
 

 

 

A preference foundation for constant loss aversion

Citation for published version (APA):

Peters, H. J. M. (2010). A preference foundation for constant loss aversion. METEOR, Maastricht
University School of Business and Economics. METEOR Research Memorandum No. 062
https://doi.org/10.26481/umamet.2010062

Document status and date:
Published: 01/01/2010

DOI:
10.26481/umamet.2010062

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 27 Apr. 2024

https://doi.org/10.26481/umamet.2010062
https://doi.org/10.26481/umamet.2010062
https://cris.maastrichtuniversity.nl/en/publications/40a104b6-98ad-4b79-bfbe-361cb93a128b


Hans Peters 
 
A preference foundation for 
constant loss aversion 
 
RM/10/062 
 
 
 



A preference foundation for constant loss aversion∗

Hans Peters
†

November 2010

Abstract

Following prospect theory we consider decision making under risk in which
the decision maker’s preferences depend on a reference outcome. An out-
come below this reference outcome is regarded as resulting from a loss: a
loss decreases the decision maker’s basic utility more than a comparable
gain increases this utility. An elegant and simple method to model this
phenomenon was proposed by Shalev (2002): the utility of an outcome
below the reference outcome is obtained from the basic utility by subtract-
ing a multiple of the loss in basic utility: this multiple, the loss aversion
coefficient, is constant across different reference outcomes. We provide a
preference foundation for this loss aversion model.

JEL-codes: D81, C60
Keywords: Decision Making under Risk, Reference Outcome, Loss Aversion

1 Constant loss aversion

The concept of loss aversion has received wide attention in the theoretical, ex-
perimental and empirical psychological and economic literature over the past
decades. Loss aversion is an important ingredient of prospect theory (Kahne-
man and Tversky, 1979). Kahneman (2003, p. 726) writes: “The concept of
loss aversion was, I believe our [Tversky’s and Kahneman’s] most useful con-
tribution to the study of decision making.” According to prospect theory, a
decision maker’s preference is characterized by a basic utility function, a refer-
ence outcome, and a pair of probability weighting functions. Outcomes below
the reference outcome are experienced as resulting from losses, and their util-
ities are decreased relative to the basic utilities. Probabilities in lotteries are
transformed by weighting functions, again possibly depending on whether they
involve losses or gains.

The present paper focuses on loss aversion while ignoring the probability
weighting effect. This is partly for convenience and partly since indeed loss

∗Thanks are due to Peter Wakker for many helpful comments. The usual disclaimer applies.
†Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD

Maastricht, The Netherlands. Email: h.peters@maastrichtuniversity.nl.
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Figure 1. An illustration of (1). The black curve is the graph of the function u.
Below r the gray curve is the graph of u

r,λ, above r this function coincides with u.
(In this picture we took u(x) =

√

x + 1 for x > 0 and λ = 1.)

aversion can be separated from probability weighting and even from risk (e.g.,
Tversky and Kahneman, 1991; Köbberling and Wakker, 2005).1 The central
assumption of loss aversion is that the decrease in utility resulting from a loss
relative to the reference outcome is larger than the increase in utility resulting
from a comparable gain. For example, the decrease in utility of losing one Euro
if one has or expects to have 10 Euros is larger than the increase in utility
of gaining one Euro if one has or expects to have 9 Euros. The literature,
however, proposes quite different ways to measure this.2 For instance, Tversky
and Kahneman (1992) take the ratio of the utility of a loss of one monetary
unit (relative to reference level zero) and the utility of a gain of one unit as an
index of loss aversion. Köbberling and Wakker (2005) take the ratio of the left
derivative and the right derivative of the utility function at reference outcome
zero.

The latter approach is consistent with the model of loss aversion proposed
by Shalev (2002). In this model, utilities below the reference outcome are scaled
down by subtracting the losses multiplied by a constant factor λ, called the loss

aversion coefficient. For example (cf. Figure 1), let the nondecreasing function
u : A → R, where A ⊆ R, be a basic utility function, let r ∈ A be a reference
outcome, and let λ > 0 be the loss aversion coefficient. The utility function
ur,λ, which takes loss aversion into account, is defined by

ur,λ(x) =

{

u(x) if x ∈ A, x > r

u(x) − λ[u(r) − u(x)] if x ∈ A, x < r.
(1)

Then a decision maker with basic utility function u and reference outcome r

evaluates risky outcomes (lotteries) by computing the expected utility using
ur,λ. 3

1 Many applications consider loss aversion without probability weighting, e.g., Dittman
et al. (2009), Driesen et al. (2010), Dunn (1996), Freund and Özden (2008), Genesove and
Mayer (2001), Götte et al. (2004), and Rosenblatt-Wisch (2008). Also Sugden (2003) does
not consider probability weighting.

