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When units roots matter: excess volatility and
excess smoothness of long-term interest rates

Peter C. Schotman)

Limburg Institute of Financial Economics, Maastricht UniÕersity, P.O. Box 616,
6200 MD Maastricht, Netherlands

Abstract

This paper re-examines volatility tests of the expectations model of the term structure of
Ž .interest rates. In a multivariate vector autoregression VAR including interest rates, prices,

money and output, we find that the long-term interest rate overreacts to all transitory
shocks, and underreacts to all permanent shocks, irrespective of the number of unit roots
and the cointegration structure in the system. q 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Cointegration; Efficient markets; Term structure; Unit roots; Vector autoregression; Vola-
tility

1. Introduction

In the econometrics literature, unit roots and cointegration continue to be of
great concern since the mid-1980s. A lot of research has been devoted to
determine whether macroeconomic and financial time series are stationary in
levels or first differences. 1 While the properties of T rend Stationary and Differ-
ence Stationary time series are vastly different in population, it is empirically
difficult to discriminate between them. Indeed, for a major U.S. macroeconomic

Ž .time series as real per capita GNP, Christiano and Eichenbaum 1990 show that a

) Tel.: q31-43-388-3862; fax: q31-43-388-4875.
Ž .E-mail address: P.Schotman@BERFIN.Unimaas.nl P.C. Schotman .

1 The term AstationaryB will in most cases be used as synonymous with Aintegrated of order zeroB
Ž Ž .. Ž .I 0 , or abbreviated as TS Atrend stationaryB when there is no confusion on the meaning. Similarly,

Ž Ž ..AnonstationaryB will mostly be a synonym for Aintegrated of order oneB I 1 or Adifference
stationaryB, abbreviated DS. Exact definitions are stated when necessary.

0927-5398r01r$ - see front matter q2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0927-5398 01 00040-8
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Ž .trend stationary model can fit the data as well and as parsimoneously as a
Ž .difference stationary model. In line with work of Quah 1990 , they further

contend that the whole unit root issue might not be important at all. Implications
of dynamic economic models need not be very sensitive to the presence of unit
roots, once we move away from very tightly parameterized models. In this paper,
we investigate this conjecture for the expectations model of the term structure of
interest rates. Although it is confirmed that the data are uniformative on the unit
root issue, we will conclude that empirical implications depend critically on the
decision to treat interest rates and other macroeconomic variables as DS or TS.

The paper is closely related to the literature on volatility and variance bounds
Ž .tests, which started with Shiller’s 1979 observation that long-term interest rates

seemed to fluctuate too much to accord with rational expectations or efficient
markets. The volatility tests have been criticized on many grounds, but the most
pervasive issue revolves around whether or not interest rates have unit roots.2

Ž . Ž .Early contributions by Sargent 1979 and Shiller 1981 already demonstrated the
difference in empirical conclusions when time series are first differenced or
assumed stationary. Under stationarity the theory seemed to be rejected over-

Ž .whelmingly. Campbell and Shiller 1987 explicitly impose cointegration between
long- and short-term interest rates. Within this framework there remains no
evidence of excess volatility in the term structure.

The approach in this paper extends the methodology of Campbell and Shiller
Ž .1987, 1991 to provide further insights in what exactly is wrong with the
expectations theory. The actual volatility of long-term interest rates is compared to
the volatility implied by the net present value model of the term structure within
several vector autoregressions. Apart from a long- and a short-term interest rate,
our VAR’s contain three more macroeconomic variables: prices, real output and
money. This enables us to analyze the impact of different macroeconomic shocks.
By putting restrictions on the VAR, we can make alternative assumptions on the
relative size of the permanent and transitory shocks. We can also link the
permanent shocks by assuming various patterns of cointegrating relations. All
these models will fit the empirical data about equally well. Yet the models differ
enormously in their implications regarding volatility. There is, however, one
dominant regularity that all these models share. Irrespective of the number of unit
roots and the pattern of cointegration, it appears that the long-term interest rate
overreacts to every transitory shock and underreacts in response to every perma-
nent shock.

The paper is organized as follows. Section 2 describes the data and introduces
the notation. It also presents the stylized volatility facts and reproduces the

Ž . Ž .variance bounds statistics of Shiller 1979 and West 1988 for our dataset. These
statistics do not depend on a specific time series model of the short-term interest

2 Ž .See LeRoy 1984, 1989 for general surveys of the variance bounds literature.
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rate, and therefore show that the sensitivity with respect to unit roots is not an
artifact of working with a VAR. Section 3 deals with the time series representation
of long-term interest rates and the assumptions underlying the volatility tests.
Section 4 contains empirical results based on comparing a variety of VAR’s.
Econometric issues are discussed in Appendices A and B. In particular we deal
with several drawbacks of standard asymptotic statistical tests for long horizon
present value models with autoregressive roots close to unity. To overcome them
we will use Monte Carlo integration to obtain the empirical distribution of forecast
error variances. Section 5 contains conclusions.

2. Stylized volatility facts

In a discrete time setup, the linearized form of the expectations model of the
term structure relates a long-term interest rate RŽn. with maturity n periods to thet

one-period short-term interest rate RŽ1.. For the yield to maturity on coupon bondst

that are linearized around par, the model specializes to3

ny11yd
Žn. i Ž1. Žn.R s d E R N I qf , 1Ž .Ýt tqi tn1yd is0

where f Žn. represents a liquidity or risk premium that is assumed constant over
Ž .y1time, and where ds 1qm with m the interest rate around which bond prices

w xare linearized. The notation E .N I denotes conditional expectations with respectt

to the market information set I . The short-term interest rate RŽ1. is known at thet t
Ž .end of period t and applies to the period from t to tq1. Eq. 1 expresses the

long rate as a weighted average of the current and expected future short rate.
The interest rate data in this paper consist of two time series of monthly interest

rates for the United States, sampled on the last trading day of the month for the
period January 1962 through June 1990.4 The first series is the yield on a 3-month
Treasury Bill. The long rate is the yield to maturity on 10-year government bonds.
Fig. 1 shows the levels and first differences of the long rate and the 3 months rate.
Two features of the data help in interpreting formal tests results later. First, the
levels of short and long rates have about the same sample variance over the full
30-year period. Yet, the long rate is considerably smoother, since the standard
deviation of its difference is much smaller than the standard deviation of changes
in the short rate.

