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Preface

As far as I can think back, I have enjoyed playing all kind of games. A fascinating
property of games is that with simple rules, very complex behavior can be created.
This behavior includes facets such as long-term planning, tactical decisions and
setting up traps for the opponent. Once people find a job, their interest in games
makes place for a more serious life. This has not happened to me yet. I still enjoy
playing games on a regular basis and have no intention in the near future to change
this. Over the years, my game collection has grown quite a bit, and some of those
games which I discovered, are made part of this thesis. I even managed to obtain
the title of Dutch Board Game Champion in 2009. Therefore it seems adequate that
I have chosen a profession where games play a central role. This thesis is a result of
a 27 years fascination for games.

First of all, I would like to thank my daily supervisor Mark Winands for his
stimulating efforts over the last years. He did not only channel my thoughts into
scientific publications, but also helped me to avoid dangerous pitfalls in research. I
also have to thank him for his endless patience and his deep knowledge on search
methods. Next, many thanks go to my supervisor Jos Uiterwijk who gave me the
opportunity to get acquainted to research in games for my Master’s thesis. Without
him I would not have continued my games research in the shape of a Ph.D. thesis. I
also want to thank Gerhard Weiss, who agreed to be my promotor, and Lena Kurzen,
who was my partner at the NWO TACTICS project. This project was headed by
Prof. Dr. Johan van Benthem.

Moreover, I would like to thank all those people with whom I have collaborated
over the past years. I enjoyed writing articles with Jaap van den Herik, Guillaume
Chaslot, Maurice Bergsma, Huib Aldewereld, and Jan Stankiewicz. I also want to
thank the following colleagues and friends for their inspiring discussions over the past
years: Sander Bakkes, Jahn-Takeshi Saito, Nyree Lemmens, Steven de Jong, Michael
Kaisers, Philippe Uyttendaele, Marc Ponsen, István Szita, Pim Nijssen, Gian Piero
Favini, David Lupien St-Pierre, Laurens van der Maaten, Loes Braun, Sander Spek,
Femke de Jonge, Hendrik Baier, Andra Waagmeester, Stijn Vanderlooy, Mandy Tak,
Sander Arts and Jesper Mohnen. A special thanks goes to Peter Geurtz who was
making sure that my experiments kept running on the cluster. I furthermore want
to thank the secretaries Marijke Verheij and Joke Hellemons who helped me to find
my way in the administrative labyrinth.

In order to be able to focus on work, you have to distract yourself from work reg-
ularly. Here I want to thank those people who helped me to recharge my batteries
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from time to time. First I would like to thank the members of the Slimbo Spel-
groep Limburg, especially Alex Peters, Juanita Vernooy, Pieter Spronck, Wim van
Gruisen and Marcel Falise, for many nights full of new and exciting board games.
Second, I would like to thank the many members of the student cycling associa-
tion Dutch Mountains for many scenic hours in the Limburgian scenery. Third,
I also thank Andreas Hofmann, Achim Hofmann, Raphaela Hofmann, Dirk Zan-
der, Andreas Schebesta, Sarah Schebesta, Markus Stahl, Nico Simon and others for
providing even more opportunities for distraction.

I want to thank my parents, Peter and Anneke, for allowing me to realize my
own potential. Further thanks go to Frederik, Brigitte and Kurt for their support in
my adventures. Na koniec chcia lbym podzi ↪ekować Klaudynie za jej mi lość i trosk ↪e.

Maarten Schadd, 2010
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Chapter 1

Introduction

This thesis investigates how selective-search methods can improve the performance
of a game program for a given domain. Selective-search methods aim to explore only
the profitable parts of the state space, but take the risk to overlook the best move.
We propose several selective-search methods and test them in a large number of game
domains. The domains consist of deterministic one-, two- and multi-player games
with perfect information, and two-player non-deterministic or imperfect-information
games.

In this chapter we provide a brief introduction on games research (Section 1.1)
and discuss selective search for games in Section 1.2. Next, we formulate the problem
statement which guides our research, together with four research questions (Section
1.3). Finally, we provide an overview of this thesis in Section 1.4.

1.1 Games

Since thousands of years, games are a phenomenon across human cultures, where
people display intelligence, interaction and competition (Huizinga, 1955; Bell, 1980).
But games are also an important theoretic paradigm in logic, AI, computer science,
linguistics, economics, biology, and increasingly also in social sciences and social
psychology. Games can be classified according to different dimensions. Five classifi-
cations are (1) the number of players (one-, two-, multi-player), (2) whether chance
is involved (deterministic or non-deterministic), (3) how much information a player
has (perfect or imperfect information), (4) which time system is used (turn-based
or real-time), and (5) the decision space (discrete or continuous). Dimensions (4)
and (5) are relevant for video games which are beyond the scope of the thesis. For
the remainder of this section, games are turn-based and discrete, if not mentioned
otherwise.

What makes games of particular interest is their hybrid character. On the one
hand, the rules of the game are well-defined, the states are easy to represent and the
possible actions are known, but on the other hand, games allow complex behavior
and reasoning. One example of a simple game which still forms a challenge is the
L-Game (De Bono, 1968), where players are moving an L-shaped piece on a 4×4
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board, trying to block the opponent from moving. Therefore, games are an ideal
AI testbed for better understanding intelligent human behavior including decision-
making, intentions, strategies, and interaction. Study of these topics has a rich
tradition in logic and computer science. Here, cognition meets computation: games
challenge humans by their difficulty, and the study of machines by humans highlights
basic issues of complexity.

The outline of this section is as follows. In Subsection 1.1.1 we describe some
research performed on games from the mathematical and logical viewpoint. After-
wards, in Subsection 1.1.2, the computational approach to games is discussed.

1.1.1 Game Theory

Game theory can be defined as the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers (cf. Myerson, 1997; My-
erson, 1999; Peters, 2008). Mathematical game theory provides general techniques
for analyzing game-like situations in which two or more players make decisions that
will influence one’s another’s welfare. It has a wide range of applications, but is
most prominently seen in economics. Pioneering work has been done by Zermelo
(1913), Borel (1921) and Von Neumann and Morgenstern (1944). In this field,
several research efforts were successful to the point of giving rise to research areas
of their own, of which we want to introduce two. (1) Game-theoretic semantics for
logics (Lorenz and Lorenzen, 1978) aim at understanding a game on a conceptual
level. Meaning is given to the components of the game, such as the number of
players, the goal of a player and the interaction between the players. Depending
on the game, different types of logic may be used, such as modal logic, epistemic
logic and dynamic-epistemic logic (Van Benthem, 2001). (2) Combinatorial game
theory (CGT) is a mathematical theory that studies finite two-player deterministic
games with perfect information, such as chess, checkers, Go, Domineering, Dots-
and Boxes, Nim, and many others (Nowakowski, 2009). Berlekamp, Conway, and
Guy (1982) use a stricter definition of a combinatorial game, which adds that a
player unable to move loses the game (normal play) and that no draws exist be-
cause of move repetition (ending condition) (Guy, 1996). The aim of CGT is to
find the algebraic structure of the game such that the optimal play for both play-
ers can be determined. Additionally, this field of research is concerned with the
complexity of games. A game falls into a certain complexity class, depending on
how fast the problem grows when the input size is varied. Two of these classes are
called PSPACE-complete and EXPTIME-complete. Many games are proven to be
PSPACE-complete (Papadimitriou, 1994; Van Emde Boas, 2002), such as Go-Moku
(Reisch, 1980), Hex (Reisch, 1981), Othello (Iwata and Kasai, 1994), Scotland Yard
(Sevenster, 2006), Connect6 (Hsieh and Tsai, 2007) and Amazons (Hearn, 2009).
Games that are proven to be EXPTIME-complete include Chinese Checkers (Ka-
sai, Adachi, and Iwata, 1979), chess (Fraenkel and Lichtenstein, 1981), Go (Robson,
1983), checkers (Robson, 1984) and Shogi (Adachi, Kamekawa, and Iwata, 1987).
For an overview of a large number of games and their complexity classes we refer to
Demaine and Hearn (2001).
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1.1.2 Games and AI

Since the dawn of computer technology, AI researchers have let computers play
games as a testing ground for computational intelligence. The AI research in games
obtained an impulse in 1944 when Von Neumann republished his article about the
minimax algorithm (Von Neumann, 1928) together with Morgenstern in the book
“Theory of Games and Economic Behavior” (Von Neumann and Morgenstern, 1944).
These ideas were continued by Shannon (1950), Turing (1953), and Newell, Shaw,
and Simon (1958) who wrote the first articles about how computers could play chess
as intelligently as possible.

A popular research area in the field of games and AI concerns two-player deter-
ministic perfect-information games. A classic example of these games is chess. A
great deal of effort has been devoted in the past to construct a world-champion-level
computer chess player. The most prominent success so far in this area was the re-
sult when Deep Blue defeated the world chess champion Garry Kasparov in 1997
(Hsu, 2002). The next step would be to solve the game (i.e., knowing the game-
theoretic value), but Chess will not be solvable in a foreseeable future according to
Levy and Newborn (1991). Not long ago, another breakthrough was achieved by
Schaeffer et al. (2007), who solved the game of checkers. A forward search enhanced
with endgame databases proved that if both players play optimally the game ends in
a draw. For the game of Go, programs are not on grandmaster level yet. However,
in 2009 a 9-dan Go professional was beaten by the program MoGo with “only” a
7-stone advantage.1

In non-deterministic games2 an element of chance is involved. A well studied
non-deterministic two-player game is Backgammon, in which computers are stronger
than humans since the 1990’s (Tesauro, 1994). One of the most famous programs,
TD-Gammon by Gerald Tesauro, employs neural networks (Fukushima, 1975) and
temporal-difference learning (Sutton, 1988) to achieve a high level of play. Imperfect-
information games hide information from the players. Examples of imperfect-
information games are the chess-variant Kriegspiel and the Go-variant Phantom
Go, in which the pieces of the opponent are hidden. In Kriegspiel, the strongest pro-
grams use metapositions during the search, but they cannot beat the best humans
(Ciancarini and Favini, 2007). In Phantom Go, the strongest programs are based
on Monte-Carlo methods, and are able to play on an experienced level (Cazenave,
2006; Borsboom et al., 2007). Scrabble3 is a game with both non-determinism and
imperfect information. The program Maven uses four different search engines for
each phase of the game (i.e., opening, middle game, pre-endgame and endgame)
with a selective move generator, a well-tuned evaluation function and Monte-Carlo
simulations to beat all human Scrabble experts (Sheppard, 2002a; Sheppard, 2002b).

One-player games are essentially optimization problems, of which two famous
examples are the 15-puzzle (Korf, 1985) and the Rubik’s Cube (Korf, 1997). These

1The game was played at the Taiwan Open 2009 and can be downloaded from:
http://go.nutn.edu.tw/2009/English/result eng.htm

2These games may also be called stochastic games, or games with chance.
3Scrabble R© is a registered trademark. All intellectual property rights in and to the game are

owned in the U.S.A and Canada by Hasbro Inc., and throughout the rest of the world by J.W.
Spear & Sons Limited of Maidenhead, Berkshire, England, a subsidiary of Mattel Inc. Mattel and
Spear are not affiliated with Hasbro.
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games are typically tackled with the A* algorithm (Hart, Nielson, and Raphael,
1968). One-player games may also be non-deterministic, such as Tetris (Demaine,
Hohenberger, and Liben-Nowell, 2003). In Tetris, an evaluation function tuned
by the Cross-Entropy Method (Rubinstein, 2003) is able to remove more than 35
million lines on average (Thiery and Scherrer, 2009). Per definition, deterministic
one-player games with imperfect information do not exist. In order to have imperfect
information either an element of chance should be present (e.g., shuffling of cards)
and/or a second player is required (e.g., choosing a hidden card of the second player),
which would contradict the notion of a one-player deterministic game. A well-known
one-player non-deterministic game with imperfect information is Klondike Solitaire.4

Here, most research focuses on the solvability of Klondike Solitaire with an initial
setup of cards. Bjarnason, Tadepalli, and Fern (2007) demonstrate empirically that
no less than 82% and no more than 91.44% of Klondike Solitaire games have winning
solutions.

As the name already indicates, in multi-player games more than two players
participate in the game. Chinese Checkers is a well-known deterministic perfect-
information game in this category, which has received quite some attention from
researchers (Sturtevant, 2003a). Chinese Checkers has been used as test domain
for tree-search methods with coalition forming (Sturtevant and Korf, 2000) as well
as for Monte-Carlo methods (Sturtevant, 2008a). Examples of multi-player games
with chance are Monopoly5 and Ludo (Carter, 2007). Visiting each square on the
Monopoly board may be modeled as a Markov chain (Ash and Bishop, 1972) and evo-
lutionary algorithms can be used to learn strategies (Frayn, 2005). Siguo (Xia et al.,
2005; Lu and Xia, 2008) and Scotland Yard (Sevenster, 2006) are multi-player games
with imperfect information. For Siguo, Bayesian networks may be used in which
beliefs are propagated (Xia, Zhu, and Lu, 2007). In Scotland Yard, Doberkat, Has-
selbring, and Pahl (1996) use a multi-agent system to establish cooperation between
the agents. Many multi-player card games have both non-determinism and imper-
fect information, such as Poker (Billings et al., 1998a; Billings et al., 1999) and
Bridge (Ginsberg, 1999). Here, opponent modeling plays a central role (Jansen,
1992; Carmel and Markovitch, 1993; Iida et al., 1994; Billings et al., 1998b; Donkers,
2003).

Table 1.1 gives examples of games for each classification. We remark that a large
number of multi-player games may also be played by only two players. Depending
on the class of a game, different methods are necessary to create a strong AI. Taking
the AI perspective into account, it is possible to use different classes. An example of
an alternative classification is the theme of the game, which has a large influence for
constructing an evaluation function. The theme of a game can be material (chess),
territory (Go), connection (Hex), or racing (Chinese Checkers).

Finally, we mention that the field of modern video games has become increasingly
prominent in games research over the last decades (cf. Bakkes, 2010). These games
typically are of synchronous and continuous nature which means that a fast decision
has to be made in real-time for an infinite6 action space. This makes the creation

4It is just called Solitaire on the Microsoft Windows operating system.
5Monopoly R© is a registered trademark of Hasbro, Inc. All rights reserved.
6or several magnitudes larger than in abstract games
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Table 1.1: Games of different classifications.

perfect information
Players deterministic non-deterministic

1 15-puzzle Tetris
2 chess, Go Backgammon
>2 Chinese Checkers Ludo, Monopoly

imperfect information
Players deterministic non-deterministic

1 - Klondike Solitaire
2 Kriegspiel, Phantom Go Two-Player Scrabble
>2 Siguo, Scotland Yard Poker, Bridge

of video game AI a challenging task. In modern games, the intelligent behavior of
game characters is often established on the basis of hacks and cheats (Millington,
2006). When observing this kind of behavior, human players often assume intelli-
gence where none exists (Crawford, 1984; Lidén, 2004). They appreciate if the game
AI maintains the illusion of being intelligent (Scott, 2002). The research on video
game AI has moved from rule-based systems (Nareyek, 2000; Tozour, 2002), to goal-
oriented behavior (Millington, 2006) and adaptive game AI (Spronck, 2005; Bakkes,
2010).

1.2 Selective Search

AI researchers have proposed a large number of computational methods for game
playing. Applying search methods to turn-based games has been successful for many
years. The most prominent search method is the minimax algorithm (Von Neumann,
1928), enhanced with αβ pruning (Knuth and Moore, 1975). This algorithm searches
through the state space of the game until a fixed depth is reached and evaluates
the desirability of game states on the search horizon. αβ pruning detects states
which do not have an influence on the value of the root and prunes these states
safely, increasing the search speed. αβ is a form of backward pruning because a
refutation is found after a move is searched. Minimax often forms the basis for
other algorithms as well. Examples are expectimax (Michie, 1966), which introduces
chance nodes to model chance events in non-deterministic games, and the paranoid
algorithm (Sturtevant and Korf, 2000) for multi-player games.

When a computer program has to decide which move to play, it is generally
limited by a time constraint. Thus, the program should utilize the given time as
well as possible. In a traditional αβ program with iterative deepening, the search
depth is iteratively increased until time runs out. This is an iterative depth-first
search. If domain knowledge is available, there often exists an indication whether
a move is strong or weak (e.g., capturing or losing a queen in chess). Using this
knowledge, variable-depth search can be performed (Marsland and Björnsson, 2001)
that uses αβ search as foundation. Variable-depth search consists of two parts: (1)
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forward pruning and (2) search extensions. If a move is regarded as unlikely based on
some criteria, it can be pruned. This is called forward pruning, because the decision
to skip a move is made in advance. In contrast, moves which seem promising can be
granted additional search depth, which is called a search extension.

While variable-depth search uses more time for strong moves and considerable
less time for weak moves, the nominal search depth still has to be finished before
a deeper search starts. Other approaches try to spend their time on the most
interesting part of the search tree at any point of time. If nodes on the search
horizon are ordered so that the one with the best evaluation is expanded first, the
resulting strategy is called best-first search (Russell and Norvig, 2003). The search
tree created by best-first search is typically narrow and deep. An example is Proof-
Number (PN) search (Allis, Van der Meulen, and Van den Herik, 1994). PN search
is a (mate-)solver which tries to prove or disprove a certain goal for the root node.
This algorithm repeatedly selects the most-proving node for expansion. Therefore,
PN search is always spending its time on the most interesting part of the tree. A
disadvantage of PN search is that it can only be used for solving. The played move
is weak if it is chosen before the position has been solved.

SSS* (based on state-space search) is another form of best-first search of which
it is proven that it expands fewer nodes than αβ (Stockman, 1979). SSS* is an
effective technique if no good move ordering is available because multiple solution
trees are investigated at the same time. A disadvantage is, however, that a list of
nodes has to be sorted and kept in memory. The additional memory requirements
and sorting effort may be an overhead if a good move ordering is available.

A different type of best-first search that has become increasingly popular for
letting computers play games, is Monte-Carlo Tree Search (MCTS) (Kocsis and
Szepesvári, 2006; Chaslot et al., 2006b; Coulom, 2007a). Instead of using a heuristic
evaluation function to guide the search, MCTS utilizes Monte-Carlo simulations.
MCTS balances exploration and exploitation to spend most effort on the best move,
while making sure that alternatives are not overlooked. Recently, this technique has
revolutionized computer Go (Coulom, 2007a; Gelly and Silver, 2007; Chaslot et al.,
2008d). MoGo and Crazy Stone, the two pioneering MCTS programs, man-
aged to defeat professional players with less than a 10-stone handicap for the first
time in history (Chaslot et al., 2008a). MCTS has also been applied successfully
in quite some other two-player games such as Amazons (Lorentz, 2008; Kloetzer,
Iida, and Bouzy, 2009), Hex (Cazenave and Saffidine, 2009; Arneson, Hayward, and
Henderson, 2010) and Lines of Action (LOA) (Winands and Björnsson, 2010).

Thus, current research is not focused on the traditional iterative depth-first ap-
proach anymore, but on approaches which spend the majority of thinking time on
the parts of the tree which are the most profitable. If the search method selectively
investigates the state space of a game with a risk of overlooking the best move, we
call it a selective search (cf. Marsland, 1986; Buro, 1995; Björnsson, 2002).
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1.3 Problem Statement and Research Questions

In the previous section we discussed the relevance of selective search to improve
computer game play. That is precisely the topic of this thesis. The following problem
statement guides our research.

Problem statement: How can we improve selective-search methods
in such a way that programs increase their performance in domains of
different complexity?

Rather than testing selective-search methods on one class of games, we chose
different classes of games, which all have to be addressed differently. Each class of
games represents a level of complexity. Between every level there exists a complexity
jump. With a complexity jump the complexity of the game increases significantly
because the mechanism of the game is changed (Van Emde Boas, 2003) (e.g., a player,
chance, or imperfect information is added). We have chosen five different levels
of games, resulting in four complexity jumps. (1) One-player games, or puzzles,
involve no opponent and are a testbed for planning algorithms. (2) Two-player
games are the classic testbed for search methods. We use them for investigating
mate-solvers. For testing search with chance nodes, (3) non-deterministic and (4)
imperfect-information games may be used. (5) Multi-player games are a testbed for
dealing with coalition forming.

We formulate four research questions to guide our research. Each one deals with
search for a different class of games and a different selective-search method. The
four research questions address (1) MCTS, (2) PN search, (3) expectimax, and (4)
multi-player search.

Research question 1: How can we adapt Monte-Carlo Tree Search for
a one-player game?

The traditional approach to deterministic one-player games with perfect information
is applying A* or IDA*. These methods have been quite successful in coping with this
class of games. The disadvantage of these methods is that they require an admissible
heuristic evaluation function. The construction of such a function can be difficult.
Since Monte-Carlo Tree Search (MCTS) does not require an admissible heuristic,
it may be an interesting alternative. Therefore, we investigate which modifications
are required to apply MCTS successfully to a deterministic one-player game with
perfect information. We call the resulting variant Single-Player Monte-Carlo Tree
Search (SP-MCTS) and test it in the puzzle SameGame.

Research question 2: How can we solve a two-player game by using
Proof-Number search in combination with endgame databases?

Ideally, a search method is able to prove that a move is the optimal one for a given
game. The game is solved if this is achieved. In the last years quite some determinis-
tic two-player games with perfect information have been solved (e.g., Connect-Four
(Allis, 1988), Nine Men’s Morris (Gasser, 1996) and checkers (Schaeffer et al., 2007)).
A selective-search method specially designed as mate-solver is Proof-Number (PN)
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search (Allis et al., 1994). PN search is efficient in searching game trees with a
non-uniform branching factor. Endgame databases (Ströhlein, 1970; Van den Herik
and Herschberg, 1985) proved to be vital to the strength of computer programs
in quite a number of games (Schaeffer, 1997; Heinz, 1999). Schaeffer et al. (2007)
used a combination of proof-tree manager, the αβ based program Chinook, the
PN-search variant Df-pn (Nagai, 2002) and endgame databases to solve the game
of checkers. We investigate to which degree endgame databases are able to enhance
the PN-search variant PN2 for the deterministic two-player perfect-information game
Fanorona. The complexity of Fanorona is similar to the complexity of checkers.

Research question 3: How can we perform forward pruning at chance
nodes in the expectimax framework?

Another form of searching selectively in two-player deterministic games with perfect
information is variable-depth search (Marsland and Björnsson, 2001). Branches can
be pruned if they seem unpromising (forward pruning), or extended if the branches
are promising (search extensions). There exist several successful forward-pruning
techniques for the αβ algorithm (Beal, 1989; Buro, 1995; Buro, 2000; Björnsson
and Marsland, 2001). For two-player games with non-determinism or imperfect
information expectimax may be used (Michie, 1966). Expectimax adds chance nodes
to the search tree. There are, however, no forward-pruning techniques for chance
nodes. We propose a new forward-pruning technique based on ProbCut (Buro, 1995),
called ChanceProbCut, and test it in two-player games with either non-determinism
or imperfect information.

Research question 4: How can we improve search for multi-player
games?

In deterministic two-player games with perfect information, the majority of research
focused on the αβ algorithm (Knuth and Moore, 1975). For deterministic multi-
player games with perfect information, the choice of algorithm is not as straightfor-
ward. The two main algorithms are called maxn (Luckhardt and Irani, 1986) and
paranoid (Sturtevant and Korf, 2000), both approaching the problem from a differ-
ent angle. Maxn assumes that every player tries to maximize the own score, while
paranoid assumes that all opponents form a coalition against the root player. How-
ever, these assumptions have drawbacks. Due to the lack of safe pruning in maxn

only a limited lookahead is possible (Sturtevant, 2003b). Furthermore, the underly-
ing assumption of maxn may be unrealistic, resulting in maxn to be too optimistic
(Zuckerman, Felner, and Kraus, 2009). When searching deep with the paranoid al-
gorithm, the other players may dominate the root player (Saito and Winands, 2010),
resulting in paranoid to be too pessimistic. We propose a new search method, called
Best-Reply Search (BRS) that avoids these drawbacks. This method does not allow
every opponent to make a move, but only the one with the strongest counter move.

1.4 Thesis Overview

The thesis structure is as follows. Chapter 1 provides an introduction to the research
presented in this thesis.
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Chapter 2 is a general introduction to search methods for games. It explains
the minimax algorithm and the well-known αβ search. Standard techniques for
enhancing the αβ search are discussed as well. We furthermore explain Monte-Carlo
Tree Search (MCTS) and its enhancements.

In Chapter 3 we answer the first research question. The chapter explains the rules
of the test domain, the puzzle SameGame, and thereafter discusses the modifications
made to MCTS for deterministic one-player games with perfect information. The
new algorithm is called Single-Player Monte-Carlo Tree Search (SP-MCTS). We
provide experiments on tuning the parameters and show that randomized restarts
can improve the score. Experiments reveal that SP-MCTS is able to achieve a high
score on the standardized test set.

Chapter 4 starts with explaining the rules of Fanorona, a deterministic perfect-
information two-player game. Next, an analysis of this game is presented. Subse-
quently, the construction of omniscient endgame databases is described. The mate-
solver Proof-Number (PN) search and its two-level variant PN2 are explained there-
after. The chapter concludes with the experiments that resulted in solving Fanorona
and its board variants. This chapter answers the second research question.

Next, in Chapter 5, expectimax and its pruning techniques, Star1 and Star2,
are explained. We give an introduction to forward pruning and propose a new
forward-pruning method for chance nodes, ChanceProbCut. We describe three two-
player test domains, the games of Stratego (with imperfect information), Dice (non-
deterministic) and ChanceBreakthrough (non-deterministic) and finish with exper-
iments in each of these games. Chapter 5 gives an answer to the third research
question.

In Chapter 6 we first give an introduction to the two main algorithms for de-
terministic multi-player games with perfect information, maxn and paranoid. We
present a new algorithm for deterministic multi-player games with perfect infor-
mation, called Best-Reply Search (BRS). Thereafter, Chinese Checkers, Focus, and
Rolit are introduced as test domains. Next, experiments and a discussion are given.
This chapter answers the fourth research question.

Chapter 7 summarizes the answers to the research questions and answers the
problem statement. We also give directions for future research.
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Chapter 2

Search Methods

This chapter describes basic search methods for turn-based games. We focus on
the αβ framework and Monte-Carlo Tree Search. These methods form the basis for
the chapters that will follow. First, Section 2.1 defines several notions and concepts
which we use throughout this thesis. Section 2.2 explains the minimax algorithm.
The popular pruning mechanism αβ is discussed in Section 2.3. The success of αβ
is strongly dependent on the move ordering (Marsland, 1986). The most prominent
move-ordering techniques are explained in Section 2.4. Section 2.5 describes iterative
deepening. Transposition tables are discussed in Section 2.6. Finally, Section 2.7
describes Monte-Carlo Tree Search and its enhancements.

2.1 Searching in Games

Russell and Norvig (2003) define a game as a search problem with the following
components:

• The initial position; it includes the board configuration and an indication
whose move it is.

• A set of operators, which define the legal moves that a player can make.

• A terminal test, that determines whether the game is over.

• An evaluation function, returning a value for the outcome of a game.

A game tree represents the state space of a game. A node in the tree represents a
position in the game and an edge represents a legal move. A sequence of edges in
the game tree forms a path if each edge has a node in common with the preceding
and succeeding edge. The root of the tree is a representation of the initial position.
A terminal position is a position where the game has ended (a win, a draw, or a
loss). A terminal node represents a terminal position. A node is expanded when all
successors are generated according to the game rules. Nodes on the path between
the root and a node N are ancestors of N. This implies that N is a descendant of
node M, if M is an ancestor. The nearest ancestor and descendants of a node are
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called parent and children, respectively. Nodes having the same parent are siblings.
A node is interior if it has at least one child.

A game tree is created by expanding all interior nodes. The game tree for the
initial position is an explicit representation of all possible games which may be played
(Pearl, 1984). The game-theoretic value is the value of the root when all participants
play optimally. A minimal game tree is the minimal part of the game tree required
to determine the game-theoretic value. Because for most games the (minimal) game
tree is extremely large, determining the game-theoretic value is computationally not
feasible.

The search tree is that part of the game tree which is analyzed. This tree has
the same root but does not contain all nodes of the game tree. Nodes are generated
during the search process. Nodes that do not have children (yet) are leaf nodes. A
subtree of a tree is a node with all its descendants. The depth of a tree is the largest
depth of all its leaves, counted in plies. A ply corresponds to a turn of a player
(Samuel, 1959). The search depth of a node is the number of plies which still need
to be searched at this node.

2.2 Minimax

For two-player games, the players are called MAX and MIN. The MAX player tries
to maximize the evaluation function while the MIN player tries to minimize it.

The minimax algorithm (Von Neumann and Morgenstern, 1944) is designed to
find the optimal move for the MAX player, whose turn it is. Every move in the
initial position is expanded in a recursive depth-first way until the end of the game
is reached, creating a search tree. The evaluation function is used to assign game-
theoretic values to each outcome. One step at a time, these values are backed up
to the root, where MAX always chooses the highest value and MIN always chooses
the lowest value. When all moves have been investigated at the root, the move with
highest value is played.

An example of a minimax tree is depicted in Figure 2.1. In this case, a game
of Tic-Tac-Toe is played. It is the X player’s turn at the root, which takes the
role of the MAX player. The moves are explored to the end of the game where the
evaluation function is used to assign a value to a terminal position. The values for
loss, draw, and win are −1, 0, and 1, respectively. The numbers along the edges
indicate in which order nodes are explored.

For non-trivial games, it is usually not possible within a limited amount of time
to traverse the complete game tree until terminal positions are reached. Therefore,
the game tree is searched until a fixed depth, where a heuristic evaluation function
indicates the desirability of the position at the leaf node.

Instead of having two separate MAX and MIN methods, it is possible to use a
single method, saving a significant number of lines of code. At every ply, the values
of the children are negated. This method is called negamax (Knuth and Moore,
1975). The pseudo code for negamax can be found in Algorithm 2.1. The variable
turn is used for distinguishing MAX and MIN nodes, and can have value 1 for a
MAX node, and −1 for a MIN node.
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Figure 2.1: An example minimax tree.

1: negamax(position, depth, turn)
2:

3: if terminal(position) or depth==0 then
4: return turn × eval();
5: end if
6:

7: best = −∞;
8: for all Moves i do
9: doMove(position, i);

10: best = max(best, −negamax(position, depth−1, −turn));
11: undoMove(position, i);
12: end for
13:

14: return best;

Algorithm 2.1: Negamax pseudo code.

2.3 αβ Search

It is not necessary to investigate every node of the search tree to determine the
minimax value of the root. The process of eliminating branches of the search tree
from consideration without examining them is called pruning. The most-famous
pruning method is αβ pruning (Knuth and Moore, 1975).
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αβ produces a cutoff in a node if a returned value indicates that the remaining
children cannot alter the value of the root. To prune the remaining children, the
returned value has to be greater than or equal to the value of its ancestors of the
same type (MAX or MIN). Knuth and Moore (1975) proved that in the best case
O(bd/2) nodes will be expanded, where b is the average branching factor, and d is
the search depth.

The pseudo code for αβ in the negamax framework is shown in Algorithm 2.2.
Only small modifications of the minimax pseudo code (Algorithm 2.1) are required.
At the root node, α and β are initialized to −∞ and ∞, respectively.

1: alphabeta(position, depth, turn, alpha, beta)
2:

3: if terminal(position) or depth==0 then
4: return turn × eval();
5: end if
6:

7: for all Moves i do
8: doMove(position, i);
9: alpha = max(alpha, −alphabeta(position, depth−1, −turn, −beta, −alpha));

10: undoMove(position, i);
11: if alpha ≥ beta then
12: return beta;
13: end if
14: end for
15:

16: return alpha;

Algorithm 2.2: αβ pseudo code.

Figure 2.2 depicts an example of αβ pruning (the initial position is identical to
the example in Figure 2.1). In this tree, both players have an optimal move ordering,
i.e., the strongest move is always investigated first. αβ is able to prune twice in this
example. After node A has been searched, the value of the root is ≥ 0, because the
other two moves may have a higher value. After edge 7 has been investigated, the
value of the node B is ≤ −1 (actually equals −1 because it is the smallest possible
value). The MAX player now always prefers A above B. Therefore, all other moves
under B are irrelevant to the value of the root and do not require to be searched
anymore. With the same reasoning, the right subtree of C can be pruned.

