the fact that {US , UN\S} forms a partition of U ,

and the third equality follows from
∑

i∈N\S Vij = 0 for all j ∈ US and
∑

i∈S Vij = 0 for all

j ∈ UN\S . Moreover, because QS(p) ⊆ US , QN\S(p) ⊆ UN\S , and US ∩ UN\S = ∅, we also

know QS(p) ∩ QN\S(p) = ∅. Consequently, {QS(p), QN\S(p)} forms a partition of QN (p)

for all p ∈ R++. To conclude,

vθ(S) + vθ(N \ S) = max
p∈R++

{
p · |QS(p)|

}
+ max

p∈R++

{
p · |QN\S(p)|

}
> max

p∈R++

{
p · |QS(p)|+ p · |QN\S(p)|

}
= max

p∈R++

{
p · |QN (p)|

}
≥ pN · |U |

= vθ(N),

where the first inequality follows from PS ∩ PN\S = ∅, the second equality follows from

the fact that {QS(p), QN\S(p)} forms a partition of QN (p) for all p ∈ R++, and the second

inequality holds becauseQN (pN ) = U . Hence, C(N, vθ) = ∅ and thus the streaming platform

is unstable.
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For streaming platforms operating in disjoint market segments with distinct premium

fees, there exists a group of content creators that is not streamed by all users. Therefore,

it is not optimal for this group of content creators to charge a premium fee on its own

streaming platform such that all users subscribe. In Proposition 2, we show that in the

opposite case, namely if each group of content creators charges a premium fee on its own

streaming platform such that all users subscribe, then the streaming platform is stable. We

refer to such a market as an inclusive market.

Inclusive market. A streaming platform in θ = (N,U, V, r) operates in an inclusive market

if for each nonempty S ⊂ N there exists a pS ∈ PS such that QS(pS) = U .

Proposition 2. All streaming platforms operating in an inclusive market are stable.

Proof. Let θ = (N,U, V, r) be a streaming platform situation. Let j∗ ∈ U be such that

rj∗ ·
∑

i∈N Vij∗ = pN and define x ∈ RN
+ by xi = rj∗ · Vij∗ · |U | for all i ∈ N . Then,∑

i∈N

xi =
∑
i∈N

rj∗ · Vij∗ · |U | = rj∗ ·
∑
i∈N

Vij∗ · |U | = pN · |U | = vθ(N).

For each nonempty S ⊂ N , let pS ∈ PS be such that QS(pS) = U . Then, because the

premium fee pS is such that all users subscribe to the platform of S, we know that pS =

minj∈U{rj ·
∑

i∈S Vij}. As a result,∑
i∈S

xi =
∑
i∈S

rj∗ · Vij∗ · |U | = rj∗ ·
∑
i∈S

Vij∗ · |U |

≥ min
j∈U

{
rj ·

∑
i∈S

Vij

}
· |U |

= pS · |U |

= max
p∈R++

{
p · |QS(p)|

}
= vθ(S).

Hence, x ∈ C(N, vθ) and thus the streaming platform is stable.

The following example illustrates a streaming platform operating in an inclusive market.

Example 3. Let θ = (N,U, V, r) be a streaming platform situation with content creators

N = {i1, i2, i3}, users U = {j1, j2}, streaming matrix

V =

j1 j2 i1 3 2

i2 3 5

i3 5 3

,
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and reservation prices r = (1, 1). The streaming platform charges a premium fee of pN =

min{11, 10} = 10. Note that for each nonempty group of content creators S ⊂ N it is optimal

to charge a premium fee on its own platform such that all users subscribe, so there exists

a pS ∈ PS with pS = minj∈U{rj ·
∑

i∈S Vij} such that QS(pS) = U . Hence, the streaming

platform operates in an inclusive market. The sets of optimal premium fees are presented in

the following table.

S {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3}
PS {2} {3} {3} {6} {5} {8} {10}

Because the streaming platform operates in an inclusive market, Proposition 2 implies that

the streaming platform is stable. The resulting streaming platform game (N, vθ) is presented

in the following table.

S {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3}
vθ(S) 4 6 6 12 10 16 20

Note that the streaming platform is indeed stable because (4, 10, 6) ∈ C(N, vθ). △

In Example 3, there are only two (types of) users on the streaming platform. In that

case, it is in fact sufficient to check whether the streaming platform operates in a semi-

inclusive market, which means that for each individual content creator it is optimal to

charge a premium fee on its own streaming platform such that all users subscribe. Only that

would already guarantee that the streaming platform with two users is stable. This result is

formulated in Proposition 3.

Semi-inclusive market. A streaming platform in θ = (N,U, V, r) operates in a semi-

inclusive market if for each i ∈ N there exists a p{i} ∈ P {i} such that Q{i}(p{i}) = U .

Proposition 3. All streaming platforms with two users operating in a semi-inclusive market

are stable.

Proof. Let θ = (N,U, V, r) with |U | = 2 be a streaming platform situation. For each i ∈ N ,

let p{i} ∈ P {i} be such that Q{i}(p{i}) = U . Then, because the premium fee p{i} is such that

all users subscribe to the platform of i, we know that p{i} = minj∈U{rj · Vij}. Moreover,

because p{i} is an optimal premium fee, we know that

min
j∈U

{rj · Vij} · 2 ≥ max
j∈U

{rj · Vij} · |Q{i}(max
j∈U

{rj · Vij})| ≥ max
j∈U

{rj · Vij} · 1.

As a result, for each nonempty S ⊂ N , we have

min
j∈U

{rj ·
∑
i∈S

Vij} · 2 ≥
∑
i∈S

min
j∈U

{rj · Vij} · 2 ≥
∑
i∈S

max
j∈U

{rj · Vij} · 1 ≥ max
j∈U

{rj ·
∑
i∈S

Vij} · 1.

13



This means that there exists an optimal premium fee such that all users subscribe to the

platform of S, i.e., there exists a pS ∈ PS such that QS(pS) = U . Hence, the streaming plat-

form operates in an inclusive market, so Proposition 2 implies that the streaming platform

is stable.

Note that the streaming platform with two users in Example 3 indeed operates in a semi-

inclusive market. If there are more than two (types of) users on the streaming platform,

then stability is not guaranteed for semi-inclusive markets. This is illustrated in the following

example.

Example 4. Let θ = (N,U, V, r) be a streaming platform situation with content creators

N = {i1, i2, i3}, users U = {j1, j2, j3}, streaming matrix

V =

j1 j2 j3 i1 1 2 1

i2 4 5 6

i3 12 18 20

,

and reservation prices r = (1, 1, 1). The streaming platform charges a premium fee of

pN = min{17, 25, 27} = 17. Note that for each individual content creator i ∈ N it is

optimal to charge a premium fee on its own platform such that all users subscribe, so there

exists a p{i} ∈ P {i} with p{i} = minj∈U{rj · Vij} such that Q{i}(p{i}) = U . Hence, the

streaming platform operates in a semi-inclusive market. The sets of optimal premium fees

are presented in the following table.

S {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3}
PS {1} {4} {12, 18} {5} {20} {16} {17}

The resulting streaming platform game (N, vθ) is presented in the following table.

S {i1} {i2} {i3} {i1, i2} {i1, i3} {i2, i3} {i1, i2, i3}
vθ(S) 3 12 36 15 40 48 51

Because vθ({i2}) + vθ({i1, i3}) > v({i1, i2, i3}), we have C(N, vθ) = ∅. Hence, even though

the streaming platform operates in a semi-inclusive market, the streaming platform is un-

stable. △

Another sufficient condition for stability of streaming platforms is a homogeneous market.

In such a market, all users are willing to pay the same amount of money to stay on the

platform. For equal reservation prices, this boils down to equal total number of streams

for all users. In Proposition 4, we show that homogeneous markets always lead to stable

streaming platforms.

14



Homogeneous market. A streaming platform in θ = (N,U, V, r) operates in a homoge-

neous market if pN = rj ·
∑

i∈N Vij for all j ∈ U .