2An overview of several methods is given in Abdellaoui et al. (2007).
3In the literature, r is often fixed and taken to be 0, with u(0) = 0. In that case, the utility
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Shalev’s model is particularly simple and elegant, and easy to apply due to
its basic assumption of a constant loss aversion parameter. The word ‘constant’
refers to two different aspects of this way of modelling loss aversion. First,
for a given reference outcome the same multiple λ of the loss is subtracted
from the basic utility values for different outcomes x. Second, this multiple is
constant across different reference outcomes, i.e., does not depend on r. The
first aspect is quite common in applications, which in particular implies that
many applications are consistent with the way Shalev models loss aversion; the
second aspect of course only possibly plays a role in applications if the reference
outcome varies.4

In this paper we present a preference foundation for (1) in a slightly more
general model, that is, for a more general set of outcomes instead of R. Like
Sugden (2003) or Schmidt (2003), we assume that a decision maker has ‘triadic’
preferences: his preference over any two outcomes depends on a third (reference)
outcome. We consider decision making under risk, and basically assume that for
any given reference outcome the decision maker is an expected utility maximizer
whose ordinal ranking of riskless outcomes does not depend on the reference
outcome. Our main conditions focus on the consequences of changing reference
outcomes.

Somewhat deviating from other characterizations of loss aversion (Sugden,
2003, or Schmidt, 2003) we start by assuming expected utility maximization for
any fixed reference point, and focus on conditions that characterize constant loss
aversion as in (1). Unlike Sugden (2003) or Köszegi and Rabin (2006) we assume
that the reference outcome is riskless: we will comment on this assumption
in Section 3, where we argue that it does not imply much loss of generality.
Köbberling and Wakker (2005) characterize a specific form of constant loss
aversion in a model without risk and with a fixed reference outcome, and focus
on comparison of loss aversion between different decision makers.

The next section presents the model and characterization of constant loss
aversion, and Section 3 contains further discussion.

2 The preference model and characterization

Let A be a set of (riskless) outcomes. To avoid trivial cases we assume that A

has at least three elements. Let L denote the set of lotteries over A, i.e., the set
of probability distributions over A with finite support. We identify each a ∈ A

with the lottery that puts probability 1 on a.
A binary relation R on some set X is a weak ordering if it is complete, i.e.,

(x, y) ∈ R or (y, x) ∈ R for all x, y ∈ X , and transitive.
Let R be a binary relation on A, and for each a ∈ A let <a be a binary

relation on L. The relation R is interpreted as a decision maker’s ranking of

of x < 0 is equal to (1 + λ)u(x); then µ = 1 + λ is called the loss aversion coefficient and
µ > 1. See, e.g., Köbberling and Wakker (2005).

4See for instance Dittman et al. (2009). Some of the other applications mentioned in
footnote 1 impose, indeed, a constant loss aversion parameter for a fixed reference outcome.
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the riskless outcomes, whereas <a is his preference over lotteries if the reference
outcome is a.

For a, b ∈ A and ℓ, ℓ′ ∈ L we write aRb instead of (a, b) ∈ R and ℓ <a ℓ′

instead of (ℓ, ℓ′) ∈<a. By P we denote the asymmetric part of R. By supp (ℓ) ⊆
A we denote the support of ℓ ∈ L. For x ∈ A, ℓ(x) is the probability assigned
by ℓ to x, and for B ⊆ A, ℓ(B) =

∑

x∈B ℓ(x). We write < for the collection
{<a| a ∈ A}.

We will assume that R and all <a are weak orderings. Besides this assump-
tion we consider five conditions on the pair (R, <). The first two conditions
set the general stage and are not directly related to loss aversion. The first
condition says that each <a coincides with R when only riskless outcomes are
concerned.

Common Ordinal Ranking (COR): For all a, x, y ∈ A, x <a y ⇔ xRy.