Ž .The maturity of the short rate 3 months does not coincide with the observation
Ž .frequency monthly . This creates some technical econometric problems due to

Ž .overlapping data that can most easily be dealt with by modifying Eq. 1 . The

3 Ž . Ž .See Campbell and Shiller 1991 and Shiller 1979 .
4 All data were kindly provided by the Federal Reserve Bank of Minneapolis.
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Fig. 1. Levels and first differences of interest rates. The figure shows monthly time series of the US
3-month T-bill rate and the 10-year government bond yield for the period January 1962–June 1990.
The top panel is levels, the bottom panel first differences.
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Table 1
Univariate unit root tests

Series ps0 ps12

3-Month T-bill rate y2.33 y2.28
10-Year bond yield y1.64 y1.71

) )Spread y3.60 y3.59

Ž .Test statistic is the adjusted t-statistic in Phillips and Perron 1988 ; p is the number of additional lags.
ŽCritical values at the 1%, 5% and 10% level are y3.64, y2.88 and y2.57, respectively see Fuller

.1976, Table 8.5.2 . An asterisk denotes significance at the 5% level.

Ž .required modification of Eq. 1 is easily obtained by applying the expectations
hypothesis twice for bonds with maturities m and n, and assuming that ksnrm
is an integer:

m ky11yd
Žn. m h Žm. Žn. Žm.R s d E R N I qf yf , 2Ž .Ýt tqm h tm k1yd hs0

Ž .linking an m-period rate to a longer n-period rate. Eq. 2 has the same structure
Ž .as Eq. 1 . To simplify notation, the superscripts will from now on be omitted. The

long rate is represented as R sRŽn., the short rate is called r sRŽm., and thet t t t

discount factor becomes gsd m. We also drop the risk premium, though a
w xconstant is always included in the empirical work. Finally the shorthand E . ist

w xused for E .N I when there can be no confusion on the interpretation of thet
Ž .information set. In this notation Eq. 2 simplifies to

ky11yg
i w xR s g E r . 3Ž .Ýt t tqmik1yg is0

Since most of the discussion in this paper centers on the effects of imposing
unit roots, we start by examining the results of standard univariate unit root tests.

Ž .Results of the Phillips and Perron 1988 test are reported in Table 1. The tests
cannot reject the null hyphothesis of a unit root in the level of the three interest
rate time series. But the spread between any two interest rates is stationary
according to the test. So if interest rates are integrated, they are also cointegrated.5

Although a classical test cannot reject the unit root, this by no means implies
that we must accept the existence of a unit root. The tests take the unit root as the
null hypothesis, and have notoriously low power. The size of the type II error is so

Ž .large that the possibility that interest rates are I 0 cannot be ignored. This is one
of the points that motivated the Bayesian analysis in Schotman and Van Dijk
Ž .1991a,b .

5 Ž . Ž .This is a standard result. See, for example, Stock and Watson 1988 , Campbell and Shiller 1987
Ž .or Hall et al. 1992 .
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Fig. 2. Ex-post rational rate. The figure shows monthly time series of the 10-year government bond
yield and the ex-post rational long rate for the period January 1962–May 1980.

The effect of unit roots on term structure tests can be seen most easily using the
) Ž .concept of the ex-post rational rate R introduced by Shiller 1979 , which ist

defined as
ky11yg

) iR s g r , 4Ž .Ýt tqmik1yg is0

and differs from the actual long rate only in replacing expectations by realizations
of the short rate. Under rational expectations the forecast error Õ sR)yR ist t t

Ž .uncorrelated with all other variables in agents’ information set I .West 1988t

notes that for any information set H ; I , it therefore holds that:t t
) w xVar R NH )Var R NH . 5Ž .t t t t

This variance inequality can be easily verified by constructing a time series of R)

t

and projecting both R and R) on the H . Since the time to maturity of the longt t t

rate is 10 years and the sample is long enough, the series R) can be constructedt
Ž . 6exactly without any further assumptions using Eq. 4 . The drawback of the exact

6 The exact calculation of the ex-post rational long rate circumvents the problems with the usual
) ) Ž . )backward recursion R sgR q 1yg r , which requires some terminal condition like R sR .t tqm tqm t t

The volatility tests for the term structure are thus simpler than the analogous tests for the stock market,
where the present value relation has an infinite horizon.
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Table 2
Variance of ex-post rational long rate

Series Unconditional Conditional variance
variance given R and rty1 ty1

R 5.36 0.096t
)R 2.91 0.604t

) Ž .R is the ex-post rational long rate constructed using actual short rates as in Eq. 4 . The conditionalt

variance is the residual variance of the regression:
x saqb r qb R q e ,t 1 ty1 2 ty1 t

where x is R and R) , respectively. Sample period is 62:1 to 80:9.

calculation is the loss of 10 years of observations at the end of the sample. Fig. 2
shows the actual and ex-post rational long rate. It has been assumed that
ds0.994, which corresponds to an annual discount rate of 7.5%, approximately
the sample mean of the short rate. In the linearized framework, this gives the

Ž . Ž n. Ž .10-year bond an effective duration of D n s 1yd r 1yd s7.14 years.
The smooth behavior of R) and the sample unconditional variances of the timet

series reported in Table 2 give the impression that the variance bound is grossly
violated. But the sample unconditional variances are uninterpretable if interest
rates have a unit root. However, since the variance inequality must hold for any

Ž � 4.information set H not only H s constant , we can remove the possiblet t

nonstationarity by conditioning on the past levels of the short and long rates.7

Table 2 shows that the variance bound is now easily satisfied. The violation of the
bound thus seems closely related to the existence of unit roots. As emphasized by

Ž .Cochrane 1991 , a formal volatility test is equivalent to an orthogonality test,
testing the null hypothesis that R)yR predictable with information dated time tt t

or earlier. These orthogonality tests will depend on the information set used, and
in particular whether we will allow levels variables in H . The remainder of thet

paper considers the effects of changing the information structure H and thet

sensitivity of results with respect to the unit root assumptions in a VAR frame-
work.

3. Time series assumptions and implications

To gain further insight in the way the presence of unit roots affects the
volatility of long-term interest rates, we need additional assumptions. In particular,
it will be necessary to specify the behavior of short-term interest rates in more

7
) � 4Both R and R are conditioned on the same information set H s r , R , constant andt ty1 ty1

Ž .therefore not subject to the criticism of Kleidon 1986, pp. 961–962 : Aconfusion in interpretation of
) Ž .time series plots of price and p t stems form comparing the conditional variance of price,

� Ž . Ž .4 ) Ž . � ) Ž . < ) Ž .4var p t N p ty k , with an inappropriate conditional variance of p t , var p t p ty k B.
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Ž .detail. Given a data generating process DGP of the short rate, we can explicitly
calculate future expectations of the short rate.

The assumed DGP of the short rate is a general moving average process,

`

D r sc L e s c e , 6Ž . Ž .Ýt t i tyi
is0

Ž . Ž .where L is the lag operator, c are 1=K vectors of parameters, c 1 is bounded,i
Ž .and e is a K=1 vector of innovations with mean zero and identity covariancet

matrix. The contemporaneous covariances of the shocks are modeled through c .0
Ž .The presence of multiple shocks K)1 allows for distinction between permanent

Ž .and transitory shocks. A shock e the ith element of e is transitory ifi t t
Ž . `c 1 sÝ c s0. If all shocks are transitory, the lag polynomial is divisible byi js0 i j

Ž .the difference operator 1yL , implying overdifferencing of the original level
time series. Having multiple shocks also opens the possibility of Granger causality
running from long to short rates as well as in the opposite direction. Although K
sources of stochastic uncertainty are introduced, not all of these will be identifiable

Ž .using interest rate data alone. Campbell and Shiller 1987 have stressed that to
avoid inconsistencies between the actual information set of agents and the
information set of the econometrician, we must at least include the lagged values
of the long- and short-term interest rates in our empirical information set. This
entails that the innovation in the long rate is one of the shocks in the model. We
must further assume that the agents have more information than the econometri-
cian. Section 4 discusses the empirical identification of the shocks in more detail.

It will be convenient to work with the spread SŽn,m.sRŽn.yRŽm.. Omitting thet t t

superscripts as in Section 2, we get S sR yr . The relation between the spreadt t t
Ž .and the short rate follows from Eq. 3 as:

ky1 i ng yg
w xS s E D r , 7Ž .Ýt t m tqmin1ygis1

where D r sÝmy1
D r . Optimal forecasts of D r can be obtained from Eq.m t js0 tyj tqh

Ž .6 as:

` `

w xE D r s c e s c e . 8Ž .Ý Ýt tqh j tqhyj hqj tyj
jsh js0

Ž . Ž .Substituting Eq. 8 into Eq. 7 and rearranging, one obtains the implied time
series process for the spread as:

` my1ky1 i kg yg
S s c e . 9Ž .Ý Ý Ýt m iqjyh tyjkž /1ygjs0 hs0 is1
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Noting that DR sDS qD r , the long-term interest rate is obtained by summingt t t
Ž . Ž .Eqs. 9 and 6 . Recollecting term in e gives:ty j

ky1 i k my1 ` ky1g yg 1yg
i

DR s c q c e q g c eÝ Ý Ý Ýt 0 miyh t miqj tyjk kž /ž /1yg 1ygis1 hs0 js1 is0

`

' g e . 10Ž .Ý j tyj
js0

Ž .The long-run impact of a shock to the system is defined as c 1 for the short rate
Ž .process, and as g 1 for the n-period interest rate. Summing the coefficients in Eq.

Ž .10 establishes the important property,

g 1 sc 1 , 11Ž . Ž . Ž .
which implies that interest of all maturities cointegrate, whenever a single

Ž . Ž .component of c 1 is non-zero. If c 1 s0, all interest rates are stationary.
Ž .Representation 10 simplifies considerably if ms1 andror n™`. Although

the infinite maturity assumption n™` would be analytically convenient, it might
introduce severe dynamic misspecification. First, with finite maturity n, the

Ž .coefficient g depends on the first jqn entries of the c L polynomial. If unitj

roots would only restrict the very long memory properties of the short rate without
Ž .affecting the short and medium term dynamics, the first few entries of g L would

not be very sensitive with respect to unit roots. Second, if the actual maturity of
the long-term bond is about 10 years, then a specification with n™` puts too
much weight on expected short-term interest rates in the distant future. With a
discount rate of 7.5%, the sum of the factors over the first 40 quarters is only
Ž . 39 i1yg Ý g s0.51. The first 10 years of expected interest rates make up onlyis0

half of the weights of an infinite maturity rate. Assuming an infinite maturity when
the actual maturity is AonlyB 10 years restricts the long-term interest rate to behave
more smoothly than necessary, especially if the assumed DGP of the short rate is
stationary.

Ž .Representation 10 contains all conditions implied by the expectations model
of the term structure. All cross equation restrictions can in principle be tested by

Ž .comparing the implied process in Eq. 10 with an unrestricted representation,
`

DR sg L e s g e . 12Ž . Ž .˜ ˜Ýt t j tyj
js0

A test of all the conditions implied by the expectations hypothesis entails that
Ž . Ž .g L sg L . Here we will consider violations of the model in a particular˜

direction, and thus focus on a subset of all the implications. One departure from
the expectations model is the excess volatility phenomenon, which means that the
variance of the long rate is larger than the variance implied by the expectations
theory.
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The volatility tests will be based on the variance of the j-step forecast errors of
the long rate, defined as

jy1
2 X2s sE R yE R s c c , 13Ž .Ž . Ýj t tqj t tqj i i

is0

i Ž . 2where c sÝ g , and g is given by Eq. 10 . The parameters s are stilli hs0 h h j

functions of the parameters that describe the time series process of the short-term
interest rate r . The expectations hypothesis is capable of explaining the volatilityt

Ž .of the long-term interest rate, if the predictive variances defined in Eq. 13 match
the predictive variances obtained from an unrestricted time series model of the

2 jy1 ˜ ˜ X ˜ iŽ .long-term interest rate like Eq. 12 , say s sÝ c c , with c sÝ g .˜ ˜j is0 i i i hs0 h

Under the null hypothesis g sg , and we must have s 2ss 2 for all j.˜ ˜j j j j
Ž .The predictive variances in Eq. 13 converge to the unconditional variance of

the long rate when j™`. If the long rate is integrated, the unconditional variance
is infinite and the limiting behavior of the predictive variances satisfies:

s 2
j X

lim sg 1 g 1 ,Ž . Ž .
jj™`

s 2˜j X
lim sg 1 g 1 . 14Ž . Ž . Ž .˜ ˜

jj™`

Therefore, if we impose cointegration of the long and the short rate, which means
Ž . Ž . 2 2g 1 sg 1 , the ratio s rs will approach unity when j™`, regardless of˜ ˜j j

whether the other term structure restrictions hold. Under the maintained hypothesis
of cointegration, the variance ratio implications are automatically satisfied in the
limit.8 Under stationarity, there is no automatic restriction on the limiting uncondi-
tional variance of the long-term rate.

Volatility is but one aspect of the term structure. Since the scalar variances s 2
j

Ž .are a limited set of nonlinear functions of the original g L polynomial, the
Ž .number of restrictions implied by Eq. 13 is less than the full set of restrictions

Ž .implied by Eq. 10 . The test can be more or less powerful than a test of all
conditions depending on the actual deviation between the data and the model.

Unit roots enter the model because some of the shocks to the short rate can be
persistent; others might be purely transitory. Suppose we arrange the shocks so

Ž X X .Xthat we can partition e as e , e , where the first K shocks are transitory, andt 1 t 2 t 1

the remaining K sKyK shocks are persistent. That means that we restrict the2 1
Ž .first K elements of c 1 to be equal to zero. Partitioning the vectors c , g and c1 j j j

8 Ž .See also Phillips and Perron 1988 on the limiting behavior of these variance bound ratios.
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conformably with e we can write the variance of the j-period ahead forecast errort
2Ž .as the sum of the variance due to the transitory shocks, s T , and the variancej

2Ž .due to persistent shocks, s P :j

jy1 jy1
X X2 2 2s ss T qs P s c c q c c . 15Ž . Ž . Ž .Ý Ýj j j 1 i 1 i 2 i 2 i

is0 is0

An analogous decomposition holds for the unrestricted predictive variances.
Departures from the expectations model can show up in both components of the
total volatility.

For the empirical analysis, we need some assumptions on the shape of the
infinite MA representation. The most convenient representation for estimation

Ž .purposes is a vector autoregression VAR . The advantage of a VAR is that
estimation, and imposing cointegrating vectors, is computationally straightforward.
Once the VAR has been estimated, we can compute the sequences of predictive
variances as functions of the parameters of the VAR. The details are spelled out in
Appendix A. By a suitable decomposition of the error covariance matrix of the
VAR, the first K shocks are constructed to be purely temporary. The remaining1

K shocks are orthogonal to the temporary shocks and have permanent effects. In2

Appendix A, it is also proven that for any given VAR, the decomposition of the
total predictive variance into a part due to pure transitory shocks and one due to
persistent shocks is unique at every forecast horizon. In other words, the quantities

2Ž . 2Ž . Ž . Žs T and s P in Eq. 15 are unique although c and c are subject to thej j 1 i 2 i
.usual rotation indeterminacy .

Statistical inference is carried out by Monte Carlo integration starting from the
asymptotic covariance matrix of the VAR parameters. Monte Carlo integration is
an exact numerical method to obtain the distribution of transformations of random
variables. Computational details are in Appendix B.

4. Empirical results

The interest rate data have been described in Section 2. In addition, three
Ž .macroeconomic variables are included in the VAR: industrial production y ,

Ž . Ž .Money Stock M , and the Consumer Price Index p . All data are seasonally
adjusted series taken from the Citibase tape. These three series enter the VAR in
logarithms and after detrending. We decided to first detrend the data in order to
make the results comparable across different VAR’s. The macroeconomic series
are detrended by regressing on a constant and time trend if a series is assumed
stationary, and by regressing first differences on a constant in case a series is

Ž .assumed I 1 . The two interest rates are in deviation from the sample mean. No
constant term or trend is included in the VAR. All differences in test results are
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Table 3
Summary statistics of VAR’s

Ž .A Measures of fit and system roots

Model s s r l l l l lr R rR 1 2 3 4 5

Ž .A: Bivariate I 0 0.593 0.371 0.629 0.982 0.955
B: Stationary VAR 0.588 0.371 0.633 0.994 0.994 0.984 0.984 0.967

Ž .C: Bivariate I 1 0.551 0.357 0.585 1 0.957
D: 4 unit roots 0.571 0.363 0.586 1 1 1 1 0.985
E: 3 unit roots 0.565 0.360 0.578 1 1 1 0.982 0.968

Ž .B Proportion of variance due to transitory components

Model Short Long rate Long rate
Ž . Ž .rate unrestricted restricted

Ž .A: Bivariate I 0 1.00 1.00 1.00
B: Stationary VAR 1.00 1.00 1.00

Ž .C: Bivariate I 1 0.02 0.45 0.00
D: 4 unit roots 0.02 0.53 0.00
E: 3 unit roots 0.72 0.65 0.18

Ž .Specification of different VAR models A to E is explained in the text. s is the innovation standardr

error of the short rate; s is the innovation standard error of the long rate; r is the correlationR rR
Ž .between the innovations; l , is1, . . . ,5 are the largest roots of the system. The variance decomposi-i

tion is described in the text.

thus entirely due to differences in the dynamic specification of the VAR, and not
due to differences in estimated growth rates and long-term means.9

Five different VAR’s are compared:

Ž .A 24th order bivariate VAR in levels, containing only the two interest rates.
Ž .Interest rates are I 0 in this model.

Ž .B A 12th order VAR with all five variables; all series are assumed stationary.

Ž .C A 24th order bivariate VAR with a single unit root. Both interest rates are
Ž . Ž .XI 1 , but cointegrate with cointegrating vector bs 1y1 .

Ž .D A 12th order VAR with all five variables and 4 unit roots. All individual
Ž .time series are I 1 , but the two interest rates cointegrate with cointegrating

Ž .Xvector bs 1y1 .

9 The results with trends and constants included unrestrictedly in the VAR are qualitatively similar,
except when a time trend is allowed for the two interest rates.
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Ž .E A 12th order VAR with all five variables and 3 unit roots. All individual
Ž .series are I 1 , and there is one additional cointegrating vector, linking the

short rate to velocity: y qp yM y0.066r is assumed to be a stationaryt t t t

series.10

Ž . Ž .Comparing the two bivariate models A and C shows the effects of imposing a
Ž . Ž .unit root on the interest rate time series. Models B and D convey the same

information within a multivariate model. Comparing the two pairs of models can
highlight the sensitivity with respect to the information set used to forecast interest

Ž .rates. In model E the macroeconomic variables are more than just another source
of information, since the cointegration relation restricts the permanent part of
interest rate shocks by linking them to a linear combination of the macroeconomic
shocks.

Table 3 gives summary statistics of the different VAR’s, indicating that the unit
root restrictions do not greatly affect the fit of the models. The five variable
VAR’s provide some improvement over the bivariate VAR for the equation of the
short rate.11 The estimated roots of the VAR also suggest that the unit root
restrictions are empirically plausible. The largest roots of the stationary VAR are
very close to unity. Again, although we cannot reject the unit root hypothesis, we
also cannot reject stationarity.

Fig. 3 gives an overview of the volatility implications of the different multivari-
ate VAR’s. The lines in the figure show the standard deviation of the long rate
Ž . Ž .s over various forecast horizons j implied by the expectations model of thej

term structure and conditional on a VAR with 0, 3 and 4 unit roots, respectively.

10 The cointegrating vector has been estimated by an OLS regression of velocity on the short-term
interest rate. The Phillips–Perron test of the residuals, adjusted for 12 lags, gives a t-statistic of y3.08,

Ž .which is close to being significant at the 5% level see Engle and Granger, 1987 . The ML test for
Ž .cointegration between velocity and the short rate within a bivariate system 24 lags yields l s6.6,max

Ž .which is significant at the 10% level see Johansen and Juselius, 1990, Table A3 .
11 Ž .Formal Granger causality tests not reported in the tables reveal more about the dynamic structure

of the VAR’s. For all five VAR’s there is Granger causality in both directions between the two interest
rates. In the cointegrated model, the spread is significantly error correcting in the equation for the
change in the long rate. The causality pattern in the five variable VAR’s depends on the number of unit

Ž .roots and the parameterization of the VAR. Model E provides an example. Using F-tests and a 10%
Žsignificance level, the causality structure can be summarized in the following matrix q denotes

.significance :

yq pyMya r Ry r D y D p DM D r DR

D y – – q – – – –
D p – – – q – – –
DM – – – q q q q
D r q q q – q q q
DR q q q – q q q

Most of the error correction takes place through the interest rates.
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Fig. 3. Implied volatility. The figure shows the actual volatility of the long rate and volatility of the
long rate implied by three different VAR’s: models B, D and E in the text. The unrestricted volatility
shown in the figure is computed with model B.

The ranking is clear: the more unit roots in the system, the higher the implied
standard deviation of the long rate. The figure illustrates the sensitivity of the
volatility measures with respect to the presence of unit roots. The unrestricted
estimates s are close to the VAR with 3 unit roots. The unrestricted estimates for˜j

Ž .a VAR with 3 or 4 unit roots not shown in the figure almost coincide with those
of the stationary VAR for the first 80 periods, again illustrating that the estimated
VAR’s are almost indistinguishable statistically. Of course the s sequences for˜j

the models with unit roots will eventually diverge to infinity as the forecast
horizon j increases.

To investigate the statistical significance of the deviations between actual and
implied volatility, we used the Monte Carlo integration; results are in Table 4.
Panel A of the table shows that the actual volatility s —the one period ahead˜1

forecast error variance, which is just the standard error of the residuals of the
equation of the long rate in the VAR—is estimated quite precisely. It does not
vary greatly over the alternative models. However, the implied volatilities s are1

estimated less precisely and differ substantially across the models. The third
column in Table 4 presents the estimated probabilities of excess volatility for each
of the models. The estimates confirm the point estimates in Fig. 3. There is
significant excess volatility if we believe in a stationary model. The probabilities
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Table 4
Volatility of long-term interest rates

w x w x w x w x w x w xE s E s Pr s )s E s E s Pr s )s˜ ˜ ˜ ˜1 1 1 1 120 120 120 120

( )A Total Õolatility
Ž . Ž . Ž . Ž . Ž . Ž . Ž .A: Bivariate I 0 0.345 0.015 0.213 0.079 0.939 0.006 2.715 0.859 1.151 0.786 1.000 –

Ž . Ž . Ž . Ž . Ž . Ž .B: Stationary VAR 0.327 0.014 0.159 0.048 0.988 0.003 2.559 0.668 1.266 0.700 0.997 0.001
Ž . Ž . Ž . Ž . Ž . Ž . Ž .C: Bivariate I 1 0.345 0.015 0.473 0.160 0.155 0.009 4.879 1.753 5.074 2.522 0.544 0.013

Ž . Ž . Ž . Ž . Ž . Ž .D: 4 unit roots 0.333 0.014 0.640 0.171 0.042 0.005 5.872 2.017 6.499 2.970 0.264 0.011
Ž . Ž . Ž . Ž . Ž . Ž .E: 3 unit roots 0.329 0.015 0.360 0.124 0.500 0.013 4.077 1.353 3.920 1.957 0.773 0.011

( )B Volatility due to transitory components
Ž . Ž . Ž . Ž . Ž . Ž . Ž .A: Bivariate I 0 0.345 0.015 0.213 0.079 0.939 0.006 2.715 0.859 1.151 0.786 1.000 –

Ž . Ž . Ž . Ž . Ž . Ž .B: Stationary VAR 0.327 0.014 0.159 0.048 0.988 0.003 2.559 0.668 1.266 0.700 0.997 0.001
Ž . Ž . Ž . Ž . Ž . Ž . Ž .C: Bivariate I 1 0.224 0.061 0.023 0.020 0.991 0.002 0.748 0.261 0.094 0.127 1.000 –

Ž . Ž . Ž . Ž . Ž . Ž .D: 4 unit roots 0.220 0.048 0.024 0.023 0.994 0.002 0.611 0.209 0.138 0.152 0.997 0.001
Ž . Ž . Ž . Ž . Ž . Ž .E: 3 unit roots 0.259 0.038 0.111 0.064 0.973 0.004 1.471 0.647 0.592 0.470 0.989 0.003

( )C Volatility due to permanent components
Ž .A: Bivariate I 0 0 0 – 0 0 –

B: Stationary VAR 0 0 – 0 0 –
Ž . Ž . Ž . Ž . Ž . Ž . Ž .C: Bivariate I 1 0.249 0.047 0.462 0.160 0.051 0.006 4.814 1.753 5.073 2.520 0.448 0.012

Ž . Ž . Ž . Ž . Ž . Ž .D: 4 unit roots 0.241 0.047 0.538 0.170 0.002 0.000 5.836 2.017 6.497 2.968 0.228 0.010
Ž . Ž . Ž . Ž . Ž . Ž .E: 3 unit roots 0.194 0.050 0.334 0.131 0.083 0.007 3.738 1.376 3.748 1.949 0.653 0.012

w x w x Ž .E s and E s are the posterior means of the innovation standard error; posterior standard errors are in parentheses. Pr s )s is the posterior probability of˜ ˜j j j j

excess volatility. All entries are based on 1500 Monte Carlo replications.
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that the actual volatility is higher than the implied volatility are 0.94 and 0.99 for
the two stationary models. Imposing a common stochastic trend in the two interest
rates, a seemingly innocuous restriction, leads to completely opposite conclusions.
The actual predictive variances are now significantly below the implied predictive
variances. The variance inequality is reversed, with probabilities of excess smooth-

12 Žness equal to 0.85 and 0.96, respectively. The model with 3 unit roots and the
.cointegration between the short rate and velocity takes a middle position just as in

Fig. 3.
The last three columns of the table focus on the endpoints in the curves of Fig.

Ž .3, i.e. the long-term 120 periods ahead variances. For the stationary VAR, the
variances have converged to the unconditional variances. The Monte Carlo results

ŽŽ .provide strong evidence of excess volatility for the two stationary models A and
Ž ..B . No clear evidence of excess volatility is obtained if interest rates are assumed

Ž Ž . Ž . Ž ..to be cointegrated models C , D and E . The latter result is in line with the
theory in Section 3. The variance ratio converges to unity when the forecast
horizon goes to infinity.

The results suggest that the cointegration between the interest rates and velocity
somehow resolves the volatility puzzle, as for this model the volatility restrictions
seem to hold almost exactly. Panels B and C of Table 4 show that this is not true.
Using the decomposition in transitory and persistent shocks, it appears that long
rates overreact to transitory shocks, but underreact to permanent shocks. The
probabilities of excess volatility with respect to transitory shocks are very high for
all five models. In contrast, the probabilities of excess volatility with respect to

Ž .permanent shocks are low for all five models. In model E , the excess volatility
with respect to permanent shocks happens to cancel out against the excess
smoothness due to permanent shocks. Over longer horizons, the permanent
components will eventually dominate, and any evidence against volatility will
disappear in the limit. The two transitory components are, however, still important
in the last VAR, even over a horizon of 120 months.

The variance decomposition in the second part of Table 4 shows that by
varying the number of unit roots in the VAR we have succeeded in obtaining
models where the transitory component in the DGP of the short rate either

Ž Ž . Ž .. Žexplains all variance the stationary models A and B , is almost absent models
Ž . Ž .. Ž Ž ..C and D , or somewhere in between model E . In contrast, a purely
transitory shock always has a sizable effect on the long rate. Since the long rate
should reflect long-term expectations of the short rate, the expectations model
implies that the permanent shocks must take account of most of the innovations to

12 The results do not depend on assumptions about the number of unit roots in the macroeconomic
variables, as long as they are not related to the nonstationarity in the interest rates. For example, the
results for a VAR with a single unit root in the two interest rates and trend stationary macroeconomic

Ž .variables are similar to model D with difference stationary macro variables. Also, a model with
stationary interest rates, but integrated macroeconomic variables, is similar to the stationary VAR.
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the long rate. This is evident in the last line of Table 3, which tells that the long
rate must react less to the transitory shocks, and relatively more to the persistent
shocks. This is another way stating the conclusion that follows from Table 4.

The tests of the expectations model do not formally incorporate all sources of
model uncertainty, and will thus overstate the evidence against the expectations

Ž .model. We have conditioned on the value of the discount factor ds1r 1qm

and the order of integration of interest rate time series, and ignored changes in
policy regime that can possibly alter the dynamic structure of the model. Estima-

Ž .tion of a constant m has been attempted by, e.g. Mankiw 1986 , while Watson
Ž .and Engle 1987 consider time varying discount rates. Both studies failed to

obtain precise estimates of the discount factor. Since point estimates of d larger
Ž .than one as found by Mankiw, 1986 would preclude any further analysis of the

term structure based on discounted sums of MA parameters we have chosen to fix
the discount factor a priori. The results are, however, robust to alternative values
of d . Even with d as low as 0.90, corresponding to an annual discount rate of
more than 100%, we continue to find the same variance inequalities. Setting d

larger than 0.994 makes the results even stronger.
Ž . Ž .We also only considered the polar cases of I 0 and I 1 time series, and have

shown that the implied volatility is either much too big or much too small. Shea
Ž . Ž Ž .1991 allows for the intermediate case of fractional integration I d with

.0-d-1 , and argues that quantifying the uncertainty about d can greatly reduce
the significance of empirical violations of the variance bounds. The theoretical
MA relations in Section 3 continue to hold under fractional integration, but a VAR
will misrepresent the long-run dynamics, so this is possibly a valid criticism of our
approach. It is hard to investigate the alternative of fractional integration explic-

Ž . Ž .itly, however, since imposing the co-integration constraint c 1 sg 1 poses
severe technical problems, and since estimation of fractionally co-integrated
systems is not well developed yet. As a practical solution we have set the lag
length of the VAR at the rather high values ps12 or ps24 in order to restrict
the MA representation as little as possible at the cost of some overparameteriza-
tion.

A high order VAR requires long time series, so that it will not be feasible to
look at particular subperiods, or to deal with changes in regime as in Hamilton
Ž . Ž .1988 . The stochastic structural breaks modeled by Hamilton 1988 lead to
nonlinear responses of the long rate to some shocks of the short rate. Again, using
a long vector autoregression we hope to capture the nonlinearities by additional

Ž .flexibility in the linear effects. The results of Hamilton 1988 suggest that there
has been a temporary shift in the mean and the error variance of the U.S.
short-term interest rate between the third quarter of 1979 and the first quarter of
1982, without any further changes in the parameters of the system. Also, the
probability of regime shifts is estimated to be virtually zero after 1982. The
possibility of a regime shift will thus have a very limited effect on the calculation
of discounted sums of expected future short-term interest rates. The main effect of
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introducing a structural break in the model is to make the model more stationary,
which will lead to more excess volatility for the stationary models.

The Apeso problemB points at another potential pitfall of the standard regression
model in a situation when there are infrequent regime shifts. Economic agents
might rationally anticipate a major regime shift, but it takes some time before the
switch actually occurs. In a short sample, time series tests will find significant
systematic deviations of the orthogonality conditions and hence wrongly reject the
expectations model. The Apeso problemB is another way of expressing the need for
a nonlinear model of the short-term interest rate. It does not in any way invalidate

Ž .the expectations model as represented in Eq. 1 , but it suggests that a VAR might
produce inadequate forecasts of future short rates. The VAR approximation might
be especially poor in relatively small samples. The importance of the Apeso
problemB can be judged from the residuals of an estimated VAR. Around a regime
shift leading to higher interest rates the equation for the long rate in a VAR will
show small positive residuals before the break, and a large residual after the shift
has taken place. In large samples a VAR will capture the second moments
properties of the true DGP.

Table 5 provides some diagnostic statistics for general nonlinear effects. The
first line shows that the errors are conditionally heteroskedastic. Introducing
ARCH will lead to time dependent volatility statistics and maybe to less signifi-
cant variance ratio statistics. But under the null hypothesis the covariance matrix
of the errors is unrestricted, so our results are still interpretable as evidence about
the average volatility. The significant skewness of the short rate is a first
indication of possible nonlinear effects. The other two diagnostics in the table
provide further evidence of nonlinearity, which seems to be present despite the
overparameterization of the linear effects. The nonlinear reaction of the short rate
to the lagged spread implies that the impulse responses will become time-depen-
dent, with volatility depending on the current slope of the term structure. Explor-
ing the exact of nonlinearity is beyond the scope of the paper though.

Table 5
Ž .Diagnostics of cointegrated VAR model E

DY D p DM D r DRt t t t t

) ) )LMARCH 8.82 13.1 4.96 22.8 15.9
Skewness 0.06 0.54 y0.12 y0.62 0.24
Kurtosis 2.03 3.60 0.41 4.16 2.16

)Nonlinear ECM 2.58 7.59 4.84 13.1 5.02
)RESET 6.82 6.80 7.14 36.2 15.2

2Ž . 2Ž .LMARCH is a x 4 LM test for 4th order ARCH. Nonlinear ECM is a x 4 test for nonlinear error
correction by adding the variables S2 , S3 , z 2 , z 3 , where z is the residual of the cointegratingty1 ty1 ty1 ty1 t

2Ž .regression of velocity on the short-term interest rate. RESET is a x 10 test for nonlinear effects
formed by adding fitted values of all five equations raised to the second and third power. Skewnesss
Ýu3rTs 3, KurtosissÝu4rTs 4y3.ˆ ˆ ˆ ˆt t
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5. Conclusions

One main conclusion emerges from the empirical results. Whatever the form of
a VAR that is fitted to interest rate data, the long rate overreacts to pure transitory
shock and underreacts to permanent shocks. The assumptions about which vari-
ables contain a unit root and how they cointegrate largely determine the empirical
results with respect to volatility. But these assumptions are extremely hard, if not
impossible, to test.

The econometric procedure that we used excludes a number of possible
explanations for this conclusion. First, the finite maturity of 10 years of the
long-term interest rate avoids transversality problems with infinite horizon models.
Second, the Monte Carlo integration technique controls for some distortions due to
asymptotic approximations in models with near unit roots. Third, the results hold
for various specifications of the VAR, both bivariate and with additional macroe-
conomic variables. Fourth, since the importance of the permanent shocks in the
short-term interest rate ranges from 0% to 98%, results are not sensitive to the
assumed Asize of the random walkB component. It remains an open question,
however, how the results stand up against explicit modeling of nonlinear effects,
which appear still significant even in a highly overparameterized VAR.

6. Epilogue

The paper appears as it was in February 1992. Much has happened since then,
both in the econometrics as well as in the finance literature. Still, rejecting a unit
root in interest rate time series and empirically determining the number of unit
roots in a system is as difficult as it was. Results in this paper are all conditional
on the number of unit roots and the cointegrating vectors. In the Bayesian

Ž .literature, Kleibergen and Van Dijk 1994 made some progress on inference
incorporating the uncertainty about the cointegration structure and the number of
unit roots.

In the finance literature, the importance of mean reversion for term structure
models is well understood, especially in the literature on derivatives pricing.
Rather than estimating the mean reversion from historical short rate time series,
the implied mean reversion of the short rate is modeled through the term structure
of volatilities, reversing the methods of this paper. For example, in Black et al.
Ž .1990 , the volatility of interest rates with different maturities provides information
about the dynamics of the short rate. The prime example of this approach is the

Ž .Heath et al. 1992 model.
The empirical results in this paper suggest that nonlinearities could be highly

relevant for term structure models. The same conclusion emerges from the recent
Ž .work by Dai and Singleton 2000 on affine term structure models, who point at

Ž .Aomitted nonlinearityB. Pfann et al. 1996 looked at simple nonlinear models, and
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found that threshold regime switching models generate dynamics for the short-term
Ž . Ž .interest rate that are in between I 0 and I 1 and that these models imply

long-term interest volatility that is close to the observed volatility. Ang and
Ž .Bekaert in press explicitly consider term structure models within a regime

switching framework.
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Appendix A. VAR variance decompositions

This appendix shows how to compute the point estimates of the j-step ahead
Ž .forecast error variances of the long rate defined in Eq. 8 . The volatility statistics

are nonlinear functions of the estimated coefficients of the pth order VAR
p

x s A x qh , 16Ž .Ýt i tyi t
is1

Ž .where x is a K=1 vector. Let the first element in x be the short rate r , andt t

the second element the long rate R . The covariance matrix of h is denoted Ý.t t

Let F be the companion matrix of the VAR, obtained by reformulating the VAR
as a first order system

x xA A . . . A At ty1 I1 2 py1 p

x x Oty1 ty2I O O .. ... .. .. .z s s q ..t . .. .. ... .. .. . .� 0.� 0. ..� 0 � 0
x x Otypq1 typO I O

sF qGh . 17Ž .z ty1 t

If the system contains unit roots, some of the eigenvalues of F will be equal to 1.
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We assume that all other eigenvalues are strictly inside the unit circle. Forecasts of
future values of z are obtained from the prediction formula:t

w x iE z sF z , 18Ž .t tq1 t

w x X i Ž .Xand in particular E r sh F z , with h s 0, . . . , 0, 1, 0, . . . , 0 selecting thet tq i 1 t ll

ll th element of a vector of length Kp. The theoretical long-term interest rate is
given by:

2k kky1 ky11yg 1yg
Xi i m iw xR s g E r s h g F ZtÝ Ýt t tqmi 1ž / ž /ž / ž /1yg 1ygis0 is0

1yg k
y1X m ns h IygF IygF z . 19Ž . Ž . Ž .1 tž /1yg

The j-period ahead forecast error of z is calculated ast

jy1
iw xz yE z s F Gh , 20Ž .Ýtq j t tqj tyi

is0

Ž .which has the Kp=Kp covariance matrix:

jy1
iX XiV s F GSG F . 21Ž . Ž .Ýj

is0

Since the theoretical long rate is a linear function of z , its j-period ahead forecastt
Ž .error variance follows from Eq. 19 as:

2k1yg Xy1X2 m n ns s h IygF IygF V IygFŽ . Ž . Ž .j 1 jž /1yg

=
y1mXIyg F h . 22Ž . Ž .Ž . 1

The corresponding expression for the unrestricted long-term interest rate is sim-
pler, since the long rate is one of the variables directly included in the VAR:

s 2shX V h . 23Ž .˜j 2 j 2

In systems that contain some unit roots, we can separate the different responses
of interest rates due to permanent or transitory shocks. These shocks can be
derived from a specific variance decomposition of the VAR. The derivation starts
from the invertible MA representation of the time series x , given by:t

`

jx sH F Gh , 24Ž .Ýt tyj
js0
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. . .. . .Ž . Ž ) Ž .where Hs I O . . . O , a K=Kp matrix. From Eq. 24 , the MA representa-. . .
tion of D x follows as:t

` `

jy1
D x sHGh yH IyF F Gh ' B h . 25Ž . Ž .Ý Ýt t tyj j tyj

js1 js0

The long-run impact matrix, defined as the sum of the MA parameter matrices, is
the key to separating transitory and permanent effects:

`

jBs B sH lim F G . 26Ž .Ý j ž /
j™`js0

When K eigenvalues of F are equal to 1, the limit will be nonzero. Because of2
Ž .Granger’s representation theorem see Engle and Granger, 1987 , the rank of B is

Ž .equal to K . The error vector h in Eq. 25 does not have an identity covariance2 t

matrix, and all elements h of the innovations can in general have both permanenti t

and transitory effects. We therefore need a transformation:

h sDe , 27Ž .t t

X w X xwith DD sS , so that E e e sI. The first K elements of e are puret t 1 t

transitory, and the last K elements are permanent. The transformation matrix D2
Ž . Ž X X .Xis partitioned D aD comformably with the shock vector e s e ae , i.e.1 2 t 1 t 2 t

Ž . Ž .D is a K=K matrix and D is K=K . The covariance matrix S is1 1 2 2

decomposed into a part due to pure transitory shocks and a part due to persistent
shocks

SsD DX qD DX sS qS . 28Ž .1 1 2 2 1 2

By the definition of transitory shocks, the long-term impact of e on all1t

components of x must be 0:t

BD s0. 29Ž .1

This condition can be translated back to the parameters of the VAR written in
error correction form, since the persistence matrix is closely related to the
cointegrating vectors b and the error correction parameters a of the system. With
K unit roots and K cointegrating vectors, Granger’s representation theorem2 1

Ž . Žimplies that the VAR 16 can be expressed alternatively as see also Johansen,
.1991 :

py1
X

)

D x sab x q A D x qh , 30Ž .Ýt ty1 i ty1 t
is1

Ž .where a and b are both K=K matrices of full column rank. Again by1

Granger’s representation theorem, the persistence matrix B satisfies:

Bas0. 31Ž .
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This property establishes that D must be in the space spanned by the error1
Ž .correction parameters a . Therefore, if P is a K =K symmetric positive1 1

definite matrix, then the variance due to the transitory shocks is

S saPa X . 32Ž .1

Further, since DXSy1 DsI, we have in particular that DX S y1D s0, and1 2
X y1 Ž .aS D s0. Applying these results to Eq. 28 we get2

a
XSy1 S Sy1a sa

XSy1as a
XSy1a P a

XSy1a q0, 33Ž . Ž . Ž . Ž . Ž .
Ž X y1 .y1from which we obtain the solution Ps aS a . The decomposition can now

be stated formally as:

( )Proposition 1. Let S be a K=K symmetric positiÕe definite matrix, and let a
( )be a K=K matrix of full column rank K -K. Then there exists a unique1 1

decomposition SsS qS , such that:1 2

( ) ( )1. rank S sK , and rank S sKyK ;1 1 2 1
X ( )2. S saPa , with P a K =K symmetric positiÕe definite matrix.1 1 1

The decomposition is giÕen by:
y1X Xy1S sa aS a a ,Ž .1

y1X Xy1S sSya aS a a .Ž .2

Ž .The proposition is a generalization of a result in Blanchard and Quah 1989 , who
considered the case Ks2 and K s1. This is the only case where not only S1 1

and S are unique, but also the transformation matrices D and D . In general,2 1 2

we cannot identify the individual shocks e , but only the joint effect of thei t

stationary and permanent components.

Appendix B. Monte Carlo integration

For statistical inference, we need the distribution of the restricted and unre-
2 2 Ž� 4 p .stricted conditional variances. Since s and s are functions f A ,S of the˜j j j i is1

VAR parameters, we can use direct Monte Carlo integration to obtain the
2 ˆ 2distribution of the estimated s and s . It will be assumed that the asymptoticˆ ˜j j

distribution provides a good approximation to the actual covariance matrix of the
parameters of the unrestricted VAR.13 The transformation from the asymptotic
distribution of the VAR parameters to the sequence of predictive variances is

13 According to taste, one can either adhere to the classical interpretation of the Monte Carlo
integration as described in the text, or favor a Bayesian interpretation. A Bayesian analysis with a flat
prior leads to the same numerical quantities, though with a different interpretation.
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performed exactly, taking into account the assumptions on stationarity or co-in-
tegration in the VAR.

Using the notation in Appendix A, we can write the unrestricted VAR for a
sample of T observations compactly in matrix notation as:

XsZFqU, 34Ž .
Ž X X . Ž .X Ž .Xwhere F' A , . . . , A , Xs x , . . . , x , and Us h , . . . ,h and Z are1 p 1 T 1 T

ˆdefined analogously. The OLS estimator of F is denoted F , and the covariance
1

Xˆ ˆ ˆmatrix of the residuals is estimated by Ss U U. The sample size T is
TyKp

assumed sufficiently large to allow the asymptotic approximation:
y1Xˆvec FNS ; Normal vec F , Sm Z ZŽ . Ž .Ž . Ž .

35Ž .½ Ŝ ; Wishart S , T , KŽ .
To compute standard errors of all functions f of the VAR parameters, a sequencej

is1, . . . , N random drawings is generated from the distributions:

ˆS i ; Wishart S , T , KŽ . Ž .
36Ž .y1X½ ˆvec F i ; Normal vec F , S i m Z ZŽ . Ž Ž . Ž .Ž . Ž .

Ž .For each F i we compute the roots of the VAR and check whether they are
stable. If some drawing produces an explosive system, we discard it.

The Monte Carlo computation of the standard errors can be applied both under
the assumption of stationarity and under a cointegrated system, Any cointegrated

Ž .VAR can be transformed to an Error Correction Model ECM . The Monte Carlo
integration is applied conditional on the cointegrating vectors b , and taking the

ˆ) py1� 4asymptotic covariance matrix of a and A from the OLS estimation of Eq.ˆ i is1
Ž .30 .

Monte Carlo integration has a number of advantages in the present application.
2 ˜ 2Ž .In principle, we could use the standard asymptotic approximation V s ,s sˆ ˆj j

X 2 ˜ 2
=f W =f to estimate the covariance matrix of the estimators s and s , with Wˆ ˆj j j j

the covariance matrix of the VAR parameters and =f the matrix of first order
derivatives of s 2 and s 2 with respect to the VAR parameters. But the˜j j

computation of the standard errors would be very cumbersome due to the
nonlinearity of the functions f . This will be especially important for the highj

order VAR’s that we estimate and for large j. Second, the Wald test of the
restrictions of the expectations model is not numerically invariant with respect to
the form in which we test the hypothesis.14 P-values computed by Monte Carlo
integration do not have this problem.

14 Ž .See Campbell and Shiller 1987, fn. 9 and 27 , where it appears that the expectations model is
Ž .strongly rejected in one form p-value less than 0.005% and only marginally in an algebraically

Ž .equivalent form p-value 8.4% .
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The third reason for preferring the Monte Carlo integration is that it might be
better in dealing with autoregressive roots close to unity. To illustrate the point

Ž .intuitively, assume, as in Flavin 1983 , that the short rate is generated by the
Ž .AR 1 model r sr r qe with r-1. In this case, long rates of all maturitiest ty1 t

are proportional to the short rate. For n™`, the relation is given by R sa rt t
Ž . Ž .with as 1yd r 1ydr . In empirical applications, r will be close to unity,ˆ

and have a 5% confidence interval that is open to the right at rs1.15 A
confidence interval of a based on asymptotic theory will also include values of
a)1, although these are theoretically ruled out. Further, the variance of the long

2 2 Ž 2 .rate is a s r 1yr . The variance of the long rate will be very sensitive to r ife

it is close to unity, causing the asymptotic standard error to be a poor approxima-
tion of the true uncertainty about the volatility of the long rate.
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