Proposition 4. All streaming platforms operating in a homogeneous market are stable.

Proof. Let θ = (N,U, V, r) be a streaming platform situation such that pN = rj ·
∑

i∈N Vij

for all j ∈ U . Define x ∈ RN
+ by xi =

∑
j∈U rj · Vij for all i ∈ N . Then,∑

i∈N

xi =
∑
i∈N

∑
j∈U

rj · Vij =
∑
j∈U

rj ·
∑
i∈N

Vij =
∑
j∈U

pN = pN · |U | = vθ(N).

For each nonempty S ⊂ N , we have∑
i∈S

xi =
∑
i∈S

∑
j∈U

rj · Vij =
∑
j∈U

rj ·
∑
i∈S

Vij =
∑
j∈US

rj ·
∑
i∈S

Vij =
∑
j∈US

tSj

≥ max
j∈US

{tSj · |QS(tSj )|} = max
p∈R++

{
p · |QS(p)|

}
= vθ(S),

where the inequality follows from the fact that the maximum amount of money a new

platform could generate is at most the total revenue obtained by charging each user the

maximum amount of money it would be willing to pay to subscribe to this new streaming

platform. Hence, x ∈ C(N, vθ) and thus the streaming platform is stable.

We now illustrate that the streaming platform in Example 1 operates in a homogeneous

market.

Example 1 (continued). We have pN = 12 = rj ·
∑

i∈N Vij for all j ∈ U , so the streaming

platform operates in a homogeneous market. By Proposition 4, the streaming platform is

stable, which is in line with our observation that (6, 16, 14) ∈ C(N, vθ). △

We would like to remark that homogeneous markets are not necessarily inclusive, and

inclusive markets are not necessarily homogeneous. For instance, the stable streaming plat-

form in Example 1 operates in a homogeneous market, but not in an inclusive market, and

the stable streaming platform in Example 3 operates in an inclusive market, but not in

a homogeneous market. Clearly, there also exist streaming platforms operating in both a

homogeneous and inclusive market, including those where all users have equal reservation

prices and equal number of streams for each content creator.

As a final observation, note that our stability results are based on streaming similarities

of platform users. Instead, we could also focus on streaming similarities of content creators.

However, even if the content creators are identical in their value added to the platform, in

the sense that the total amount of money that users would be willing to pay is equal for all

content creators, then the streaming platform might still be unstable. This is illustrated in

the following example.
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Example 5. Let θ = (N,U, V, r) be a streaming platform situation with content creators

N = {i1, i2}, users U = {j1, j2}, streaming matrix

V =

j1 j2[ ]
i1 3 0

i2 1 2
,

and reservation prices r = (1, 1). Note that the content creators have the same added value

to the platform, i.e.,
∑

j∈U rj · Vi1j = 3 =
∑

j∈U rj · Vi2j . The resulting streaming platform

game (N, vθ) is presented in the following table.

S {i1} {i2} {i1, i2}
vθ(S) 3 2 4

Because vθ({i1}) + vθ({i2}) > vθ({i1, i2}), we have C(N, vθ) = ∅, so the streaming platfrom

is unstable. △

5 Numerical analysis

In the previous section, we provided several sufficient conditions that lead to (un)stable

streaming platforms. In particular, we showed that streaming platforms operating in an

inclusive market are stable. In such a market, each group of content creators would charge

a premium fee on its own streaming platform such that all users subscribe. In a situation

with only two users, it suffices that each individual content creator charges a premium

fee on its own platform such that both users subscribe, which is called a semi-inclusive

market. We also showed that streaming platforms operating in a homogeneous market are

stable. In such a market, all users are willing to pay the same amount of money to stay

on the platform. Inclusive markets, semi-inclusive markets, and homogeneous markets have

something in common: they all describe streaming similarities of platform users. The absence

of any of these similarities may lead to an unstable streaming platform, which is confirmed

by our first proposition: streaming platforms operating in disjoint market segments with

distinct premium fees are unstable.