The second condition states that each preference <a can be represented by an
expected utility function, which is unique up to positive affine transformations.
This holds under standard conditions, such as independence and continuity
(e.g., Herstein and Milnor, 1953). For a function u : A → R we denote by
Eu(ℓ) =

∑

x∈A ℓ(x)u(x) the expected utility of ℓ ∈ L under u.

Expected Utility (EU): For all a ∈ A there is a function ua : A → R such that
ℓ <a ℓ′ ⇔ Eua(ℓ) > Eua(ℓ′) for all ℓ, ℓ′ ∈ L.

The next two conditions concern loss aversion but both describe situations
in which preferences should not depend on reference outcomes. The first one
states that if two lotteries both involve only losses relative to reference outcome
a and only gains relative to reference outcome b, then the preference between
these two lotteries does not depend on whether a or b is the reference outcome.
This is a special instance of the general principle that reference outcomes only
influence preferences between gains and losses.

Reference Outcome Independence-1 (ROI-1): For all a, b ∈ A with aRb and all
ℓ, ℓ′ ∈ L, if aRxRb for all x ∈ supp (ℓ) ∪ supp (ℓ′), then ℓ <a ℓ′ ⇔ ℓ <b ℓ′.

The second of these two independence conditions says the following. Con-
sider two different lotteries and a reference outcome such that the total weight
on outcomes involving losses is equal in both lotteries. Then a change in ref-
erence point without changing losses into gains or vice versa in either lottery,
does not change the preference between these two lotteries. In contrast with
the previous condition ROI-1, this condition concerns lotteries involving both
gains and losses. As will become apparent in the proof of the characterization
result, it guarantees that the loss aversion coefficient is a constant and does not
depend on the reference outcome.
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Reference Outcome Independence-2 (ROI-2): For all a, b ∈ A with aRb and all
ℓ, ℓ′ ∈ L, if (i) [supp (ℓ) ∪ supp (ℓ′)] ∩ {x ∈ A | aPxPb} = ∅ and (ii) ℓ({x ∈ A |
bRx}) = ℓ′({x ∈ A | bRx}), then ℓ <a ℓ′ ⇔ ℓ <b ℓ′.

ROI-2 implies as special cases that preferences between two lotteries are
independent of reference outcomes as long as both lotteries involve only gains
or only losses relative to these reference outcomes, that is, if aRb and either
xRa for all x ∈ supp (ℓ) ∪ supp (ℓ′) or bRx for all x ∈ supp (ℓ) ∪ supp (ℓ′).

The final condition captures a basic intuition behind loss aversion, namely
that a lower reference outcome can only increase preference. Suppose a loss
averse decision maker prefers a lottery ℓ over outcome a, and a is also his
reference outcome. Then, if his reference outcome worsens from a to b, he
still prefers ℓ over a under the new reference outcome b. To elaborate on this
intuition, note that outcomes of ℓ representing gains relative to a still represent
gains with respect to b: such outcomes should not lead to a change in preference.
Outcomes of ℓ representing losses with respect to b represent even more severe
losses with respect to a and, thus, this should only reinforce the preference of
ℓ over a when b becomes the reference outcome. Outcomes of ℓ that represent
losses relative to a but gains relative to b should certainly only reinforce the
preference of ℓ over a when b becomes the reference outcome.

Reference Outcome Dependence (ROD): For all a, b ∈ A and ℓ ∈ L, if aRb then
ℓ <a a ⇒ ℓ <b a.

Further discussion on these conditions is postponed until Section 3.
Let u : A → R be a function satisfying u(x) > u(y) ⇔ xRy for all x, y ∈ A.

Let λ > 0, and let a ∈ A. Similar to (1) we define for all x ∈ A

ua,λ(x) =

{

u(x) if xRa

u(x) − λ[u(a) − u(x)] if aPx.

For a lottery ℓ ∈ L, we denote by

Eua,λ(ℓ) =
∑

x∈A

ℓ(x)ua,λ(x)

the expected utility of ℓ with reference point a. We can now state our charac-
terization result. Its proof is in the Appendix.

Theorem 1 For the pair (R, <) the following two statements are equivalent.

(i) R and <a are weak orderings for all a ∈ A, and (R, <) satisfies COR,

EU, ROI-1, ROI-2, and ROD.

(ii) There exists a function u : A → R and a real number λ > 0 such that

(ii.1) u(x) > u(y) ⇔ xRy for all x, y ∈ A.

(ii.2) ℓ <a ℓ′ ⇔ Eua,λ(ℓ) > Eua,λ(ℓ′) for all a ∈ A and ℓ, ℓ′ ∈ L.

Moreover, if (ii) holds for another function v, then there are α, β ∈ R with

α > 0 such that v(x) = αu(x) + β for all x ∈ A.
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3 Further discussion

Our basic framework is set by the conditions COR and EU together with the
assumption of weak ordering. We have already commented on the absence of
probability weighting. As to the assumption of weak ordering one could make a
case for allowing incompleteness. Bleichrodt (2007) argues that if the reference
outcome is an available option (e.g., keeping your present job) then a decision
maker may not have a preference between two other outcomes (e.g., two other
jobs that he dislikes compared to his present job) if he never has to choose
between those jobs, e.g., since he prefers to keep his current job. This is a valid
point, which calls for a revealed preference approach; this is not pursued here.

Remark 1 It is possible to drop condition COR, pick an arbitrary a ∈ A, and
define R by xRy :⇔ x <a y for all x, y ∈ A. The independence conditions
ROI-1 and ROI-2 imposed on this relation R would then imply xRy ⇔ x <b y

for all b, x, y ∈ A. This is a slight strengthening of the characterization result,
but it also makes the presentation less transparent.

The independence conditions ROI-1 and ROI-2 imply, essentially, that for
any two reference outcomes a and b with a preferred to b, the decision maker’s
preferences <a and <b coincide on the set lotteries involving only outcomes
better than a, or only outcomes worse than b, or only outcomes between a

and b. This, in effect, produces the loss aversion coefficient λ: the additional
assumption on the probabilities in ROI-2 guarantees that λ is a constant. The
condition ROD, finally, guarantees that λ is nonnegative, so that we may truly
speak of loss aversion.

We conclude with a comment on our assumption that reference outcomes are
riskless. In Shalev’s (2002) approach the reference outcome is not so much an
alternative but rather a utility (or payoff) level. He considers bimatrix games;
the two payoff matrices represent the basic utilities, and furthermore the play-
ers are loss averse with given loss aversion coefficients. A pair of strategies is a
‘loss-aversion equilibrium’ if there are payoff levels r1 and r2 such that in the
game transformed according to (1) with r1 and r2 as reference levels, the pair
of strategies under consideration is a Nash equilibrium resulting in the payoffs
r1 and r2. Hence, the lottery induced by the strategy pair serves as (risky)
reference outcome but the effect is the same as if there were a riskless outcome
with r1 and r2 as payoffs: one could introduce an extra riskless outcome with r1

and r2 as basic utilities and nothing would change. Thus, despite our assump-
tion of riskless reference outcomes Theorem 1 can still be used as a preference
foundation for loss-aversion equilibrium. Köszegi and Rabin (2006) take an ap-
proach which is closely related to Shalev’s, but then in the context of individual
decision making. Their ‘personal equilibrium’ (PE) is the one-person pendant
of loss-aversion equilibrium: indeed, “reformulating his [Shalev’s] notion of loss-
aversion equilibrium using our utility function and applying it to individual
decision-making corresponds to PE” (Köszegi and Rabin, 2006, p. 1144).
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Appendix: proof of Theorem 1

We first prove the implication (ii) ⇒ (i). Assume that (ii) holds. Then, clearly,
R and <a, a ∈ A, are weak orderings.

To show COR, let x, y, a ∈ A. Then

x <
a y ⇔ u(x) − λ · max{0, u(a)− u(x)}

> u(y) − λ · max{0, u(a)− u(y)}

⇔ u(x) > u(y)

⇔ xRy

where the first equivalence follows from (ii.2), the last from (ii.1), and the middle
one by direct inspection.

EU is immediate from (ii.2). For ROI-1, let a, b ∈ A with aRb and ℓ, ℓ′ ∈ L
with aRxRb for all x ∈ supp (ℓ) ∪ supp (ℓ′). Then

ℓ <
a ℓ′ ⇔

∑

x∈A

ℓ(x)[u(x) − λ(u(a) − u(x))]

>
∑

x∈A

ℓ′(x)[u(x) − λ(u(a) − u(x))]

⇔
∑

x∈A

ℓ(x)u(x) >
∑

x∈A

ℓ′(x)u(x)

⇔ ℓ <b ℓ′ ,

implying ROI-1. For ROI-2, let a, b ∈ A with aRb and ℓ, ℓ′ ∈ L with [supp (ℓ)∪
supp (ℓ′)] ∩ {x ∈ A | aPxPb} = ∅ and ℓ({x ∈ A | bRx}) = ℓ′({x ∈ A | bRx}).
Without loss of generality we assume aPb. Then

ℓ <a ℓ′ ⇔
∑

x∈A: xRa

ℓ(x)u(x) +
∑

x∈A: bRx

ℓ(x)[u(x) − λ(u(a) − u(x))]

>
∑

x∈A:xRa

ℓ′(x)u(x) +
∑

x∈A: bRx

ℓ′(x)[u(x) − λ(u(a) − u(x))]

⇔
∑

x∈A: xRb

ℓ(x)u(x) +
∑

x∈A: bRx

ℓ(x)[u(x) − λ(u(b) − u(x))]

>
∑

x∈A:xRb

ℓ′(x)u(x) +
∑

x∈A: bRx

ℓ′(x)[u(x) − λ(u(b) − u(x))]

⇔ ℓ <b ℓ′

where for the second equivalence we have used that ℓ({x ∈ A | bRx}) = ℓ′({x ∈
A | bRx}). This proves ROI-2.

Finally, to prove ROD, let a, b ∈ A with aRb and let ℓ ∈ L with ℓ <a a.
Then

Eub,λ(ℓ) =
∑

x∈A:xRa

ℓ(x)u(x) +
∑

x∈A: aPxRb

ℓ(x)u(x)
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+
∑

x∈A: bPx

ℓ(x)[u(x) − λ(u(b) − u(x))]

>
∑

x∈A:xRa

ℓ(x)u(x)

+
∑

x∈A:aPxRb

ℓ(x) [u(x) − λ(u(a) − u(x))]

+
∑

x∈A: bPx

ℓ(x)[u(x) − λ(u(a) − u(x))]

= Eua,λ(ℓ)

hence Eub,λ(ℓ) > Eua,λ(ℓ) > Eua,λ(a) = u(a) = Eub,λ(a), implying ℓ <b a.
This proves ROD.

For the converse implication assume that (i) holds. In order to show (ii) we
first construct u. Without loss of generality we assume that there are s, t ∈ A

with tPs. Fix an arbitrary representation us of <s, hence us(t) > us(s) by
COR. Suppose that x ∈ A, xRs, and that there is a y ∈ A with yPx. Then
take the unique representation ux of <x (as in EU) that satisfies ux(x) = us(x)
and ux(y) = us(y). For x ∈ A with sPx we take the unique representation ux

of <x with ux(s) = us(s) and ux(t) = us(t). In case there exists a maximal
outcome in A, i.e., an outcome x such that xRz for all z ∈ A, we simply take
any arbirary representation ux of <x with ux(x) = us(x). Altogether, we have
fixed representations ux for all x ∈ A. Let x, x′ ∈ A with xRx′. By ROI-2
(with a = x and b = x′) we have ℓ <x ℓ′ ⇔ ℓ <x′

ℓ′ for all ℓ, ℓ′ ∈ L with zRx

for all z ∈ supp (ℓ) ∪ supp (ℓ′); by our choice of representations ux and ux′

this
implies ux(z) = ux′

(z) for all z ∈ A with zRx, i.e., the functions ux and ux′

coincide for outcomes preferred to x (and x′) according to R. We now define u

by u(x) = ux(x) for all x ∈ A. By the preceding argument we have

for all x, y ∈ A, if xRy then u(x) = ux(x) = uy(x). (2)

We now check that u satisfies (ii.1). Let x, y ∈ A. If xRy then, by (2),
u(x) = ux(x) = uy(x) > uy(y), where the inequality follows from COR. Hence,
u(x) > u(y). For the converse, let u(x) > u(y) and suppose that yPx. Then
by (2), u(y) = uy(y) = ux(y) > ux(x), where the inequality again follows from
COR. So u(y) > ux(x) = u(x), a contradiction. Since R is complete, it follows
that xRy.

We proceed by defining the loss aversion coefficient. First, let b ∈ A such that
there are a, c ∈ A with aPbPc. Let λb ∈ R be defined by the equation ub(c) =
u(c)−λb[u(b)−u(c)]. