Summary

A sunny future for photovoltaic systems in the Netherlands?
An analysis of the role of government and users in the diffusion of an emerging technology

One promising technology to generate useful and sustainable power from renewable resources is solar photovoltaic (PV). This sustainable technology has until recently not been developed as a serious option for energy generation in the Netherlands. Although the first off-grid solar house was opened in Castricum in 1988, after more than 25 years the use of PV is rather limited. The slow growth and even decline in the Netherlands over the years contrasts sharply with the explosive growth in other European countries, Germany for example, where incentive schemes have stimulated the growth of installed PV capacity such that up to 7 GW per year. The Dutch case clearly shows that a large problem in the formation of a domestic market lies with the inconsistent government market support. As example, the upward trend of installed PV stalled in 2003, the PV market decreased from almost 20 MW per year in 2003 to less than 0.5 MW per year in 2006. The ‘gold rush’ of 2003 has been the result of an announcement of the governments that a subsidy regime would end; no incentive came in place till 2008 and the new incentive did not have significant impact on the market. The Dutch policy focused on research and development with the goal of bringing the cost down and raising the efficiency to make solar power more competitive with fossil fuels. Since 2011 there is a substantially grown, 195 MW installed PV capacity over 2012. Falling prices and the possibility of net metering make it more interesting for individuals to install panels without a subsidy. A relevant question that arises is whether this will be just a repeat case of the collapsed gold rush towards the installation of PV panels in 2003 or will this herald a sunny future for PV in the Netherlands? To answer this question, a detailed analysis of the actual development, adoption and diffusion of PV is necessary. Such an analysis allows pinpointing how various factors influence the diffusion process. Furthermore, gaining a better understanding of how a number of these factors might interrelate and trigger a positive inducement mechanism can help to speed up the diffusion process of an emerging technology.

Research on the development, adoption and diffusion process of more sustainable renewable energy technologies often draws on transition and innovation studies. However, these approaches pay little attention to the actual adoption decisions people make. On the micro scale, theories of social practices might be useful to shed light on people’s adoption decisions. In this thesis, I draw on all three aforementioned bodies of literature...
to study the willingness of consumer-citizens to adopt a PV system and the heterogeneity of those who already took the decision to install such a system. In so doing, interesting reflections on the conceptual frameworks I apply are possible. The following research questions function as the backbone of my enquiry:

1. How is user behaviour conceptualised in socio-technical transition research? How are user choices studied empirically?
2. Which factors account for the slow diffusion of PV in the Netherlands and what does this imply for policy support and socio-technical management?
3. Which factors account for the adoption and non-adoption of PV in the Netherlands?
4. What can be learned from combining the user perspective with the technological innovation system approach and the multilevel perspective on socio-technical transitions in terms of possible inducement mechanisms to accelerate the adoption and the diffusion of PV?

In answering the research questions, a mixture of theoretical and empirical material was used. The theoretical part of the thesis describes the potential of niche-based approaches to contribute to wider changes in socio-technical regimes. Social theories that can help to accelerate the transition to a more sustainable energy system are discussed from a systemic and a user perspective. The empirical part of the PhD research comprised a study of the history and dynamics of PV. Data were derived from 1) a literature review; 2) an event analysis; 3) interviews; and 4) questionnaires. The thesis consists of six empirical chapters, a theory chapter, a methodology chapter, a synthesis chapter as well as an introductory and a concluding chapter.

Following the introduction, chapter 2 offers a literature review of the socio-technical literature of transitions and technology innovation studies. The first-mentioned describe how new technologies emerge within more or less protected niches, and how they turn into configurations that shape and reshape regimes (e.g. Geels, Kemp, Rotmans). The latter, technological innovation studies, focuses on the structure of the system (actors, institutions and networks) and on the key processes that take place within a system. These processes contribute to the build-up of a TIS and thereby to the successful development, diffusion and utilization of the emerging technology (e.g. Hekkert, Negro, Berger). It is motivated by the observation that little attention in these studies is being given to actual adoption decisions by people. To this end, I have introduced the sustainable consumption research which studies the specific conditions for consumption in socio-technical systems and the relations between providers and consumers (e.g. Shove and Spaargaren). However, this body of literature do not examine the adoption decisions of individuals in any detail. In this thesis, I draw on all three aforementioned bodies of literature to study the willingness of consumer-citizens to adopt a PV system and the heterogeneity of those who already took the decision to install such a system.
Chapter 3 presents a three step approach in which technology and society co-construct each other. The focus is on social-technical transitions in which technology (technological innovation) on the one hand, and society (users with their lifestyles and habits) on the other hand are analysed in interaction. The three-step approach is built upon the idea that technological innovations can be studied as a system in which a number of phases can be differentiated that shape new technologies and technological landscapes. The system includes suppliers, users (consumer-citizens), inventors, on the one hand, as well as content, facts and meanings, on the other hand, but also social, legal and ethical problems emerge as the result of what is called a ‘technological innovation’. In this approach, three steps are distinguished: (1) the development and diffusion of innovative technologies; (2) the adoption of innovative technologies; (3) learning processes. Each of these steps addresses a different aspect of the dynamics of technological innovations.

Chapter 4 describes the history of the development of the PV innovation system in terms of seven key processes (system functions) that are essential for the build-up of innovation systems. After 30 years of policy efforts, the PV technology has not been implemented on a large scale. Throughout the years the many activities carried out by entrepreneurs, researchers and investors seem to neither have major impact, nor to lead to a momentum. Processes related to knowledge development are found to be stable but I observe large fluctuations in the processes related to guidance of the search and market formation. Inconsistent regulations, unpredictable behaviour of the government and the lack of a clear vision for PV are the main barriers. After the government removed the ‘Energy Contribution Regulation’ (EPR) subsidy in 2003 and simultaneously the global PV market was growing, the Netherlands did not pursue consistent efforts to promote deployment. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. I relate this to market formation in neighbouring countries. An interesting example is Shell Solar. Shell Solar, and with it the human capital, moved to Germany to profit from the favourable, stable and long-term institutional conditions implemented there. The government made no effort to keep the Dutch PV industry in the Netherlands. The German market was a good enough substitute for the home market to keep the sector going also in times when Dutch policy was not in favour of creating a market for solar energy. Therefore, the policy implication might be that a government may decide not to strengthen some parts of the innovation system when neighbouring countries fulfil these functions sufficiently.

Chapter 5 examines the role of policy in the evolution of the technological innovation system and the diffusion of PV panels in Germany and the Netherlands. PV development and diffusion have been actively supported in both countries; however, Germany has a well-developed technological innovation system and a successful industry, whereas the
Netherlands does not. The focus of this study is on the dynamic relationship between policy developments and technology innovation systems developments.

The main conclusions from the analysis about the role of policy are as follows: (1) the creation of a strong technological innovation system for PV requires market pull besides research and technology development support; (2) policy support should be consistent and not erratic; (3) when giving support to a fledging technology the regulator should make sure that the level of support is not too low or too high; (4) policy should be mindful about interaction effects (e.g. between government and industry); (5) innovation policy should go beyond research and development and should be oriented towards the creation of a TIS; (6) the analysis demonstrates the importance of taking into account policy design aspects and the importance of performing a longitudinal analysis for studying the link between innovation and policy.

Chapter 6 focuses on the development and diffusion of PV in Japan and the Netherlands. Both cases are analysed with the TIS framework. I included international factors in the framework such as import, export and international knowledge transfer. Based on the differences in cases I can formulate a number of lessons for the Dutch PV TIS. (1) System functions such as guidance of the search (F4) and advocacy coalitions (F7) need to be strengthened in order to reinforce each other in a positive way; (2) formulate, maintain and translate consistent long-term goals into long-term policies and stimulation measures in order to allow a gradual build-up of networks and skills/expertise; (3) build-up and maintain legitimacy within the institutional setting; and (4) strengthen the TIS in order for SMEs to grow in terms of capital and capabilities.

From the analysis it becomes clear that for the breakthrough of technologies the international dimension is very important. For the Dutch case, export is found to be attractive since the Dutch home market is suffering from inconsistent policies and lack of investment and commitment. In foreign markets, Dutch actors find favourable and consistent institutional settings and consistent demand. International knowledge exchange appears to be important for Dutch R&D in order to stay in a leading position worldwide with respect to research. International markets appear to be just as attractive for Japanese firms, but are not as vital since there is already a large domestic market. Collaboration and involvement of multiple actors in the home market that exchange knowledge with each other (i.e. entrepreneurs with governments as well as with research institutes) remains important for learning processes within both countries.

Chapter 7 analyses from a user perspective whether users (consumer-citizens) of PV have similar personal values and (environmental) lifestyles. By taking into account different typologies of lifestyles which are used in the building market in the Netherlands, I introduced a segmentation model for analysing the diffusion of technological innovations, in particular PV. The empirical analysis, based on a questionnaire completed by 817 Dutch households, resulted in four relatively homogeneous groups of technological
users based on their adoption or rejection of a specific technological innovation. The four groups are voluntary adopters, involuntary adopters, potential adopters and rejecters. The introduced model allows us to answer the question whether adopters and non-adopters consider the same or different attributes for their decisions. In order to answer this question, I split the results in non-determining and determining factors to explain how the groups differ from each other.

Regarding the determining factors, the costs of a PV system are included as a benefit of having PV for voluntary adopters which obviously refer to the positive consequences of having a system (e.g. self-sufficiency and environmental benefits). For non-adopters the benefits of PV which also refer to the positive consequences of having a system do not outweigh the negative consequences (e.g. price and financial uncertainty). Regarding the non-determining factors, voluntary adopters are on average middle-aged, high educated, take big decisions independent of others and take care of the environment by for example recycling paper and avoiding the car on a regularly basis. The opposite are the rejecters who have on average a lower income, take big decisions dependent on others and need also considerable time for big decisions.

Chapter 8 studies factors underlying the adoption and non-adoption of PV in the Netherlands. The main purpose of this chapter is to gain insight in and to understand the adoption of PV in the Netherlands from a user perspective. The influence of the following four factors is studied: the perceived relative advantage of the technology, the perceived complexity of the innovation as a negative factor, social influence, and knowledge of subsidies and costs. For each of the factors, different proxies are used in an attempt to study individual components (e.g. the expectation of increasing prices of oil and gas; the expectation that the subsidy procedure is clear). In this research, I use descriptive analyses and logistic regression analyses.

I show that the cost of a PV system is an important element behind the adoption and non-adoption of PV in the Netherlands. For adopters, the costs of PV are considered affordable whereas for non-adopters they are viewed as being too high. However, it is not just a matter of costs only, although they certainly play an important role. Furthermore, I find that one of the reasons why potential adopters have not adopted a system so far is that they lack knowledge about PV. The importance of this was revealed through the statistical analysis, where I found that knowledge about PV is a predictor for adoption. This suggests that better information about solar energy will stimulate adoption. Not only information of the costs and quality aspects is important, also information on social and environmental matters. The latter and the knowledge of available subsidies and associated costs were found to be positive predictors for the willingness to adopt. This suggests that two useful strategies to stimulate the diffusion of PV are: to reduce the investment costs and increase the knowledge about it. The relative effectiveness of both strategies cannot be determined from my analysis.
Chapter 9 presents a case study on Biesland Solar, a technology-specific local initiative, to discuss how individuals interact with each other about PV and what decisions they reach in terms of adoption and non-adoption. Bielsand Solar is a district initiative in the city of Maastricht that focused on the collective procurement of the technology. Biesland Solar was initiated by several local citizens and promotes PV via a brochure and website. They organised an information meeting with a direct link to a recommended PV installer, which made the adoption process easier. This empirical research is based on data collection through a questionnaire performed immediately after the information meeting and on interviews one and a half year later. I structure the results according to three relevant factors influencing the purchasing of PV: (1) provision of information; (2) financial concern; and (3) the personal attitude people have.

The empirical results confirm the usefulness of information meetings in people’s decision-making process of adopting PV. However, only a few respondents actually purchased a system which shows that even with knowledge of PV technology, high environmental concern, and the assistance of the government grants, additional triggers appear to be still needed for more people to adopt PV. Important reasons mentioned why participants decided not to adopt a PV system are age (a bias towards middle-aged and older individuals), the length of time it takes to recover the costs, the visual impact of the system, concerns about maintenance of the system, and the lack of understandable information. On the other hand, a trigger for the adoption of PV systems could be that a PV system offers a ‘fixed price’ while the electricity price would inevitably rise the coming years due to the increasing scarcity of fossil fuels. In line with this, another reason mentioned for the adoption is that retired people tend to particularly benefit from the bill reduction compared to other groups. Self-sufficiency and the environmental advantage are other motivations.

Chapter 10 studies the barriers in the PV transition process in the Netherlands and studies what can be done to accelerate the PV transitions. I show that technological and social changes interact and mutually influence each other and that various forms of learning take place. I find that the development of the PV technology depends on the evolution of energy prices, changes in global energy demand, changes in infrastructure, targets and regulations, and changes in the energy sector. Attention is also given to interaction of technological alternatives, specifically competitive and synergetic effects between them.

The research framework of this thesis is further elaborated in this chapter to indicate how various factors influence this process. Instead of the notion of barriers I think in terms of a ‘web of constraints’ acting as a blocking mechanism. Instead of a single driver I think in terms of multiple drivers creating a positive inducement mechanism when they support each other. Positive stimuli interact with negative ones. Based on the different analyses which are done in this research, I formulated five mechanisms for the case of PV in the Netherlands: (1) policies and targets that included the use of more renewable
energy technologies as source of reduction of greenhouse gas emissions; (2) better quality of the integrated PV systems and PV system guarantees can be expected to encourage PV technology adoption; (3) social involvement can arouse consumer curiosity and broaden consumer choice; (4) the collaboration between the local, national and international dimension can arouse the breakthrough of PV; and (5) PV can become an attractor in the building market.

The strength of the various mechanisms, or causal chains, differs from one or the other, but also from sector to sector. Some loops are more rapid, such as prices that may fall in the course of a few years, whereas other loops are slow or discontinuously changing, such as the improvement of technological quality. Altogether, these developments suggest that the transition path for PV still has a long way to go.

In chapter 11 the main results and conclusions from this thesis are summarized. My PhD research shows how supply interacts and co-evolves with demand for innovation. The empirical cases shed an ambivalent light on the build-up of the Dutch PV TIS. Guidance of the search, resource mobilisation, and creation of legitimacy in the Netherlands is weak, and due to the lack of an ambitious view for PV from the government, there are not enough (financial) resources and an insufficient lobbying power to overcome resistance. Furthermore, the market formation strongly fluctuates over the years due to the lack of a Dutch PV market at the moment. With about 195 MW installed PV capacity in 2012 (best year ever), the Dutch contribution to PV-generated electricity in Europe is limited. In other European countries, incentive schemes have stimulated the growth of installed PV capacity such that up to 1 GW per year is installed like for example in Germany. Interestingly, knowledge development and entrepreneurial activities were not very much affected by the periods of poor market formation due to the focus on the international market. They have flourished to a globally recognized status. By studying the influence of users, it was found that the slow diffusion of PV is not driven by single factors such as price or technological change, but typically involves co-evolution between multiple developments. It is related to consumer preferences, product offerings and slow introduction of policies to promote the use of renewables.

The case of PV clearly showed that at the side of the technology innovation system approach and at the side of the user perspective, various forms of learning take place. These forms of learning are interrelated in the sense that at the very beginning suppliers of the technology have to inform consumers about the innovation, but then suppliers themselves gradually learn how to evaluate demand as an innovation diffuses. Learning in this case entails the availability of new skills and knowledge, new social connotations, changing future expectations, new supply-demand relationships and changes in the regulatory framework. Consumers, with their different ways of interpreting, using and talking about PV technologies, further contribute to the social shaping of the technology. However, it is also possible that there are not enough experiences or critical mass of users to trigger any significant development. Depending on the strength of the learning
at both sides (demand and supply), it is possible to observe dynamics that lie somewhere in between these two extremes. Thus, the case of PV shows that both the technology and the relevant social context change is a complex co-evolution process with evolutionary traits of variation, selection and retention. It also shows how learning processes can be interrelated.
Samenvatting

Een zonnige toekomst voor photovoltaïsche systemen in Nederland?
Een analyse van de rol van de overheid en de gebruikers in de verspreiding van een opkomende technologie

Een veelbelovende optie om duurzame energie op te wekken zijn fotovoltaïsche systemen (PV). Deze duurzame technologie heeft zich in Nederland tot voor kort niet ontwikkeld als een serieuze optie. Hoewel het eerste off-grid zonnehuis in Castricum werd geopend in 1988, is het gebruik van PV na meer dan 25 jaar vrij beperkt. De trage groei en zelfs daling in Nederland door de jaren heen, staat in scherp contrast met de explosieve groei in andere Europese landen, Duitsland bijvoorbeeld, waar stimuleringsmaatregelen de groei van het geïnstalleerde PV vermogen tot 7 GW per jaar hebben gestimuleerd. De Nederlandse casus laat duidelijk zien dat een groot probleem in het creëren van een binnenlandse markt ligt bij inconsistent overheidsbeleid. Bijvoorbeeld, de stijgende trend geïnstalleerd PV-vermogen stagneerde in 2003; de PV-markt daalde van bijna 20 MW per jaar in 2003 tot minder dan 0,5 MW per jaar in 2006. De ‘gold rush’ van 2003 is het resultaat van een aankondiging van de overheid dat een subsidieregeling zou eindigen; er is geen incentive voor in de plaats gekomen tot 2008 en de nieuwe incentive had geen significante impact op de markt. Het Nederlandse beleid richtte zich op onderzoek en ontwikkeling met het doel om de kosten te verlagen en het verhogen van de efficiëntie, zodat zonne-energie beter kan concurreren met fossiele brandstoffen. Sinds 2011 is er een sterke groei, 195 MW PV-vermogen is geïnstalleerd over 2012. Dalinge prijzen en de mogelijkheid van salderen maakt het interessanter voor individuen om panelen te installeren zonder subsidie. Een relevante vraag is of dit slechts een herhaling is van de ingestorte ‘gold rush’ naar de installatie van PV-panelen in 2003 of is dit de aankondiging voor een zonnige toekomst voor PV in Nederland? Om deze vraag te beantwoorden is een gedetailleerde analyse van de ontwikkeling, adoptie en verspreiding van PV noodzakelijk. Een dergelijke analyse geeft inzicht in hoe verschillende factoren het diffusieproces beïnvloeden. Daarnaast kan ook het beter begrijpen van hoe een aantal van deze factoren met elkaar in verband staan en kunnen leiden tot een positieve stimulansmechanisme, helpen het diffusieproces van een opkomende technologie te versnellen.

Onderzoek naar de ontwikkeling, adoptie en verspreiding van meer duurzame technologieën richt zich vaak transitie- en innovatiestudies. Echter, deze benaderingen besteden weinig aandacht aan de werkelijke adoptiebeslissingen die mensen maken. Op microschaal kunnen theorieën over sociale praktijken nuttig zijn om opheldering te verschaf-
fen over adoptiebeslissingen van mensen. In dit proefschrift ga ik in op alle drie bovengenoemde takken van literatuur om de bereidheid van consumenten-burgers om een PV-systeem aan te schaffen te bestuderen, als ook de heterogeniteit van degenen die reeds de beslissing namen om een dergelijk systeem te installeren. Daarbij zijn er interessante reflecties op de conceptuele raamwerken die ik toepas mogelijk. De volgende onderzoeksvragen fungeren als de ruggengraat van mijn onderzoek:

1. Hoe wordt het gedrag van gebruikers geconceptualiseerd in socio-technisch transitieonderzoek? Hoe worden de keuzes van de gebruiker empirisch onderzocht?
2. Welke factoren zijn verantwoordelijk voor de trage verspreiding van PV in Nederland en wat betekent dit voor beleidsondersteuning en sociaal-technisch management?
3. Welke factoren zijn verantwoordelijk voor de adoptie en niet-adoptie van PV in Nederland?
4. Wat kan er worden geleerd van het combineren van het gebruikersperspectief met de technologische innovatiesysteem benadering (TIS) en het multi-level perspectief op socio-technische transities in termen van mogelijke stimulansmechanismen om de adoptie en de verspreiding van PV te versnellen?

Bij de beantwoording van de onderzoeksvragen wordt een mix van theoretisch en empirisch materiaal gebruikt. Het theoretisch deel van dit proefschrift beschrijft de mogelijkheden van niche-gebaseerde benaderingen en de bijdrage voor grotere veranderingen in de socio-technische regimes, en vergelijkt deze met andere benaderingen, zoals het technologische innovatiesysteem. Het empirisch deel van het promotieonderzoek bestaat uit een studie naar de geschiedenis en de dynamiek van de PV-sector in Nederland. Data is afkomstig van (1) literatuur onderzoek; (2) event-analyse; (3) interviews; en (4) vragenlijsten. Het proefschrift bestaat uit zes empirische hoofdstukken, een theorie hoofdstuk, een methodologie hoofdstuk, een synthesehoofdstuk, evenals een inleidend en een concluderend hoofdstuk.

Hoofdstuk 2 biedt een literatuuroverzicht van de socio-technische literatuur van transities en technologische innovatiesudies. De eerstgenoemde beschrijft hoe nieuwe technologieën ontstaan binnen min of meer beschermd niches, en hoe ze veranderen in configuraties die regimes vormen en hervormen (bv. Geels, Kemp, Rotmans). De laatste genoemde, technologische innovatie studies, richt zich op de structuur van het systeem (actoren, instituties en netwerken) en op de essentiële processen die plaatsvinden binnen een systeem. Deze processen dragen bij tot de opbouw van het technologisch innovatiesysteem (TIS) en daarmee tot de succesvolle ontwikkeling, verspreiding en het gebruik van de opkomende technologie (bv. Hekkerdt, Negro, Bergek). Gemotiveerd door constatering dat er weinig aandacht in deze studies wordt gegeven aan de werkelijke adoptiebeslissingen van mensen, heb ik het onderzoek naar duurzame consumptiepatronen geïntroduceerd dat de specifieke voorwaarden voor consumptie in socio-
technische systemen en de relaties tussen aanbieders en consumenten bestudeert (bv. Shove en Spaargaren). Echter, deze tak van literatuur onderzoekt niet in detail de adoptiebeslissingen van individuen. In dit proefschrift ga ik in op alle drie bovengenoemde takken van literatuur om de bereidheid van consumenten-burgers om een PV-systeem aan te schaffen te bestuderen als ook de heterogeniteit van degenen die reeds de beslissing namen om een dergelijk systeem te (laten) installeren.

Hoofdstuk 3 presenteert een drie-stappen aanpak waarin technologie en maatschappij elkaar beïnvloeden (co-constructie). De focus ligt op sociaal-technische transities waarin technologie (technologische innovatie) enerzijds, en de maatschappij (gebruikers met hun levensstijl en gewoonten) anderzijds, in interactie worden geanalyseerd. De drie-stappen aanpak is gebaseerd op het idee dat technologische innovaties als een systeem bestudeerd kunnen worden waarin een aantal fasen te onderscheiden zijn die vormgeven aan nieuwe technologieën en het technologische landschap. Het systeem bevat leveranciers, gebruikers (consumenten-burgers) en uitvinders enerzijds, en content, feiten en betekenissen anderzijds, maar ook sociale, wettelijke en ethische problemen als gevolg van wat een "technologische innovatie" wordt genoemd. In deze aanpak zijn drie stappen te onderscheiden: (1) de ontwikkeling en verspreiding van innovatieve technologieën; (2) de adoptie van innovatieve technologieën; (3) leerprocessen. Elk van deze stappen behandelt een ander aspect van de dynamiek van technologische innovaties.

Hoofdstuk 4 beschrijft de geschiedenis van de ontwikkeling van het PV-innovatiesysteem in termen van zeven sleutelprocessen (systeem-functies) die essentieel zijn voor de opbouw van het innovatiesysteem. Na 30 jaar beleidsinspanningen is de PV-technologie niet geïmplementeerd op grote schaal. Door de jaren heen zijn vele activiteiten uitgevoerd door ondernemers, onderzoekers en investeerders maar deze lijken noch grote invloed te hebben, noch tot een momentum te leiden. Processen met betrekking tot kennisontwikkeling blijken stabiel te zijn, maar ik observeer grote fluctuaties in de processen met betrekking tot sturing en marktcreatie. Inconsistent beleid, onvoorspelbaar gedrag van de overheid en het gebrek aan een duidelijke visie voor PV zijn de belangrijkste barrières. Nadat de overheid de ‘Energie Premie Regeling’ (EPR) stopte in 2003 en tegelijkertijd de mondiale PV-markt groeide, deed Nederland geen consistente inspanningen om de implementatie te bevorderen. Ondernemersactiviteiten werden niet veel beïnvloed tijdens de perioden van slechte marktreactie. Ik relateer dit aan de marktreactie in buurlanden. Een interessant voorbeeld is Shell Solar. Shell Solar verhuisde naar Duitsland om te profiteren van de gunstige, stabiele en langdurige institutionele condities die daar geïmplementeerd zijn. De overheid heeft geen moeite gedaan om de Nederlandse PV-industrie in Nederland te houden. De Duitse markt was een goed alternatief om de sector draaiende te houden.
ook in tijden waarin het Nederlandse beleid onvoldoende was voor het creëren van een markt voor zonne-energie. De beleidsimplicatie zou daarom kunnen zijn dat een regering kan besluiten tot het niet versterken van sommige delen van het innovatiesysteem wanneer naburige landen voldoen aan de vervulling deze functies.

Hoofdstuk 5 gaat in op de rol van het beleid in de evolutie van het technologisch innovatiesysteem en de verspreiding van PV-panelen in Duitsland en Nederland. De ontwikkeling en verspreiding van PV zijn actief ondersteund in beide landen. Duitsland heeft een goed ontwikkelde technologisch innovatiesysteem en een succesvolle industrie, terwijl Nederland dit niet heeft. De focus van deze studie ligt op de dynamische relatie tussen beleidsontwikkelingen en de ontwikkelingen binnen het technologische innovatiesysteem.

De belangrijkste conclusies voortkomend uit de analyse over de rol van het beleid zijn:

(1) het creëren van een sterke technologisch innovatiesysteem voor PV vereist market pull naast de ondersteuning van onderzoek en technologie-ontwikkeling; (2) het beleid moet consistent zijn en niet onstabiel; (3) bij het geven van ondersteuning aan een opkomende technologie moet de regelgever ervoor zorgen dat de mate van ondersteuning niet te laag of te hoog is; (4) beleid moet zich van interactie-effecten bewust zijn (bv. tussen overheid en bedrijfsleven); (5) innovatiebeleid moet verder gaan dan onderzoek en ontwikkeling en moet gericht zijn op het creëren van een TIS; (6) de analyse laat het belang zien van het rekeninghouden met aspecten rondom beleidsontwerp en het uitvoeren van een longitudinale analyse voor het bestuderen van het verband tussen innovatie en beleid.

Hoofdstuk 6 richt zich op de ontwikkeling en verspreiding van PV in Japan en Nederland. Beide casussen worden geanalyseerd met het TIS raamwerk. Internationale factoren heb ik toegevoegd aan dit raamwerk zoals import, export en internationale kennisoverdracht. Op basis van de verschillen in casussen heb ik een aantal lessen geformuleerd voor het Nederlandse PV-TIS. (1) Systeem-functies zoals sturing (F4) en advocacy coalities (F7) moeten worden versterkt om elkaar op een positieve manier te versterken; (2) formuleer, onderhoud en vertaal consistent langetermijndoelstellingen naar langetermijnbeleid en stimuleringsmaatregelen om een geleidelijke opbouw van netwerken en vaardigheden/ deskundigheid mogelijk te maken; (3) legitimiteit opbouwen en behouden binnen het institutionele kader; en (4) versterken van de TIS om het MKB te laten groeien in termen van kapitaal en mogelijkheden.

De analyse laat duidelijk zien dat voor de doorbraak van technologieën de internationale dimensie erg belangrijk is. Voor de Nederlandse casus wordt export aantrekkelijk bevonden aangezien de Nederlandse thuismarkt lijdt aan inconsistent beleid en gebrek aan investeringen en inzet. Nederlandse actoren vinden gunstige en consistente institutionele instellingen en consistentie vraag op buitenlandse markten. Internationale kennisuitwisseling lijkt belangrijk voor de Nederlandse R&D te zijn om een leidende onderzoeks-
Hoofdstuk 7 analyseert vanuit een gebruikersperspectief of gebruikers (consumentenburgers) van PV vergelijkbare persoonlijke waarden en (milieu-) levensstijlen hebben. Door rekening te houden met verschillende typologieën van levensstijlen die worden gebruikt in de bouwmarkt in Nederland heb ik een segmentatie-model geïntroduceerd voor de analyse van de verspreiding van technologische innovaties, in het bijzonder PV. De empirische analyse, gebaseerd op een vragenlijst welke is ingevuld door 817 Nederlandse huishoudens, resulteerde in vier relatief homogene groepen van technologische gebruikers op basis van hun adoptie of afwijzing van een specifieke technologische innovatie. De vier groepen zijn vrijwillige adopters, onvrijwillige adopters, potentiële adopters en non-adopters (rejectors en zij die een keuze nooit overwogen hebben). Het geïntroduceerde model laat ons toe om een antwoord te geven op de vraag of adopters en non-adopters dezelfde of verschillende attributen overwegen voor hun beslissingen. Om deze vraag te beantwoorden heb ik de resultaten onderverdeeld in determinerende en niet-determinerende factoren om uit te leggen hoe de groepen van elkaar verschillen. Met betrekking tot de determinerende factoren is het zo dat de kosten van een PV-systeem worden meegenomen als een voordeel van het hebben van PV voor vrijwillige adopters, welke duidelijk verwijzen naar de positieve consequenties van het hebben van een systeem (bv. zelfvoorziening en milieuvoordelen). De voordelen van PV voor non-adopters, welke ook verwijzen naar de positieve gevolgen van het hebben van een systeem, wegen niet op tegen de negatieve gevolgen (zoals prijs en financiële onzekerheid). Met betrekking tot de niet-determinerende (mee-bepalende) factoren is het zo dat vrijwillige adopters gemiddeld genomen van middelbare leeftijd zijn, hoog opgeleid zijn grote beslissingen onafhankelijk van anderen nemen, en vaker papier recyclen en overmatig autogebruik vermijden. Daar tegenover staan de rejectors die gemiddeld een lager inkomensdien, grote beslissingen afhankelijk van anderen nemen en veel tijd voor grote beslissingen nemen.

Hoofdstuk 8 bestudeert de factoren die ten grondslag liggen aan de adoptie en de non-adoptie van PV in Nederland. Het belangrijkste doel van dit hoofdstuk is om inzicht te krijgen in, en om de adoptie van PV in Nederland te begrijpen vanuit een gebruikersperspectief. De invloed van de volgende vier factoren wordt bestudeerd: het waargenomen relatieve voordeel van de technologie, de waargenomen complexiteit van de innovatie als een negatieve factor, sociale invloed, en de kennis van subsidies en kosten. Voor elk van de genoemde factoren worden verschillende proxies gebruikt in een poging om de individuele onderdelen te bestuderen (bv. de verwachting van stijgende prijzen van olie

positie wereldwijd te behouden. Internationale markten lijken net zo aantrekkelijk voor Japanse bedrijven te zijn, maar zijn niet zo belangrijk omdat er al een grote binnenlandse markt is. Samenwerking en betrokkenheid van meerdere actoren op de thuismarkt die kennis met elkaar uitwisselen (d.w.z. ondernemers met overheden, alsook met onderzoeksinstituten) blijft belangrijk voor leerprocessen binnen beide landen.
en gas; de verwachting dat de subsidie procedure duidelijk is). In dit onderzoek maak ik gebruik van beschrijvende analyses en logistische regressie analyses.

Ik vind dat de kosten van een PV-systeem een belangrijk element is voor de adoptie en non-adoptie van PV in Nederland. Voor adopters worden de kosten van PV beschouwd als betaalbaar, terwijl voor non-adopters ze worden gezien als te hoog. Het is echter niet alleen een kwestie van de kosten, hoewel het zeker een belangrijke rol speelt. Het gebrek aan kennis over PV is een andere reden waarom potentiële adopters tot nu toe nog geen systeem hebben aangeschaft. Dit kwam naar voren met behulp van de statistische analyse waar duidelijk werd dat kennis over PV een voorspeller voor adoptie is. Dit suggerer en informatie over zonne-energie adoptie zal stimuleren. Niet alleen informatie over de kosten en kwaliteitsaspecten zijn van belang, ook informatie op sociaal en milieugebied. Deze laatste en de kennis van beschikbare subsidies en bijkomende kosten bleken positieve voorspellers te zijn voor de bereidheid om PV aan te schaffen. Twee nuttige strategieën om de verspreiding van PV te stimuleren zijn het reduceren van de investeringskosten en het vergroten van de kennis over PV. De relatieve effectiviteit van beide strategieën kan niet worden bepaald uit mijn analyse.

Hoofdstuk 9 presenteert een case studie over Biesland Solar, een technologie-specifiek lokaal initiatief, om te laten zien hoe mensen interacteren met elkaar aangaande PV en welke beslissingen zij nemen in termen van adoptie en non-adoptie. Biesland Solar is een wijkinitiatief in Maastricht, dat gericht is op de collectieve aanschaf van de technologie. Biesland Solar is geïnitieerd door verschillende lokale burgers en promoot PV via een brochure en website. Zij hebben een informatiebijeenkomst georganiseerd met een directe link naar een PV-installateur, die het adoptieproces makkelijker maakt. Dit empirische onderzoek is gebaseerd op datacollectie door middel van een enquête uitgevoerd direct na de informatiebijeenkomst en interviews anderhalf jaar later. De resultaten zijn gestructureerd op basis van drie relevante factoren die invloed hebben op de aanschaf van PV: (1) het verstrekken van informatie; (2) financiële belang; en (3) de persoonlijke houding die mensen hebben.

De empirische resultaten bevestigen het nut van informatiebijeenkomsten tijdens het besluitvormingsproces van de adoptie van PV. Slechts een paar respondenten hebben daadwerkelijk een PV-systeem gekocht waaruit blijkt dat zelfs met kennis van de PV-technologie, hoge milieubewustheid, en de hulp van overheids subsidies, extra triggers nodig lijken te zijn voor mensen om PV aan te schaffen. Belangrijke redenen waarom mensen besloten geen PV-systeem aan te schaffen zijn leeftijd (een voorkeur voor middelbare leeftijd en oudere mensen), de tijd die het kost om de kosten terug te krijgen, de visuele impact van het systeem, zorgen over het onderhoud van het systeem en het gebrek aan begrijpelijke informatie. Aan de andere kant, een trigger voor de aanschaf van een PV-systeem kan zijn dat een PV-systeem een ‘vaste prijs’ biedt, terwijl de elektriciteitsprijzen onvermijdelijk gaan stijgen de komende jaren als gevolg van de toenemende schaarste van fossiele brandstoffen. Een andere
reden voor adoptie, in lijn met het voorgaande, is dat gepensioneerde mensen extra kunnen profiteren van een lagere energierekening ten opzichte van andere groepen. Zelfvoorziening en de milieuvoordelen zijn andere motivaties.

Hoofdstuk 10 bestudeert de barrières in het PV-transitieproces in Nederland en bestudeert wat er gedaan kan worden om de PV-transitie te versnellen. Ik laat zien dat technologische en maatschappelijke veranderingen op elkaar inwerken en elkaar beïnvloeden en dat er verschillende vormen van leren plaatsvinden. Ik vind dat de ontwikkeling van de PV-technologie afhankelijk is van de evolutie van de energieprijzen, veranderingen in de wereldwijde vraag naar energie, wijzigingen in infrastructuur, doelstellingen en regelgeving, en veranderingen in de energiesector. Ook wordt er aandacht besteed aan de interactie van technologische alternatieven, in het bijzonder competitieve en synergetische effecten tussen hen.

Het onderzoeksraamwerk van dit proefschrift wordt verder uitgewerkt in dit hoofdstuk om aan te geven hoe de verschillende factoren dit transitieproces beïnvloeden. In plaats van het begrip ‘barrières’ denk ik in termen van een ‘web van tegenwerkende factoren’ welke fungeert als een blokkeermechanisme. Positieve stimuli interacteren met negatieve. Op basis van de verschillende analyses die zijn gedaan in dit onderzoek formuleerde ik vijf mechanismen voor de casus PV in Nederland: (1) beleid en doelen waarin het gebruik van hernieuwbare energie als bron van vermindering van de uitstoot van broeikasgassen wordt opgenomen; (2) betere kwaliteit van de geïntegreerde systemen en PV systeem garantie kan de adoptie van de PV-technologie bevorderen; (3) maatschappelijke betrokkenheid kan de consument nieuwsgierig maken en de keuze van de consument verbreden; (4) de samenwerking tussen de lokale, nationale en internationale dimensie kan zorgen voor de doorbraak van PV; en (5) PV kan een attractor worden in de bouwmarkt.

De sterkte van de verschillende mechanismen of causale verbanden verschilt per verband, maar ook per sector. Sommige loops zijn sneller, zoals de prijzen die in de loop van een paar jaar kan dalen, terwijl andere loops traag of met tussenpozen veranderen, zoals de verbetering van de technologische kwaliteit. Alles samengenomen suggereren deze ontwikkelingen dat het transitiepad voor PV nog een lange weg te gaan heeft.

In hoofdstuk 11 worden de belangrijkste resultaten en conclusies van dit proefschrift samengevat. Mijn promotieonderzoek laat de interactie en co-evolutie tussen het aanbod en de vraag naar innovatie zien. De empirische casussen geven duidelijk het dualistische beeld weer betreffende de opbouw van een TIS. Sturing, mobilisatie van middelen, en het creëren van legitimiteit in Nederland is zwak, en door het ontbreken van een ambitieuze visie voor PV van de overheid zijn er niet genoeg (financiële) middelen en is er onvoldoende lobbykracht om dit te overwinnen. Bovendien fluctueert de marktcreatie sterk over de jaren heen vanwege het ontbreken van een Nederlandse PV-markt op dit moment. Met
ongeveer 195 MW geïnstalleerde PV-vermogen in 2012 (beste jaar ooit), is de Nederlandse bijdrage aan PV-opgewekte elektriciteit in Europa beperkt. In andere Europese landen zoals Duitsland hebben stimuleringsmaatregelen de groei van het geïnstalleerde PV-vermogen zodanig gestimuleerd dat tot 1 GW per jaar wordt geïnstalleerd. Opmerkelijk is dat de kennisontwikkeling en ondernemersactiviteiten niet veel werden beïnvloed tijdens de perioden van slechte marktcreatie als gevolg van de focus op de internationale markt. Deze (kennisontwikkeling en ondernemersactiviteiten) hebben er een wereldwijd erkende status op na gehouden. Door het bestuderen van de invloed van de gebruikers, bleek dat de langzame diffusie van PV niet wordt aangestuurd door een enkele factor zoals prijs of technologische verandering, maar het omvat co-evolutie tussen meerdere ontwikkelingen. Het is gerelateerd aan de voorkeuren van consumenten, productaanbod en langzame introductie van het beleid om het gebruik van hernieuwbare energiebronnen te bevorderen.

De PV-casus laat duidelijk zien dat binnen het technologisch innovatiesysteem aan de aanbodzijde en aan de zijde van (potentiele) gebruikers verschillende vormen van leren plaatsvindt. Deze vormen van leren worden met elkaar verbonden in de zin dat bij het begin leveranciers van de technologie de consumenten moeten informeren over de innovatie, de leveranciers leren dan geleidelijk hoe de vraag te evalueren als een innovatie verspreidt. Leren in dit geval leidt tot de beschikbaarheid van nieuwe vaardigheden en kennis, nieuwe sociale connotaties, veranderende verwachtingen voor de toekomst, nieuwe vraag en aanbod verhoudingen en veranderingen in de regelgeving. Consumenten, met hun verschillende manieren van interpretatie, het gebruik en het praten over PV-technologieën kunnen verder bijdragen aan de sociale vorming van de technologie. Het is echter ook mogelijk dat er onvoldoende ervaringen of kritische massa van gebruikers is om de ontwikkeling op gang te zetten. Voor de casus PV blijkt dat zowel de technologie als de verandering aangaande de relevante sociale context een complex co-evolutie proces met evolutaire kenmerken van variatie, selectie en retentie is. Het laat ook zien hoe leerprocessen met elkaar verbonden zijn en kunnen worden verbeterd.