In this section, we further analyze, by means of numerical experiments, the stability of

streaming platforms that operate in none of the above discussed type of markets. In partic-

ular, we generate convex combinations of disjoint market segments with distinct premium

fees and inclusive markets, and discuss when and why these combinations of markets lead

to (un)stable streaming platforms.
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Let θ = (N,U, V, r) and θ′ = (N,U, V ′, r) be two streaming platform situations with

content creators N = {i1, i2}, users U = {j1, j2}, streaming matrices

V =

j1 j2[ ]
i1 300 200

i2 300 200
and V ′ =

j1 j2[ ]
i1 600 0

i2 0 400
,

and reservation prices r = (1, 1). Note that the streaming platform in θ operates in an

inclusive market and the streaming platform in θ′ operates in disjoint market segments with

distinct premium fees. As a result, the streaming platform in θ is stable, while the streaming

platform in θ′ is unstable.

We now investigate how the stability of a streaming platform changes when we gradually

turn the streaming matrix of θ into the one of θ′. Let α ∈ {0, 0.05, 0.1, . . . , 0.95, 1} and

consider the new streaming platform situation θα = (N,U, V α, r) whose streaming matrix

V α is a convex combination of V and V ′, i.e.,

V α =

j1 j2[ ]
i1 300 + 300α 200− 200α

i2 300− 300α 200 + 200α
.

Note that for each α ∈ {0, 0.05, . . . , 0.95, 1}, we have pN = 400 and thus vθ
α

(N) = 400 · 2 =

800. Moreover, V 0 = V and V 1 = V ′, so the streaming platform is stable for α = 0, while

for α = 1 it is unstable. In Figure 1, we illustrate the stability of the streaming platform for

each α.

stable

unstable0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

Figure 1: Stability of the streaming platform in θα for α ∈ {0, 0.05, 0.1, . . . , 0.95, 1}

Figure 1 shows that stability of the streaming platform in θα is not monotonic in α. In

fact, the streaming platform switches multiple times from stable to unstable and vice versa

when we gradually increase the value of α from 0 to 1. We discuss these transitions in more

detail.
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The first transition is from α = 0.1 to α = 0.15, where the streaming platform switches

from stable to unstable. To understand this transition, have a closer look at the correspond-

ing streaming matrices

V 0.1 =

j1 j2[ ]
i1 330 180

i2 270 220
and V 0.15 =

j1 j2[ ]
i1 345 170

i2 255 230
.

For α = 0.1, both content creators would still charge a premium fee on their own platform

such that both users subscribe. This also holds for α ∈ {0, 0.05}, implying that for α ∈
{0, 0.05, 0.1}, the streaming platform operates in a (semi-)inclusive market and thus is stable.

From α = 0.15 onwards, it is no longer optimal for content creator i1 to charge a premium

fee on its own platform such that both users subscribe. Instead, because rj1 · V 0.15
i1j1

· 1 =

345 > 340 = rj2 ·V 0.15
i1j2

· 2, it is optimal for content creator i1 to charge a premium fee of 345

such that only user j1 subscribes. Because vθ
0.15

({i1})+ vθ
0.15

({i2}) = 345+230 · 2 > 800 =

vθ
0.15

({i1, i2}), we have C(N, vθ
0.15

) = ∅ and thus the streaming platform is unstable.

For α ∈ {0.15, 0.2, 0.25, 0.3}, the streaming platform remains unstable. For content

creator i1 it is still optimal to charge a premium fee on its own platform such that only user

j1 subscribes, and for content creator i2 it is still optimal to charge a premium fee on its

own platform such that both users subscribe. However, for content creator i2, this optimal

premium fee is determined by user j1 instead of user j2 from α = 0.2 onwards. To illustrate

this, consider the corresponding streaming matrices

V 0.15 =

j1 j2[ ]
i1 345 170

i2 255 230
, V 0.2 =

j1 j2[ ]
i1 360 160

i2 240 240
, and V 0.25 =

j1 j2[ ]
i1 375 150

i2 225 250
.

For α = 0.15, the premium fee charged by content creator i2 on its own platform equals

rj2 · V 0.15
i2j2

= 230 and is determined by user j2. For α = 0.2, the premium fee equals

rj1 · V 0.2
i2j1

= rj2 · V 0.2
i2j2

= 240 and is determined by both users. For α = 0.3, the fee equals

rj1 · V 0.25
i2j1

= 225 and is determined by user j1.

The second transition is from α = 0.3 to α = 0.35, where the streaming platform switches

from unstable to stable. To understand this transition, have a closer look at the correspond-

ing matrices

V 0.3 =

j1 j2[ ]
i1 390 140

i2 210 260
and V 0.35 =

j1 j2[ ]
i1 405 130

i2 195 270
.
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In both situations, it is still optimal for content creator i1 to charge a premium fee on its own

platform such that only user j1 subscribes. For content creator i2, it is still optimal to charge

a premium fee such that both users subscribe. For α = 0.3, we have vθ
0.3

({i1})+vθ
0.3

({i2}) =
390 + 210 · 2 > 800 = vθ

0.3

({i1, i2}), so C(N, vθ
0.3

) = ∅ and thus the streaming platform is

unstable. However, for α = 0.35, we have vθ
0.35

({i1}) + vθ
0.35

({i2}) = 405 + 195 · 2 < 800 =

vθ
0.35

({i1, i2}), so C(N, vθ
0.35

) ̸= ∅ and thus the streaming platform is stable. This transition

is due to the fact that vθ
α

({i1})+vθ
α

({i2}) decreases from 810 to 795 when α = 0.3 increases

to α = 0.35, while vθ
α

({i1, i2}) remains equal to 800.

For α ∈ {0.4, 0.45, 0.5}, the streaming platform remains stable because vθ
α

({i1}) +
vθ

α

({i2}) still decreases in α while vθ
α

({i1, i2}) remains equal to 800. From α = 0.55

onwards, it is no longer optimal for content creator i2 to charge a premium fee on its own

platform such that both users subscribe. To illustrate this, consider the corresponding

streaming matrices for α ∈ {0.45, 0.5, 0.55}

V 0.45 =

j1 j2[ ]
i1 435 110

i2 165 290
, V 0.5 =

j1 j2[ ]
i1 450 100

i2 150 300
, and V 0.55 =

j1 j2[ ]
i1 465 90

i2 135 310
.

For α = 0.45, content creator i2 would charge a premium fee of rj1 · V 0.45
i2j1

= 165 on its own

platform such that both users subscribe. For α = 0.5, both premium fees rj1 · V 0.5
i2j1

= 150

and rj2 ·V 0.5
i2j2

= 300 are optimal, leading to a total revenue of 300. For α = 0.55, the optimal

premium fee equals rj2 · V 0.55
i2j2

= 310 such that only user j2 subscribes. From α = 0.55

onwards, vθ
α

({i1}) + vθ
α

({i2}) increases in α.

The third transition is from α = 0.6 to α = 0.65, where the streaming platform switches

from stable to unstable. To understand this transition, have a closer look at the correspond-

ing streaming matrices

V 0.60 =

j1 j2[ ]
i1 480 80

i2 120 320
and V 0.65 =

j1 j2[ ]
i1 495 70

i2 105 330
.

In both situations, it is still optimal for content creator i1 to charge a premium fee on its own

platform such that only user j1 subscribes. For content creator i2, it is still optimal to charge

a premium fee on its own platform such that only user j2 subscribes. However, for α = 0.6,

we have vθ
0.6

({i1}) + vθ
0.6

({i2}) = 480 + 320 = 800 = vθ
0.6

({i1, i2}), so C(N, vθ
0.6

) ̸= ∅ and

thus the streaming platform is stable. For α = 0.65, we have vθ
0.65

({i1}) + vθ
0.65

({i2}) =

495 + 330 > 800 = vθ
0.65

({i1, i2}), so C(N, vθ
0.65

) = ∅ and thus the streaming platform

is unstable. From α = 0.65 onwards, the streaming platform remains unstable because

vθ
α

({i1}) + vθ
α

({i2}) still increases in α while vθ
α

({i1, i2}) remains equal to 800.
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The analysis of Figure 1 illustrates that stability of streaming platforms is a delicate mat-

ter. In particular, streaming platforms operating in between inclusive markets and disjoint

market segments could be stable or unstable, depending on the specific realization of the

corresponding streaming matrix.

We repeat the experiment above for different total number of streams of user j1 while the

total number of streams of user j2 remains equal to 400. Denote the total number of streams

of user j1 by β =
∑

i∈N Vij1 . Let α ∈ {0, 0.05, . . . , 0.95, 1}, let β ∈ {400, 440, . . . , 800, 840},
and consider the streaming platform situation θα,β = (N,U, V α,β , r) with streaming matrix

V α,β =

j1 j2[ ]
i1

1
2β(1 + α) 200− 200α

i2
1
2β(1− α) 200 + 200α

.

Note that V α,600 = V α for each α. In Figure 2, we illustrate the stability of the streaming

platform for each combination of α and β. Note that the row of β = 600 coincides with

Figure 1.

stable

unstable

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

β

400

440

480

520

560

600

640

680

720

760

800

840

Figure 2: Stability of the streaming platform in θα,β for various combinations of α and β.

Figure 2 shows that stability of the streaming platform in θα,β is not necessarily mono-

tonic in α, but is monotonic in β. For β = 400, the streaming platform operates in a

homogeneous market and thus is stable. Monotonicity in β implies that streaming plat-

forms switch from stable to unstable when homogeneous markets are gradually turned into

heterogeneous ones.
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In summary, this section further analyzed the stability of streaming platforms that do not

operate in disjoint market segments, inclusive markets, or homogeneous markets. Numerical

experiments illustrate that streaming platforms may switch multiple times from stable to

unstable and vice versa when inclusive markets are gradually turned into disjoint market

segments. Moreover, streaming platforms switch from stable to unstable when homogeneous

markets are gradually turned into heterogeneous ones. In general, these observations indicate

that stability of streaming platforms is a delicate matter.

6 Concluding remarks

By using concepts from cooperative game theory, we analyzed the stability of streaming

platforms. We identified three sufficient conditions for stability, which all describe streaming

similarities of platform users, and one sufficient condition for unstable streaming platforms,

which describes opposite streaming behavior of users. Our numerical experiments indicate

that stability generally is a delicate matter.

Although our work is inspired by the music streaming platform industry, our model

and results apply in a much more general context than for which they are formulated. In

particular, stability of any other service bundling format with similar characteristics could

be analyzed along the same lines. Examples include museum passepartouts, movie and series

platforms, and digital libraries.

The results in this study are established under some assumptions. First of all, we used

the concept of the core to define stability of streaming platforms. The core guarantees that

content creators are not better off by leaving and starting their own streaming platform, nei-

ther individually nor in cooperation with other content creators. In reality, it might be hard

or even impossible for some groups of content creators to start their own streaming platform.

In such case, the corresponding coalitional rationality constraints for those coalitions could

be excluded from the definition of the core. Alternatively, one could define the maximum

total revenue of those coalitions as zero in the streaming platform game.

Secondly, to analyze stability of streaming platforms, we only focused on potential rev-

enues, but not on related costs. These costs could be incorporated into our model in the

following way: for each coalition, subtract all costs of running its own platform from the

revenues in the streaming platform game. We would like to remark that stability is preserved

if the streaming platform in the original game is stable and the costs are concave, i.e., the

additional costs when a content creator joins a coalition are decreasing in the size of the

coalition.
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Finally, we assumed that each platform user has a single reservation price reflecting the

maximum amount of money that this user is willing to pay per stream. It could be the

case that this amount of money depends on the content creator that is streamed. If this

information is available, it could easily be incorporated in our model by replacing the vector

of reservation prices by a matrix, where each entry indicates the maximum amount of money

that a certain user is willing to pay per stream of a certain content creator.
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