We remark that three types of nodes can be distinguished in αβ search (Knuth
and Moore, 1975; Marsland and Popowich, 1985). (1) PV nodes form the principal
variation of the search (i.e., the expected line of play). At a PV node, all the children
have to be investigated. The best move found in a PV node leads to a successor
PV node, while all other investigated children are CUT nodes. (2) At CUT nodes
a cutoff takes place. Ideally, only one child has to be explored. At a CUT node the
child causing the cutoff is an ALL node. (3) In an ALL node all children have to be
explored. The successors of an ALL node are CUT nodes.
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Figure 2.2: An example αβ tree.

2.4 Move Ordering

The success of αβ search is strongly dependent on the move ordering (Marsland,
1986). Therefore, researchers have investigated methods to examine the strongest
move first. We distinguish two types of move ordering. (1) Static move ordering
is independent of the search. These techniques rely on domain knowledge (e.g.,
capturing a queen in chess) or by learning techniques (e.g., the Neural MoveMap
Heuristic, Kocsis, Uiterwijk, and Van den Herik, 2001). (2) Dynamic move ordering
is dependent on the search. These techniques rely on information gained during the
search. We describe two dynamic move-ordering techniques in the following subsec-
tions. Subsection 2.4.1 gives an introduction to the killer heuristic. In Subsection
2.4.2 the history heuristic is explained.

2.4.1 Killer Heuristic

The basic assumption of the killer heuristic (Akl and Newborn, 1977) is that a move
which produces a cutoff in one position, often produces a cutoff in a similar position,
if the move is legal. The killer heuristic stores for every ply at least one killer move
which has produced a pruning before at a node in the corresponding ply. When a
new node is searched, the killer moves for that ply are examined first if they are
legal. A cutoff may occur even before all possible moves are generated. When a
move produces a pruning which is not a killer move for that ply, it becomes a new
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killer move, overwriting an old one. The killer move selected for deletion, is the one
that has not been used for the longest time.

2.4.2 History Heuristic

The history heuristic is a dynamic move-ordering technique based on the number
of cutoffs caused by a move, irrespective of the position in which the move has
been made. It was proposed by Schaeffer (1983) and has been adopted in several
game-playing programs.

For every move seen in the game tree a history is maintained. Because there
is only a limited number of legal moves, it is possible to maintain a score for each
move in n tables (n is the number of players). Moves are typically indexed by their
coordinates on the board, independent of how the rest of the board looks like (e.g.,
64 from squares × 64 to squares for chess). When an interior node is searched, the
history-table entry for the best move found is incremented by some value (e.g., 2d,
where d is the search depth of the subtree under the node). This move either caused
an αβ cutoff or had the best score after all moves had been searched.

When in a node all possible moves have been generated, they are ordered ac-
cording to their history-heuristic scores. This may lead to more αβ cutoffs. The
scores in the tables can be maintained during the whole game. Each time a new
search is started, the scores are decremented by a factor (e.g., divided by 2). They
are only reset to zero or to some default values at the beginning of a complete new
game. The two drawbacks of the history heuristic are (1) that it assumes that all
moves occur equally often and (2) for illegal moves memory is reserved in the tables
(Hartmann, 1988).

There exist three variations on the history heuristic. (1) To counter somewhat
the two disadvantages Hartmann (1988) proposed an alternative for the history
heuristic, the butterfly heuristic. This heuristic takes the move frequencies in the
search trees into account. Instead of history tables, butterfly boards are used. They
are defined in the same way as in the history heuristic. Any move that is not cut
is recorded. Each time a move is executed in the search tree, its corresponding
entry in the butterfly board is also incremented by a value. (2) The countermove
heuristic (Uiterwijk, 1992) is based on the assumption that many moves have a
“natural” response irrespective of the actual position in which the moves occur.
(3) Winands et al. (2006) proposed the relative history heuristic which divides the
history-heuristic score by the butterfly-heuristic score. Their experiments reveal
that it reduces the number of nodes searched in the games of Lines of Action (LOA)
and Go even more.

2.5 Iterative Deepening

Usually αβ investigates the search tree up to a predefined depth. However, it is
not straightforward to predict the running time. Iterative deepening overcomes this
problem by gradually increasing the search depth, typically by one ply per iteration.
This is done until time runs out. Although this may seem inefficient, the overhead
is rather small. We provide the following example. To finish a search of depth d and
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average branching factor b, bd nodes are required. When using iterative deepening,
the root is expanded d times, the 1-ply deep nodes d − 1 times, up to the d-ply
deep nodes, which are only expanded once. Therefore, iterative deepening expands∑d

i=0 (d+ 1− i)× bi nodes. With an average branching factor of 10 and search
depth 5, the regular search expands 105 = 100, 000 nodes and iterative deepening
expands 6 + 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 456 nodes. The larger the
branching factor, the smaller the overhead of repeatedly expanded nodes. In spite
of this overhead, iterative deepening is able to reduce the number of nodes searched
(Slate and Atkin, 1977). The reason for this is that information from previous
iterations is used by the killer and history heuristic and is re-used to improve the
quality of the move ordering at the next iteration. Also the transposition table
benefits from iterative deepening, which is introduced in the next section.

2.6 Transpositions

In many games, there exist multiple paths to the same position. In these games, it
is possible to reduce search effort by storing earlier search results. If an identical
position is encountered during the search, it is called a transposition. This implies
that the search tree can be considered a graph, because of transpositions. In a
transposition, the information of the previous search may be reused to reduce search
effort. While the position may be identical, this history of the game leading to
the position is not. For some games (e.g., chess), a three-times repetition draw
rule makes the identity of a position dependent on the history (Slate and Atkin,
1977). This is known as the graph-history-interaction (GHI) problem (Palay, 1983;
Campbell, 1985).

Transposition tables are explained in Subsection 2.6.1. Subsection 2.6.2 describes
Enhanced Transposition Cutoffs.

2.6.1 Transposition Tables

When a position has been investigated, positional information is stored in a transpo-
sition table (Greenblatt, Eastlake, and Crocker, 1967). Because memory limitations
do not allow every position to be stored, the transposition table is implemented as
a finite hash table (Knuth, 1973). A hash value is computed for the position using
some hashing method, such as Zobrist (1970) hashing. If the transposition table
consists of 2n entries, the n low-order bits of the hash value are used as a hash
index. The remaining bits (the hash key) are used to distinguish between positions
with the same hash index. The size of the hash index should be chosen sufficiently
large (Hyatt, Grover, and Nelson, 1990).

A typical entry consists of the following five components. (1) The hash key. (2)
The best move for this position. This move either obtained the highest score or
produced a cutoff. (3) The score of the best move. In αβ search, this may be an
exact value, an upper or a lower bound. (4) A flag that indicates whether the score
is an exact value, upper or lower bound. (5) A search depth that indicates how deep
this position has been investigated.
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When a transposition is encountered, the information in the transposition table
may be used in three ways, depending on the depth and flag stored in the entry. Let
the depth stored in the transposition table be ttd and the depth still to be searched
d. (1) If ttd ≥ d and an exact value is available, the search is aborted and the
transposition table score is returned. (2) If ttd ≥ d and the score is not exact, but
an upper or a lower bound, the current αβ window is adapted accordingly and the
stored move is used for move ordering. (3) If ttd < d, the stored move is used for
move ordering.

If two different positions have the same hash value, a so-called type-1 error oc-
curs. This is a serious error which is difficult to detect. Let N be the number of
distinguishable positions and M be the number of different positions which have to
be stored in the transposition table. The probability that all M positions will have
different hash values is given by

P (no errors) ≈ e−M2

2N (2.1)

If the size of the transposition table is sufficiently large, the probability of a type-1
error is negligible (Breuker, 1998).

If two different positions have the same hash index, but different hash key, a
so-called type-2 error occurs. This is also known as collision (Knuth and Moore,
1975). When a collision occurs, one has to choose which position to store. This
choice is based on a replacement scheme (Breuker, Uiterwijk, and Van den Herik,
1994; Breuker, Uiterwijk, and Van den Herik, 1996). For an overview of replacement
schemes, we refer to Beal and Smith (1996) and Breuker (1998). The most commonly
used scheme is the two-deep replacement scheme (Breuker, 1998).

2.6.2 Enhanced Transposition Cutoff

Enhanced Transposition Cutoff (ETC) (Schaeffer and Plaat, 1996) is a method to
produce a cutoff using the transposition table, even though an entry does not exist
for the current position. Children of the current position may be stored in the
transposition table and one of these may produce a cutoff without further expanding
the current node. After the moves of the current positions have been created, all
children are queried in the transposition table. If a child is stored in the table,
the α value of the parent may be updated, possibly resulting in a cutoff. Because
calculating a hash value for a position and examining in the transposition table takes
time, ETC is only applied if the search depth is large enough.

2.7 Monte-Carlo Tree Search

Recently, Monte-Carlo (MC) methods have become a popular approach for intelli-
gent play in games. MC simulations have first been used as an evaluation function
inside a classic search tree (Brügmann, 1993; Bouzy and Helmstetter, 2003). In this
role, MC simulations have been applied to Backgammon (Tesauro and Galperin,
1997), Poker (Billings et al., 1999), Scrabble (Sheppard, 2002b), Morpion Solitaire
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and Gaps (Helmstetter, 2007). Due to the expensive evaluation, the search is not
able to investigate the search tree sufficiently deep in some games (Chaslot, 2010).

Therefore, the MC simulations have been placed into a tree-search context in
multiple ways (Chaslot et al., 2006b; Coulom, 2007a; Kocsis and Szepesvári, 2006).
The resulting general method is called Monte-Carlo Tree Search (MCTS) (Coulom,
2007a; Kocsis and Szepesvári, 2006). MCTS is a best-first search method guided
by Monte-Carlo simulations. In contrast to classic tree-search algorithms such as
αβ (Knuth and Moore, 1975) and A* (Hart et al., 1968), MCTS does not require a
heuristic evaluation function. MCTS is particularly interesting for domains where
building an evaluation function is a difficult or time-consuming task, such as the
game of Go. MCTS builds a search tree employing MC simulations at the leaf
nodes. Each node in the tree represents a position and typically stores the average
score of the simulations played through this node, and the number of visits. MCTS
constitutes a family of tree-search algorithms not only applicable to games, but also
to scheduling and optimization problems (cf. Chaslot et al., 2006a; Mesmay et al.,
2009)

Subsection 2.7.1 describes the structure of MCTS. Thereafter, Subsection 2.7.2
explains three enhancements for MCTS: Progressive Bias, Progressive Widening and
RAVE. Finally, Subsection 2.7.3 discusses how MCTS may be parallelized.

2.7.1 Structure of MCTS

MCTS consists of two parts: a relatively shallow search tree and deep simulated
games. The tree structure determines the first moves of the simulated games. The
results of these simulated games shape the tree. In general, MCTS consists of four
steps (Chaslot et al., 2008d). These steps are visualized in Figure 2.3. (1) During
the selection step the search tree is traversed starting from the root node until a
position is encountered which is not stored in the tree. (2) Subsequently, during the
play-out step moves are played until the end of the game. (3) Next, in the expansion
step a number of nodes is added to the tree. (4) Finally, in the backpropagation
step the result of a simulated game is propagated backwards, through the previously
traversed nodes. We discuss strategies to perform the four basic steps of MCTS in
the remainder of this subsection.

The four steps are iterated until the time runs out. When this happens, a final
move selection is used to determine which move should be played in the actual game.

Selection Step

From the root node, a selection strategy is applied recursively until a position is
reached that is not a part of the tree yet. The selection strategy controls the balance
between exploitation and exploration (Chaslot, 2010). On the one hand, the moves
that lead to the best results so far are selected (exploitation). On the other hand,
the less promising moves still must be tried, due to the uncertainty of the evaluation
(exploration).

Several selection strategies have been designed for MCTS. Kocsis and Szepesvári
(2006) proposed the selection strategy UCT (Upper Confidence bounds applied to
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Figure 2.3: The four steps of MCTS (slightly adapted from Chaslot et al., 2008d).

Trees). This strategy is straightforward to implement, and used in many programs.
At node p with children i, the child is chosen that maximizes the following formula.

vi + C ×
√

lnnp
ni

(2.2)

vi is the value of the child i, ni is the visit count of i, and np is the visit count of
node p. C is a coefficient, which has to be tuned experimentally. Other selection
strategies are OMC (Chaslot et al., 2006b), UCB1-TUNED (Gelly and Wang, 2006),
PBBM (Coulom, 2007a) and MOSS (Audibert and Bubeck, 2009).

Here we remark that Coulom (2007a) chooses a move according to the selection
strategy only if np is above a certain threshold. Before the threshold is reached, the
simulation strategy is used. The latter is explained below.

Play-Out Step

The play-out step begins when the search enters a position that is not part of the
tree yet. Moves are then played until the end of the game. These moves are chosen
according to a simulation strategy. A completed game is called a play-out. The
play-outs are an estimate for the values of the nodes in the MCTS tree. The use
of an adequate simulation strategy (instead of playing randomly) has been shown
to improve the level of play significantly (Bouzy, 2005; Gelly et al., 2006; Chen and
Zhang, 2008).

The moves may be chosen quasi-randomly based on heuristic knowledge (Gelly
and Silver, 2007). A simulation strategy is subject to two tradeoffs (Chaslot, 2010).
The first tradeoff is between search and knowledge. While knowledge increases the
playing strength, it decreases the simulation speed. The second tradeoff deals with
exploration and exploitation. If the strategy is too explorative, the search tree is too
shallow and if the strategy is too exploitative, the search will become too selective.
Ideally, the used heuristic knowledge should be fast to compute, increase the quality
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of the play-out significantly and at the same time allow enough randomness for
exploration.

Expansion Step

Usually the whole game tree cannot be stored in memory. An expansion strategy
decides whether a node is expanded by storing one or more of its children in memory.
Coulom (2007a) proposed to store the first encountered position that was not stored
in the tree, expanding one node per simulation.

Backpropagation Step

During the backpropagation step, the result of the simulation at a leaf node is
propagated backwards to the root. A backpropagation strategy decides how the value
of a node is used to change the values of its ancestors.

There exist several backpropagation strategies. The most-applied one is Average,
which takes the average of all simulations made through that node (Coulom, 2007a).
The Max strategy (Knuth and Moore, 1975) backpropagates values in a negamax
way, but was proven to be too noisy (Chaslot et al., 2006b; Coulom, 2007a). The
Informed-Average strategy (Chaslot et al., 2006b) aims to converge faster to the
value of the best move than Average by assigning a bigger weight to the best moves.
Coulom (2007a) proposed the Mix strategy, which initially resembles the Average
strategy, but converges to the Max strategy. The MCTS-Solver strategy (Winands,
Björnsson, and Saito, 2008) also backpropagates game-theoretic values, allowing
MCTS to play narrow tactical lines better in sudden-death games.

2.7.2 Enhancements

This subsection introduces three well-known enhancements for MCTS. First, pro-
gressive bias is introduced. Second, progressive widening is discussed. Finally, an
introduction to RAVE is given.

Progressive Bias

The aim of the progressive-bias strategy is to direct the search according to heuristic
knowledge (Chaslot et al., 2008d). For that purpose, the selection strategy is mod-
ified according to that knowledge. The influence of this modification is important
when a few games have been played, but decreases with a growing number of games.
The UCT formula (Equation 2.2) is adapted in the following way.

vi + C ×
√

lnnp
ni

+
Hi

ni + 1
(2.3)

where Hi represents heuristic knowledge, which depends only on the board config-
uration represented by the node i. When ni is small, the heuristic factor is most
dominant. With increasing ni, a balance is found between the results of the sim-
ulated games and the heuristic knowledge. When ni is large, the results of the
simulated games are the dominant factor.
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Progressive Widening

The heuristic score Hi, used by progressive bias, may also be used for a method called
progressive widening (Coulom, 2007b; Chaslot et al., 2008d). When the number of
simulations is small, the simulation strategy is used as selection strategy. Progressive
widening reduces the branching factor in this phase based on the heuristic knowl-
edge Hi and gradually increases the branching factor when more simulations are
performed.

Rapid Action-Value Estimation

Brügmann (1993) proposed to acquire results from simulations quicker by the all-
move-as-first heuristic (AMAF). AMAF assigns the result of a simulated game not
only to the first move played, but to all moves during the game. AMAFs,m is
the AMAF value for move m in position s. Gelly and Silver (2007) proposed a
method called Rapid Action-Value Estimation (RAVE), that uses the AMAF value
in combination with MCTS. The UCT formula (Formula 2.2) is adapted in the
following way.

(1− β(np))× (vi + C ×
√

lnnp
ni

) + β(np)×AMAFp,i (2.4)

Gelly and Silver (2007) proposed to use β(N) =
√

k
3N+k with k subject to

tuning, which has led to good results. RAVE was successfully applied in Go (Gelly
and Silver, 2007) and Havannah (Teytaud and Teytaud, 2010). In games where
pieces are continually moving across the board, such as Chinese Checkers, it is more
difficult for RAVE to work effectively (Sturtevant, 2008b).

2.7.3 Parallelization

Just as for αβ search, it holds for MCTS that the more time is spent for selecting a
move, the better the game play is. The recent developments in hardware have gone
into the direction that nowadays even personal computers contain several cores. To
get the most out of the available time, one has to parallelize AI techniques to use
all available hardware (Chaslot, 2010).

Cazenave and Jouandeau (2007) proposed two parallelization methods, leaf and
root parallelization, which will be introduced first. Thereafter, tree parallelization
(Chaslot, Winands, and Van den Herik, 2008b) will be described.

Leaf Parallelization

Leaf parallelization (Cazenave and Jouandeau, 2007) is a straightforward way to
parallelize MCTS. One thread traverses the tree just as in regular MCTS. Next,
starting from the leaf node, one play-out is performed for each available thread.
When all games are finished, the results of all these play-outs are propagated back-
wards through the tree as usual.
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Leaf parallelization has two problems. (1) Play-outs have a variable length, and
the search has to wait until the longest game has finished. (2) Information between
the play-outs is not shared. When the first play-outs indicate that the node most
likely leads to a loss, the remaining play-outs may be a waste of computational time.

Root Parallelization

Root parallelization (Cazenave and Jouandeau, 2007) consists of building multiple
MCTS trees in parallel, with one thread per tree. The threads do not share informa-
tion with each other. Each individual thread performs a regular MCTS. When the
available time is spent, the separate trees are combined and the choice of which move
to play is based on all results. Root parallelization is a straightforward and efficient
way to parallelize MCTS. Chaslot et al. (2008b) show that root parallelization nearly
has a linear speedup for a small number of threads.

Tree Parallelization

Tree parallelization (Chaslot et al., 2008b) is a parallelization method in which
threads share information with each other. This method uses one shared tree from
which several simultaneous play-outs are played. Each thread can modify the infor-
mation contained in the tree. Mutexes are required to lock certain parts of the tree
to prevent data corruption. Based on the location of the mutexes in the tree, we dis-
tinguish two mutex-location methods: (1) using a global mutex and (2) using several
local mutexes. With a global mutex the complete tree is locked when a thread edits
information. With a local mutex only the node is locked that requires updating.
This makes it possible that multiple threads edit the tree simultaneously, decreas-
ing waiting time. Enzenberger and Müller (2010) showed that a mutex-free tree
parallelization outperformed a global-mutex tree parallelization for the Go program
Fuego. To prevent that all threads select the same node in the tree, a virtual loss
may be assigned to a node if a thread selects it (Chaslot et al., 2008b). The virtual
loss is removed when the thread that gave the virtual loss starts backpropagating
the result of the play-out.
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Chapter 3

Single-Player Monte-Carlo
Tree Search

This chapter is an updated and abridged version of the following publications:

1. Schadd, M.P.D., Winands, M.H.M., Herik, Chaslot, G.M.J-B., H.J. van
den, and Uiterwijk, J.W.H.M. (2008a). Single-Player Monte-Carlo Tree
Search. Proceedings of the 20st BeNeLux Conference on Artificial Intel-
ligence (BNAIC’08) (eds. A. Nijholt, M. Pantic, M. Poel, and H. Hon-
dorp), pp. 361–362, University of Twente, Enschede, The Netherlands.

2. Schadd, M.P.D., Winands, M.H.M., Herik, H.J. van den, and Aldewereld,
H. (2008b). Addressing NP-Complete Puzzles with Monte-Carlo Methods.
Proceedings of the AISB 2008 Symposium on Logic and the Simulation of
Interaction and Reasoning, Vol. 9, pp. 55–61, The Society for the Study
of Artificial Intelligence and Simulation of Behaviour, Brighton, United
Kingdom.

3. Schadd, M.P.D., Winands, M.H.M., Herik, H.J. van den, Chaslot, G.M.J-B.
and Uiterwijk, J.W.H.M. (2008c). Single-Player Monte-Carlo Tree Search.
Computers and Games (CG 2008) (eds. H.J. van den Herik, X. Xu, Z.
Ma, and M.H.M. Winands), Vol. 5131 of Lecture Notes in Computer
Science (LNCS), pp. 1–12, Springer-Verlag, Berlin, Germany.

The traditional approaches to deterministic one-player games with perfect infor-
mation (Kendall, Parkes, and Spoerer, 2008) are applying A* (Hart et al., 1968)
or IDA* (Korf, 1985). These methods have been quite successful for solving this
type of games. The disadvantage of the methods is that they require an admissible
heuristic evaluation function. The construction of such a function can be difficult.
Since Monte-Carlo Tree Search (MCTS) does not require an admissible heuristic, it
may be an interesting alternative. Because of its success in two-player games (cf.
Lee, Müller, and Teytaud, 2010) and multi-player games (Sturtevant, 2008a), this
chapter investigates the application of MCTS in deterministic one-player games with
perfect information.
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So far, MCTS has not been widely applied in one-player games. One example is
the Sailing Domain (Kocsis and Szepesvári, 2006), which is a non-deterministic game
with perfect information. MCTS has also been used for optimization and planning
problems which can be represented as deterministic one-player games. Chaslot et al.
(2006a) applied MCTS in production management problems. Mesmay et al. (2009)
proposed the MCTS variant TAG for optimizing libraries for different platforms.
Schadd et al. (2008c) showed that MCTS was able to achieve high scores in the
puzzle1 SameGame.

This chapter answers the first research question by proposing an MCTS method
for a one-player game, called Single-Player Monte-Carlo Tree Search (SP-MCTS).
MCTS for two-player games, as described in Section 2.7, forms the starting point for
this search method. We adapted MCTS by two modifications resulting in SP-MCTS.
The modifications are (1) in the selection strategy and (2) in the backpropagation
strategy. SP-MCTS is tested in the game of SameGame, because there exists no
reliable admissible heuristic evaluation function for this game.

The article is organized as follows. In Section 3.1 we present the rules, complexity
and related work of SameGame. In Section 3.2 we discuss why the classic approaches
A* and IDA* are not suitable for SameGame. Then, we introduce the SP-MCTS
approach in Section 3.3. Section 3.4 describes the Cross-Entropy Method which is
used for tuning the SP-MCTS parameters. Experiments and results are given in
Section 3.5. Section 3.6 gives the chapter conclusions and indicates future research.

3.1 SameGame

SameGame is a puzzle invented by Kuniaki Moribe under the name Chain Shot! in
1985. It was distributed for Fujitsu FM-8/7 series in a monthly personal computer
magazine called Gekkan ASCII (Moribe, 1985). The puzzle was afterwards re-
created by Eiji Fukumoto under the name of SameGame in 1992.

In this section, we first explain the rules in Subsection 3.1.1. Subsequently, we
give an analysis of the complexity of SameGame in Subsection 3.1.2. Finally, we
present related work in Subsection 3.1.3.

3.1.1 Rules

SameGame is played on a vertically oriented 15×15 board initially filled with blocks
of 5 colors at random. A move consists of removing a group of (at least two)
orthogonally adjacent blocks of the same color. The blocks on top of the removed
group fall down. As soon as an empty column occurs, the columns to the right of the
empty column are shifted to the left. Therefore, it is impossible to create separate
subgames. For each removed group points are rewarded. The number of points is
dependent on the number of blocks removed and can be computed by the formula
(n− 2)

2
, where n is the size of the removed group.

1From now on, we call one-player deterministic games with perfect information for the sake of
brevity puzzles (Kendall et al., 2008).
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Figure 3.1: Example SameGame moves.

We show two example moves in Figure 3.1. When the “B” group in the third
column with a connection to the second column of position 3.1(a) is played, the “B”
group is removed from the game. In the second column the “CA” blocks fall down
and in the third column the “C” block falls down, resulting in position 3.1(b). Due
to this move, it is now possible to remove a large group of “C” blocks (n = 6). Owing
to an empty column the two columns at the right side of the board are shifted to
the left, resulting in position 3.1(c).2 The first move is worth 1 point; the second
move is worth 16 points.

The game is over if no more blocks can be removed. This happens when either
the player (1) has removed all blocks or (2) is left with a position where no adjacent
blocks have the same color. In the first case, 1,000 bonus points are rewarded. In
the second case, points are deducted. The formula for deducting is similar to the
formula for awarding points but now iteratively applied for each color left on the
board. Here it is assumed that all blocks of the same color are connected.

There are variations that differ in board size and the number of colors, but
the 15×15 variant with 5 colors is the accepted standard. If a variant differs in
the scoring function, it is named differently (e.g., Clickomania or Jawbreaker, cf.
Biedl et al., 2002; Julien, 2008).

3.1.2 Complexity of SameGame

The complexity of a game indicates a measure of difficulty for solving the game. Two
important measures for the complexity of a game are the game-tree complexity and
the state-space complexity (Allis, 1994). The game-tree complexity is an estimation
of the number of leaf nodes that the complete search tree would contain to solve the
initial position. The state-space complexity indicates the total number of possible
states.

For SameGame these complexities are as follows. The game-tree complexity

2Shifting the columns at the left side to the right would not have made a difference in number
of points. For consistency, we always shift columns to the left.
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can be approximated by simulation. By randomly playing 106 puzzles, the average
length of the game was estimated to be 64.4 moves and the average branching factor
to be 20.7, resulting in a game-tree complexity of 1085. The state-space complex-
ity is computed rather straightforwardly. It is possible to calculate the number of
combinations for one column by C =

∑r
n=0 c

n where r is the height of the column
and c is the number of colors. To compute the state-space complexity we take Ck

where k is the number of columns. For SameGame there exist 10159 states. This is
an over-estimation because a small percentage of the positions are symmetrical.

Furthermore, the difficulty of a game can be described by deciding to which com-
plexity class it belongs (Johnson, 1990). The similar game Clickomania was proven
to be NP-complete by Biedl et al. (2002). However, the complexity of SameGame
could be different. The more points are rewarded for removing large groups, the
more the characteristics of the game may differ from Clickomania. In Clickomania
the only goal is to remove as many blocks as possible, whereas in SameGame points
are rewarded for removing large groups as well.

Theorem. SameGame is at least as difficult as Clickomania.

Proof. A solution S of a SameGame problem is defined as a path from the initial
position to a terminal position. Either S (1) has removed all blocks from the game
or (2) has finished with blocks remaining on the board. In both cases a search has
to be performed to investigate whether a solution exists that improves the score and
clears the board.

Clickomania is a variant of SameGame where no points are rewarded and the only
objective is to clear the board. Finding only one solution to this problem is easier
than finding the highest-scoring solution (as in SameGame). Therefore, SameGame
is at least as difficult as Clickomania.

3.1.3 Related Work

For the game of SameGame some research has been performed. The contributions are
benchmarked on a standardized test set of 20 positions.3 The first SameGame pro-
gram has been written by Billings (2007). This program applies a non-documented
method called Depth-Budgeted Search (DBS). When the search reaches a depth
where its budget has been spent, a greedy simulation is performed. On the test
set his program achieved a total score of 72,816 points with 2 to 3 hours comput-
ing time per position. Schadd et al. (2008c) set a new high score of 73,998 points
by using Single-Player Monte-Carlo Tree Search (SP-MCTS). This chapter will de-
scribe SP-MCTS in detail. Takes and Kosters (2009) proposed Monte Carlo with
Roulette-Wheel Selection (MC-RWS). It is a simulation strategy that tries to max-
imize the size of one group of a certain color and at the same time tries to create
larger groups of another color. On the test set their program achieved a total score
of 76,764 points with a time limit of 2 hours. In the same year Cazenave (2009)
applied Nested Monte-Carlo Search which led to an even higher score of 77,934.
Until the year 2010, the top score on this set was 84,414 points, held by the program

3The positions can be found at: www.js-games.de/eng/games/samegame.
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spurious ai.4 This program applies a method called Simple Breadth Search (SBS),
which uses beam search, multiple processors and a large amount of memory (cf.
Takes and Kosters, 2009). Further details about this program are not known. Later
in 2010 this record was claimed to be broken with 84,718 points by using a method
called Heuristically Guided Swarm Tree Search (HGSTS) (Edelkamp et al., 2010),
which is a parallelized version of MCTS.

3.2 A* and IDA*

The classic approach to puzzles involves methods such as A* (Hart et al., 1968) and
IDA* (Korf, 1985). A* is a best-first search where all nodes have to be stored in a
list. The list is sorted by an admissible evaluation function. At each iteration the
first element is removed from the list and its children are added to the sorted list.
This process is continued until the goal state arrives at the start of the list.

IDA* is an iterative deepening variant of A* search. It uses a depth-first approach
in such a way that there is no need to store the complete tree in memory. The search
continues depth-first until the cost of arriving at a leaf node and the value of the
evaluation function exceeds a certain threshold. When the search returns without a
result, the threshold is increased.

Both methods are strongly dependent on the quality of the evaluation function.
Even if the function is an admissible under-estimator, it still has to give an accurate
estimation. Classic puzzles where this approach works well are the Eight Puzzle with
its larger relatives (Korf, 1985; Sadikov and Bratko, 2007) and Sokoban (Junghanns,
1999). Here a good under-estimator is the well-known Manhattan Distance. The
main task in this field of research is to improve the evaluation function, e.g., with
pattern databases (Culberson and Schaeffer, 1998; Felner et al., 2005).

These classic methods fail for SameGame because it is not straightforward to
make an admissible function that still gives an accurate estimation. An attempt to
make such an evaluation function is by just awarding points to the current groups
on the board. This resembles the score of a game where all groups are removed in a
top-down manner. However, if an optimal solution to a SameGame problem has to
be found, we may argue that an “over-estimator” of the position is required, because
in SameGame the score has to be maximized, whereas in common applications costs
have to be minimized (e.g., shortest path to a goal). An admissible “over-estimator”
can be created by assuming that all blocks of the same color are connected and
would be able to be removed at once. This function can be improved by checking
whether there is a color with only one block remaining on the board. If this is the
case, the 1,000 bonus points for clearing the board may be deducted because the
board cannot be cleared completely. However, such an evaluation function is far
from the real score for a position and does not give good results with A* and IDA*.
Our tests have shown that using A* and IDA* with the proposed “over-estimator”
results in a kind of breadth-first search. The problem is that after expanding a node,
the heuristic value of a child can be significantly lower than the value of its parent,
unless a move removes all blocks with one color from the board. We expect that

4The exact date when the scores were uploaded to http://www.js-games.de/ is unknown.
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other Depth-First Branch-and-Bound methods (Vempaty, Kumar, and Korf, 1991)
suffer from the same problem. Since no good evaluation function has been found
yet, SameGame presents a new challenge for puzzle research.

3.3 Single-Player Monte-Carlo Tree Search

Based on MCTS, we propose an adapted version for puzzles: Single-Player Monte-
Carlo Tree Search (SP-MCTS). We discuss the four steps (selection, play-out, ex-
pansion and backpropagation) and point out differences between SP-MCTS and
MCTS in Subsections 3.3.1-3.3.4. SameGame serves as example domain to explain
SP-MCTS. The final move selection is described in Subsection 3.3.5. Subsection
3.3.6 describes how randomized restarts may improve the score.

3.3.1 Selection Step

Selection is the strategic task to select one of the children of a given node. It controls
the balance between exploitation and exploration. Exploitation is the task to focus
on the moves that led to the best results so far. Exploration deals with the less
promising moves that still may have to be explored, due to the uncertainty of their
evaluation so far. In MCTS at each node starting from the root, a child has to be
selected until a position is reached that is not part of the tree yet. Several strategies
have been designed for this task (Chaslot et al., 2006b; Kocsis and Szepesvári, 2006;
Coulom, 2007a).

Kocsis and Szepesvári (2006) proposed the selection strategy UCT (Upper Con-
fidence bounds applied to Trees). For SP-MCTS, we use a modified UCT version.
At the selection of node p with children i, the strategy chooses the move, which
maximizes the following formula.

vi + C ×
√

lnnp
ni

+

√∑
r2 − ni × v2i +D

ni
(3.1)

The first two terms constitute the original UCT formula. It uses ni as the number
of times that node i was visited where i denotes a child and p the parent to give
an upper confidence bound for the average game value vi. For puzzles, we added a
third term, which represents a possible deviation of the child node (Chaslot et al.,
2006a; Coulom, 2007a). It contains the sum of the squared results so far

(∑
r2
)

achieved in the child node corrected by the expected results ni×v2i . A high constant
D is added to ensure that nodes, which have been rarely explored, are considered
uncertain. Below we describe two differences between puzzles and two-player games,
which may affect the selection strategy.

First, the essential difference between puzzles and two-player games is the range
of values. In two-player games, the outcome of a game is usually denoted by loss,
draw, or win, i.e., {−1, 0, 1}. The average score of a node always stays within [−1, 1].
In a puzzle, an arbitrary score can be achieved that is not by definition within a
preset interval. For example, in SameGame there are positions, which result in a



3.3 — Single-Player Monte-Carlo Tree Search 31

value above 5,000 points. As a first solution to this issue we may set the constants
C and D in such a way that they are feasible for a certain interval (e.g., [0, 6000]
in SameGame). A second solution would be to scale the values back into the above
mentioned interval [−1, 1], given a maximum score (e.g., 6,000 for a SameGame
position). When the exact maximum score is not known a theoretical upper bound
can be used. For instance, in SameGame a theoretical upper bound is to assume
that all blocks have the same color. A direct consequence of such an upper bound
is that due to the high upper bound, the game scores are located near to zero. It
means that the constants C and D have to be set with completely different values
compared to two-player games. We have opted for the first solution in our program.

A second difference is that puzzles do not have any uncertainty on the opponent’s
play. It means that the line of play has to be optimized without the hindrance of an
opponent (Chaslot, 2010). Due to this, not only the average score but the top score
of a move can be used as well. Based on manual tuning, we add the top score using
a weight W with a value of 0.02 to the average score.

Here we remark that we follow Coulom (2007a) in choosing a move according to
the selection strategy only if np reaches a certain threshold T (we set T to 10). As
long as the threshold is not exceeded, the simulation strategy is used. The latter is
explained in the next subsection.

3.3.2 Play-Out Step

The play-out step begins when we enter a position that is not part of the tree yet.
Moves are randomly selected until the game ends. This succeeding step is called
the play-out. In order to improve the quality of the play-outs, the moves are chosen
quasi-randomly based on heuristic knowledge (Bouzy, 2005; Gelly et al., 2006; Chen
and Zhang, 2008). For SameGame, several simulation strategies exist.

We have proposed two simulation strategies, called TabuRandom and TabuCol-
orRandom (Schadd et al., 2008c). Both strategies aim at creating large groups of one
color. In SameGame, creating large groups of blocks is advantageous. TabuRandom
chooses a random color at the start of a play-out. The idea is not to allow to play
this color during the play-out unless there are no other moves possible. With this
strategy large groups of the chosen color are formed automatically. The new aspect
in the TabuColorRandom strategy with respect to the previous strategy is that the
chosen color is the color most frequently occurring at the start of the play-out. This
may increase the probability of having large groups during the play-out. We also
use the ε-greedy policy to occasionally deviate from this strategy (Sutton and Barto,
1998). Before the simulation strategy is applied, with probability ε a random move
is played. Based on manual tuning, we chose ε = 0.003.

An alternative simulation strategy for SameGame is Monte-Carlo with Roulette-
Wheel Selection (MC-RWS) (Takes and Kosters, 2009). This strategy not only tries
to maximize one group of a certain color, but also tries to create bigger groups
of other colors. Tak (2010) showed that MC-RWS does not improve the score in
SP-MCTS because it is computationally more expensive than TabuColorRandom.
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3.3.3 Expansion Step

The expansion strategy decides on which nodes are stored in memory. Coulom
(2007a) proposed to expand one child per play-out. With his strategy, the expanded
node corresponds to the first encountered position that was not present in the tree.
This is also the strategy we used for SP-MCTS.

3.3.4 Backpropagation Step

During the backpropagation step, the result of the play-out at the leaf node is
propagated backwards to the root. Several backpropagation strategies have been
proposed in the literature (Chaslot et al., 2006b; Coulom, 2007a). The best results
that we have obtained for SP-MCTS was by using the plain average of the play-outs.
Therefore, we update (1) the average score of a node. Additional to this, we also
update (2) the sum of the squared results because of the third term in the selection
strategy (see Formula 3.1), and (3) the top score achieved so far.

3.3.5 Final Move Selection

The four steps are iterated until the time runs out.5 When this occurs, a final
move selection is used to determine which move should be played. In two-player
games (with an analogous run-out-of-time procedure) the best move according to
this strategy is played by the player to move. The opponent has then time to
calculate his response. But in puzzles this can be done differently. In puzzles it is
not required to wait for an unknown reply of an opponent. It is therefore possible to
perform one large search from the initial position and then play all moves at once.
With this approach all moves at the start are under consideration until the time for
SP-MCTS runs out. It has to be investigated whether this approach outperforms an
approach that allocates search time for every move. These experiments are presented
in Subsection 3.5.3.

3.3.6 Randomized Restarts

We observed that it is important to generate deep trees in SameGame (see Subsec-
tion 3.5.2). However, by exploiting the most-promising lines of play, the SP-MCTS
can be caught in local maxima. So, we randomly restart SP-MCTS with a differ-
ent seed to overcome this problem. Because no information is shared between the
searches, they explore different parts of the search space. This method resembles
root parallelization (Chaslot et al., 2008b).

Root parallelization is an effective way of using multiple cores simultaneously
(Chaslot et al., 2008b). However, we argue that root parallelization may also be
used for avoiding local maxima in a single-threaded environment. Because there is
no actual parallelization, we call this randomized restarts. Subsection 3.5.3 shows
that randomized restarts are able to increase the average score significantly.

5In general, there is no time limitation for puzzles. However, a time limit is necessary to make
testing possible.
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3.4 The Cross-Entropy Method

Choosing the correct SP-MCTS parameter values is important for its success. For
instance, an important parameter is the C constant which is responsible for the bal-
ance between exploration and exploitation. Optimizing these parameters manually
may be a hard and time-consuming task. Although it is possible to make educated
guesses for some parameters, for other parameters it is not possible. Specially hid-
den dependencies between the parameters complicate the tuning process. Here, a
learning method can be used to find the best values for these parameters (Sutton
and Barto, 1998; Beal and Smith, 2000).

The Cross-Entropy Method (CEM) (Rubinstein, 2003) has successfully tuned
parameters of an MCTS program in the past (Chaslot et al., 2008c). CEM is an
evolutionary optimization method, related to Estimation-of-Distribution Algorithms
(EDAs) (Mühlenbein, 1997). CEM is a population-based learning algorithm, where
members of the population are sampled from a parameterized probability distribu-
tion (e.g., Gaussian, Binomial, Bernoulli, etc.). This probability distribution repre-
sents the range of possible solutions.

CEM converges to a solution by iteratively changing the parameters of the prob-
ability distribution (e.g., µ and σ for a Gaussian distribution). An iteration consists
of three main steps. First, a set S of vectors x ∈ X is drawn from the probability
distribution, where X is some parameter space. These parameter vectors are called
samples. In the second step, each sample is evaluated and gets assigned a fitness
value. A fixed number of samples within S having the highest fitness are called the
elite samples. In the third step, the elite samples are used to update the parameters
of the probability distribution.

Generally, CEM aims to find the optimal solution x∗ for a learning task described
in the following form

x∗ ← argmax
x

f(x), (3.2)

where x∗ is a vector containing all parameters of the (approximately) optimal so-
lution. f is a fitness function that determines the performance of a sample x (for
SameGame this is the average number of points scored on a set of positions). The
main difference of CEM to traditional methods is that CEM does not maintain a
single candidate solution, but maintains a distribution of possible solutions.

There exist two methods for generating samples from the probability distribution,
(1) random guessing and (2) distribution focusing (Rubinstein, 2003). Random
guessing straightforwardly creates samples from the distribution and selects the
best sample as an estimate for the optimum. If the probability distribution peaked
close to the global optimum, random guessing may obtain a good estimate. If the
distribution is rather uniform, the random guessing is unreliable. After drawing a
moderate number of samples from a distribution, it may be impossible to give an
acceptable approximation of x∗, but it may be possible to obtain a better sampling
distribution. To modify the distribution to form a peak around the best samples
is called distribution focusing. Distribution focusing is the central idea of CEM
(Rubinstein, 2003).
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Table 3.1: Effectiveness of the simulation strategies.

Random TabuRandom TabuColorRandom

Average Score 2,069 2,737 3,038

StdDev 322 445 479

When starting CEM, an initial probability distribution is required. Chaslot et al.
(2008c) used a Gaussian distribution and proposed that for each parameter, the mean
µ of the corresponding distribution is equal to the average of the lower and upper
bound of that parameter. The standard deviation σ is set to half the difference
between the lower and upper bound (cf. Tak, 2010).

3.5 Experiments and Results

In this section we test SP-MCTS in SameGame. All experiments were performed on
an AMD64 2.4 GHz computer. Subsection 3.5.1 shows quality tests of the two sim-
ulation strategies TabuRandom and TabuColorRandom. Thereafter, the results of
manual parameter tuning are presented in Subsection 3.5.2. Subsequently, Subsec-
tion 3.5.3 gives the performance of the randomized restarts on a set of 250 positions.
In Subsection 3.5.4, it is investigated whether it is beneficial to exhaust all available
time at the first move. Next, in Subsection 3.5.5 the parameter tuning by CEM is
shown. Finally, Subsection 3.5.6 compares SP-MCTS to the other approaches.

3.5.1 Simulation Strategy

In order to test the effectiveness of the two simulation strategies, we used a test set
of 250 randomly generated positions.6 We applied SP-MCTS without randomized
restarts for each position until 10 million nodes were reached in memory. These runs
typically take 5 to 6 minutes per position. The best score found during the search is
the final score for the position. The constants C and D were set to 0.5 and 10,000,
respectively. The results are shown in Table 3.1.

Table 3.1 shows that the TabuRandom strategy has a significantly better average
score (i.e., 700 points) than plain random. Using the TabuColorRandom strategy
the average score is increased by another 300 points. We observe that a low stan-
dard deviation is achieved for the random strategy. In this case, it implies that all
positions score almost equally low. The proposed TabuColorRandom strategy has
also been successfully applied in Nested Monte-Carlo Search (Cazenave, 2009) and
HGSTS (Edelkamp et al., 2010).

3.5.2 Manual Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three different settings
were used for the pair of constants (C; D) of Formula 3.1, in order to investigate
which balance between exploitation and exploration gives the best results. These

6The test set can be found at http://www.personeel.unimaas.nl/maarten-schadd/TestSet.txt
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constants were tested with three different time controls on the test set of 250 po-
sitions, expressed by a maximum number of nodes. The short time control refers
to a run with a maximum of 105 nodes in memory. At the medium time control,
106 nodes are allowed in memory, and for a long time control 5 × 106 nodes are
allowed. We have chosen to use nodes in memory as measurement to keep the re-
sults hardware-independent. The parameter pair (0.1; 32) represents exploitation,
(1; 20,000) performs exploration, and (0.5; 10,000) is a balanced setting.

Table 3.2 shows the performance of the SP-MCTS approach for the three time
controls. The short time control corresponds to approximately 20 seconds per posi-
tion. The best results are achieved by exploitation. The score is 2,552. With this
setting the search is able to build trees that have on average the deepest leaf node
at ply 63, implying that a substantial part of the chosen line of play is inside the
SP-MCTS tree. Also, we observe that the other two settings are not generating a
deep tree.

For the medium time control, the best results were achieved by using the balanced
setting. It scores 2,858 points. Moreover, Table 3.2 shows that the average score of
the balanced setting increases most compared to the short time control, viz. 470.
The balanced setting is able to build substantially deeper trees than at the short
time control (37 vs. 19). An interesting observation can be made by comparing
the score of the exploration setting for the medium time control to the exploitation
score in the short time control. Even with 10 times the amount of time, exploration
is not able to achieve a significantly higher score than exploitation.

The results for the long experiment are that the balanced setting again achieves
the highest score with 3,008 points. The deepest node in this setting is on average
at ply 59. However, the exploitation setting only scores 200 points fewer than the
balanced setting and 100 points fewer than exploration.

Table 3.2: Results of SP-MCTS for different settings.

Exploitation Balanced Exploration
105 nodes (∼20 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450

Average Depth 25 7 3
Average Deepest Node 63 19 8

106 nodes (∼200 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492

Average Depth 36 14 6
Average Deepest Node 71 37 15

5 × 106 nodes (∼1,000 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518

Average Depth 40 18 9
Average Deepest Node 69 59 20



36 Single-Player Monte-Carlo Tree Search

From the results presented we may draw two conclusions. First, it is important to
have a deep search tree. Second, exploiting local maxima can be more advantageous
than searching for the global maximum when the search only has a small amount of
time.

3.5.3 Randomized Restarts

This subsection presents the performance tests of the randomized restarts on the
set of 250 positions. We remark that the experiments are time constrained. Each
experiment could only use 5× 105 nodes in total and the restarts distributed these
nodes uniformly among the number of searches. It means that a single search can
take all 5× 105 nodes, but that two searches can only use 2.5× 105 nodes each. We
used the exploitation setting (0.1; 32) for this experiment. The results are depicted
in Figure 3.2.

Figure 3.2 indicates that already with two searches instead of one, a significant
performance increase of 140 points is achieved. Furthermore, the maximum average
score of the randomized restarts is at ten threads, which uses 5× 104 nodes for each
search. Here, the average score is 2,970 points. This result is almost as good as the
best score found in Table 3.2, but with the difference that the randomized restarts
together used one tenth of the number of nodes. After 10 restarts the performance
decreases because the generated trees are not deep enough.

3.5.4 Time Control

This subsection investigates whether it is better to exhaust all available time at
the initial position or to distribute the time uniformly for every move. Table 3.3
shows the average score on 250 random positions with five different time settings.
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Figure 3.2: The average score for different settings of randomized restarts.
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When SP-MCTS is applied for every move, this time is divided by the average game
length (64.4). It means that depending on the number of moves, the total search
time varies. These time settings are exact in the case that SP-MCTS is applied per
game. This experiment was performed in collaboration with Tak (2010).

Table 3.3: Average score on 250 positions using different time control settings (Tak, 2010).

Time in seconds ∼5 ∼10 ∼20 ∼30 ∼60

SP-MCTS per game 2,223 2,342 2,493 2,555 2,750
SP-MCTS per move 2,588 2,644 2,742 2,822 2,880

Table 3.3 shows that distributing the time uniformly for every move is the better
approach. For every time setting a higher score is achieved when searching per move.
The difference in score is largest for 5 seconds, and smallest for 60 seconds. It is an
open question whether for longer time settings it may be beneficial to exhaust all
time at the initial position.

3.5.5 CEM Parameter Tuning

In the next series of experiments we tune SP-MCTS with CEM. The experiments
have been performed in collaboration with Tak (2010). The following settings for
CEM were used. The sample size is equal to 100, the number of elite samples is equal
to 10. Each sample plays 30 games with 1 minute thinking time for each game. The
30 initial positions are randomly generated at the start of each iteration. The fitness
of a sample is the average of the scores of these games. The five parameters tuned by
CEM are presented in Table 3.4. C, D, T and W were described in Subsection 3.3.1.
The ε parameter was described in Subsection 3.3.2. The CEM-tuned parameters
differ significantly from the manually tuned ones. For more results on tuning the
parameters, we refer to Tak (2010).

Table 3.4: Parameter tuning by CEM (Tak, 2010).

Parameter Manual CEM per game CEM per move

C 0.1 5.96 4.31
D 32 67.98 96.67
T 10 13 11
W 0.02 0.49 0.28
ε 0.003 0.00007 0.000077

To determine the performance of the parameters found by CEM an independent
test set of 250 randomly created positions was used. Five different time settings
were investigated. Table 3.5 shows the results of the CEM experiments. Here, the
search time is distributed uniformly for every move.

7This parameter was not tuned again because it was obvious that the optimal weight is close to
or equal to zero.
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Table 3.5: Average scores of CEM tuning (Tak, 2010).

Time in seconds ∼5 ∼10 ∼20 ∼30 ∼60

Manual tuned 2,588 2,644 2,742 2,822 2,880
Average Depth 22.7 27.4 30.3 32.8 35.9

Average Deepest Node 31.8 36.8 39.1 41.4 44.3

CEM tuned 2,652 2,749 2,856 2,876 2,913
Average Depth 4.9 5.4 6.2 6.8 9.1

Average Deepest Node 9.0 10.2 12.2 13.5 19.2

Table 3.5 shows that for every time setting CEM is able to improve the score. This
demonstrates the difficulty of finding parameters manually in a high-dimensional pa-
rameter space. The CEM-tuned parameters are more explorative than the manually
tuned parameters. This difference may be due to the fact that the CEM parameters
are tuned for the “per move” time control setting. The average depth and aver-
age deepest node achieved by the CEM parameters are closest to the results of the
balanced setting in Table 3.2.

3.5.6 Comparison on the Standardized Test Set

Using two hours per position, we tested SP-MCTS on the standardized test set. We
tested three different versions of SP-MCTS, subsequently called SP-MCTS(1), SP-
MCTS(2), and SP-MCTS(3). SP-MCTS(1) builds one large tree at the start and uses
the exploitation setting (0.1; 32) and randomized restarts, which applied 1,000 runs
using 100,000 nodes for each search thread. SP-MCTS(2) uses the same parameters
as SP-MCTS(1), but distributes its time per move. SP-MCTS(3) distributes its time
per move and uses the parameters found by CEM. Table 3.6 compares SP-MCTS
with other approaches, which were described in Subsection 3.1.3.

SP-MCTS(1) outperformed DBS on 11 of the 20 positions and was able to achieve
a total score of 73,998. This was the highest score on the test set at the point of
our publication (cf. Schadd et al., 2008c). SP-MCTS(2) scored 76,352 points, 2,354
more than SP-MCTS(1). This shows that it is important to distribute search time
for every move. SP-MCTS(3) achieved 78,012 points, the third strongest method
at this point of time. All SP-MCTS versions are able to clear the board for all 20
positions.8 This confirms that a deep search tree is important for SameGame as
shown in Subsection 3.5.2.

The two highest scoring programs (1) spurious ai and (2) HGSTS achieved more
points than SP-MCTS. We want to give the following remarks on these impressive
scores. (1) spurious ai is memory intensive and it is unknown what time settings
were used for achieving this score. (2) HGSTS utilized the graphics processing unit
(GPU), was optimized for every position in the standardized test set, and applied our
TabuColorRandom strategy. Moreover, the scores of HGTS were not independently
verified to be correct.

8The best variations can be found at the following address:
http://www.personeel.unimaas.nl/maarten-schadd/SameGame/Solutions.html
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Table 3.6: Comparing the scores on the standardized test set.

Position no. DBS SP-MCTS(1) SP-MCTS(2) MC-RWS

1 2,061 2,557 2,969 2,633
2 3,513 3,749 3,777 3,755
3 3,151 3,085 3,425 3,167
4 3,653 3,641 3,651 3,795
5 3,093 3,653 3,867 3,943
6 4,101 3,971 4,115 4,179
7 2,507 2,797 2,957 2,971
8 3,819 3,715 3,805 3,935
9 4,649 4,603 4,735 4,707

10 3,199 3,213 3,255 3,239
11 2,911 3,047 3,013 3,327
12 2,979 3,131 3,239 3,281
13 3,209 3,097 3,159 3,379
14 2,685 2,859 2,923 2,697
15 3,259 3,183 3,295 3,399
16 4,765 4,879 4,913 4,935
17 4,447 4,609 4,687 4,737
18 5,099 4,853 4,883 5,133
19 4,865 4,503 4,685 4,903
20 4,851 4,853 4,999 4,649

Total: 72,816 73,998 76,352 76,764

Position no. Nested MC SP-MCTS(3) spurious ai HGSTS

1 3,121 2,919 3,269 2,561
2 3,813 3,797 3,969 4,995
3 3,085 3,243 3,623 2,858
4 3,697 3,687 3,847 4,051
5 4,055 4,067 4,337 4,633
6 4,459 4,269 4,721 5,003
7 2,949 2,949 3,185 2,717
8 3,999 4,043 4,443 4,622
9 4,695 4,769 4,977 6,086

10 3,223 3,245 3,811 3,628
11 3,147 3,259 3,487 2,796
12 3,201 3,245 3,851 3,710
13 3,197 3,211 3,437 3,271
14 2,799 2,937 3,211 2,432
15 3,677 3,343 3,933 3,877
16 4,979 5,117 5,481 6,074
17 4,919 4,959 5,003 5,166
18 5,201 5,151 5,463 6,044
19 4,883 4,803 5,319 5,019
20 4,835 4,999 5,047 5,175

Total: 77,934 78,012 84,414 84,718



40 Single-Player Monte-Carlo Tree Search

3.6 Chapter Conclusions and Future Research

In this chapter we proposed a new MCTS variant called Single-Player Monte-Carlo
Tree Search (SP-MCTS). We adapted MCTS by two modifications resulting in SP-
MCTS. The modifications are (1) in the selection strategy and (2) in the backprop-
agation strategy. Below we provide five observations and one conclusion.

First, we observed that our TabuColorRandom strategy significantly increased
the score of SP-MCTS in SameGame. Compared to the pure random play-outs, an
increase of 50% in the average score is achieved. The proposed TabuColorRandom
strategy has also been successfully applied in Nested Monte-Carlo Search (Cazenave,
2009) and HGSTS (Edelkamp et al., 2010). Second, we observed that exploiting
works better than exploring at short time controls. At longer time controls a bal-
anced setting achieves the highest score, and the exploration setting works better
than the exploitation setting. However, exploiting the local maxima still leads to
comparable high scores. Third, with respect to the randomized restarts, we observed
that for SameGame combining a large number of small searches can be more bene-
ficial than performing one large search. Fourth, it is better to distribute search time
equally over the consecutive positions than to invest all search time at the initial
position. Fifth, CEM is able to find better parameter values than manually tuned
parameter values. The parameters found by CEM resemble a balanced setting. They
were tuned for applying SP-MCTS for every move, causing that deep trees are less
important.

The main conclusion is that we have shown that MCTS is applicable to a one-
player deterministic perfect-information game. Our variant, SP-MCTS, is able to
achieve good results in SameGame. Thus, SP-MCTS is a worthy alternative for
puzzles where a good admissible estimator cannot be found.

There are two directions of future research for SP-MCTS. The first direction is
to test several enhancements in SP-MCTS. We mention two of them. (1) The selec-
tion strategy can be enhanced with RAVE (Gelly and Silver, 2007) or progressive
widening (Chaslot et al., 2008d; Coulom, 2007a). (2) This chapter demonstrated
that combining small searches can achieve better scores than one large search. How-
ever, there is no information shared between the searches. This can be achieved by
using a transposition table, which is not cleared at the end of a small search. The
second direction is to apply SP-MCTS to other domains. For instance, we could test
SP-MCTS in puzzles such as Morpion Solitaire and Sudoku (Cazenave, 2009) and
Single-Player General Game Playing (Méhat and Cazenave, 2010). Other classes of
one-player games, with non-determinism or imperfect information, could be used as
test domain for SP-MCTS as well.
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Proof-Number Search with
Endgame Databases

This chapter is an updated and abridged version of the following publications:

1. Schadd, M.P.D., Winands, M.H.M., Bergsma, M.H.J., Uiterwijk, J.W.
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van den, and Bergsma, M.H.J. (2008d). Best Play in Fanorona Leads to
Draw. New Mathematics and Natural Computation, Vol. 4, No. 3, pp.
369–387.

This chapter answers the second research question by weakly solving the two-
player deterministic perfect-information board game Fanorona. We propose to use
a search-based approach that establishes the game-theoretic value of Fanorona.
The search-based approach is a combination of a mate-solver (Proof-Number (PN)
search) and pre-constructed endgame databases. We examine the tradeoff between
time spent on backward search (i.e., creating the endgame databases) and time in-
vested in forward search (i.e., mate-solvers using the created endgame databases).
Based on the analysis of the game, solving Fanorona and its variants is possible
by a well-chosen combination of PN search and endgame databases. Moreover, the
behavior of the PN search is investigated when solving different variants of the game.

The chapter is organized as follows. Section 4.1 discusses the notion of solving
games. Next, Section 4.2 provides background information and the rules of the
game of Fanorona. Subsequently, Section 4.3 presents various characteristics of the
game. Section 4.4 discusses the application of a retrograde analysis in Fanorona.
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The proof-number search variant, PN2, is explained in Section 4.5. Then, Section 4.6
presents the results of a well-tuned combination of PN2 search and the corresponding
databases. Section 4.7 describes the verification of the results. Finally, Section 4.8
provides the conclusions and gives future research topics.

4.1 Solving Games

Already for half a century, building strong game-playing programs is one of the
main targets of AI researchers. The principal aim is to witness the “intelligence” of
computers. A second aim is to establish the game-theoretic value of a game, i.e., the
outcome of the game when all participants play optimally (Van den Herik, Uiterwijk,
and Van Rijswijk, 2002). The game-theoretic value indicates whether a game is won,
lost, or drawn from the perspective of the player who has to move first.

Pursuing the second aim is an exciting task; there, game solvers are looking
for new techniques and new achievements in research. For solving a game, three
“layered” definitions exist (cf. Allis, 1994).

• Ultra-weakly solved: For the initial position, the game-theoretic value has
been determined.

• Weakly solved: For the initial position, a strategy has been determined to
obtain at least the game-theoretic value of the game.

• Strongly solved: For all legal positions, a strategy has been determined to
obtain at least the game-theoretic value of the position.

In the last 20 years, quite a number of games have been solved (cf. Van den
Herik et al., 2002). Below, we provide examples for each definition. (1) The game of
Hex is an instance of an ultra-weakly solved game (Anshelevich, 2000). The proof
was published by Nash (1952). (2) The following games were weakly solved: Qubic
(Patashnik, 1980; Allis and Schoo, 1992), Go-Moku (Allis, 1994; Allis, Van den Herik,
and Huntjes, 1996), Nine Men’s Morris (Gasser, 1995), Domineering (Breuker, Uiter-
wijk, and Van den Herik, 2000; Bullock, 2002), and Renju (Wágner and Virág, 2001).
Checkers is the latest addition to this list (Schaeffer et al., 2007; Schaeffer, 2007). (3)
Recently, we saw considerable development in “layer” three: Kalah (Irving, Donkers,
and Uiterwijk, 2000), Awari (Romein and Bal, 2003) and, Connect-Four (Tromp,
2008) were strongly solved.

Different methods can be used for solving games, which we divide into three
classes: knowledge methods, special search methods and endgame databases.1

(1) Knowledge methods are used to prune the search tree. Allis (1988) ap-
plied knowledge rules in Connect-Four that made it possible to determine the game-
theoretic value for non-terminal positions. Using these rules the game of Connect-
Four was solved.

(2) Special search methods (mate-solvers) are used to search the space efficiently.
For instance, Threat-Space Search (Allis, Van den Herik, and Huntjes, 1993) was

1It is possible to define different classes. Heule and Rothkrantz (2007) use five classes to distin-
guish solving methods.
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introduced in Go-Moku. This technique searches as if the opponent is allowed to
play all counter moves to a threat at once. Using this technique, a series of threat
sequences to win the game can be established in such that it is indifferent what the
opponent plays. The technique reduces the size of the search tree in such a way that
it was possible to solve the game (Allis et al., 1996). Other examples of mate-solvers
are Proof-Number Search (Allis et al., 1994) and λ-search (Thomson, 2000).

(3) Endgame databases are used to store the game-theoretic value of each pos-
sible endgame position. Retrograde analysis (Ströhlein, 1970) is a method to solve
endgame positions iteratively, starting with the terminal ones. For instance, Romein
and Bal (2003) were able to solve every possible Awari position using parallel retro-
grade analysis, thus solving the game strongly.

4.2 Fanorona

Fanorona is a board game with its roots in Madagascar (Montgomery, 1886). It is
derived from the game “Alquerque”, which might be over 3,000 years old. Below, we
explain the rules of Fanorona. The explanation is based on the rules given in Bell
(1980), and in Chauvicourt and Chauvicourt (1980). There exist some variations on
the rules, but we will focus on the most common variant. The goal of the game is to
capture all opponent pieces. The game is a draw if neither player succeeds. Fanorona
has three standard versions: Fanoron-Telo, Fanoron-Dimyand, and Fanoron-Tsivy.
The difference between these versions is the board size. Fanoron-Telo is played on a
3×3 board and the difficulty of this game can be compared to that of Tic-Tac-Toe.
Fanoron-Dimyand is played on a 5×5 board and Fanoron-Tsivy is played on a 5×9
board. We call Fanoron-Tsivy from now on Fanorona, because it is the best-known
board size and the main subject of this chapter.

This section is organized as follows. Subsection 4.2.1 introduces the board on
which Fanorona is played. Next, Subsection 4.2.2 explains the movement rules.
Finally, Subsection 4.2.3 describes the ending conditions of Fanorona.

4.2.1 Board

The Fanorona board consists of lines and intersections. A line represents the path
that a piece can move along during the game. There are weak and strong intersec-
tions. On a weak intersection, it is only possible to move a piece horizontally and
vertically, while on a strong intersection, it is also possible to move a piece diago-
nally. Figure 4.1 shows a weak intersection at e2 and a strong intersection at e3. A
piece can only move from one intersection to an adjacent intersection. In the initial
position, each player has 22 pieces. They are placed as shown in Figure 4.1. Players
move alternately; White plays first. Figure 4.2 shows two non-standard board sizes,
the 5×7 and the 7×5 board. We remark that a game played on the 7×5 board is
totally different from a game played on a 5×7 board. Rotating the 7×5 board to a
5×7 board creates a Fanorona game with a different 5×7 initial position (e.g., left
Black, right White). It is standard in Fanorona that the white pieces are below the
black pieces.
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Figure 4.1: The initial position of a Fanorona game.
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(b) 7x5: Initial position

Figure 4.2: Initial positions for the 5×7 and 7×5 board.

4.2.2 Movement

We distinguish two kinds of moves, capturing and non-capturing moves. Capturing
moves are obliged and have to be played, if possible, above non-capturing (paika)
moves. We start explaining capturing moves because thereafter describing paika
moves is straightforward.

Capturing implies removing one or more pieces of the opponent. It can be done
in two different ways, either (1) by approach or (2) by withdrawal. An approach is
the movement of the capturing piece to an intersection adjacent to an opponent piece
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provided that the opponent piece is situated on the continuation of the capturing
piece’s movement line. A withdrawal works analogously as an approach but the
difference is that the movement is away from the opponent piece. When an opponent
piece is captured, all opponent pieces in line with that piece and directly behind that
piece (i.e., there is no interruption by an empty intersection or an own piece) are
captured as well.

Figure 4.3 shows how the capturing mechanism works. We start with a straight-
forward capturing move. In the given position, White can capture Black’s piece on
d2 by moving the white piece from b2 to c2. By this move, Black’s piece on e2
is captured as well. g2 is not captured because there is no black piece on f2. This
is called capturing by approach because the white piece is moved towards the black
piece on d2.

White can also capture by withdrawal if the white piece is moved from f4 to e4.
This is allowed because the white piece is moving away from the black piece on g4.
The piece on i4 is not captured because there is a white piece on h4 interrupting
the line.

White cannot capture c4 with f4 because for a capturing move the own piece
has to be next to the one captured after movement: f4 is too far away to capture c4.
In order to allow capturing, the piece has to be moved to an intersection adjacent
to the captured piece, if it is approached.

Also, White cannot capture c4 with b2 (moving diagonally) because c4 is not
on the extension of a movement line from b2. Only pieces can be captured that
are located in the extension of the movement line of the capturing piece. Thus,
capturing “around a corner” is not allowed.
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Figure 4.3: An example position during a Fanorona game.

To denote a capturing by approach, we define the following notation: b2-c2A
meaning that the piece on b2 moves to c2 and approaches (A) the piece on d2. For
a withdrawal, the letter “W” is used. If a piece is moved without capturing any
opponent piece, no letter “A” or “W” is used.
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As in checkers, it is allowed to continue capturing with the same piece as long as
possible. We call this extended capturing. Figure 4.3 shows that White can capture
c4 with the move: b2-c2A-c3A. (Even if a move consists of multiple movements
of one single piece it still counts as a single move.) Although a player is obliged to
prefer a capturing move above a non-capturing move, the player may stop capturing
after any number of opponent pieces are captured. This rule is different from the
checkers rule where stopping a capturing sequence is not permitted. For instance,
in Figure 4.3, White is allowed to stop early and play only b2-c2A.

There are three more rules concerning capturing pieces. (1) It is not allowed to
capture by approach and withdrawal at the same time. This is the case at the initial
position shown in Figure 4.1 where White could play d3-e3 as an approach or a
withdrawal. In such a situation, the player has to choose whether the current move
is an approach or a withdrawal. (2) It is not allowed to make a capturing move in
the same direction as the capturing move directly before. We illustrate this rule by
referring to Figure 4.3. White is not allowed to play: f4-e4W-d4A because the
white piece would move twice in a row in the same direction. A player is allowed to
play a capturing movement in a previously chosen direction if a capturing movement
in another direction is done in between. The last movement direction of the capturing
move in the previous turn (i.e., before the last opponent move) does not influence
possible capturing directions in the current turn. (3) The current capturing piece is
not allowed to arrive on the same intersection twice during a capturing sequence. In
Figure 4.3, White is not allowed to play f4-e4W-e3A-f4W because of this rule.

If no capturing move can be played, a non-capturing move is allowed. This is
called a paika move and consists of moving one piece along a line to an adjacent
intersection. White is not allowed to play the paika move b2-b1 in the position
depicted in Figure 4.3 because capturing is possible.

4.2.3 End of the Game

The player who first captures all opponent pieces wins the game. The game is a
draw if no player is able to win. In practice this is achieved by repetition of the
same position with the same player to move (Schadd, 2006).

There does not exist any documentation stating what the outcome of the game
would be if a player is not able to move. If this occurs during a game, we define that
a player who is not able to move forfeits the game. However, this situation rarely
occurs and it is unlikely that the game-theoretic value would change if another
outcome would be defined in this situation. This situation was encountered a few
times when we solved Fanorona and its smaller variants. Two positions that were
encountered during the search are depicted in Figure 4.4.

4.3 Analyzing Fanorona

Two important indicators for establishing the questions (a) whether games can be
solved and (b) which methods may be successful are (1) the game-tree complexity
and (2) the state-space complexity.
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(b) No moves for White

Figure 4.4: Two positions without legal moves for one side encountered during the search.

An approximation for the game-tree complexity can be computed by perform-
ing a self-play experiment. 10,000 games were played by two αβ players, which
performed a 4-ply deep search with a greedy evaluation function. The evaluation
function consists of material difference and a random factor. By using these players,
the average branching factor may be approximated accurately. It is still possible
however, that the approximated average game length deviates significantly off the
real average game length. On the one hand, in games where humans know early
that the result is a draw, the αβ players may shuffle pieces around until a repeti-
tion occurs. Only after the first repetition of a position, the game is counted as a
draw. On the other hand, the αβ players may make mistakes which leads to faster
capturing of pieces. Therefore, the average game length is somewhat unreliable. We
determined that the average game length of Fanorona is 43.81 moves (i.e., plies) and
the average branching factor is 11.19 moves. This gives us a game-tree complexity
of approximately 1046. The state-space complexity has been computed as 1021 by
using Formula 4.1 (explained in the next section). These numbers are comparable
to those of checkers, which has a game-tree complexity and state-space complexity
of 1031 and 1020, respectively (Allis, 1994; Schaeffer et al., 2007).

A typical game of Fanorona can be divided into two parts. In the first part of
the game, mostly capturing moves are played until most pieces are captured. In the
second part, the endgame, mainly paika moves are played. Figure 4.5 shows the
ratio of capturing moves and paika moves as a function of the number of pieces on
the board. This figure is based on 10,000 games played by αβ players. In the initial
position, 44 pieces are on the board.

Figure 4.5 shows that with 19 or more pieces on the board, a capturing move is
to be expected. We define the endgame as the part of the game where more paika
than capturing moves are played. Figure 4.5 indicates that the endgame starts when
there are fewer than 13 pieces on the board.

Figure 4.6 shows the average branching factor as a function of the number of
pieces on the board, based on the same 10,000 games. We see in the figure that when
the game enters the endgame the branching factor increases again. The reason for the
increase of the average number of possible moves in the endgame is the occurrence
of paika moves. The combination of a long endgame and a local maximum of the
branching factor results in an immense solution tree.
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Figure 4.5: Ratio of capturing moves and paika moves as a function of the number of pieces
on the board.
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Figure 4.6: The average branching factor as a function of the number of pieces on the
board.

Figure 4.7 shows the average number of pieces on the board as a function of the
move number. Here we see that the number of pieces decreases fast at the start
of the game. After 15 or more moves, the number of pieces only decreases slowly,
implying that the endgame has started.

In order to cope well with the difference between both parts, different methods
have been selected. For the endgame part, retrograde analysis has been selected to
create endgame databases (Ströhlein, 1970; Van den Herik and Herschberg, 1985).
There are three reasons, why endgame databases are a valuable tool for solving
Fanorona. (1) Fanorona is a converging game (Van den Herik et al., 2002). (2) A
large part of the game consists of positions with only a few pieces on the board.
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Figure 4.7: The average number of pieces as a function of the move number.

Table 4.1: Estimated complexities with increasing database size.

Database size 0 2 3 4 5
Average Game Length 43.81 42.60 40.23 36.23 31.62
Average Branching Factor 11.19 11.37 11.63 11.98 12.31
Log10 Game-Tree Complexity 45.96 44.97 42.88 39.07 34.48

Database size 6 7 8 9 10
Average Game Length 26.99 22.98 19.74 17.27 15.44
Average Branching Factor 12.59 12.82 13.02 13.26 13.53
Log10 Game-Tree Complexity 29.70 25.45 22.01 19.39 17.47

Fanorona has an average game length of 44 plies. Already after 21 plies there are
on average fewer than 8 pieces on the board. (3) The endgame is not trivial. The
branching factor has a local maximum in the endgame (see Figure 4.6) and there
the game is converging more slowly.

Because of the long endgame where mostly paika moves are played, one would
expect that an endgame database would decrease the size of the solution tree sub-
stantially. The expectation can be tested by doing a simulation. This was done in
the following way.

A virtual database was used to finish a game early. For instance, if we assume
that a 2-piece database is available, the game is stopped when a position with two
pieces is reached. This is a terminal node because the outcome of the game can be
retrieved from the virtual database. Using this approach, we can estimate the change
of both the average game length and the branching factor as a direct consequence
of using larger databases. Table 4.1 shows that the virtual database was able to
reduce the game-tree complexity substantially. In this experiment, we see that the
game-tree complexity decreases by a factor of more than 100 on average when the
database size increases by one piece.
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Because of the large number of positions, it is not possible to create an endgame
database up to the initial position. Therefore, for the first part of the game, a
dedicated search method is required. PN search (Allis et al., 1994) has been chosen
because the method is efficient for non-uniform trees. A non-uniform tree can be
the result of many forced moves (e.g., capturing in Fanorona). Moreover, the use of
an endgame database in the search tree makes the search tree non-uniform.

During the search the most-promising lines in the tree (i.e., lines where relatively
the weakest resistance is expected) are examined first because PN search uses a best-
first tree traversal to find the solution tree. The combination of endgame databases
and the fact that Fanorona converges fast may make PN search an efficient technique
for this game. In the next two sections, we describe the two methods, retrograde
analysis and PN search, in detail.

4.4 Retrograde Analysis

Retrograde analysis is a method to create omniscient endgame databases for games
(Ströhlein, 1970; Van den Herik and Herschberg, 1985). Such endgame databases
proved to be vital to the strength of computer programs in quite a number of
games (Schaeffer, 1997; Heinz, 1999). For instance, in the game of checkers endgame
databases have been built for up to 10 pieces remaining on the board (Schaeffer et al.,
2003). The more board positions are stored in the endgame database, the earlier
the search process can be terminated. Moreover, the method makes a deeper search
possible in the middle game. Besides improving the playing strength of a program
in the middle game, endgame databases can be used to solve a game as well. For
instance, Romein and Bal (2003) solved the game of Awari by storing the complete
state space in a database.

A requirement for retrograde analysis is an index function. This function has
to be a one-to-one mapping. Making such a function efficient can save a significant
amount of space in the database (Dekker, Van den Herik, and Herschberg, 1990;
Lake, Schaeffer, and Lu, 1994). The function we used consists of two parts: (1)
a function to transform the pieces on the board to a number, independent of the
color of a piece and (2) a function to convert the order of black and white pieces
to a number. The combined index function identifies uniquely all possible board
positions disregarding symmetry. Such an index function is called gap-less. A gap-
less function uses each index between the minimum and the maximum index. It
is also invertible so that given an index, the corresponding board position can be
computed.

Formula 4.1 shows the index function used. We denote the total number of pieces
on the board by M and the position of a piece i by Si (which is a number between
0 and 44). We define W as the total number of white pieces and Wi is the place
of white piece i in the sequence of white and black pieces on the board (which is a
number between 0 and M − 1).

index =

M∑

i=1

(Si
i ) +

(
45
M

)
×

W∑

i=1

(Wi
i ) (4.1)
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Table 4.2: Database sizes up to 15 pieces.

# of Pieces # of Positions
2 1,980
3 85,140
4 2,085,930
5 36,652,770
6 504,993,720
7 5,717,832,120
8 54,750,511,530
9 451,943,198,850

10 3,260,371,406,292
11 20,768,119,231,860
12 117,743,529,024,030
13 597,920,852,078,550
14 2,733,686,209,314,720
15 11,299,926,066,685,300

Table 4.2 shows the size of each database if the above index function is used.2

Moreover, each position uses 2 bits of space on the hard disk, indicating that the
position is a win, draw, or loss. So, for instance, we may state that the computation
of the 9-piece database would be feasible on a regular desktop machine, where a
total of 119.3 GB of hard disk space would be required.

For speeding up the creation process, paging was implemented. Paging is a tech-
nique that stores frequently used parts of the database in memory without writing
them to the hard disk (Lake et al., 1994). When data from a page is requested, the
information can be retrieved from memory and no hard-disk access is required.

During this research all databases with 7 or fewer pieces were computed for
Fanorona. The computation took two to three months and was performed on a
regular desktop PC with a Pentium IV 3.0 GHz processor and 256 MB RAM of
memory.

Table 4.3 shows the number of wins, draws, and losses in the databases for the
5×9 variant. Symmetric positions have been removed. a-b denotes that the player
to move has a pieces and its opponent b pieces. Table 4.3 indicates that the player
to move has an advantage. One might suspect that a player who is to move and
has more pieces than the opponent would win the game. The results are that (1)
in the 4-1 database the player to move cannot lose any position, (2) in the 5-1 and
6-1 databases the player to move can win every position. So, an advantage of more
than three pieces is required for a forced win.

We have created databases for the smaller Fanorona boards as well. We have com-
puted (1) all endgame databases up to 7 pieces for the 5×7 board, (2) all endgame
databases up to 9 pieces for the 5×5 board, and (3) all endgame databases up to 8
pieces for the 3×9 board.

2Please note that
(
x
y

)
= 0 if y > x.
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Table 4.3: Number of won, drawn, and lost positions in the databases for the 5×9 board.
a-b indicates that the player with a stones is to move.

Db. 1-1 2-1 1-2 3-1 2-2
Win 158 10,366 717 149,458 127,756
Draw 334 398 3,231 91 79,012
Loss 26 6 6,822 1 17,386
Db. 1-3 4-1 3-2 2-3 1-4
Win 4,188 1,529,142 2,711,327 774,043 19,814
Draw 15,875 12 327,836 1,252,162 88,187
Loss 129,487 0 18,297 1,031,255 1,421,153
Db. 5-1 4-2 3-3 2-4 1-5
Win 12,223,788 30,095,407 24,137,779 4,180,200 81,728
Draw 0 426,350 13,955,354 7,926,733 391,405
Loss 0 32,491 2,644,731 18,447,315 11,750,655
Db. 6-1 5-2 4-3 3-4 2-5
Win 79,431,164 237,393,018 344,370,238 145,408,435 18,659,090
Draw 0 774,868 46,020,564 170,633,688 41,896,491
Loss 0 108,614 6,724,158 81,072,837 177,720,919
Db. 1-6
Win 302,021
Draw 1,509,775
Loss 77,619,368

4.5 Proof-Number Search

This section discusses the search procedure applied for weakly solving the game.
The method used is Proof-Number (PN) search; it is briefly described in Subsection
4.5.1. A variant of PN search, called PN2, is explained in Subsection 4.5.2.

4.5.1 PN Search

PN search is a best-first search algorithm especially suited for finding the game-
theoretic value of a game (Allis et al., 1994). Its aim is to prove the true value
of the root of a tree. A tree can have three values: true, false, or unknown. In
the case of a forced win, the tree is proven and its value is true. In the case of
a forced loss or draw, the tree is disproven and its value is false. Otherwise, the
value of the tree is unknown. In contrast to other best-first algorithms, PN search
does not require a domain-dependent heuristic evaluation function to determine the
most-promising node to be expanded next. In PN search, this node is usually called
the most-proving node. PN search selects the most-proving node using two criteria:
(1) the shape of the search tree (the branching factor of every internal node) and
(2) the values of the leaves. These two criteria enable PN search to treat game
trees with a non-uniform branching factor efficiently (Allis et al., 1994). PN search
exploits an irregular search tree by using a “least-work-first” strategy. An irregular
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tree can be caused by capturing or blocking the opponent. Endgame databases can
also influence the shape of the tree. For a number of application domains with a
highly irregular tree structure, such as chess mating problems or the games of Qubic
and Fanorona, PN search is more efficient than αβ-like algorithms (Plaat, 1996).

4.5.2 PN2 Search

A disadvantage of PN search is that the whole search tree has to be stored in memory.
Therefore, we use PN2 as an algorithm to reduce memory requirements in PN search
(Allis, 1994; Breuker, Uiterwijk, and Van den Herik, 2001b). PN2 consists of two
levels of PN search. The first level consists of a PN search (pn1), which calls a PN
search at the second level (pn2) for an evaluation of the most-proving node of the
pn1-search tree. This pn2 search is bound by a maximum number of nodes N to be
stored in memory. In our implementation (analogously to Allis, 1994), N is equal to
the size of the pn1 tree. The pn2 search is stopped when the number of nodes stored
in memory exceeds N or the subtree is (dis)proven. After completion of the pn2

search, the children of the root of the pn2-search tree are preserved, but subtrees
are removed from memory.3

The maximum size of the subtree for determining the PN numbers is an impor-
tant factor for PN2 search. With a larger tree, the search would be more directed
but would take more time to compute. Allis (1994) proposed a variable size for the
pn2 tree that is dependent on the size of the pn1 tree. Breuker et al. (2001b) used
a fraction function to determine the size of the pn2 tree. We did not use the latter
approach because the fraction function is not efficient for large problems. We set
the maximum size of the pn2 tree equal to the size of the pn1 tree.

4.6 Experiments and Results

This section presents the results obtained during our research. In Subsection 4.6.1,
the game-theoretic values of Fanorona and its smaller board variants are given and
the optimal solution for the 3×3 board is presented. Subsection 4.6.2 investigates
the tradeoff between backward search and forward search. Finally, Subsection 4.6.3
discusses an interesting observation regarding the behavior of the proof and disproof
numbers.

4.6.1 Solving Fanorona and its Smaller Variants

PN2 search is used in combination with endgame databases to compute the game-
theoretic value of Fanorona and its smaller variants. After some tuning, we arrived at
the “ideal” combination for this configuration (i.e., 5×9 board on current hardware)
viz. PN2 with all databases including 7 or fewer pieces. By doing so, we were able
to prove that Fanorona is a draw. For proving this, a total of 130,820,097,938 nodes
were created during the search. Solving the initial position of Fanorona took more
than a week when using our search-based approach on a computer with an AMD64

3This only holds if the root is not proven or disproven.
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Table 4.4: The game-theoretic values for different board sizes.

Board Size Winner DB Size (Pieces) Nodes
3×3 White 0 122
3×5 White 0 2,490
5×3 White 0 1,491
3×7 White 0 87,210
7×3 White 0 172,101
5×5 Draw 9 119,354
3×9 White 8 105,343
9×3 White 8 3,999,481
5×7 Black 7 72,826,963
7×5 White 7 1,107,756
5×9 Draw 7 130,820,097,938

2.6 GHz processor and 32 GB RAM of memory. The search proved that both moves
f2-e3A and d3-e3A lead to a draw. Preliminary results suggest that by optimal
play the moves e2-e3A, d3-e3W and d2-e3A will lead to a win for Black.

Furthermore, we have solved the smaller variants of the game as well. An
overview of the results of Fanorona and all smaller boards is given in Table 4.4. The
column labeled DB size indicates the maximum number of pieces for the databases
used. The column labeled Nodes indicates the total number of created nodes.

For smaller boards we remark the following. If we have a look at Table 4.4, we
see that all boards with a side equal to size 3 are a win for White. Thus, the starting
player can exploit a narrow board and force a win. However, for most boards, with
sides of at least size 5, White does not have this advantage anymore.

Table 4.4 shows differences between horizontal and vertical boards. The differ-
ence in number of nodes between the 5×7 and 7×5 boards (see Table 4.4 and Figure
4.2) can be explained by the fact that 5×7 is a win for Black (the second player),
which is harder to prove. Furthermore, a substantial difference between the 3×9 and
9×3 boards can be observed. We conjecture that the average distance between the
players’ pieces is larger on vertical boards than on horizontal boards when entering
the endgame. This would result in a slower convergence.

In order to provide insight into the strategies behind optimal play we show the
solution for the 3×3 board. Figure 4.8 shows the game that is played if both players
play optimally.

Below, some interesting positions in this game are discussed. In Subfigure 4.8(b),
Black has no choice of movement because there is only one possible capturing move.
In Subfigure 4.8(d), Black has two choices. The move b3-c3 would lead to a loss
in 1 because White would answer with b2-a1W-a2A. Subfigure 4.8(f) is the most
interesting one. Black decides to stop the capturing sequence after the capturing of
only one of the two possible pieces. The reason for this is to postpone the eventual
loss by one move.
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Figure 4.8: 3×3 board: White can force a win.
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4.6.2 Tradeoff between Backward and Forward Search

There exists a tradeoff between time spent on backward search (i.e., creating the
endgame databases) and time invested in forward searching (i.e., PN Search using
the endgame databases to cut off the search). To demonstrate this, we take the 5×5
variant as example. Table 4.5 shows the time and the number of nodes required
to compute different 5×5 databases. The number of positions in the databases and
the time to compute the database increases exponentially. This table also shows the
amount of time required to solve the 5×5 variant using different endgame databases.
Here we see that the effect of an additional database diminishes fast.

Table 4.6 shows the effectiveness of endgame databases for the 7×5 variant.
Because the 7×5 board is larger than the 5×5 board, only the databases up to 7
pieces were computed. The effectiveness of endgame databases for the 3×9 variant
is presented in Table 4.7. For this variant, all databases with up to 8 pieces were
computed. A remarkable phenomenon for this variant is that it is faster to solve
with the 3-piece endgame database than with the 4-piece database. The following
explanation can be given for this phenomenon. PN search develops the tree into the
direction where the weakest resistance is expected. Because the endgame databases
has a large influence on the branching factor, it may happen that the endgame
database misdirects the PN search. The reason that this variant is solved faster
with the 7-piece database than with the 8-piece database is that the problem size
has become so small that the hard-drive access becomes the dominant factor.

In order to determine the optimal database size for a Fanorona variant, both
the solving time and the time required to compute the endgame databases have to
be taken into account. Figure 4.9 shows the total time required for creating the
endgame databases and for the PN search for the 5×5, 7×5 and 3×9 variant. For
the 5×5 variant the optimal database size is 4 pieces. With fewer pieces, the time

Table 4.5: Effectiveness of endgame databases for 5×5 Fanorona.

DB size 0 2 3
DB Time(ms) - 138 1,228

DB Size - 600 13,800
Solving Time (ms) 189,919,141 31,610,647 6,176,044

Solving Nodes 101,830,539,576 18,934,832,800 3,546,498,830

DB size 4 5 6
DB Time (ms) 6,547 60,927 326,104

DB Size 171,100 1,593,900 10,980,200
Solving Time (ms) 9,049 2,715 1,033

Solving Nodes 6,323,71 1,509,329 364,278

DB size 7 8 9
DB Time (ms) 2,104,583 8,972,377 41,415,589

DB Size 60,568,200 274,720,050 1,041,917,250
Solving Time (ms) 842 694 577

Solving Nodes 251,236 173,566 119,354
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Table 4.6: Effectiveness of endgame databases for 7×5 Fanorona.

DB size 0 2 3
DB Time(ms) - 141 3,062

DB Size - 1,190 39,270
Solving Time (ms) 62,371,743 29,159,087 2,300,224

Solving Nodes 39,243,004,473 20,120,149,985 1,685,583,077

DB size 4 5 6
DB Time(ms) 31,350 479,801 3,858,750

DB Size 733,040 9,738,960 100,635,920
Solving Time (ms) 1,108,075 568,325 99,164

Solving Nodes 862,109,429 439,220,855 72,524,679

DB size 7
DB Time(ms) 77,294,159

DB Size 847,289,520
Solving Time (ms) 4,132

Solving Nodes 1,107,756

Table 4.7: Effectiveness of endgame databases for 3×9 Fanorona.

DB size 0 2 3 4
DB Time(ms) - 129 1,836 9,629

DB Size - 702 17,550 245,700
Solving Time (ms) 39,975 35,379 6,883 12,747

Solving Nodes 33,248,635 28,588,852 5,885,429 10,939,734

DB size 5 6 7 8
DB Time(ms) 104,829 585,177 4,387,274 21,854,833

DB Size 2,421,900 18,352,620 113,891,780 563,899,050
Solving Time (ms) 2,953 1,638 997 2,159

Solving Nodes 2,138,924 1,055,233 233,197 105,343

required for PN search is the critical factor. With more pieces, the time required
for computing the endgame databases is the critical factor. The reason for this is
that for larger databases, the majority of the positions in the database are not used
during the search. For the 7×5 variant, the optimal database size is 5 pieces, and 3
pieces for the 7×5 variant. These optima are at relatively small databases. We also
see that the optima occur when the time required for database construction and the
time required for solving are of the same order. Taken into account that for 5×9
Fanorona it took 2 to 3 months to construct the databases and slightly more than a
week to solve the game, we suspect that the optimal database size for 5×9 Fanorona
is 6 or 7 pieces.
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Figure 4.9: Total time required for solving Fanorona variants.

4.6.3 Behavior of the PN Search

The behavior of PN search can be expressed by displaying the development of the
proof and disproof number at the root node. During this research, we made an
interesting observation. Figure 4.10 and Figure 4.11 show the development of proof
and disproof number of the root node during the search. Figure 4.10 depicts a
search with the goal that White can win the initial position. Figure 4.11 visualizes
a search with the goal that White can at least draw the initial position. We found
that the development of the proof and disproof number has a similar pattern for
smaller boards and looks like a Chi-Square distribution. The number that goes to
zero, independent of its nature (proof or disproof number), always reaches its peak
in the beginning and has a long tail at the end. A similar pattern can be found when
solving the small boards. For instance, this can be seen when solving the 7×3 board
(See Figure 4.12). A reason for this may be that Fanorona is not a sudden-death
game (i.e., all pieces have to be captured to win the game). When proving the win
in the sudden-death game Lines of Action, the development of the proof-number is
bell-shaped (Winands, 2008).

4.7 Correctness

It is important that the obtained results are free of errors. This section gives two
arguments why we are convinced that the results presented in this chapter are cor-
rect.

First, we verified the code for the retrograde analysis in three ways. (1) We solved
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Figure 4.10: Development of the proof and disproof number when proving that White
cannot win the initial 5×9 Fanorona position.
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Figure 4.11: Development of the proof and disproof number when proving that White can
at least draw the initial 5×9 Fanorona position.
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Figure 4.12: Development of the proof and disproof number when proving that White can
win the initial position on the 7×3 board.
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endgame positions with the help of PN search and compared the obtained result with
the entry in the database. (2) We did use the database code to construct Lines of
Action (LOA) and Surakarta endgame databases, which were verified independently
by the programs MIA (Winands, 2004) and SIA (Winands, 2007), respectively. (3)
A consistency check was done in order to check for possible bit flips (Schaeffer, 1997).
It turns out that no bit flips had occurred.

Second, in order to verify PN search three actions have been taken. (1) The
smaller boards were checked manually. This was possible for the 3×3, 5×3, and
3×5 boards. (2) PN search was compared to a standard αβ search. Non-trivial 5×9
positions were solved by both solvers in order to detect differences. (3) To handle
the Graph-History-Interaction (GHI) problem (Palay, 1983; Campbell, 1985), no
transposition tables were used during the search. There exist methods that handle
the GHI problem with PN search (Breuker et al., 2001a; Kishimoto and Müller,
2004) but these were not implemented.

4.8 Chapter Conclusions and Future Research

Our first and main conclusion of this chapter is that the game of Fanorona (played
on the 5×9 board) has been weakly solved and is drawn when both players play
optimally. This conclusion was arrived through a well-chosen combination of the
proof-number (PN) search variant PN2 and endgame databases. Combining these
two methods is a relatively new approach for solving a game. Simultaneously to
our research, checkers was solved with a similar method (Schaeffer et al., 2007;
Schaeffer, 2007). Endgame-database statistics show that (1) the player to move has
an advantage and (2) that a draw can often be achieved in spite of having fewer pieces
than the opponent. Second, we have seen that the optimal endgame database size
for the 3×9, 5×5 and 7×5 are 3, 4 and 5 pieces, respectively. The optimal database
size is located at the point where the time required for database construction and the
time required for solving are of the same order. From this observation, we conclude
that the optimum for Fanorona is 6 or 7 pieces. Third, we may conclude that White
is able to force a win on board sizes with one side equal to 3. We conjecture that
for boards where both sides have at least size 5, White does not have this advantage
for the majority of cases (so, we consider 7×5 as an exception because White still
wins). The 9×5 board (please note the inversion) of the game has not been fully
weakly solved up to now. Preliminary results suggest that this board is much harder
to solve than the 5×9 board. We anticipate that the reason for this is the larger
distance to the opponent when entering the endgame (see Subsection 4.6.1).

The game-tree and state-space complexity of Fanorona are somewhat higher than
those of checkers. Therefore, the following question may arise: why is this game
easier to solve than checkers? The answer lies in the properties of the game (e.g.,
the decision complexity, Allis, Van den Herik, and Herschberg, 1991). In Fanorona,
capturing is almost always possible in the opening and middle game; often a large
number of pieces is then captured. Thus, the game converges fast to the endgame,
where the endgame databases can take over the best-play procedure. The speed of
the game convergence is not represented in the game-tree and state-space complexity.
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We are confident that if such a measure would be established, it would be higher for
Fanorona than for checkers.

In this chapter, Fanorona has been weakly solved. We determined a strategy
to achieve the game-theoretic value against any opposition starting from the initial
position. Solving Fanorona strongly is a challenging subject for future research.
At this moment of time (2010) the 9×5 and all larger boards are unsolved. We
believe that for solving these board sizes, larger databases are required. It would
be interesting to investigate whether the proof and disproof number show a similar
pattern as seen in Subsection 4.6.3 when solving other games.

Finally, the time for solving may be reduced significantly by using Evaluation-
Function Based Proof-Number Search (EF-PN) (Winands and Schadd, 2011). EF-
PN is a general framework for employing a traditional evaluation function in PN
search. The search is directed to branches where the evaluation function indicates
a promising situation. For Fanorona, the material on the board may be used as an
evaluation function.
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Chapter 5

Forward Pruning in Chance
Nodes

This chapter is an updated and abridged version of the following publication:

1. Schadd, M.P.D., Winands, M.H.M. and Uiterwijk, J.W.H.M. (2009).
ChanceProbCut: Forward Pruning in Chance Nodes. Proceedings
of the 2009 IEEE Symposium on Computational Intelligence and Games
(CIG 2009), P.L. Lanzi, ed., pp. 178−185, IEEE press, Piscataway, NJ,
USA.

Human players do not consider the complete game tree to find a good move.
Using experience, they are able to prune unpromising variants in advance (forward
pruning) (De Groot, 1965). Their game trees are narrow and deep. By contrast, the
original minimax algorithm searches the entire game tree up to a fixed depth. Even
its efficient variant, the αβ algorithm (Knuth and Moore, 1975), can only prune
safely if a position is proven to be irrelevant to the principal variation (backward
pruning). There are several forward-pruning techniques for the αβ algorithm, such as
the null-move heuristic (Beal, 1989; Goetsch and Campell, 1990), (Multi-)ProbCut
(Buro, 1995; Buro, 2000), and Multi-Cut (Björnsson and Marsland, 1999; Björnsson
and Marsland, 2000; Björnsson and Marsland, 2001), but they cannot guarantee
that the best move is not overlooked. These forward-pruning techniques have been
applied to deterministic games with perfect information (e.g., Chess, Checkers, and
Go), but so far not for non-deterministic or imperfect-information games.

Non-deterministic (stochastic) games introduce an element of uncertainty (Rus-
sell and Norvig, 2003), for instance by a roll of dice (e.g., Backgammon and Ludo,
Carter, 2007). Besides non-deterministic games with perfect information, there exist
deterministic games with imperfect information. Imperfect-information games hide
information from the players (e.g., Cluedo (Van Ditmarsch, 2000; Van Ditmarsch,
2001), Scotland Yard (Sevenster, 2006), Stratego (De Boer, 2007) and Kriegspiel
(Ciancarini and Favini, 2007)). Both non-deterministic and imperfect-information
games are generally more complex than deterministic games of perfect information
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(Reif, 1984; Condon, 1992). A game can also be non-deterministic and have imper-
fect information (Russell and Norvig, 2003) (e.g., games such as Poker (Billings et al.,
1998a), Bridge (Smith, Nau, and Throop, 1998) and Risk (Osborne, 2003)). In
imperfect-information games, the actual state of the game is not known and a pos-
sible state is referred to as a world. When performing a tree search in such a game,
all possible worlds need to be considered (Frank, 1990; Frank and Basin, 1998). Al-
ternatively, imperfect-information games can be treated as non-deterministic games
as if they contain an element of chance (Russell and Norvig, 2003). For example
in Stratego, capturing an unknown piece can be treated as a chance event where
the chance model is based on the remaining pieces on the board and the knowl-
edge about the opponent. In order to integrate knowledge about the opponent,
opponent modeling techniques may be used (Jansen, 1992; Carmel and Markovitch,
1993; Iida et al., 1994; Billings et al., 1998b; Donkers, 2003). These techniques may
improve the playing strength (e.g., a win ratio of 55% in Stratego, Stankiewicz and
Schadd, 2009).

For non-deterministic games, expectimax (Michie, 1966) is the main algorithm
of choice. It extends the minimax concept to non-deterministic games, by adding
chance nodes to the game tree. Expectimax may be applied to imperfect-information
games as well, although alternatives exist (e.g., Partition Search, Ginsberg, 1996).
So far, no specific expectimax forward-pruning technique has been designed for these
chance nodes.

This chapter answers the fifth research question by proposing ChanceProbCut,
a forward-pruning technique based on ProbCut (Buro, 1995). ChanceProbCut is
able to stop prematurely the search at a chance node in the expectimax framework.
This technique estimates values of chance events based on shallow searches. Based
on the correlation between evaluations obtained from searches at different depths,
ChanceProbCut prunes chance events in advance if the result of the chance node
probably falls outside the search window.

The outline of the chapter is as follows. First the expectimax algorithm is ex-
plained in Section 5.1. Next, its variants Star1 and Star2 pruning are described
in Section 5.2. Thereafter, Section 5.3 discusses forward pruning. We introduce
the new forward-pruning technique ChanceProbCut in Section 5.4. Section 5.5 de-
scribes the games Stratego, Dice and ChanceBreakthrough, which are used as test
domains. The experiments are presented in Section 5.6. Finally, Section 5.7 gives
the conclusions and an outlook on future research.

5.1 Expectimax

Expectimax (Michie, 1966) is a brute-force, depth-first game-tree search algorithm
that generalizes the minimax concept to non-deterministic games, by adding chance
nodes to the game tree (in addition to MIN and MAX nodes). A chance node is
added when a die roll occurs (non-deterministic) or information has to be revealed
(imperfect information). At chance nodes, the heuristic value of the node (or expec-
timax value) is equal to the weighted sum of the heuristic values of its successors.
For a state s, its expectimax value is calculated by the following formula:
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expectimax(s) =
∑

i

P (ci)× V (ci) (5.1)

where ci represents the ith child of s, P (c) is the probability that child c will be
reached, and V (c) is the value of child c.

We explain expectimax in the following example. Figure 5.1 depicts an expec-
timax tree. In the figure squares represent chance nodes, regular triangles MAX
nodes and inversed triangles MIN nodes. In Figure 5.1, node A corresponds to a
chance node with two possible events, after which it is the MIN player’s turn. The
value of node A is calculated by weighting the outcomes of both chance events. In
this example, expectimax(A) = 0.9×−250 + 0.1× 250 = −200.

A

…

MAX

Chance

0.9 0.1

-250 250

B C D E

-250 100 500 250

MIN

Chance

Figure 5.1: An example expectimax tree.

When searching the children of a chance node, the values of the children might
be below or above the search window. However, it is possible that the combination
of these values falls inside the search window. Therefore, the search window needs
to be reset at every child of a chance node. Figure 5.2 shows an example. The value
of chance node A is 0.6 × 2 + 0.4 × 10 = 5.2, which is inside the window. If the αβ
search window (4, 6) is passed down to the first MIN node, the value of the first MIN
node will be 4, instead of 2. Passing down the search window to the second MIN
node has no effect in this case. However, the value of the chance node is incorrectly
calculated as 0.6 × 4 + 0.4 × 10 = 6.4 (correct is 5.2). This could even cause an
incorrect pruning at the MAX node above A.
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A

…

MAX

Chance

0.6 0.4

4

MIN

3 2 10 11 12

(4,6)

4

(4,6)

10

(4,6)

6.4

Figure 5.2: Search windows at chance nodes cause incorrect pruning.

5.2 Pruning in Chance Nodes

As stated by Hauk, Buro, and Schaeffer (2006a), the basic idea of expectimax (Bal-
lard, 1983) is sound but slow. Star1 and Star2 exploit a bounded heuristic eval-
uation function to generalize the αβ pruning technique to chance nodes (Ballard,
1983; Hauk et al., 2006a). αβ pruning imposes a search window (α, β) at each
MIN or MAX node in the game tree. Remaining successor nodes can be pruned
as soon as the current node’s value is proven to fall outside the search window.
Star1 and Star2 apply this idea to chance nodes. The difference with αβ is that the
search cannot stop at a chance node as soon as one successor falls outside the search
window. To end the search, the weighted sum of all successors has to fall outside
the search window. These techniques can be applied to non-deterministic games
(Ballard, 1983; Hauk, 2004) and imperfect-information games (Steng̊ard, 2006).

5.2.1 Star1

Star1 is able to create cutoffs if the lower and upper bound of the evaluation function
are known (called L and U) (Ballard, 1983; Hauk, 2004). These bounds are the
game-theoretic values of terminal positions (Loss and Win, respectively). If we
have reached the ith successor of a chance node, after having searched the first i− 1
successors and obtained their values, then we can obtain bounds for the value of the
chance node. A pruning takes place if

(V1 + V2 + . . .+ Vi−1) + Vi + L× (N − i)
N

≥ β (5.2)

or

(V1 + V2 + . . .+ Vi−1) + Vi + U × (N − i)
N

≤ α (5.3)
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where Vi is the value of node i and N the number of children, assuming that each
child occurs with a probability 1

N .
A lower bound is obtained by assuming that all remaining successors return L,

an upper bound is obtained by assuming that all remaining successors return U .
Safe pruning can be performed if the range defined by these bounds falls outside the
search window. Instead of computing these bounds from scratch, it is possible to
use an update rule (Ballard, 1983; Hauk, 2004).

Figure 5.3 demonstrates this pruning technique. The evaluation function is
bound to the interval [-10, 10] in this example. Assume that node A is entered
with an αβ window of (5, 10). When the third child is searched, the theoretic upper
bound for the chance node is 0.25 × (2 + 4 − 8) + 0.25 × 10 = 2. Thus, even if the
last child would return the maximum value, the value of node A will always be lower
than α (i.e., 5). Thus, there is no need to search the last child.

A

MAX

Chance

MIN

(5,10)

(5,10)

0.25

2

0.25

4 -8

0.250.25

Figure 5.3: Successful Star1 pruning.

Star1 also enables the possibility to compute a window for the children of a
chance node, which was previously not possible. The window is defined by the value
which the next child should have, so that Formulas 5.2 and 5.3 fall outside the search
window. Usually, only the last children to be visited benefit from this enhancement.

5.2.2 Star2

While Star1 returns the same value as expectimax, and uses fewer node expansions
to obtain the same value, the amount of search reduction is generally not impressive
(Hauk, Buro, and Schaeffer, 2006b). This is due to Star1’s pessimistic nature. To
obtain more accurate bounds for a node, Star2 probes each child (Ballard, 1983;
Hauk, 2004) during a probing phase, which precedes the regular search phase. By
only searching one of the available opponent moves, a bound for this node is obtained.
This is a lower bound for a MAX node, and an upper bound for a MIN node. This
bound is then backpropagated for calculating a more accurate bound for the chance
node. A safe pruning is performed at a chance node followed by MAX nodes if

(V1 + V2 + . . .+ Vi−1) + Vi + (Wi+1 + . . .+WN )

N
≥ β (5.4)
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where Wi is the probed value for child i. At a chance node followed by MIN nodes,
a pruning takes place if

(V1 + V2 + . . .+ Vi−1) + Vi + (Wi+1 + . . .+WN )

N
≤ α (5.5)

Formulas 5.4 and 5.5 assume that each child occurs with probability 1
N , where N is

the number of children.

We explain Star2 in the following example. Figure 5.4 depicts an expectimax
tree with Star2 pruning. Node A is reached with an αβ window of (−150, 150).
At this point, the theoretic lower and upper bounds of node A are [−1000, 1000],
which correspond to losing and winning the game. Star2 continues with probing
the first possible chance event (i.e., investigating node B only). The result of this
probe produces an upper bound for this chance event (≤ −250). The theoretic upper
bound for A is now updated according to the expectimax procedure: −250× 0.9 +
1000 × 0.1 = −125. A cut is not possible yet and the same procedure is applied
to the second chance event. After the second probe, the theoretic range of A is
[−1000, −175] which is outside the αβ window. Now nodes C and E can be pruned.
Additional search effort would be caused if no pruning would occur. This effect
can be nullified by using a transposition table. In case probing does not generate a
cutoff, the probed values can be used for pruning or tightening the window during
the regular search.

A

…

MAX

Chance

0.9 0.1

≤-250 ≤ 500

B C D E

-250 100 500 250

MIN

Chance

(-150,150)

[-1000,1000]

[-1000,-125]

[-1000,-175]

Figure 5.4: Successful Star2 pruning in the probing phase.
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5.3 Forward Pruning

Human players are able to find good moves without searching the complete game
tree. Using experience they are able to prune unpromising variations in advance
(De Groot, 1965). Human players also select promising variants and search them
deeper. In αβ search this concept is known as variable-depth search (Marsland and
Björnsson, 2001). The technique to abandon some branches prematurely is called
forward pruning. The technique to search certain branches beyond the nominal
depth is called search extensions. As such, the search can return a different value
than a fixed-depth search.

In the case of forward pruning, the complete minimal game tree may not ex-
panded (Björnsson, 2002), and good moves may be overlooked. However, the ratio-
nality is that although the search occasionally goes wrong, the time saved by pruning
non-promising playing lines is generally better used to search other lines deeper, i.e.,
the search effort is concentrated where it is more likely to benefit the quality of the
search result.

The real task when doing forward pruning is to identify move sequences that
are worth considering more closely, and others that can be pruned with minimal
risk of overlooking a good continuation. Ideally, forward pruning should have low
risk, limited overhead, be applicable often, and be domain independent. Usually,
improving one of these factors will worsen the others (Björnsson, 2002).

The null-move heuristic (Beal, 1989; Goetsch and Campell, 1990) is a well-known
approach of forward pruning. Forfeiting the right to move is called a null move. This
might be a legal move to play (e.g., Go), but in many games it is an illegal move
(e.g., Chess). Instead of searching a position to depth d, the null-move is searched
to depth d−R (typically R ∈ {2, 3}). If the result of this search is greater than β, a
cutoff is made. The intuition is that generally making a move is better than passing
(except in Zugzwang positions). Thus, if passing creates a cutoff, it is likely that a
regular move creates a cutoff as well. The idea of using null moves in the search tree
has been known for a long time (Adelson-Velskiy, Arlazarov, and Donskoy, 1975),
and is nowadays used by most chess programs.

Multi-Cut pruning is another forward-pruning technique (Björnsson and Mars-
land, 1999; Björnsson and Marsland, 2001). Before examining an expected CUT
node (cf. Section 2.3) to full depth, the first M child nodes are searched at a re-
duced depth d−R. If at least C child nodes fall outside the search window, a cutoff
is produced. In general the behavior of Multi-Cut is as follows. The higher M and
R are and the lower C is, the higher the number of prunings is. This technique was
generalized later to ALL nodes (Winands et al., 2005).

The ProbCut heuristic (Buro, 1995) uses shallow searches to predict the result
of deep searches. A branch is pruned if the shallow search produces a cutoff, with a
certain confidence bound. This heuristic works well for techniques where the score
of a position does not significantly change when searched deeper, as in Othello. The
technique was further enhanced as the Multi-ProbCut heuristic (Buro, 2000). Multi-
ProbCut performs multiple shallow searches of different depths to decide whether a
subtree is pruned.

All these heuristics are applicable at MIN and MAX nodes. However, not much
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work has been done on forward pruning in trees with chance nodes. Smith and
Nau (1993) set up a theoretic model of forward pruning in binary trees with chance
nodes. No forward-pruning techniques for chance nodes in non-binary trees have
been proposed so far.

5.4 ChanceProbCut

So far, it has not been investigated whether forward pruning can be beneficial at
chance nodes. The null-move and Multi-Cut heuristic cannot be adapted to chance
nodes because these techniques are based on applying moves. We introduce Chance-
ProbCut to forward prune unpromising chance nodes. This technique is inspired by
ProbCut (Buro, 1995), and uses this idea to generate cutoffs at chance nodes. A
shallow search of depth d − R is an indicator of the true expectimax value vd for
depth d. Now, it is possible to determine whether vd would produce a cutoff with
a prescribed likelihood. If so, the search is terminated and the appropriate window
bound is returned. If not, a regular search is performed.

ChanceProbCut adapts the ProbCut idea to alter the lower and upper bounds
for each possible event at a chance node. A search with reduced depth is performed
for each chance event. The result of this search, vd−R, is used for predicting the
value of the chance event for depth d (vd). The prediction of vd is calculated by
confidence bounds in a linear regression model (Buro, 1995). The bounds can be
estimated by:

ELowerBound(vd) = vd−R × a+ b− t× σ (5.6)

and

EUpperBound(vd) = vd−R × a+ b+ t× σ (5.7)

where a, b and σ are computed by linear regression, and t determines the size of the
bounds. Using these bounds, it is possible to create a cutoff if the range of the chance
node, computed by multiplying the bounds of each child with the corresponding
probabilities, falls outside the search window.

At a chance node, variables containing the lower and upper bounds are updated
during each step. A cutoff may be obtained with values computed from different
techniques. It is possible that during the regular search a cut is produced using
a combination of transposition table probing (Veness and Blair, 2007), Chance-
ProbCut, Star2 and exact values, because the bounds are updated when new infor-
mation becomes available.

When the regular search with depth d is started, the bounds obtained by Chance-
ProbCut can be used as a search window. It is unlikely that vd falls outside this
interval. We note that it is possible to perform a re-search after the regular search
returns with a value outside the search window. However, we did not implement
this because an error only partially contributes to the value of the chance node.

An example of how ChanceProbCut prunes is given in Figure 5.5. Here, the
regression model vd = vd−R is assumed, with confidence interval 50. The first
ChanceProbCut search returns the bounds [300, 400] for the first child, changing
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A

…

MAX

Chance(-150,150)

[-1000,1000]

[-480,760]

[200,680]

0.4 0.4 0.2
[300,400] [700,800] [-1000,1000]

Figure 5.5: ChanceProbCut pruning.

the lower bound of the chance node to 300 × 0.4 − 1,000 × 0.6 = −480 and the
upper bound to 400 × 0.4 + 1,000 × 0.6 = 760. The second ChanceProbCut search
returns the window [700, 800]. Now, the lower bound of the chance node is computed
as 300 × 0.4 + 700 × 0.4 − 1,000 × 0.2 = 200 and the upper bound is computed as
400 × 0.4 + 800 × 0.4 + 1,000 × 0.2 = 680. The range of the chance node, [200,
680], falls outside the search window and the next node is pruned.

Figure 5.6 depicts a second example, in which ChanceProbCut fails to prune
any nodes. The search finds the same values for the first child as in the previous
example. The next search reveals [0, 100] as bounds for the second child. This time,
it is not possible to prune (with bounds [-80, 400] for the chance node). Even after
the next search produces the bounds [50, 150] for the third child, the range of the
chance node, [130, 230], does not fall outside the search window. However, after
the regular search returns 400 for the first child, the search is terminated based on
previously estimated ChanceProbCut values.

Finally, the pseudo code is shown in the next two algorithms. They are described
in the negamax framework. Algorithm 5.1 describes the αβ search part. Here it is
assumed that after each move follows a chance node (Line 9). Algorithm 5.2 shows
the pseudo code for a chance node. After initialization of the arrays for the bounds
(Line 3−6), ChanceProbCut is used (Line 8−20). The confidence interval around
the obtained value is computed in Line 13−14, based on linear regression (Buro,
1995). In the case that ChanceProbCut does not produce a pruning, the Star2
search is started (Line 22−32), which might improve the estimates obtained by
ChanceProbCut. The Probe() procedure (Line 24) is used for obtaining an upper
bound of the chance node (Hauk et al., 2006a; Ballard, 1983). If Star2 also fails
to obtain a pruning, the algorithm continues with the regular Star1 search (Line
34−44), which benefits from the bounds calculated earlier.
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A

…

MAX

Chance(-150,150)

[-1000,1000]

[-480,760]

[-80,400]

[130,230]

[170,230]

0.4 0.4 0.2
[300,400]

[400,400]
[0,100] [50,150]

Figure 5.6: The regular search prunes with help of ChanceProbCut.

5.5 Test Domain

To test whether ChanceProbCut performs well, we use three games, Stratego, Dice,
and ChanceBreakthrough.

5.5.1 Stratego

Stratego is a deterministic imperfect-information game. It was invented at least as
early as 1942 by Mogendorff. The game was sold by the Dutch publisher Smeets

1: Search(alpha, beta, depth)
2:

3: if depth==0 then
4: return eval()
5: end if
6:

7: for all Moves i do
8: doMove(i);
9: value = −ChanceNode(−beta, −alpha, depth−1);

10: undoMove(i);
11: if value ≥ beta then
12: return beta;
13: end if
14: alpha = max(alpha, value);
15: end for
16:

17: return alpha;

Algorithm 5.1: αβ search part of expectimax.
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1: ChanceNode(alpha, beta, depth)
2:

3: for all ChanceEvents i do
4: lowerBound[i] = ELowerBound[i] = L;
5: upperBound[i] = EUpperBound[i] = U;
6: end for
7:

8: if depth > R then //ChanceProbCut
9: for all ChanceEvents i do

10: doMove(i);
11: v = Search(L, U, depth−1−R)
12: undoMove(i);
13: ELowerBound[i] = max(L, A × v + B − STDEV × t);
14: EUpperBound[i] = min(U, A × v + B + STDEV × t);

15: if
∑

j

Pj× ELowerbound[j] ≥ beta then return beta;

16: end if
17: if

∑

j

Pj× EUpperbound[j] ≤ alpha then return alpha;

18: end if
19: end for
20: end if
21:

22: for all ChanceEvents i do //Star2
23: doMove(i);
24: v = Probe(lowerBound[i], upperBound[i], depth−1);
25: undoMove(i);
26: upperBound[i] = max(upperBound[i], v);
27: EUpperBound[i] = min(upperBound[i], EUpperBound[i]);
28: if upperBound[i] < ELowerBound[i] then ELowerBound[i] = L;
29: end if
30: if

∑

j

Pj× upperbound[j] ≤ alpha then return alpha;

31: end if
32: end for
33:

34: for all ChanceEvents i do //Regular Search with Star1
35: doMove(i);
36: v = Search(min(Star1LowerBound(), ELowerBound[i]),
37: max(Star1UpperBound(), EUpperBound[i]), depth−1);
38: undoMove(i);
39: lowerBound[i] = upperBound[i] = v;

40: if
∑

j

Pj× lowerbound[j] ≥ beta then return beta;

41: end if
42: if

∑

j

Pj× upperbound[j] ≤ alpha then return alpha;

43: end if
44: end for
45:

46: return
∑

i

Pi× lowerbound[i]

Algorithm 5: ChanceProbCut for Chance NodesAlgorithm 5.2: ChanceProbCut for chance nodes.
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and Schippers between 1946 and 1951 (District Court of Oregon, 2005). In this
subsection, we first describe briefly the rules of the game, then give the game-tree
and state-space complexity and thereafter present related work.

Rules

The following rules are an edited version of the Stratego rules published by the
Milton Bradley Company in 1986 (Milton Bradley Co., 1986). Stratego is played
on a 10×10 board. The players, White and Black, place each of their 40 pieces in
such a way that the back of each piece faces the opponent in a 4×10 area. The
movable pieces are divided in ranks (from the lowest to the highest): Spy, Scout,
Miner, Sergeant, Lieutenant, Captain, Colonel, Major, General, and Marshal. Each
player has two types of unmovable pieces, the Flag and the Bomb. An example
initial position is depicted in Figure 5.7. The indices represent the ranks, where the
highest rank has index 1 (the Marshal), and all decreasing ranks have increasing
indices (exceptions are S=Spy, B=Bomb and F=Flag).

F B 8 4 B 7 B 8 9 8

B 7 S 1 8 B 3 7 54

5 9 8 9 6 9 5 2 B 9

9 6 7 3 9 6 4 5 6 9

4 8 B F B 8 6 9 8 3

6 7 2 B 7 9 S 1 B 7

3 B 5 4 6 8 B 8 9 9

5 9 6 9 9 95 4 7 5

Figure 5.7: A possible initial position in Stratego.

Players move alternately, starting with White. Passing is not allowed. Pieces are
moved to orthogonally-adjacent vacant squares. The Scout is an exception to this
rule, and must be moved like a rook in chess. The Two-Squares Rule and the More-
Squares Rule prohibit moves which result in repetition.1 The lakes in the center of
the board contain no squares; therefore a piece can neither move into nor cross the
lakes. Only one piece may occupy a square.

1For details of these rules we refer to the International Stratego Federation (ISF),
www.isfstratego.com.
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A piece, other than a Bomb or a Flag, may attempt to capture an orthogonally
adjacent opponent’s piece; a Scout may attempt to capture from any distance. When
attempting a capture, the ranks are revealed and the weaker piece is removed from
the board. The stronger piece is positioned on the square of the defending piece. If
both pieces are of equal rank, both are removed. The Flag is the weakest piece, and
can be captured by any moving piece. The following special rules apply to capturing.
The Spy defeats the Marshal if it attacks the Marshal. Each piece, except the Miner,
is removed from the board when attempting to capture a Bomb.

The game ends when the Flag of one of the players is captured. The player whose
Flag is captured loses the game. A player also loses the game if there are no legal
moves. The game is drawn if both players cannot move.

Game-Tree and State-Space Complexity

Based on a database of 4,500 human games, the average game length is estimated
to be 318 plies with an average branching factor of 22. During a game, there are
on average 30 captures of unknown pieces with on average 7 possible chance events
(Arts, 2010). Thus, the game-tree complexity is 22318×730 ≈ 10452. The state-space
complexity of Stratego is computed by the following formula.

40× 40×




y∑

red

bombs

z∑

blue

bombs

39!

(39− y)!× y!
× 39!

(39− z)!× z!


×

a∑

red
spies

b∑

red
scouts

· · ·
s∑

blue

generals

t∑

blue

marshals

(
(90− y − z)!

(90− y − z − a)!× a!
×

(90− y − z − a)!

(90− y − z − a− b)!× b! × · · · ×
(90− y − z − a− b− · · · − s)!

(90− y − z − a− b− · · · − s− t)!× t!

)
(5.8)

The first line takes care of the locations of the Flag and the Bombs, while the other
two lines compute all possible positions of all other pieces. The number of free
squares depends on the total number of pieces on the board. There are 92 (where 2
of them are always occupied by both the Flags) available squares minus the number
of pieces on board. The upper bound of the state-space of Stratego is 10115.

Previous Work

Stratego has received some scientific attention in the past. Treijtel and Rothkrantz
(2001) created a player based on multi-agent negotiations. Steng̊ard (2006) inves-
tigated different search techniques for this game. De Boer, Rothkrantz, and Wig-
gers (2008) described the development of an evaluation function using an extensive
amount of domain knowledge in a 1-ply search. Schadd and Winands (2009) tested
Evaluation-Based Quiescence Search in Stratego. At this moment, computers play
Stratego at an amateur level (Satz, 2008). An annual Stratego computer tourna-
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ment2 is held on Metaforge with an average of six entrants (Satz, 2008; Schadd and
Satz, 2008; Jug and Schadd, 2009).3 Finally, we remark that some research has been
done in Siguo, a four-player variant of Stratego (Xia et al., 2005; Xia et al., 2007; Lu
and Xia, 2008).

5.5.2 Dice

The game of Dice is a two-player non-deterministic game with perfect information,
recently invented by Hauk (2004), in which players take turns placing checkers on an
m×m grid. One player plays columns, the other plays rows. Before each move, an
m-sided die is rolled to determine the row or column into which the checker must be
placed. The winner is the first player to achieve a line of m checkers (orthogonally
or diagonally).

Based on 1,000 computer-played games for the 11×11 variant, the average game
length is 78 plies with an average branching factor of 7. Each move is preceded by
a roll of the dice, which can have 11 chance events. Thus, the game-tree complexity
is 778 × 1178 ≈ 10147. The state-space complexity is 3121 ≈ 1058, because there a
point in 11×11 grid can be empty, or be occupied by a white or black checker.

The advantages of this game are that (1) it is straightforward to implement and
(2) that many chance nodes exist. A disadvantage is that the result of a Dice game
is partially dependent on luck. A deep search is still beneficial. Hauk (2004) showed
that a 9-ply player wins 65% against a 1-ply player.

Hauk (2004) used Dice to demonstrate the pruning effectiveness of Star-minimax
algorithms in a non-deterministic game. Moreover, Veness and Blair (2007) used it
to test StarETC, a variant of Enhanced Transposition Cutoffs (Schaeffer and Plaat,
1996).

5.5.3 ChanceBreakthrough

The game of ChanceBreakthrough is the non-deterministic variant of the determin-
istic Breakthrough game. The standard Breakthrough game was invented by Dan
Troyka in 2001 and is played on an 8×8 checkers board (Handscomb, 2001). The
pieces are set up in the two back ranks, Black at top and White at the bottom,
as can be seen in Figure 5.8. White goes first and then players alternately move.
A piece may move one space straight or diagonally forward if the target square is
empty. However, it can only capture diagonally like a pawn in chess. The goal of
the game is to “breakthrough” and reach the other side of the board before the
opponent can achieve it. The game has been used to test Gibbs Sampling (Björns-
son and Finnsson, 2009) and to learn search extensions (Skowronski, Björnsson, and
Winands, 2010).

In ChanceBreakthrough each player has an extra type of move available at every
turn: rolling the dice. Two eight-sided dice are rolled, one representing the rows, the
other representing the columns. The resulting square on the board will be emptied.
This move is preferable in deadlock situations or when the opponent player has

2http://www.strategousa.org/wiki/index.php/Main Page
3http://www.metaforge.net/
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1

Figure 5.8: Initial position of ChanceBreakthrough.

more pieces than one self (i.e., the probability is higher to remove an opponent
piece). Based on 1,000 selfplay games with 5 seconds per move, the game length is
on average 53 plies and the average branching factor is 24. There are on average
14 possible chance events. The game-tree complexity is (24 + 14)

53 ≈ 1084. The
last row on each player’s side is “private”, because the game ends if an opponent
would occupy a square on it. Taking this into account, we computed the state-space
complexity of ChanceBreakthrough to be approximately 1025, in a similar manner
as Formula 5.8.

5.5.4 Game Engines

We implemented an expectimax engine for Stratego, Dice, and ChanceBreakthrough,
enhanced with the Star1 and Star2 pruning algorithms (Ballard, 1983; Hauk, 2004).
Furthermore, the history heuristic (Schaeffer, 1983), the killer heuristic (Akl and
Newborn, 1977), transposition tables (Greenblatt et al., 1967; Slate and Atkin, 1977)
and StarETC (Veness and Blair, 2007) are used.

Stratego Engine

A well-performing evaluation function is an important factor for the playing strength
of a Stratego program. For our program, we have chosen a material-based approach,
partially based on research by De Boer (2007). The evaluation function is bound
to [-1,000, 1,000] which corresponds to losing or winning the game. The evaluation
function of a node is subtracted by the evaluated value of the root node. Because
the evaluation function is bounded to [-1,000, 1,000] and the sum of the values of the
pieces can exceed this interval, a bias is included to find a good move in positions
where the evaluations of all leaf nodes would fall outside [-1,000, 1,000]. The piece
values are shown in Table 5.1.

The Spy has a value of 100, but when the opponent’s Marshal is captured, the
value of the Spy is reduced to 10. Furthermore, the value of a Miner is dependent
on the knowledge regarding the bombs, based on De Boer (2007). Depending on
the game situation regarding the Flag of the opponent and the number of Miners
left, a Miner may be valued as high as 200 points or as low as 10 points. Also, each
square on the board is assigned a value of importance (i.e., increase the distance of
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Table 5.1: Stratego piece values.

Spy Scout Miner Sergeant Lieutenant Captain
100(10) 10 100* 20 50 100

Major Colonel General Marshal Bomb Flag
140 175 300 400 75 1,000

the opponent to the own Flag, while decreasing the own distance to the opponent’s
Flag). The importance value of a square can be up to 50 points. A bonus is given if
information of a piece is hidden. This bonus is set to 30% of the value of the piece.
Furthermore, a variable counts the number of subsequent moves without capturing.
For each two non-capture moves, the evaluation score is reduced by 1 point. Using
this factor, more risk is taken when nothing happens in the game. The evaluation
function is equipped with Evaluation Based Quiescence Search (EBQS) (Schadd and
Winands, 2009). EBQS is able to estimate the quiescent value of a position without
performing an actual quiescence search, which can result in a search explosion for
Stratego. Removing large fluctuations in the evaluation function leads to a better
prediction of deeper searches, and thus to better forward pruning. A small random
factor (half a Scout) is included to prevent that games are (partially) repeated in
the selfplay experiments.

When capturing occurs, a chance node is added to the tree. The probabilities
of each event are based on the events in the past (i.e., piece movement, captured
pieces). For instance, the opponent has eight unknown pieces left: 1 Flag, 1 Bomb,
1 General, 2 Colonels and 3 Captains. When attempting to capture a piece, the
probabilities of encountering a General, Colonel and Captain are 1

8 , 2
8 , and 3

8 , re-
spectively. If the piece has moved in the past, it cannot be a Flag or Bomb. In
this case, the probabilities of encountering a General, Colonel and Captain are 1

6 , 2
6 ,

and 3
6 , respectively. The current approach does not lead to mixed strategies which

could be necessary to conceal information. However, a possibility is to alternate the
assignment of probabilities for the chance events to become less predictable.

Dice Engine

The evaluation function counts the number of checkers which can be used for forming
lines of size m. Checkers, which are fully blocked by the opponent, are not counted.
Partially blocked checkers get a lower value. The evaluation function is bound to
the interval [−10, 10]. A small random factor ( 1

10 of a checker) is added, as well.

ChanceBreakthrough Engine

In Breakthrough, the most important factor is the number of pieces on the board.
With more pieces it is easier to break through the lines of the opponent. In Chance-
Breakthrough this is the most important factor as well, valued 200 points per piece.
Furthermore, a progression factor was added to the evaluation function, rewarding
50 points for each row of the most advanced piece. The evaluation function is bound
to the interval [−1500, 1500]. A random factor of 5 points was included.
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5.6 Experiments and Results

In this section, we first discuss the results of ChanceProbCut in the game of Stratego.
Second, we test ChanceProbCut in the game of Dice. Third, ChanceProbCut is
evaluated in the game of ChanceBreakthrough. All experiments were performed on
an AMD64 2.4 GHz computer.

5.6.1 Stratego

This subsection presents all the results obtained in the domain of Stratego.

Determining Parameters

The first parameters to choose are the depth reduction R and the depths d at which
ChanceProbCut is applied. The game tree in Stratego is not regular, meaning that
not always a chance node follows a MIN/MAX node. Due to this we do not count
chance nodes as a ply for Stratego. While in theory this technique can be applied
at each search depth, we limit the applicability to d ∈ {4, 5}. R is set to 2, because
otherwise an odd-even effect might occur. To find the parameters σ, a, and b for
the linear regression model, 500 value pairs (vd−R, vd) have been determined. These
value pairs are obtained from 200 begin, 200 middle, and 100 endgame positions,
created using selfplay.4 In Figure 5.9 the model is shown for depths 2 and 4. Figure
5.10 shows the linear regression model for depths 3 and 5. vd−R is denoted on the
x-axis; vd is denoted on the y-axis. Both figures show that the linear regression
model is able to estimate the value of vd with a reasonable standard deviation.
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σ = 40.36
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Figure 5.9: Evaluation pairs at depths 2 and 4 in Stratego.

4A position was stored after 50, 150 and 300 moves for begin, middle and endgame, respec-
tively. All test positions for Stratego, Dice and ChanceBreakthrough can be downloaded from
http://www.personeel.unimaas.nl/Maarten-Schadd/TestSets.html.
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Figure 5.10: Evaluation pairs at depths 3 and 5 in Stratego.

Table 5.2: Performance of ChanceProbCut at depth 7 for 500 Stratego positions.

t Nodes Reduction ACPCME DCPCME
- 55,207,171 - - -

12.8 45,293,207 17.6% 0.14 1.68
6.4 38,748,056 29.8% 0.26 2.88
3.2 34,483,433 37.5% 0.43 4.94
1.6 32,907,389 40.4% 0.43 4.94
0.8 30,661,362 44.5% 0.44 4.94
0.4 30,220,785 45.3% 0.67 7.32
0.2 30,149,981 45.4% 0.73 7.45
0.1 29,950,276 45.7% 0.73 7.45
0.05 29,922,575 45.8% 0.73 7.45

Tuning Selectiveness

Next, we have to find the optimal value for t. If a too large value for t is chosen, the
regular search will always be performed. The reduced-depth searches will just cause
an overhead. If a too small value for t is chosen, the search might return incorrect
values. For tuning this parameter, we look at the reduction of the game tree and
the quality of the returned move. For this experiment, the regression models from
Figure 5.9 and 5.10 are used at depths 4 and 5, respectively. 500 positions consisting
of 200 begin, 200 middle, and 100 endgame situations were tested. Tables 5.2, 5.3
and 5.4 give the results of tuning the t parameter for depths 7, 9 and 11, respectively.
For these experiments, the random factor was turned off.

In these tables, ACPCME is the average ChanceProbCut move error. This
measure compares the value of the best move found by ChanceProbCut with the
actual value of this move in a full search. DCPCME is the standard deviation of
the ChanceProbCut move error.

In Tables 5.2, 5.3, and 5.4 we observe that it is possible to reduce the size of the
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Table 5.3: Performance of ChanceProbCut at depth 9 for 500 Stratego positions.

t Nodes Reduction ACPCME DCPCME
- 1,458,546,577 - - -

12.8 586,014,017 59.8% 0.43 3.84
6.4 357,070,424 75.5% 0.24 2.23
3.2 241,811,100 83.4% 0.56 2.83
1.6 215,023,725 85.3% 0.82 3.36
0.8 193,707,382 83.7% 1.16 4.27
0.4 189,763,738 87.0% 1.39 4.87
0.2 188,827,461 87.1% 1.49 5.08
0.1 187,542,414 87.1% 1.51 5.09
0.05 182,938,163 87.5% 1.51 5.11

Table 5.4: Performance of ChanceProbCut at depth 11 for 500 Stratego positions.

t Nodes Reduction ACPCME DCPCME
- 33,251,941,846 - - -

12.8 12,140,806,418 63.5% 5.60 32.11
6.4 8,221,121,960 75.3% 12.56 56.46
3.2 6,305,673,987 81.0% 14.76 57.70
1.6 5,151,596,173 84.5% 16.26 58.21
0.8 4,796,794,009 85.6% 17.44 58.53
0.4 4,546,881,315 86.3% 17.71 58.55
0.2 4,477,761,845 86.5% 17.98 58.58
0.1 4,789,667,704 85.6% 18.04 58.60
0.05 4,763,428,798 85.7% 18.11 58.60

tree significantly without a loss of quality. In Table 5.2 we see that the tree can be
reduced by 44.5% before the ChanceProbCut move is wrong by more than 0.5 point
on average (i.e., 1

20 of a Scout). At depth 9, the tree can be reduced with 75.5% of
its size without almost no error at all. At depth 11, we observe that a more carful
setting is needed. With t set to 12.8, the tree can be reduced by 63.5% with an
average evaluation error of 5 points (half a Scout).

When performing the experiments, we noticed that when the t parameter is
decreased, the error grows, resulting in a larger error of the best move, and a larger
deviation. We also observed that at a larger depth, a more careful t is required. At
larger depths ChanceProbCut is applied more often and the error rate increases.

Selfplay

For forward-pruning techniques, a reduction of nodes searched cannot be seen as
an indicator of improvement. Selfplay experiments have to be played in order to
examine whether ChanceProbCut improves the playing strength.
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We decided to test ChanceProbCut with one second per move, typically reaching
a search depth of 7 to 9 ply. This setting is close to tournament conditions, since
in a tournament the thinking time is limited to five seconds per move. 100 starting
positions were used to prevent that games were correlated. Each position was played
with both colors, to remove the advantage of the initiative. 6,000 games were played
to reach statistical significance. Due to the random factor in the evaluation function,
different games were played even with the same initial position. The results are
shown in Table 5.5. A 95% confidence bound is applied to the win ratio.

Table 5.5: Stratego selfplay experiment, 1 second per move.

t ChanceProbCut Regular Win Ratio
12.8 2,981 3,019 49.7% ± 1.3%
6.4 3,009 2,991 50.1% ± 1.3%
3.2 3,102 2,898 51.7% ± 1.3%
2.4 3,043 2,957 50.7% ± 1.3%
2.0 3,002 2,998 50.0% ± 1.3%
1.8 3,108 2,892 51.8% ± 1.3%
1.6 3,072 2,928 51.2% ± 1.3%
1.4 3,059 2,941 50.9% ± 1.3%
1.2 3,066 2,934 51.1% ± 1.3%
1.0 3,107 2,893 51.8% ± 1.3%
0.8 3,113 2,887 51.9% ± 1.3%
0.6 3,035 2,965 50.6% ± 1.3%
0.5 3,073 2,927 51.2% ± 1.3%
0.4 3,084 2,916 51.4% ± 1.3%
0.3 3,077 2.923 51.3% ± 1.3%
0.2 3,114 2,886 51.9% ± 1.3%
0.1 3,063 2,937 51.1% ± 1.3%
0.05 3,018 2,982 50.3% ± 1.3%

For t values 0.2 and 0.8, a win ratio of 51.9% is achieved. For most other values
of t, the program still performs well, taking into account the variance of the results.
For t value 0.05, the search has become too selective and makes too many mistakes.
For t values 6.4 and 12.8, not enough prunings are achieved to justify the overhead.

5.6.2 Dice

This subsection presents all the results obtained in the domain of Dice.

Determining Parameters

Because Dice has a regular game tree, chance nodes are counted as plies. We limit
the applicability to d ∈ {7, 9}. R is set to 4 to handle the odd-even effect. On a
test set of 1,000 5×5 positions, value pairs (vd−R, vd) have been determined and a
regression line is calculated. We have chosen the 5×5 board for reference, because
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Hauk (2004) has used this variant to test node reductions of the Star1 and Star2
techniques. In Figure 5.11 the regression model is shown for depths 3 and 7. Figure
5.12 shows the linear regression model for depths 5 and 9. These figures show that
the linear regression model is suitable for estimating vd.
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Figure 5.11: Evaluation pairs at depths 3 and 7 in Dice.
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Figure 5.12: Evaluation pairs at depths 5 and 9 in Dice.

Tuning Selectiveness

Again, we have to find the optimal value for t. This tuning will be done in a
similar fashion as described for Stratego. For this experiment, at depths 7 and 9
the regression model from Figure 5.11 and 5.12 are used and the t is varied. 1,000
positions were tested with 5 up to 12 checkers on the board. Tables 5.6, 5.7, and 5.8
give the results of tuning the t parameter for depths 9, 11 and 13, respectively.

In the three tables we observe that the average difference of the returned eval-
uation values increases when the t is decreased. Also the standard deviation of the
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Table 5.6: Performance of ChanceProbCut at depth 9 for 1,000 Dice positions.

t Nodes Reduction ACPCME DCPCME
- 190,822,592 - - -

3.2 163,926,279 14.1% 0.00 0.02
1.6 138,491,950 27.4% 0.01 0.05
0.8 112,607,261 41.0% 0.05 0.09
0.4 90,214,153 52.7% 0.10 0.15
0.2 72,684,352 61.9% 0.14 0.14
0.1 63,677,531 66.6% 0.16 0.15
0.05 59,189,953 69.0% 0.18 0.16

Table 5.7: Performance of ChanceProbCut at depth 11 for 1,000 Dice positions.

t Nodes Reduction ACPCME DCPCME
- 2,322,871,121 - - -

3.2 1,945,429,167 16.2% 0.01 0.04
1.6 1,614,635,629 30.5% 0.02 0.05
0.8 1,292,924,069 44.3% 0.05 0.09
0.4 1,019,886,503 56.1% 0.09 0.11
0.2 830,281,706 64.3% 0.12 0.19
0.1 729,552,129 68.6% 0.14 0.15
0.05 679,098,869 70.8% 0.15 0.15

results grows when t is decreased. Table 5.6 shows that when using t=0.05 for depth
9 a reduction of 69.0% is achieved without a great loss in quality. Furthermore, we
see that the majority of the game tree can be pruned without a large deterioration
of quality. Finally, Table 5.8 shows that even a large reduction is obtained at search
depth 13. Applying ChanceProbCut at a larger search depth did not lead to a re-
duction in quality.

Table 5.8: Performance of ChanceProbCut at depth 13 for 1,000 Dice positions.

t Nodes Reduction ACPCME DCPCME
- 27,455,156,557 - - -

3.2 22,855,978,846 16.6% 0.01 0.02
1.6 18,819,031,785 31.5% 0.03 0.08
0.8 14,906,932,474 45.7% 0.06 0.11
0.4 11,707,480,207 57.4% 0.10 0.13
0.2 9,357,032,870 65.9% 0.13 0.14
0.1 8,313,736,712 69.7% 0.14 0.15
0.05 7,839,082,021 71.4% 0.15 0.15
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A general observation for these tables is that the deeper the search, the larger the
game-tree reduction is for the same t. In general, the search tree can be reduced by
50% before the ChanceProbCut value is mistaken by more than 0.10 point.

Selfplay

We decided to test ChanceProbCut on the 11×11 board. There are two reasons
why a large board size has to be chosen. (1) Previous experiments in Dice were
conducted on the 11×11 board (Hauk, 2004; Hauk et al., 2006a). (2) With games
such as Dice, it is easy to perform a deep search. Our engine is able to evaluate more
than 2 million nodes per second. In non-deterministic games, an increase in search
depth has limited influence on the playing strength after the first few plies. Due to
these reasons, a large board has to be chosen to create an interesting variant.

Table 5.9 gives the results of the selfplay experiments of 20,000 games on the
11×11 board using 100 ms per move. With these time settings, the search engine
reaches 9 plies in the opening phase, and 13 plies in the endgame. All games started
from an empty board. Due to the dice element of the game and the random factor
in the evaluation function, there exist no correlation between the games.

Table 5.9: 11×11 Dice selfplay experiment, 100 ms per move.

t ChanceProbCut Regular Win Ratio
3.2 10,103 9,897 50.5% ± 0.7%
1.6 20,226 19,774 50.6% ± 0.5%
0.8 9,964 10,036 49.8% ± 0.7%
0.4 10,060 9,940 50.3% ± 0.7%
0.2 9,981 10,019 49.9% ± 0.7%
0.1 9,982 10,018 49.9% ± 0.7%
0.05 9,882 10,118 49.4% ± 0.7%

We see that ChanceProbCut does have a rather small, but genuine improvement
in playing strength. With t set to 1.6, a win ratio of 50.6% ± 0.5% is achieved on
40,000 games.

5.6.3 ChanceBreakthrough

This subsection presents all the results obtained in the domain of ChanceBreak-
through.

Determining Parameters

In ChanceBreakthrough we do not count chance nodes as a ply. We limit the appli-
cability to d ∈ {3, 5}. R is set to 2 to handle the odd-even effect. On a test set of
500 positions, generated with selfplay, value pairs (vd−R, vd) have been determined
and a regression line is calculated. In Figure 5.13 the model is shown for depths 1
and 3. Figure 5.14 shows the linear regression model for depths 2 and 4. Finally,
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Figure 5.13: Evaluation pairs at depths 1 and 3 in ChanceBreakthrough.
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Figure 5.14: Evaluation pairs at depths 2 and 4 in ChanceBreakthrough.

Figure 5.15 depicts the model for depths 3 and 5. These figures show that linear
regression is suitable for estimating vd. It is harder to predict a 3-ply value based
on a 1-ply search. However, the model stabilizes for deeper value pairs.

Tuning Selectiveness

We also tune t for the game of ChanceBreakthrough. The results for depth 5 on the
test set of 500 positions can be seen in Table 5.10.

We see that a quite large error is being made. In a 5-ply search with t = 3.2, an
error of 30.26 points is made on average (i.e., one seventh of a piece). Usually, the
ChanceProbCut move does not make any error, but in some cases the returned value
is far from correct, which is visible in the large standard deviation. These mistakes
are always fatal in ChanceBreakthrough. Selfplay experiments should be concluded
to find the appropriate t value.
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Figure 5.15: Evaluation pairs at depths 3 and 5 in ChanceBreakthrough.

Table 5.10: Performance of ChanceProbCut at depth 5 for 500 ChanceBreakthrough posi-
tions.

t Nodes Reduction ACPCME DCPCME
- 23,496,940,171 - - -

3.2 11,377,214,094 51.6% 30.26 172.66
1.6 10,826,472,281 53.9% 32.02 182.73
0.8 9,102,499,638 61.3% 33.17 187.83
0.4 7,463,883,129 68.2% 34.05 190.26
0.2 6,466,057,217 72.5% 35.12 191.43
0.1 5,637,776,939 76.0% 35.58 192.07
0.05 5,359,416,856 77.2% 35.80 192.30

Selfplay

Table 5.11 gives the results of the selfplay experiments of 2,000 games using 5 seconds
per move. With these time settings, the search engine reaches around 5 plies. We
have chosen to test a different range of t. Based on our experience with the engine,
we believe that the optimal value of t was somewhere between 0.8 and 2.0. Due to
the chance element of the game and the random factor in the evaluation function,
there exists no correlation between the games.

In the table we see that ChanceProbCut is able to improve the playing strength
significantly. For the best setting, a win ratio of 54.8% ± 2.2% was achieved, despite
the occasional error, as discussed in the previous section. This is a larger gain than
observed for Stratego and Dice. To be sure that this number is accurate, we played
an additional 2,000 games for t = 1.6. For the total of 4,000 games, this setting was
able to achieve a win ratio of 54.4% ± 1.5%.
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Table 5.11: ChanceBreakthrough selfplay experiment, 5 seconds per move.

t ChanceProbCut Regular Win Ratio
2.0 1,057 943 52.9% ± 2.2%
1.8 1,041 959 52.1% ± 2.2%
1.6 1,096 904 54.8% ± 2.2%
1.4 1,064 936 53.2% ± 2.2%
1.2 1,051 949 52.6% ± 2.2%
0.8 1,029 971 51.5% ± 2.2%

5.7 Chapter Conclusions and Future Research

In this chapter we have proposed the forward-pruning technique ChanceProbCut for
expectimax. This technique is the first in its kind to forward prune at chance nodes.

ChanceProbCut is able to reduce the size of the game tree significantly without
a loss of decision quality in Stratego, Dice, and ChanceBreakthrough. At depth
11 in Stratego, a safe reduction of 85.6% in the number of nodes is observed for t
value 0.8. In Dice, a safe reduction of 31.5% of the game tree with 13 plies can be
achieved, using t value 1.6. At depth 5 in ChanceBreakthrough, ChanceProbCut
prunes 53.9% of the search tree for t = 1.6. Thus, the first conclusion we may draw,
is that ChanceProbCut finds a good move faster in the expectimax framework, while
not affecting the playing strength. Because ChanceProbCut finds a good move faster,
one might consider different approaches of investing the gained time. For instance,
this time can be utilized for a more time-consuming evaluation function.

Selfplay experiments in Stratego and Dice reveal that there is a small improve-
ment in playing strength, which is still relevant. In Stratego, ChanceProbCut
achieves a win ratio of 51.9% ± 1.3% and in Dice 50.6% ± 0.5%. The rather small
increase in playing strength is due to the nature of expectimax. We point out two
reasons. (1) The result of a game is dependent on luck. Even a weak player may win
some games. (2) Deeper search has a small influence on the playing strength of expec-
timax, compared to minimax. For Dice, Hauk et al. (2006b) showed that searching
9 plies instead of 5 increased the win ratio by only 2.5%. A similar phenomenon was
observed in Backgammon. If we take this into account, ChanceProbCut performs
rather well. In ChanceBreakthrough however, a significant increase in performance
was measured. ChanceProbCut was able to win 54.4% ± 1.5% on 4,000 games.
The second conclusion we may draw, is that ChanceProbCut improves the playing
strength.

We propose four directions for future research. (1) For improving the effectiveness
of ChanceProbCut, more value pairs may be used. (2) The regression parameters and
cut-threshold t can be bootstrapped according to the game phase. (3) A successor
of ProbCut exists, called Multi-ProbCut (Buro, 2000). This technique could also
be adapted for chance nodes (Multi-ChanceProbCut). (4) ChanceProbCut should
be applied to other non-deterministic or imperfect-information games to test its
effectiveness.



Chapter 6

Best-Reply Search in
Multi-Player Games

This chapter is an updated and abridged version of the following publication:

1. Schadd, M.P.D. and Winands, M.H.M. (2011). Best Reply Search for
Multiplayer Games. Transactions on Computational Intelligence and AI
in Games, Vol. 3, No. 1, pp. 57–66.

In deterministic two-player games with perfect information, the majority of re-
search has focused on the minimax algorithm (Knuth and Moore, 1975). For de-
terministic perfect-information multi-player games, the choice of search algorithm
is not as straightforward. The reason is that with multiple players a (temporary)
coalition may be formed. The influence of coalitions separates multi-player games
into cooperative and non-cooperative games. For the former, a player is able to
achieve its maximum score only if that player forms a coalition with other players.
For the latter, a player is able to achieve its maximum score if it plays individually.
However, the other players may prevent that a player achieves its maximum score
by forming a (temporary) coalition. In this chapter, we focus on non-cooperative
multi-player games.

The two main search algorithms for non-cooperative multi-player games are
maxn (Luckhardt and Irani, 1986) and paranoid (Sturtevant and Korf, 2000), each
approaching this class of games from a different angle. Maxn assumes that every
player tries to maximize the own score, while paranoid assumes that all opponents
form a coalition against the root player. Maxn and the paranoid algorithm may have
conceptual drawbacks. Due to the lack of pruning in maxn only a limited lookahead
is possible (Sturtevant, 2003b). Furthermore, the underlying assumption of maxn

may be unrealistic, resulting in maxn to be too optimistic (Zuckerman et al., 2009).
Just changing the tie-breaking rule for the maxn algorithm can have arbitrary re-
sults for the value of the root (Sturtevant, 2003c). When performing a deep search
with the paranoid algorithm, the other players may dominate the root player (Saito
and Winands, 2010), resulting in paranoid to be too pessimistic.
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This chapter answers the fourth research question by proposing Best-Reply Search
(BRS). This search algorithm tries to overcome the problems of the maxn and para-
noid algorithms. For multi-player games, we assume that not every opponent is
trying to minimize the root player’s score. Instead, only one opponent is minimizing
the root player’s score. BRS chooses which opponent is allowed to play a counter
move at a so-called MIN node in the search tree. The selected opponent is the
one that has the strongest counter move against the root player. The other players
have to pass their turn. By searching in this way, a significant lookahead can be
achieved even with many opponents. Furthermore, the playing style is less cautious
compared to the paranoid algorithm. We apply BRS in three domains, Chinese
Checkers, Focus and Rolit.

The chapter is organized as follows. First, we discuss the difference between
cooperative and non-cooperative games in Section 6.1. Next, the maxn and the
paranoid algorithms are presented in Section 6.2. Subsequently, BRS is introduced
in Section 6.3. Thereafter, Section 6.4 describes the test domains, the games Chinese
Checkers, Focus and Rolit. Section 6.5 presents the experiments. Finally, Section
6.6 gives the conclusions and an outlook on future research.

6.1 Coalition Forming in Multi-Player Games

A multi-player game may be classified either as cooperative or non-cooperative. A
game is called a cooperative game1 if it consists of a number of players N and a
function v that associates with every nonempty subset S of N (a coalition) a real
number v(S) (i.e., the worth of S) (Osborne and Rubinstein, 1994). In a cooperative
game, there typically exist coalitions of which the payoff of a coalition is higher
than for each individual. There are three aspects in which non-cooperative games
differ to cooperative games. (1) At the end of the game, v(S) = 1

|S| , implying that

winning solely is preferred above drawing the game. (2) During the game, the value
of v(S) may change, implying that coalitions may be of temporary nature. We
define v(S, t) as the value of coalition S at time step t. For example, if a player Ni

is ahead, then the value of its private coalition v({Ni}) = 1 and the value of each
other player’s private coalition is worth 0. The set of losing players L = N\{Ni}
may have v(L, t) > 0 because they are able to catch up with the winning player if
they cooperate. (3) The value of v(L, t) is not globally known. Every player may
have hidden preferences, based on their own evaluation function and used search
algorithm. These preferences are only indicated by making moves on the board.
Therefore, non-cooperative multi-player games are an ideal testbed for dealing with
temporary coalition forming with unknown preferences.

Modal logics have been used to develop formal models for reasoning about coali-
tions in cooperative games. These models address three aspects of coalitions, mostly
separately (cf. Kurzen, 2009). (1) Which results can coalitions achieve? (Pauly,
2002) (2) How can they achieve something? (Harel, 1984) (3) Why would they want
to achieve a certain result? (Van Benthem, Girard, and Roy, 2008) There exist ef-
forts to combine these models (1+2, Sauro et al., 2006; 1+2+3, Kurzen, 2009). It is

1Also called a cooperation or coalition game.
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an open question how modal logics may be adapted to be applicable to a search algo-
rithm for non-cooperative multi-player games. Generally, existing search algorithms
for non-cooperative games, such as the paranoid algorithm (Sturtevant and Korf,
2000), assume that coalitions are static and do not change during the search and
often even during the complete game. Two exceptions are the comixer algorithm
(Lorenz and Tscheuschner, 2006) and the MP-Mix algorithm (Zuckerman et al.,
2009). Finally, we remark that Peterson, Reif, and Azhar (2002) proposed an algo-
rithm that uses Turing machines to decide whether a coalition is able to win various
types of multi-player games of imperfect information.

6.2 Search Algorithms for Multi-Player Games

This section discusses two well-understood search algorithms for deterministic multi-
player turn-taking games with perfect information, the maxn (Luckhardt and Irani,
1986) and the paranoid algorithm (Sturtevant and Korf, 2000). We first introduce
the maxn algorithm in Subsection 6.2.1 and thereafter discuss the paranoid algorithm
in Subsection 6.2.2.

6.2.1 Maxn

The maxn algorithm (Luckhardt and Irani, 1986) can be used in games with any
number of players. At a leaf node, an n-tuple is generated, where n is the number
of players and every entry corresponds to the score a player receives. At internal
nodes, a player chooses the child with the highest score for that player. An example
maxn tree is depicted in Figure 6.1.

1
(a)

(7,2,9)

(b)

(6,2,6)
2

(c)

(7,2,9)

3 3 3 3

(6,2,6) (4,1,6) (7,2,9) (5,2,1)

2

Figure 6.1: An example maxn tree.

Nodes (a), (b) and (c) are internal nodes. In Node (a), Player 1 is to move. In
Nodes (b) and (c), Player 2 is to move. Player 2 has the choice between (6,2,6) and
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(4,1,6) in Node (b) and chooses (6,2,6) to maximize the own score. In Node (c), both
options are equally good for Player 2. In this example the left child is chosen and
Node (c) gets value (7,2,9). Player 1 now prefers Node (c) above Node (b), because
it gives a higher score for Player 1.

In multi-player games, there may exist multiple equilibrium points. It has been
proven that maxn computes one equilibrium point (Luckhardt and Irani, 1986).
Furthermore, if the tie-breaking rule is altered, it may arbitrarily affect the maxn

value of the tree (Sturtevant, 2003c). We demonstrate this by changing the tie-
breaking rule in Figure 6.1. Instead of choosing the left-most child in case of a tie,
now the policy is used that the child which has the lowest value for the root player
is chosen. In this case, Node (c) has value (5,2,1). This implies that the Player 1
prefers Node (b) over (c) and Node (a) has value (6,2,6) instead of (7,2,9).

The weakness of maxn is twofold. (1) Due to the lack of safe pruning only a
limited lookahead is possible (Sturtevant, 2003a). Safe pruning is possible in maxn

under certain conditions. One of these conditions is that there is an upper bound
on the sum of scores of all players (i.e., there is a certain number of points to
be distributed over all players). In this case, shallow pruning is possible (Korf,
1991). Deep pruning is, however, not possible. Sturtevant (2003b) shows that
less-shallow pruning is possible, up to n ply deep. A pruning may occur when
intermediate players between the first and last player are all on their last branch
of their search (last-branch pruning) or earlier when re-searching certain branches
(speculative pruning). (2) The second weakness is that the underlying assumption of
maxn may be unrealistic. The maxn algorithm assumes no coalition forming of the
opponents. The result may be that maxn is too optimistic. To make maxn somewhat
more cautious, the tie-breaking rule which assumes the worst case for the root player
is used in this chapter. To further increase the cautiousness of maxn, a “paranoid”
evaluation function (i.e., it assumes that all opponents have formed a coalition) may
be considered. Several other variations of the maxn algorithm exist, which try to
overcome both weaknesses. Careful maxn (Lorenz and Tscheuschner, 2006) uses a
weighted-average update rule to model uncertainty if the opponent has multiple good
moves. The comixer algorithm (Lorenz and Tscheuschner, 2006) considers possible
coalitions against the strongest player at every node of the search tree. This may
be a correct assumption if a player is ahead, but might lead to weak play if no such
coalition exists. For handling imperfect opponent models, two variations have been
introduced, soft-maxn (Sturtevant and Bowling, 2006) and prob-maxn (Sturtevant,
Zinkevich, and Bowling, 2006).

6.2.2 Paranoid

The paranoid algorithm (Sturtevant and Korf, 2000) reduces the multi-player game
to a two-player game by making the “paranoid” assumption. The algorithm assumes
that all opponents have formed a coalition against the root player. By doing so,
regular αβ pruning is possible. This leads to a larger search depth. Figure 6.2
depicts an example of the paranoid algorithm. It is the same tree as in Figure
6.1, but now the leaf nodes are evaluated in a paranoid way. Here, the sum of
the evaluation scores of Player 2 and 3 are subtracted from the evaluation score of
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Player 1 (Sturtevant, 2003a). A second possibility is that Players 2 and 3 ignore
their own score, and only minimize Player 1’s score (Sturtevant, 2003c). In this
chapter we apply the first approach. In Node (b), the right child is preferred with
value -3. After finding -4 as value of the first child of Node (c), all the remaining
children can be safely pruned according to the standard αβ rule. The root node (a)
receives value -3.

1
(a)

-3

(b)

-3
2

(c)

≤ -4

3 3 3 3

-2 -3 -4 2

2

Figure 6.2: An example paranoid tree.

In the best case, O(bd/2) nodes are expanded for two-player games (Knuth and
Moore, 1975), where b is the average branching factor and d the search depth.
Sturtevant (2003c) showed that the paranoid algorithm expands O

(
bd×(n−1)/n

)

nodes in the best case for multi-player games, which is a generalization of the best
case for two-player games. Paranoid may outperform maxn due to the larger looka-
head (e.g., for Chinese Checkers or Hearts) (Sturtevant, 2003a).

Due to the unrealistic paranoid assumption, it is possible that suboptimal play
occurs (Sturtevant and Korf, 2000). Furthermore, if an infinite amount of time
would be available, the root player might assume that all moves are losing, leading
to poor play. For the game of Rolit, Saito and Winands (2010) showed that for three
players on the 6×6 board, the first and second player cannot gain any points under
the paranoid assumption (and the third player only 1 point because he places the
last stone). Usually, it is not possible to win when all opponents form a coalition.
As a general observation, the deeper the search goes, the more pessimistic the value
of the root becomes.

6.3 Best-Reply Search

Sturtevant (2003a) proposed a table-based evaluation function for Chinese Checkers
which assumes solitary play. Although this assumption is unrealistic, this evaluation
function proved to work well. Inspired by this result, we investigate in this section
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1
(a)

2

(b)

2

(c)

≤1

1 1 1 1

3 9 5 2

2,3

1 1 1 1

1 7 4 6

2 2 3 3 2 2 3 3

2,3

Figure 6.3: An example BRS tree.

whether this idea may be transferred from the evaluation function to the search tree.
We propose Best-Reply Search (BRS) to overcome some weaknesses of the maxn and
paranoid algorithms.

Subsection 6.3.1 presents the underlying idea behind BRS. The pseudo code of
BRS is given in Subsection 6.3.2. In Subsection 6.3.3 the best-case analysis of BRS
is given. Finally, Subsection 6.3.4 discusses strengths and weaknesses of BRS.

6.3.1 Idea

Traditional search methods allow every player to make a move, resulting in large
search trees. In BRS, not every opponent is allowed to make a move. Only the
opponent with the strongest move against the root player may move. At a MIN
node, all moves for all opponents are searched. It means that an opponent is allowed
to make a move even if it is not its turn. At the following MAX node, it is again
the root player’s turn. BRS achieves long-term planning because more MAX nodes
are visited along the search path while being at the same time less paranoid. When
iterative deepening is applied in BRS, a MIN node always contains all players. When
comparing this to the standard search depth of the paranoid algorithm, the search
depth is increased irregularly. For instance with 4 players, the search depth of BRS
is increased to depth 1, 4, 5, 8, 9, etc., with respect to the standard depth. An
example of BRS is depicted in Figure 6.3.

Nodes (b) and (c) are labeled ‘2,3’, which represents that one of the opponents
(i.e., Player 2 or 3) is allowed to make a counter move. The labels near the edges
underneath Nodes (b) and (c) indicate which player’s move is played. At the next
ply, it is again Player 1’s turn to play. Node (b) is assigned value 2, because Player 3
has the strongest counter move. When searching the first child of Node (c), which is
a move by Player 2, a regular αβ pruning occurs. In this case, the remaining moves
of Player 2 and all moves of Player 3 are pruned.



6.3 — Best-Reply Search 95

1: BRS(alpha, beta, depth, turn)
2:

3: if depth ≤ 0 then
4: return eval()
5: end if
6:

7: if turn == MAX then
8: Moves = GenerateMoves(MaxPlayer);
9: turn = MIN;

10: else
11: for all Opponents o do
12: Moves += GenerateMoves(o);
13: end for
14: turn = MAX;
15: end if
16:

17: for all Moves m do
18: doMove(m);
19: v = −BRS(−beta, −alpha, depth−1, turn);
20: undoMove(m);
21:

22: if v ≥ beta then
23: return v;
24: end if
25: alpha = max(alpha, v);
26: end for
27:

28: return alpha;

Algorithm 6.1: Best-Reply Search.

6.3.2 Pseudo Code

Algorithm 6.1 shows the pseudo code for BRS. The first change to the standard αβ
algorithm (for the negamax framework) is shown in lines 7−15. If the current node
is a MAX node, the moves are generated as usual (Line 8). If it is a MIN node
the moves for all opponents are generated (Lines 11−13). Before performing the
traversal of all moves (Line 17), the type of node should have been altered at every
ply (Lines 9 and 14).

6.3.3 Best-Case Analysis of BRS

If pruning is not feasible, maxn has to examine the complete search tree. With aver-
age branching factor b and search depth d, maxn searches O

(
bd
)

nodes. Sturtevant

(2003c) showed that the paranoid algorithm explores O
(
bd×(n−1)/n

)
nodes in the

best case, where n is the number of players. Analogous to their proof, we can prove
the best case of BRS.
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Theorem. Best-Reply Search explores in the best case O
(

(b× (n− 1))d
2×d
n e/2

)

nodes.

Proof. Assume a uniform tree is searched until depth d. In BRS, this search depth
is reduced to

⌈
2×d
n

⌉
because the layers of n successive players is reduced to 2 layers.

The branching factor b is increased to b× (n− 1) at MIN nodes, assuming that the
opponent moves do not interact with each other. To calculate the minimum number
of nodes that have to be examined within the game tree, we need a strategy for the
MAX and MIN player. For finding a strategy for the MAX player, 1 move has to
be searched at a MAX node, and b × (n− 1) moves at a MIN node, resulting in

(b× (n− 1))d
2×d
n e/2 nodes. For finding a strategy for the MIN player, the collection

of all opponents, 1 move has to be searched at a MIN node and b moves at a MAX

node, resulting in bd 2×d
n e/2 nodes. Therefore, the total number of nodes by both the

MAX and MIN player is (b× (n− 1))d
2×d
n e/2 + bd 2×d

n e/2 nodes. Thus, BRS explores

in the best case O
(

(b× (n− 1))d
2×d
n e/2

)
nodes.

We remark that for two players, the best case of BRS is identical to the best case
of αβ, which is O(bd/2).

6.3.4 Strengths and Weaknesses of BRS

We point out two advantages of BRS over the maxn and paranoid algorithms. (1)
More MAX nodes are visited along the search path, leading to more long-term
planning. (2) It softens the unrealistic maxn and paranoid assumptions. Maxn

assumes that there are no coalitions, while paranoid assumes that all opponents
form a coalition against the root player. An additional advantage over maxn is that
BRS may be able to prune parts of the tree.

We point out two drawbacks of BRS as well. (1) Not all players are allowed to
make a move, leading to illegal positions. (2) Opponent moves which are beneficial
for the root player might not be considered.

For trick-based card games, such as Hearts and Spades, BRS is not an appropriate
method. The first problem is that the first player to play a card in a trick determines
which suit is played. If BRS would be applied here, a suit may be played which the
first player does not have, creating an illegal position that is considerably different
from a legal position. The second problem occurs when not all opponents play a
card during a trick. This causes that players have a different number of cards in
their hands, and it is not defined what happens at the end of the game. A third
problem in the game of Hearts is that playing the Ace of Hearts card may result in
only gaining 2 points instead of 4 when applying BRS. Problems such as these make
BRS not applicable to trick-based card games.

6.4 Test Domain

To test whether BRS works well, we use three non-cooperative deterministic multi-
player games with perfect information, Chinese Checkers, Focus, and Rolit. Chinese



6.4 — Test Domain 97

Checkers is a race game and the rules are given in Subsection 6.4.1. Focus is a
material-based game and is explained in Subsection 6.4.2. In Subsection 6.4.3 the
rules of the territorial-based game Rolit are given. Rolit is the multi-player version
of Othello.2 The game engines are described at the end of each subsection.

6.4.1 Chinese Checkers

Chinese Checkers is a board game that can be played by two to six players. It
was invented in 1893 and has since then been released by various publishers under
different names. Chinese Checkers is played on a star-shaped board. The most
common board contains 121 fields, where each player starts with 10 pieces. We
decided to play on a slightly smaller board (Sturtevant, 2008a) (see Figure 6.4). In
this version, each player plays with 6 pieces. The advantage of a smaller board is
that it allows us to use a strong evaluation function (Sturtevant, 2003a).

Figure 6.4: A three-player Chinese Checkers board.

The goal of each player is to move the own pieces to the own base at the other
side of the board. Pieces may move to one of the adjacent squares or they may jump
over another piece to an empty field. A player may also make multiple jumps with
one piece in one turn. It is possible to create a setup that allows pieces to jump over
a large distance. The first player who manages to fill the home base wins the game.
To avoid blocking behavior, the player wins the game when the home base is filled
and the player owns at least one of the pieces in the home base.

Engine

To evaluate a board position, we use a lookup table which stores the number of moves
a single player would require to finish the game (Sturtevant, 2008b). This number
does not take into account opponent pieces, which results in erroneous evaluation in
the middle game. In the endgame, this lookup table allows perfect play. The value

2Also known as Reversi.
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found in the table was multiplied by 1,000. Additionally, a random factor of 5 points
was included to prevent games from being repeated (due to deterministic play) in
the experiments.

The moves are ordered statically such that moves which approach the home base
the most are investigated first (e.g., long jumping moves towards the home base).

6.4.2 Focus

Focus is an abstract multi-player strategy board game, invented in 1963 by Sid Sack-
son (Sackson, 1969). This game has also been released under the name Domination.
Focus is played on an 8×8 board where in each corner 3 squares are removed. It
can be played by two, three or four players. Each player starts with a number of
pieces on the board. In Figure 6.5, the initial board positions for the two-, three-
and four-player variants are given. The letters R, G, B, and Y correspond to the
piece colors of the game: red, green, blue, and yellow, respectively.
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(c) Four players

Figure 6.5: Setups for Focus.

In contrast to many other games, pieces in Focus may be stacked on top of each
other. Each turn a player may move a stack, which contains one or more pieces,
orthogonally as many squares as the stack is tall. The player may only move a stack
of pieces if a piece of their color is on top of the stack. Players are also allowed to
split stacks in two smaller stacks. If they decide to do so, then they only move the
upper stack as many squares as the number of pieces in that stack.

If a stack lands on another stack, then the stacks are merged. If the merged stack
has a size of n>5, then the bottom n−5 pieces are captured by the player, such that
there are 5 pieces left. If a player captures one of the own pieces, the player may
later choose to place an own piece back on the board, instead of moving a stack.

An example move is depicted in Figure 6.6. Here, Blue chooses to move three
pieces of Stack 1, three positions to the right. By this move, the control of Stack 1
is transferred to Red, which owns the highest piece of Stack 1 after Blue has moved.
Stack 4 would contain 6 pieces after Blue has moved, indicating that a capture shall
take place. Only the bottom red piece is captured because 5 pieces are allowed per
stack.
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(a) Blue to move.
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(b) Blue has captured a piece of Red.

Figure 6.6: Example move for Focus.

There exist two variations of the game, each with a different winning condition.
In the standard version of the game, a player has won if all other players cannot
perform a legal move. However, these games may take a long time to finish. There-
fore, in this chapter the shortened version of the game is used. In this version, a
player has won if either a certain number of pieces or a certain number of pieces from
each opponent have been captured. In the two-player variant, a player wins if at
least 6 pieces from the opponent are captured. In the three-player variant, a player
has won if either at least 10 pieces in total or at least 3 pieces from each opponent
are captured. Finally, in the four-player variant, the goal is to either capture 10
opponent pieces or at least 2 pieces from each opponent. If the game is not decided
after 300 moves, it is scored as a draw.

Engine

The evaluation function consists of two parts. (1) The first term is the minimum
number of pieces needed to finish the game for either finish condition. This number
is multiplied by 1,000. (2) The second term is the position of pieces in a stack. The
higher the piece on a stack of pieces, the more points it is worth. Being on top of
a stack gives control of the stack, and this is especially valuable if the stack is tall.
Furthermore, the higher a piece, the more difficult it is to capture it. For every own
piece its height is squared and added to the total score. A small random factor of 5
points is included to prevent repetition.

The static move ordering consists of two parts. (1) Moves which involve a large
number of pieces (pieces of the moved stack plus pieces of the target stack). (2)
Moves which increase the number of stacks a player controls. The first term is the
dominant one.

6.4.3 Rolit

Rolit is a multi-player variant of the well-known game Othello. Therefore, we start
with a description of this game before turning to Rolit. Othello is a deterministic
two-player game with perfect information played on an 8×8 board. The players are
called Black and White and their objective is to maximize their number of pieces
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on the board. The initial position is shown in Subfigure 6.7(a). A player may only
place a piece as part of a flipping move and a player has to pass if no such move is
available. A flipping move places a piece at the end of a flipping line. A flipping
line is a straight line of squares on the board such that four conditions are met: (1)
The squares on the line have to be all vertically, all horizontally, or all diagonally
connected. (2) All squares on the line are occupied. (3) Both ends of the line must
contain a piece of the player to move. (4) All pieces between are of the opponent. If
a flipping move is played, the opponent pieces between the ends of the flipping line
are flipped over to its own color.3 If a move enables more than one flipping line, all
flipping lines are executed. The game ends when the board is completely occupied
or one player has no pieces left. The player with more pieces on the board wins the
game.

(a) Othello

R

B

G

Y

(b) Rolit

Figure 6.7: Setups for Othello and Rolit. Legal moves are marked with ×.

Rolit is the multi-player generalization of Othello and has only minor differences
in the rules. It may be played with two, three and four players, called Red, Green,
Yellow and Blue. The initial position, which is identical for the two-, three- and four-
player variant, is depicted in Subfigure 6.7(b). This implies that when playing with
two or three players, there initially exist pieces on the board which do not belong
to any of the players. Red starts the game and immediately has the opportunity to
eliminate an opponent. In order to allow a player who has no piece left on the board
to come back into the game, the rules are changed compared to Othello. When no
flipping move is available (either because a player is eliminated or because there are
just no flipping moves available) a player is allowed to place a piece on an empty
field. The empty field has to be horizontally, vertically, or diagonally adjacent to a
piece on the board. The game is scored analogously to Othello.

Engine

Our evaluation function is pattern based, inspired by the work of Buro (2003).
Almost 100,000 games of the WTHOR database4 were analyzed on 10 different
patterns for 12 stages of the game. These patterns are the orthogonal lines of size 8
(4 lines due to symmetry), the entire diagonals of at least size 4 (5 diagonals due to

3The pieces are black one side, and white on the other.
4http://www.ffothello.org/info/base.php
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symmetry) and a 2×4 corner region (Buro, 2003). These add up to a total number
of 511,272 patterns. For each pattern the average score at the end of the game
was computed. All the pattern scores are averaged for evaluating a position, and a
random factor of 0.1 is added. These patterns are based on two players, while we
need to evaluate positions for three and four players in Rolit. To bridge the gap, we
assume that all opponent pieces have the same color when looking up pattern values
in the database. It would be more accurate to create a pattern database for three
and four players, but we abandoned this idea due to the combinatorial explosion
and the unavailability of a Rolit database. The pattern-based approach, though,
was superior to our original evaluation function that employed standard Othello
features.

Our static move ordering prefers moves on squares which are known to be good.
For example, the most preferred ones are the corners. The squares adjacent to the
corners are the least preferred.

6.5 Experiments and Results

In this section, the experiments with BRS are presented for the games of Chinese
Checkers, Focus, and Rolit. The performance of BRS is tested with three different
time settings (250, 1000, 5000 ms) and with three, four and/or six players against
one type of opponent (maxn or paranoid). In a three-player game there are 23 = 8
different player-type assignments. Games where only one type of algorithm is playing
are not interesting, leaving 6 ways to assign player types. For four players, there
are 24 − 2 = 14 assignments, and for six players, there are 26 − 2 = 62 assignments
(Sturtevant, 2003c). Each assignment is played multiple times until at least 1,000
games are reached and each assignment was played equally often. The random
factor in each evaluation function prevented board repetition. All experiments were
performed on an AMD64 2.4 GHz computer.

The following techniques were used if not mentioned otherwise. All algorithms
used two-deep transposition tables (Greenblatt et al., 1967; Breuker, 1998) and
iterative deepening until the available time was depleted. Furthermore, paranoid
and BRS used the history heuristic (Schaeffer, 1983) and killer moves (Akl and
Newborn, 1977). In all columns labeled ‘Win Ratio’ a 95% confidence interval is
applied.

Advanced pruning techniques were not used in all three algorithms. For maxn,
speculative pruning is able to significantly increase the playing strength (Sturtevant,
2003a; Sturtevant, 2003b). However, the tight upper bounds that are required are
not present for our evaluation function. For the paranoid algorithm and BRS, well-
known forward-pruning techniques could be used as well. These include the null-
move heuristic (Beal, 1989; Goetsch and Campell, 1990), ProbCut (Buro, 1995) and
Multi-Cut (Björnsson and Marsland, 2001). In order to successfully apply these
forward-pruning techniques, the preconditions and parameters need to be tuned
rather well. We did not enable any of these techniques because the effect of each of
them is domain dependent.

In Subsection 6.5.1, we present the experiments to validate the implementation.
The average search depth that the different algorithms are able to achieve is shown in
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Subsection 6.5.2. Subsection 6.5.3 presents the performance of BRS against maxn. In
Subsection 6.5.4, the experiments of BRS against paranoid are discussed. Subsection
6.5.5 shows experiments with three players, where there is 1 BRS player, 1 paranoid
player and 1 maxn player.

6.5.1 Validation

To check whether the implementation of maxn and paranoid is similar to Sturtevant
(2003c), we reconstructed his experiments. Paranoid played 600 three-player Chinese
Checkers games against maxn using 250 ms (approximately 250k nodes). The results
are presented in the lower part of Table 6.1. With the basic settings, maxn and
paranoid did not use any additional techniques. In the advanced settings, maxn and
paranoid used transposition tables, and paranoid was furthermore allowed to use the
history heuristic and killer moves. The results of the basic setting confirm the results
by Sturtevant (2003c). He reports a win ratio of 60.6% for his paranoid program.
Out of curiosity, we also performed this experiment for the two-player version of
Chinese Checkers. The results of 1,000 games are given in the upper part of Table
6.1. Here it is clear that paranoid, which is now a regular αβ search, outperforms
maxn due to larger lookahead. The reason for the advanced setting winning fewer
games in the two-player variant might be that it plays more defensive and takes less
risk.

Table 6.1: Winning statistics for Paranoid vs. Maxn for Chinese Checkers with 250 ms per
move.

Two-player Paranoid Maxn Win Ratio
Basic Settings 955 45 95.5% ± 1.3%

Advanced Settings 917 83 91.7% ± 1.7%

Three-player Paranoid Maxn Win Ratio
Basic Settings 350 250 58.3% ± 3.9%

Advanced Settings 474 126 79.0% ± 3.3%

If BRS is applied to a two-player game, it should behave identical to the paranoid
algorithm. For verification purposes, paranoid was matched against BRS for two-
player Chinese Checkers, Focus and Rolit. There may be a slight overhead in BRS
due to the move generation, but a win ratio of 50% should be expected. 1,000
games were played for each setting and game. Table 6.2 shows that for the two-
player version of all three games, paranoid and BRS are equally strong.

6.5.2 Average Search Depth

The average search depth, which maxn, paranoid, and BRS can achieve in Chinese
Checkers, Focus, and Rolit with different time settings and different number of
players, is shown in Table 6.3.

Here we see that in all games paranoid is always able to search deeper than maxn.
In Chinese Checkers, paranoid performs close to the best case, or even better (e.g.,
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Table 6.2: Winning statistics for Paranoid vs. BRS for two-players with 250 ms per move.

Chinese Checkers Paranoid BRS Win Ratio
Basic Settings 527 473 52.7% ± 3.1%

Advanced Settings 475 525 47.5% ± 3.1%

Focus Paranoid BRS Win Ratio
Basic Settings 529 471 52.9% ± 3.1%

Advanced Settings 506 494 50.6% ± 3.1%

Rolit Paranoid BRS Win Ratio
Basic Settings 476.5 523.5 47.7% ± 3.1%

Advanced Settings 487.5 512.5 48.8% ± 3.1%

the best-case depth for four players with 5 seconds thinking time is approximately
4.0× 4

3 ≈ 5.3). This performance is due to the effective move ordering. For instance,
1.1 moves are searched in CUT nodes (Marsland and Popowich, 1985) on average for
three players, and only 1.05 for four players. Moreover, there are two explanations
how it is possible to perform better than the theoretical best case, O(bd(n−1)/n).
(1) Because only complete plies are counted, the data is coarse-grained. (2) The
paranoid algorithm can perform better than O(bd(n−1)/n) if the domain-dependent
move ordering prefers slim subtrees above large subtrees, taking advantage of the
non-uniform nature of the game tree (i.e., a variable branching factor and search
depth, cf. Plaat, 1996). For Chinese Checkers these are moves which enter the own
goal area, because once entered, pieces are not allowed to leave anymore. In the
games of Focus and Rolit, paranoid is close to the best case.

For all games BRS achieves a similar search depth as paranoid for every setting.
However, these numbers are not strictly comparable due to the different search
approaches. One conclusion we may draw is that BRS visits along the search path
at least as many MAX nodes as paranoid. For example, for six players and 5
seconds thinking time, paranoid and BRS search approximately 5 ply. Due to the
large number of players, paranoid only visits 1 MAX node, which is the root node.
BRS is able to visit 3 MAX nodes in this case.

6.5.3 BRS against Maxn

Table 6.4 shows the winning performance of BRS against maxn for Chinese Checkers,
Focus, and Rolit. In Chinese Checkers there are no draws possible. For Focus, draws
are counted as 1

3 or 1
4 point for the three- and four-player variants, respectively. In

Rolit, a draw may be shared between a subset of players. For example, if there are 2
BRS players and 1 paranoid player, both BRS players may share the highest score.
The winning players receive the corresponding fraction of a point.

For Chinese Checkers we see that maxn is outperformed by BRS. In the worst
case, a win ratio of 72.4% ± 2.8% is still achieved. In most cases, the performance is
approximately 80%. In the best case, a win ratio of 88.0% ± 2.0% is achieved with
1,000 ms per move. We observe that in general, BRS gets stronger with more think-
ing time. In the material-based game Focus, we observe that BRS is outperforming
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Table 6.3: Average search depth.

Chinese Checkers
Players Time (ms) Maxn Paranoid BRS

3 250 3.0 4.9 4.7
3 1,000 3.2 5.0 5.0
3 5,000 4.0 5.7 6.0
4 250 3.0 4.8 4.5
4 1,000 3.6 5.1 5.0
4 5,000 4.0 5.9 5.5
6 250 3.0 3.9 3.9
6 1,000 3.5 4.2 4.9
6 5,000 4.0 4.9 5.0

Focus
Players Time (ms) Maxn Paranoid BRS

3 250 3.0 4.5 4.6
3 1,000 3.2 5.0 5.0
3 5,000 3.9 5.5 5.8
4 250 3.0 4.1 4.4
4 1,000 3.3 4.9 5.1
4 5,000 4.0 5.5 5.6

Rolit
Players Time (ms) Maxn Paranoid BRS

3 250 3.3 5.0 5.1
3 1,000 4.1 5.7 5.9
3 5,000 4.6 7.0 7.3
4 250 3.4 5.0 4.8
4 1,000 4.2 5.9 5.4
4 5,000 4.9 6.6 6.7

maxn easily. In the worst case, a win ratio of 81.2% ± 2.4% is still achieved. The
maxn algorithm plays the strongest in Rolit. However, it is still outperformed by
BRS with a win ratio between 65% and 70%.

6.5.4 BRS against Paranoid

Table 6.5 shows the performance of BRS against paranoid in Chinese Checkers,
Focus, and Rolit. Draws are addressed in a similar manner as in Table 6.4. For
the 5,000 ms experiment of Rolit we played the double number of games to reach
statistical significance (2,004 games for three players and 2,016 for four players).

For three-player Chinese Checkers, BRS wins above 70% of the games against
paranoid. For four and six players, a win ratio of approximately 60% is achieved. In
this game, we do not observe a clear performance trend when increasing the thinking
time. As expected, paranoid performs better against BRS than maxn did in Chinese
Checkers.



6.5 — Experiments and Results 105

Table 6.4: Winning statistics for BRS vs. Maxn.

Chinese Checkers
Players Time (ms) BRS Maxn Win Ratio

3 250 818 184 81.6% ± 2.4%
3 1,000 882 120 88.0% ± 2.0%
3 5,000 871 131 86.9% ± 2.1%
4 250 730 278 72.4% ± 2.8%
4 1,000 857 151 85.0% ± 2.2%
4 5,000 846 162 83.9% ± 2.3%
6 250 735 319 72.9% ± 2.7%
6 1,000 793 261 78.7% ± 2.5%
6 5,000 832 222 82.5% ± 2.3%

Focus
Players Time (ms) BRS Maxn Win Ratio

3 250 940.7 61.3 93.9% ± 1.5%
3 1,000 952.0 50.0 95.0% ± 1.3%
3 5,000 868.0 134.0 86.6% ± 2.1%
4 250 841.0 167.0 83.4% ± 2.3%
4 1,000 823.3 184.8 81.7% ± 2.4%
4 5,000 818.5 189.5 81.2% ± 2.4%

Rolit
Players Time (ms) BRS Maxn Win Ratio

3 250 637.5 364.5 63.6% ± 3.0%
3 1,000 661.5 340.5 66.0% ± 2.9%
3 5,000 650.5 351.5 64.9% ± 3.0%
4 250 690.5 317.5 68.5% ± 2.9%
4 1,000 696.9 311.1 69.1% ± 2.9%
4 5,000 664.5 343.5 65.9% ± 2.9%

In the experiments of BRS against paranoid in Focus, we see that a relatively
stable win ratio between 58.0% and 68.2% is achieved. We again may conclude that
BRS plays stronger than paranoid.

In Rolit, we see that BRS is weaker in a short time setting for three and four
players when playing against paranoid. A possible reason for this is that due to the
short thinking time, the paranoid player is not too paranoid yet. With a deeper
search, paranoid may become too careful. With 1,000 ms per move, BRS wins
about 57% of the games. With 5,000 ms thinking time, the performance of BRS
is dropping again to 49.5% ± 2.2% for three players and 52.4% ± 2.2% for four
players. A possible explanation for this is that a move in Rolit changes the board
significantly and the illegal states have a large influence on this time setting.
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Table 6.5: Winning statistics for BRS vs. Paranoid.

Chinese Checkers
Players Time (ms) BRS Paranoid Win Ratio

3 250 713 289 71.2% ± 2.8%
3 1,000 763 239 76.1% ± 2.6%
3 5,000 722 280 72.1% ± 2.8%
4 250 594 414 58.9% ± 3.0%
4 1,000 593 415 58.8% ± 3.0%
4 5,000 572 436 56.7% ± 3.1%
6 250 610 444 60.5% ± 3.0%
6 1,000 611 443 60.6% ± 3.0%
6 5,000 596 458 59.1% ± 3.0%

Focus
Players Time (ms) BRS Paranoid Win Ratio

3 250 581.3 420.7 58.0% ± 3.1%
3 1,000 683.7 318.3 68.2% ± 2.9%
3 5,000 673.0 329.0 67.2% ± 2.9%
4 250 654.3 353.8 64.9% ± 2.9%
4 1,000 659.3 348.8 65.4% ± 2.9%
4 5,000 609.5 398.5 60.5% ± 3.0%

Rolit
Players Time (ms) BRS Paranoid Win Ratio

3 250 293.5 708.5 29.3% ± 2.8%
3 1,000 580.0 422.0 57.9% ± 3.1%
3 5,000 992.5 1011.5 49.5% ± 2.2%
4 250 490.0 518.0 48.6% ± 3.1%
4 1,000 580.2 427.8 57.6% ± 3.1%
4 5,000 1055.5 960.5 52.4% ± 2.2%

6.5.5 BRS vs. Paranoid vs. Maxn

When competing against one type of opponent, one can win the game if the oppo-
nent’s weakness is discovered. When playing against different kinds of opponents,
the game dynamics change. Every opponent has different weak spots which have to
be exploited at the same time. Therefore, we matched BRS, paranoid, and maxn

against each other in the three-player variant of Chinese Checkers, Focus and Rolit.
The results are shown in Table 6.6. Draws are addressed in a similar manner as
before. If all algorithms would be equally strong, a win ratio of 33.3% would be
expected.

The results show that maxn clearly is the weakest algorithm of the three, having
its best performance in Rolit. For Chinese Checkers and Focus, BRS is clearly the
best algorithm. In Rolit, the performance of BRS and paranoid are comparable with
250 and 1,000 ms per move. For 5,000 ms, paranoid is the best algorithm.
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Table 6.6: Tournament results.

Chinese Checkers
Time (ms) BRS Paranoid Maxn BRS Win Ratio

250 582 333 87 58.1% ± 3.1%
1,000 600 324 78 59.9% ± 3.0%
5,000 661 193 163 66.0% ± 2.9%

Focus
Time (ms) BRS Paranoid Maxn BRS Win Ratio

250 507.7 431.7 62.7 50.7% ± 3.1%
1,000 619.7 319.7 62.7 61.8% ± 3.0%
5,000 616.7 265.7 119.7 61.5% ± 3.0%

Rolit
Time (ms) BRS Paranoid Maxn BRS Win Ratio

250 416.0 393.5 192.5 41.5% ± 3.1%
1,000 399.0 417.5 185.5 39.8% ± 3.0%
5,000 372.0 453.0 177.0 37.1% ± 3.0%

6.6 Chapter Conclusions and Future Research

In this chapter we proposed a new search algorithm called Best-Reply Search (BRS)
for deterministic non-cooperative multi-player games with perfect information. The
algorithm allows only one opponent to play a counter move. This opponent is the
one with the strongest move against the root player. The other players have to pass
their turn. Using this approach, more turns of the root player can be searched,
resulting in long-term planning. At the same time, some sort of cautiousness is
preserved by searching the strongest opponent move.

The first conclusion we may draw is that BRS is able to significantly outper-
form maxn in Chinese Checkers, Focus, and Rolit. In Chinese Checkers, BRS wins
between 72% and 88% of the games. For Focus, BRS wins more than 80% of the
games. An impressive 95% win ratio for three players with 1,000 ms per move was
achieved. In Rolit, BRS wins approximately 65% of all games.

Our second conclusion is that against paranoid, BRS is significantly stronger in
Chinese Checkers and Focus. In these games BRS won approximately 60% across
all experiments. In Rolit, BRS did not perform well with 250 ms of thinking time.
However, BRS was stronger than paranoid with 1,000 ms, and on equal footing
with 5,000 ms of thinking time. A possible reason why BRS is not outperforming
paranoid in Rolit is that the board changes significantly with every move.

Our third conclusion is that when playing different kind of opponents, BRS is the
strongest algorithm in Chinese Checkers and Focus. In Rolit, BRS was somewhat
behind paranoid.

The fourth conclusion we may draw is that increasing the search time generally
does not have a negative effect on the performance of BRS (in Chinese Checkers and
Focus). This implies that searching illegal positions, which are generated by forcing
opponents to pass, does not have a large influence. The possible negative effect is
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outbalanced by the larger lookahead. In spite of this negative effect being visible in
Rolit, BRS was still competitive with paranoid.

The first direction of future research is the application of Monte-Carlo algorithms.
Over the past years, Monte-Carlo Tree Search (MCTS) (Kocsis and Szepesvári,
2006; Coulom, 2007a) has become increasingly popular for letting computers play
games. It has been applied successfully in quite some two-player games (e.g., Go
(Coulom, 2007a; Gelly and Silver, 2007; Chaslot et al., 2008d), Amazons (Lorentz,
2008; Kloetzer et al., 2009), Hex (Cazenave and Saffidine, 2009), Kriegspiel (Cian-
carini and Favini, 2009) and Lines of Action (Winands and Björnsson, 2010)). More-
over, Cazenave (2008) applied MCTS successfully for multi-player Go. Sturtevant
(2008a) showed that MCTS outperforms maxn and paranoid in Chinese Checkers,
when given enough time. Nijssen and Winands (2011) proposed a new MCTS
enhancement, progressive history, that combines progressive bias and the history
heuristic. Results showed that the progressive history improved the performance of
MCTS in Chinese Checkers and Focus. An interesting experiment would be to com-
pare the playing strength of BRS against an MCTS program in Chinese Checkers
and Focus. Furthermore, the BRS principle can be used in MCTS programs as well.
This might lead to an improvement in playing strength.

The second direction of future research is variable-depth search (Marsland and
Björnsson, 2001). Forward-pruning techniques prune unpromising branches in ad-
vance with only a small risk. The most prominent techniques are null moves (Beal,
1989; Goetsch and Campell, 1990), ProbCut (Buro, 1995) and Multi-Cut (Björnsson
and Marsland, 2001). A prerequisite of successfully applying these techniques is to
have a strong evaluation function. This function should be a good predictor and not
suffer from the horizon or odd-even effects. Using these techniques, an even larger
lookahead would be possible. Because of the direct succession of MAX and MIN
nodes in BRS, we expect that forward-pruning techniques are more effective in BRS
than in paranoid. This could give BRS an edge over paranoid.

The third to seventh directions for future research are as follows. (3) Searching
illegal positions is not necessary for BRS. Instead, the opponents who are not selected
for the counter move could be allowed to play the first move from the static move
ordering. This may make BRS applicable to the game of Hearts. (4) BRS should be
tested for more domains, such as four-player chess (Lorenz and Tscheuschner, 2006).
(5) Because lookahead is important, it would be interesting to test how an algorithm
performs which only searches moves by the root player (making it a one-player game,
as in the evaluation function for Chinese Checkers by Sturtevant, 2003a). (6) The
MP-Mixed algorithm chooses a search method based on the current situation of the
game (Zuckerman et al., 2009). BRS may be able to improve the strength of this
technique as well. (7) It should be investigated what the applicability of BRS is in
non-deterministic games or games with imperfect information.



Chapter 7

Conclusions and Future
Research

This thesis investigated how selective-search methods can improve the performance
of a game program for a given domain. This led to the formulation of our problem
statement in Section 1.3.

Problem statement: How can we improve selective-search methods
in such a way that programs increase their performance in domains of
different complexity?

Rather than testing selective-search methods on one class of game, we chose
different classes of games, which all have to be addressed differently. Each class of
games represents a level of complexity. Between every level there exists a complexity
jump. With a complexity jump the complexity of the game increases significantly,
because the mechanism of the game is changed (e.g., a player, chance or imper-
fect information is added). The domains consisted of deterministic one-, two- and
multi-player games with perfect information, and two-player non-deterministic or
imperfect-information games. We have posed four research questions that should be
answered before we could address the problem statement.

In this chapter, we present the conclusions of the thesis. In Section 7.1 we answer
the four research questions one by one. We formulate an answer to the problem
statement in Section 7.2. Finally, in Section 7.3 we provide promising directions of
future research.

7.1 Conclusions on the Research Questions

The four research questions stated in Chapter 1 concern different classes of games,
each with a different level of complexity, i.e., (1) one-player games, (2) two-player
games, (3) two-player games with non-deterministic and imperfect-information, and
(4) multi-player games. They are dealt with in the following subsections, respec-
tively.
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7.1.1 One-Player Games

The traditional approach to deterministic one-player games with perfect information
is applying A* or IDA*. These methods have been quite successful in coping with
this type of games. The disadvantage of these methods is that they require an
admissible heuristic evaluation function. The construction of such a function can
be difficult. Since Monte-Carlo Tree Search (MCTS) does not require an admissible
heuristic, it may be an interesting alternative. This has led us to the first research
question.

Research question 1: How can we adapt Monte-Carlo Tree Search for
a one-player game?

To answer the first research question, we proposed a new MCTS variant called
Single-Player Monte-Carlo Tree Search (SP-MCTS). We adapted MCTS by two
modifications resulting in SP-MCTS. The modifications concern (1) the selection
strategy and (2) the backpropagation strategy. For testing SP-MCTS, we have
chosen the puzzle SameGame as test domain. So far, there does not exist a good
admissible heuristic evaluation function for this game.

On the standardized test set of 20 SameGame positions, the manually tuned SP-
MCTS method, which invests all search time at the initial position, scored 73,998
points. This was the highest score on the test set at that point of time (2008). The
main contribution is therefore that we successfully adapted MCTS for a one-player
game. Inspired by our approach, two other Monte-Carlo-based approaches, Nested
Monte-Carlo Search (Cazenave, 2009) and Heuristically Guided Swarm Tree Search
(Edelkamp et al., 2010), broke our record subsequently. At the time of publishing
this thesis SP-MCTS, with parameters tuned by the Cross-Entropy Method and with
time equally distributed over the consecutive positions, scored 78,012 points on the
test set, which is currently the third highest score (2010). Thus, answering research
question 1, we have shown that MCTS is applicable to a one-player deterministic
perfect-information game. Our variant, SP-MCTS, is able to achieve good results
in the game of SameGame. SP-MCTS is a worthy alternative for puzzles where a
good admissible estimator cannot be found.

7.1.2 Two-Player Games

Ideally, a search method is able to prove that a move is the optimal one for a
given game. The game is solved if this is achieved. In the last years quite some
deterministic two-player games with perfect information have been solved. A search
method specially designed as mate-solver is Proof-Number (PN) search. PN search
is efficient in searching game trees with a non-uniform branching factor. However,
PN search has to expand nodes until the end of the game is reached. Moreover, for
quite some games, endgame databases played a substantial role in solving. When
using endgame databases, branches entering the database can be pruned. This has
led us to the second research question.

Research question 2: How can we solve a two-player game by using
Proof-Number search in combination with endgame databases?
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We examine the tradeoff between time spent on PN search and time spent on
creating endgame databases when solving the game of Fanorona. This game has a
material-based theme with a state-space complexity similar to checkers. Endgame-
database statistics show that (1) the player to move has an advantage and (2) that
a draw can often be achieved in spite of having fewer pieces than the opponent.
The optimal endgame-database size for the 3×9, 5×5 and 7×5 Fanorona variants
are 3, 4 and 5 pieces, respectively. We conclude that the optimal database size
is located at the point where the time required for database construction and the
time required for solving by PN search are of the same order. Our main result is
that the game of Fanorona (5×9) has been weakly solved and is drawn when both
players play optimally, adding Fanorona to the list of solved games (cf. Van den
Herik et al., 2002). This result was achieved by a well-chosen combination of the
PN-search variant PN2 and all endgame databases up to 7 pieces.

Finally, we remark that we were the first to compute and analyze these endgame
databases for Fanorona. From these experiments we offer two additional conclusions.
The first conclusion we draw is that the optimal endgame-database size for Fanorona
(5×9) is 6 or 7 pieces. The time required for solving Fanorona with 7 pieces was
less than the time required for creating the 7-piece endgame databases. The second
conclusion we draw is that White is able to force a win on board sizes with one side
equal to 3. We conjecture that for boards where both sides have at least size 5,
White does not have this advantage for the majority of cases.

7.1.3 Two-Player Games with Non-Determinism and Imper-
fect Information

In variable-depth search, branches can be pruned if they seem unpromising (forward
pruning), or extended if the branches are promising (search extensions). There exist
several successful forward-pruning techniques for the αβ algorithm. For two-player
games with non-determinism or imperfect information expectimax may be used.
Expectimax adds chance nodes to the search tree. There are, however, no forward-
pruning techniques available for chance nodes. This has led us to the third research
question.

Research question 3: How can we perform forward pruning at chance
nodes in the expectimax framework?

For answering the third research question, we have proposed the forward-pruning
technique ChanceProbCut for expectimax. This technique is the first in its kind
to forward prune at chance nodes. ChanceProbCut is inspired by the αβ forward-
pruning technique ProbCut (Buro, 1995). ChanceProbCut estimates values of chance
events based on shallow searches. Based on the correlation between evaluations ob-
tained from searches at different depths, ChanceProbCut prunes chance events in
advance if the result of the chance node probably falls outside the search window.
Two non-deterministic games (Dice and ChanceBreakthrough) and a game of im-
perfect information (Stratego) served as test domains. Experiments revealed that
ChanceProbCut is able to reduce the size of the game tree significantly without a
loss of decision quality in Stratego, Dice, and ChanceBreakthrough. A safe node
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reduction of between 30% and 85% is achieved across all games. Thus, Chance-
ProbCut finds a good move faster in the expectimax framework, while not affecting
the playing strength. The gained time may be invested in a deeper search. Selfplay
experiments in Stratego and Dice showed that there is a small but relevant improve-
ment in playing strength. In ChanceBreakthrough, though, a significant increase in
performance was measured. ChanceProbCut was able to win 54.4% on 4,000 games.

Thus, answering research question 3, the proposed forward-pruning technique
ChanceProbCut improves the search performance in non-deterministic games and
games with imperfect information.

7.1.4 Multi-Player Games

In deterministic two-player games with perfect information, the majority of research
focused on the αβ algorithm. For deterministic multi-player games with perfect
information, the choice of algorithm is not as straightforward. The two main algo-
rithms are called maxn and paranoid, both approaching the problem from a different
angle. Maxn assumes that every player tries to maximize the own score, while para-
noid assumes that all opponents form a coalition against the root player. However,
these assumptions have drawbacks. This has led us to the fourth research question.

Research question 4: How can we improve search for multi-player
games?

For answering the fourth research question, we proposed a new search algo-
rithm, called Best-Reply Search (BRS), for deterministic non-cooperative multi-
player games with perfect information. This algorithm allows only one opponent
to play a counter move. This opponent is the one with the strongest move against
the root player. The other players have to pass their turn. Using this approach,
more turns of the root player can be searched, resulting in long-term planning. At
the same time, some sort of cautiousness is preserved by searching the strongest
opponent move.

We have chosen three deterministic multi-player games of perfect information,
i.e., Chinese Checkers, Focus, and Rolit. BRS is able to significantly outperform
maxn in these games, with a win ratio of between 65% and 95%. Against para-
noid, BRS is significantly stronger in Chinese Checkers and Focus, with win ratios
of between 57% and 71%. In Rolit, BRS and paranoid are on equal footing. When
playing different kind of opponents at the same time, BRS is the strongest algorithm
in Chinese Checkers and Focus. In Rolit, BRS was somewhat behind paranoid. In-
creasing the search time generally does not have a negative effect on the performance
of BRS. This implies that searching illegal positions, which are generated by forcing
opponents to pass, does not have a large influence. The possible negative effect is
outbalanced by the larger lookahead.

Thus, answering research question 4, the proposed search algorithm BRS is able
to significantly outperform both established algorithms, the maxn and paranoid
algorithm.
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7.2 Conclusion on the Problem Statement

After answering all four research questions, we are now able to provide an answer
to the problem statement.

Problem statement: How can we improve selective-search methods
in such a way that programs increase their performance in domains of
different complexity?

Taking the answers to the research questions above into account we see that there
are several ways to improve selective-search methods. We can summarize these in
four points. First, Single-Player Monte-Carlo Tree Search balances exploitation and
exploration such that it is a worthy alternative for one-player games where a good
admissible estimator cannot be found. Second, PN search with endgame databases,
which prefers narrow subtrees above wide ones, was able to prove that the game-
theoretic value of the two-player game Fanorona is a draw. Third, ChanceProbCut is
able to forward prune at chance nodes in two-player games with non-determinism or
imperfect information. Fourth, in non-cooperative deterministic multi-player games
with perfect information, Best-Reply Search achieves long-term planning by assum-
ing that only one opponent is allowed to play a counter move.

7.3 Recommendations for Future Research

The research presented in this thesis indicates the following areas of future research.

1. Improving SP-MCTS. We mention three possible enhancements in SP-
MCTS. (1) Knowledge can be included in the selection mechanism with RAVE
(Gelly and Silver, 2007) or progressive widening (Coulom, 2007a; Chaslot et al.,
2008d). (2) We demonstrated that combining small searches can achieve better
scores than one large search. However, there is no information shared between
the searches. This can be achieved by using a transposition table, which is not
cleared at the end of a small search. (3) Regular root parallelization should be
investigated to take advantage of multi-processor architectures.

2. Improving PN-Search. The time for solving may be reduced significantly
by using Evaluation-Function Based Proof-Number Search (EF-PN) (Winands
and Schadd, 2011). EF-PN is a general framework for employing a traditional
evaluation function in PN search. The search is directed to branches where
the evaluation function indicates a promising situation. For Fanorona, the
material on the board may be used as an evaluation function.

3. Improving ChanceProbCut. We propose three directions for improving
ChanceProbCut. (1) ChanceProbCut uses a number of linear regression models
to predict the value at depth d using a value of depth d−R. For improving the
effectiveness of ChanceProbCut, additional linear regression models for differ-
ent depths may be used. (2) The regression parameters and cut-threshold t
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can be bootstrapped according to the game phase. (3) A successor of Prob-
Cut exists, called Multi-ProbCut (Buro, 2000). This technique could also be
adapted for chance nodes (i.e., Multi-ChanceProbCut).

4. Testing and improving BRS. Sturtevant (2008a) showed that MCTS out-
performs maxn and paranoid in Chinese Checkers, when given enough time.
For further testing BRS, an interesting experiment would be to compare the
playing strength of BRS against an MCTS program in Chinese Checkers. Fur-
thermore, the BRS principle can be used in MCTS programs as well. This
might lead to an improvement in playing strength.

For improving BRS, a possible direction is variable-depth search (Marsland
and Björnsson, 2001). The most prominent forward-pruning techniques are
null moves (Beal, 1989; Goetsch and Campell, 1990), ProbCut (Buro, 1995)
and Multi-Cut (Björnsson and Marsland, 2001). Using these techniques, an
even larger lookahead would be possible. Because of the direct succession of
MAX and MIN nodes in BRS, we expect that forward-pruning techniques are
more effective in BRS than in paranoid. This could give BRS an edge over
paranoid.

We provide three further approaches to improve BRS. (1) Searching illegal po-
sitions is not necessary for BRS. Instead, the opponents who are not selected
for the counter move could be allowed to play the first move from the static
move ordering. This may make BRS applicable to games like Hearts. (2) Be-
cause lookahead is important, it would be interesting to test how an algorithm
performs that only searches moves by the root player (making it a one-player
game, as in the evaluation function for Chinese Checkers by Sturtevant, 2003a).
(3) The MP-Mixed algorithm chooses a search method based on the current
situation of the game (Zuckerman et al., 2009). BRS may be able to improve
the strength of this technique as well.

5. Application to other domains. All our proposed enhancements and al-
gorithms can be tested in other domains. These domains include classes of
games with corresponding complexity levels, but also game classes which have
not been covered in this research. We mention one-player games with non-
determinism, two-player games with non-determinism and imperfect informa-
tion, and multi-player games with non-determinism and/or imperfect informa-
tion.
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Summary

This thesis investigates how selective-search methods can improve the performance
of a game program for a given domain. Selective-search methods aim to explore
only the profitable parts of the state space, but take the risk to overlook the best
move. We propose several selective-search methods and test them in a large number
of game domains.

In Chapter 1 we provide a brief introduction on games research and discuss
selective search for games. The following problem statement guides our research.

Problem statement: How can we improve selective-search methods
in such a way that programs increase their performance in domains of
different complexity?

Rather than testing selective-search methods on one class of games, we chose
different classes of games, which all have to be addressed differently. Each class of
games represents a level of complexity. Between every level there exists a complexity
jump. With a complexity jump the complexity of the game increases significantly
because the mechanism of the game is changed. We have chosen five different levels
of games, resulting in four complexity jumps. (1) One-player games, or puzzles,
involve no opponent and are a testbed for planning algorithms. (2) Two-player
games are the classic testbed for search methods. We use them for investigating
mate-solvers. For testing search with chance nodes, (3) non-deterministic and (4)
imperfect-information games may be used. (5) Multi-player games are a testbed for
dealing with coalition forming. We formulate four research questions to guide our
research. Each one deals with search for a different class of games and a different
selective-search method. The four research questions address (1) Monte-Carlo Tree
Search (MCTS), (2) Proof-Number (PN) search, (3) expectimax, and (4) multi-
player search.

Chapter 2 is a general introduction to search methods for games. It explains
the minimax algorithm and the well-known αβ search. Standard techniques for en-
hancing the αβ search are discussed as well. We furthermore explain MCTS and its
enhancements.

The traditional approach to deterministic one-player games with perfect infor-
mation is applying A* or IDA*. These methods have been quite successful in coping
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with this class of games. The disadvantage of these methods is that they require an
admissible heuristic evaluation function. The construction of such a function can be
difficult. Since the selective-search method MCTS does not require an admissible
heuristic, it may be an interesting alternative. This has led us to the first research
question.

Research question 1: How can we adapt Monte-Carlo Tree Search for
a one-player game?

Chapter 3 answers the first research question by proposing a new MCTS variant
called Single-Player Monte-Carlo Tree Search (SP-MCTS). MCTS is adapted by two
modifications resulting in SP-MCTS. The modifications concern (1) the selection
strategy and (2) the backpropagation strategy. The selection strategy is adapted to
take the standard deviation of the scores for a move into account and to combine
the average score with the top score. The backpropagation strategy is modified
to provide the selection strategy with all required information. For evaluating SP-
MCTS, the puzzle SameGame is chosen as test domain. So far, there does not exist
a good admissible heuristic evaluation function for this game.

On the standardized test set of 20 SameGame positions, the manually tuned SP-
MCTS method, which invests all search time at the initial position, scored 73,998
points. This was the highest score on the test set at that point of time (2008). The
main contribution is therefore that we successfully adapted MCTS for a one-player
game. Inspired by our approach, two other Monte-Carlo-based approaches, Nested
Monte-Carlo and Heuristically Guided Swarm Tree Search, broke our record subse-
quently. At the time of publishing this thesis SP-MCTS, with parameters tuned by
the Cross-Entropy Method and with time equally distributed over the consecutive
positions, scored 78,012 points on the test set, which is currently the third highest
score (2010). Thus, answering research question 1, we have shown that MCTS is
applicable to a one-player deterministic perfect-information game. Our variant, SP-
MCTS, is able to achieve good results in the game of SameGame. SP-MCTS is a
worthy alternative for puzzles where a good admissible estimator cannot be found.

Ideally, a search method is able to prove that a move is the optimal one for
a given game. The game is solved if this is achieved. A selective-search method
specially designed for solving (end)games is Proof-Number (PN) search. PN search
is efficient in searching game trees with a non-uniform branching factor. Moreover,
for quite some games, endgame databases played a role in solving. This has led us
to the second research question.

Research question 2: How can we solve a two-player game by using
Proof-Number search in combination with endgame databases?

Chapter 4 answers the second research question by examining the tradeoff be-
tween time spent on PN search and time spent on creating endgame databases when
solving the game of Fanorona. This game has a material-based theme with a state-
space complexity similar to checkers. Endgame-database statistics show that (1)
the player to move has an advantage and (2) that a draw can often be achieved in
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spite of having fewer pieces than the opponent. The optimal endgame-database sizes
for the 3×9, 5×5, and 7×5 Fanorona variants are 3, 4, and 5 pieces, respectively.
We conclude that the optimal database size is located at the point where the time
required for database construction and the time required for solving by PN search
are of the same order. Our main result is that standard Fanorona (5×9) has been
weakly solved and is drawn when both players play optimally, adding Fanorona to
the list of solved games. This result was achieved by combining the PN-search vari-
ant PN2 with all endgame databases up to 7 pieces.

Another form of searching selectively in two-player deterministic games with
perfect information is variable-depth search. Branches can be pruned if they seem
unpromising (forward pruning), or extended if the branches are promising (search
extensions). There exist several successful forward-pruning techniques for the αβ
algorithm. For two-player games with non-determinism or imperfect information
expectimax may be used. Expectimax adds chance nodes to the search tree. There
are, however, no forward-pruning techniques available for chance nodes. This has
led us to the third research question.

Research question 3: How can we perform forward pruning at chance
nodes in the expectimax framework?

Chapter 5 answers the third research question by proposing the forward-pruning
technique ChanceProbCut for expectimax. This technique is the first in its kind to
forward prune at chance nodes. ChanceProbCut is inspired by the αβ forward-
pruning technique ProbCut. ChanceProbCut estimates values of chance events
based on shallow searches. Based on the correlation between evaluations obtained
from searches at different depths, ChanceProbCut prunes chance events in advance
if the result of the chance node probably falls outside the search window. Two
non-deterministic games (Dice and ChanceBreakthrough) and a game of imperfect
information (Stratego) served as test domains. Experiments revealed that Chance-
ProbCut is able to reduce the size of the game tree significantly without a loss of
decision quality in Stratego, Dice, and ChanceBreakthrough. A safe node reduction
of between 30% and 85% is achieved across all games. Thus, ChanceProbCut finds
the best move faster in the expectimax framework, while not affecting the playing
strength. The gained time may be invested in a deeper search. Selfplay experiments
in Stratego and Dice showed that there is a small but relevant improvement in play-
ing strength. In ChanceBreakthrough, though, a significant increase in performance
was measured. ChanceProbCut is able to win 54.4% on 4,000 games.

In deterministic two-player games with perfect information, the majority of re-
search focused on the αβ algorithm. For deterministic multi-player games with
perfect information, the choice of algorithm is not as straightforward. The two main
algorithms are called maxn and paranoid, both approaching the problem from a
different angle. Maxn assumes that every player tries to maximize the own score,
while paranoid assumes that all opponents form a coalition against the root player.
However, these assumptions have drawbacks. Due to the lack of safe pruning in
maxn only a limited lookahead is possible. Furthermore, the underlying assumption
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of maxn may be unrealistic, resulting in maxn to be too optimistic. When searching
deep with the paranoid algorithm, the other players may dominate the root player,
resulting in paranoid to be too pessimistic. This has led us to the fourth research
question.

Research question 4: How can we improve search for multi-player
games?

Chapter 6 answers the fourth research question by proposing a new search al-
gorithm, called Best-Reply Search (BRS), for deterministic non-cooperative multi-
player games with perfect information. This algorithm allows only one opponent
to play a counter move. This opponent is the one with the strongest move against
the root player. The other players have to pass their turn. Using this approach,
more turns of the root player can be searched, resulting in long-term planning. At
the same time, some sort of cautiousness is preserved by searching the strongest
opponent move.

We have chosen three deterministic multi-player games of perfect information,
i.e., Chinese Checkers, Focus, and Rolit. BRS is able to significantly outperform
maxn in these games, with a win ratio of between 65% and 95%. Against para-
noid, BRS is significantly stronger in Chinese Checkers and Focus, with win ratios
of between 57% and 71%. In Rolit, BRS and paranoid are on equal footing. When
playing different kind of opponents at the same time, BRS is the strongest algorithm
in Chinese Checkers and Focus. In Rolit, BRS is somewhat behind paranoid. In-
creasing the search time generally does not have a negative effect on the performance
of BRS. This implies that searching illegal positions, which are generated by forcing
opponents to pass, does not have a large influence. The possible negative effect is
outbalanced by the larger lookahead.

Chapter 7 concludes the thesis and gives an outlook on open questions and di-
rections for future research. Taking the answers to the research questions above into
account we see that there are four ways to improve selective-search methods. First,
Single-Player Monte-Carlo Tree Search balances exploitation and exploration such
that it is a worthy alternative for one-player games where a good admissible esti-
mator cannot be found. Second, PN search with endgame databases, which prefers
narrow subtrees above wide ones, is able to prove that the game-theoretic value
of the two-player game Fanorona is a draw. Third, ChanceProbCut can forward
prune chance events in two-player games with non-determinism or imperfect infor-
mation. Fourth, in non-cooperative deterministic multi-player games with perfect
information, Best-Reply Search achieves long-term planning by assuming that only
one opponent is allowed to play a counter move.

While this thesis shows that selective-search methods are successful in quite
some domains, all our proposed enhancements and algorithms can be tested in
other domains, as well. These domains include classes of games with correspond-
ing complexity levels, but also game classes which have not been covered in this
research. We mention one-player games with non-determinism, two-player games
with non-determinism and imperfect information, and multi-player games with non-
determinism and/or imperfect information.



Samenvatting

Dit proefschrift onderzoekt hoe selectieve zoekmethoden de prestaties van een spel-
programma kunnen verbeteren voor een bepaald domein. Selectieve zoekmethoden
hebben als doel om alleen de winstgevende delen van de zoekruimte te verkennen,
maar ze nemen het risico om de beste zet te overzien. Wij stellen een aantal selec-
tieve zoekmethoden voor en testen ze in een groot aantal speldomeinen.

In hoofdstuk 1 geven we een korte inleiding in onderzoek in spelen en bespre-
ken selectieve zoekmethoden voor spelen. De volgende probleemstelling stuurt ons
onderzoek.

Probleemstelling: Hoe kunnen we selectieve zoekmethoden op een zo-
danige wijze verbeteren dat programma’s hun prestaties in domeinen van
verschillende complexiteit verhogen?

In plaats van selectieve zoekmethoden te testen op één klasse van spelen, kozen
we verschillende klassen van spelen, die allemaal anders aangepakt moeten worden.
Elke spelklasse vertegenwoordigt een niveau van complexiteit. Tussen elk niveau be-
staat er een complexiteitssprong. Met een complexiteitssprong wordt de complexiteit
van het spel aanzienlijk verhoogd, omdat het mechanisme van het spel is veranderd.
We hebben gekozen voor vijf verschillende niveaus van spelen, wat resulteert in vier
complexiteitssprongen. (1) Éénspeler spelen, of puzzels, hebben geen tegenstan-
der en zijn een testdomein voor planningalgoritmes. (2) Tweespeler spelen zijn het
klassieke testdomein voor zoekmethoden. We gebruiken ze voor zoekmethoden die
de speltheoretische waarde kunnen bewijzen. Voor zoeken met kansknopen kunnen
(3) niet-deterministische en (4) imperfecte-informatie spelen worden gebruikt. (5)
Meerspeler spelen zijn een testdomein voor het omgaan met coalitievorming. We
formuleren vier onderzoeksvragen die ons onderzoek sturen. Elke vraag heeft als
thema het zoeken in een andere klasse van spelen en een andere selectieve zoekme-
thode. De vier onderzoeksvragen gaan over (1) Monte-Carlo Tree Search (MCTS),
(2) Proof-Number (PN) search, (3) expectimax, en (4) meerspeler zoekmethoden.

Hoofdstuk 2 is een algemene inleiding in zoekmethoden voor spelen. Het be-
schrijft het minimax algoritme en de bekende αβ zoekmethode. Standaardtechnie-
ken voor het verbeteren van de αβ zoekmethode worden ook besproken. Verder
leggen wij MCTS en de bijbehorende verbeteringen uit.
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De traditionele benadering voor deterministische éénspeler spelen met perfecte
informatie is het toepassen van A* of IDA*. Deze methoden zijn zeer succesvol in
het omgaan met deze klasse van spelen. Het nadeel van deze methoden is dat ze
een onderschattende evaluatiefunctie vereisen. Het maken van een dergelijke functie
kan moeilijk zijn. Omdat de selectieve zoekmethode MCTS geen evaluatiefunctie
nodig heeft, is het een mogelijk interessant alternatief. Dit heeft geleid tot de eerste
onderzoeksvraag.

Onderzoeksvraag 1: Hoe kunnen we Monte-Carlo Tree Search aan-
passen voor een éénspeler spel?

Hoofdstuk 3 geeft antwoord op de eerste onderzoeksvraag door een nieuwe MCTS
variant voor te stellen, genaamd Single-Player Monte-Carlo Tree Search (SP-MCTS).
Twee wijzigingen in MCTS resulteren in SP-MCTS. De wijzigingen hebben betrek-
king op (1) de selectiestrategie en (2) de propagatiestrategie. De selectiestrategie
is aangepast door rekening te houden met de standaarddeviatie van de scores van
een zet en door de gemiddelde score te combineren met de hoogste score. De pro-
pagatiestrategie is aangepast om de selectiestrategie van alle benodigde informatie
te voorzien. Voor de evaluatie van SP-MCTS, is de puzzel SameGame gekozen als
testdomein. Tot dusver bestaat er geen goede onderschattende heuristische evalua-
tiefunctie voor dit spel.

Voor 20 gestandaardiseerde SameGame testposities scoorde de handmatig inge-
stelde SP-MCTS methode, waarbij alle zoektijd gëınvesteerd werd aan het begin van
het spel, 73.998 punten. Dit was de hoogste score op de testposities in 2008. De
belangrijkste bijdrage is dan ook dat wij met succes MCTS aangepast hebben voor
een éénspeler spel. Gëınspireerd door onze aanpak, hebben twee andere Monte-Carlo
gebaseerde methoden, Nested Monte-Carlo Search en Heuristically Guided Swarm
Tree Search, ons record later verbroken. Op het moment van publicatie van dit
proefschrift heeft SP-MCTS, met parameters afgesteld door de Cross-Entropy Me-
thod en met de tijd gelijkmatig verdeeld over alle zetten, 78.012 punten gescoord
op de testposities, wat momenteel de derde hoogste score is (2010). Dus, om onder-
zoeksvraag 1 te beantwoorden, we hebben aangetoond dat MCTS toepasbaar is op
een deterministisch éénspeler spel met perfecte informatie. Onze variant, SP-MCTS,
is in staat om goede resultaten te behalen in SameGame. SP-MCTS is een waardig
alternatief voor puzzels waar geen goede onderschattende evaluatiefunctie gevonden
kan worden.

Idealiter is een zoekmethode in staat om te bewijzen dat een zet optimaal is
voor een bepaald spel. Het spel is opgelost als dit wordt bereikt. Een selectieve
zoekmethode speciaal ontworpen voor het oplossen van (eind)spelen is Proof-Number
(PN) search. PN search is efficiënt in het doorzoeken van spelbomen met een niet-
uniforme vertakkingsgraad. Daarnaast hebben voor veel spelen eindspeldatabases
een rol gespeeld bij het oplossen. Dit heeft geleid tot de tweede onderzoeksvraag.

Onderzoeksvraag 2: Hoe kunnen we een tweespeler spel oplossen met
behulp van Proof-Number search in combinatie met eindspeldatabases?
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Hoofdstuk 4 geeft antwoord op de tweede onderzoeksvraag door het onderzoeken
van de verhouding tussen de tijd besteed aan PN search en de tijd besteed aan het
creëren van de eindspeldatabases bij het oplossen van het spel Fanorona. Dit spel
is qua complexiteit van de toestandsruimte vergelijkbaar met Engels dammen. Uit
statistieken van de eindspeldatabases blijkt dat (1) de speler aan zet een voordeel
heeft en (2) dat ook met minder stukken op het bord dan de tegenstander een remise
vaak kan worden gerealiseerd. De optimale grootten van de eindspeldatabase voor
de 3×9, 5×5, en 7×5 Fanorona varianten zijn respectievelijk 3, 4, en 5 stukken. We
concluderen dat de optimale grootte van de database op het punt ligt waar de tijd
die nodig is om de database uit te rekenen en de tijd die nodig is voor het oplossen
met PN search van dezelfde orde zijn. Ons belangrijkste resultaat is dat standaard
Fanorona (5×9) is opgelost. Het resultaat is een remise als beide spelers optimaal
spelen. Fanorona is dus toegevoegd aan de lijst van opgeloste spelen. Dit resultaat
werd bereikt door het combineren van de PN-search variant PN2 met alle eindspel-
databases tot 7 stukken.

Een andere vorm van selectieve zoekmethoden in deterministische tweespeler
spelen met perfecte informatie is variable-depth search. Takken kunnen worden
gesnoeid als ze weinig belovend lijken (voorwaarts snoeien), of verlengd indien de
takken veelbelovend zijn (zoekextensies). Er bestaan een aantal succesvolle voor-
waarts snoeitechnieken voor de αβ zoekmethode. Voor tweespeler spelen die niet
deterministisch zijn of imperfecte informatie hebben kan expectimax worden ge-
bruikt. Expectimax voegt kansknopen toe aan de zoekboom. Er zijn echter geen
voorwaarts snoeitechnieken beschikbaar voor de kansknopen. Dit heeft geleid tot de
derde onderzoeksvraag.

Onderzoeksvraag 3: Hoe kunnen we voorwaarts snoeien in de kans-
knopen van expectimax?

Hoofdstuk 5 geeft antwoord op de derde onderzoeksvraag door de voorwaarts
snoeitechniek ChanceProbCut te beschrijven voor expectimax. Deze techniek is de
eerste in zijn soort om voorwaarts te snoeien in kansknopen. ChanceProbCut is
gëınspireerd door de voorwaarts snoeitechniek ProbCut voor αβ. ChanceProbCut
schat waarden van kansgebeurtenissen gebaseerd op ondiepe zoekopdrachten. Ge-
baseerd op een correlatie tussen evaluaties van zoekopdrachten met verschillende
dieptes, kan ChanceProbCut kansknopen voorwaarts snoeien als het resultaat van
de kansknoop waarschijnlijk buiten het zoekvenster valt. Twee niet-deterministische
spelen (Dice en ChanceBreakthrough) en één imperfecte-informatie spel (Stratego)
dienden als testdomeinen. De experimenten laten zien dat ChanceProbCut in staat
is om grote delen van de zoekboom zonder kwaliteitsverlies te snoeien. Een veilige
reductie in knopen van tussen de 30% en 85% kan worden bereikt voor alle spelen.
Dus ChanceProbCut vindt de beste zet sneller in expectimax zonder de speelsterkte
te bëınvloeden. De uitgespaarde tijd kan worden gëınvesteerd in een diepere zoek-
boom. Experimenteel is gebleken dat er een kleine, maar relevante verbetering in
speelsterkte is in Stratego en Dice. In ChanceBreakthrough werd een significante
toename van de speelsterkte gemeten. ChanceProbCut wint 54,4% van 4.000 par-
tijen.
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In deterministische tweespeler spelen met perfecte informatie is het merendeel
van het onderzoek gericht op de αβ zoekmethode. Voor deterministische meerspeler
spelen met perfecte informatie is de keuze van zoekmethode niet zo eenvoudig. De
twee belangrijkste zoekmethoden zijn maxn en paranoid. Ze benaderen beide het
probleem vanuit een andere hoek. Maxn gaat ervan uit dat elke speler probeert de
eigen score te maximaliseren, terwijl paranoid ervan uitgaat dat alle tegenstanders
een coalitie gesloten hebben. Deze aannames hebben echter een nadeel. Vanwege
het ontbreken van veilige snoeitechnieken kan maxn slechts een beperkte zoekdiepte
bereiken. Bovendien kan de onderliggende aanname van maxn onrealistisch zijn. Dit
kan resulteren in een te optimistisch spel. Bij het diepe zoeken met de paranoid zoek-
methode kan de coalitie van andere spelers te dominant worden. Dit kan resulteren
in een te pessimistisch spel. Dit heeft geleid tot de vierde onderzoeksvraag.

Onderzoeksvraag 4: Hoe kunnen we het zoeken in meerspeler spelen
verbeteren?

Hoofdstuk 6 geeft antwoord op de vierde onderzoeksvraag door een nieuwe zoek-
methode voor te stellen, genaamd Best-Reply Search (BRS), voor deterministische
niet-coöperatieve meerspeler spelen met perfecte informatie. Dit algoritme laat
slechts één tegenstander een zet spelen. Deze tegenstander is degene met de sterkste
tegenzet. De andere spelers moeten passen. Met behulp van deze aanpak kunnen
meer beurten van de wortelspeler worden doorzocht. Dit resulteert in een lange-
termijnplanning. Tegelijkertijd wordt een soort van voorzichtigheid bewaard door
rekening te houden met de sterkste tegenzet.

We hebben gekozen voor drie deterministische meerspeler spelen met perfecte
informatie, Chinese Checkers, Focus, en Rolit. BRS is in staat om vergeleken met
maxn significant beter te presteren in deze spelen, en wint tussen de 65% en 95%
van alle partijen. Tegen paranoid is BRS aanzienlijk sterker in Chinese Checkers
en Focus, en wint tussen de 57% en 71% van alle partijen. In Rolit zijn BRS en
paranoid gelijkwaardig. Bij het spelen tegen verschillende soorten tegenstanders ter-
gelijkertijd is BRS de sterkste zoekmethode in Chinese Checkers en Focus. In Rolit
is BRS enigszins zwakker dan paranoid. In het algemeen heeft het verhogen van
de zoektijd geen negatief effect op de prestaties van BRS. Dit impliceert dat het
zoeken van illegale posities, die worden gegenereerd door tegenstanders geforceerd
te laten passen, geen groot invloed heeft. Een mogelijk negatief effect kan worden
goedgemaakt door een grotere zoekdiepte.

Hoofdstuk 7 geeft de conclusies van het proefschrift en geeft een vooruitblik op
open vragen en aanwijzingen voor toekomstig onderzoek. Rekening houdend met de
antwoorden op de bovenstaande onderzoeksvragen zien we dat er vier manieren zijn
om selectieve zoekmethoden te verbeteren. Ten eerste, Single-Player Monte-Carlo
Tree Search balanceert de exploitatie en exploratie zodanig dat het een waardig
alternatief voor éénspeler spelen is waar geen goede evaluatiefunctie kan worden ge-
vonden. Ten tweede, PN search met eindspeldatabases is in staat te bewijzen dat
de speltheoretische waarde van het tweespeler spel Fanorona een remise is. Ten
derde, ChanceProbCut maakt het mogelijk om takken van kansknopen voorwaarts
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te snoeien in tweespeler spelen met niet-determinisme of imperfecte informatie. Ten
vierde, in niet-coöperatieve deterministische meerspeler spelen met perfecte infor-
matie realiseert Best-Reply Search langetermijnplanning door te veronderstellen dat
het slechts één tegenstander toegestaan is om een tegenzet te spelen.

Hoewel dit proefschrift aantoont dat selectieve zoekmethoden succesvol zijn in
veel domeinen, kunnen de door ons voorgestelde verbeteringen en zoekmethoden
ook in andere domeinen worden getest. Deze domeinen omvatten klassen van spelen
met hetzelfde niveau van complexiteit, maar ook klassen van spelen die niet zijn
opgenomen in dit onderzoek. We noemen éénspeler spelen met niet-determinisme,
tweespeler spelen met niet-determinisme en imperfecte informatie, en meerspeler
spelen met niet-determinisme en/of imperfecte informatie.
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Statements

belonging to the thesis

Selective Search in Games of Different Complexity

by Maarten Schadd, 31 december 2010

1. For puzzles where no admissible heuristic evaluation function is available, Monte-
Carlo Tree Search is an alternative (this thesis, Chapter 3).

2. The game of Fanorona is a draw (this thesis, Chapter 4).

3. It is more beneficial for the search to forward prune at chance nodes when not every
move is followed by a chance node (this thesis, Chapter 5).

4. Ignoring most of your opponents may lead to better play (this thesis, Chapter 6).

5. An increase in available computing power triggers an increase in required experi-
ments.

6. Even biocomputers do not learn computer intuition for a game.

7. General Game Playing is the decathlon of games research, where the best Chess
programs may beat the best Go programs at Checkers.

8. The use of goto statements is widely frowned upon, but highly useful.

9. A large number of rules indicates that the original game was unbalanced and the
designer chose to add more rules above correcting the source of the imbalance.

10. If you turn your hobby into your work, you have one hobby less.

11. Doing a Ph.D. is like cycling, the in-between snacks keep you going.
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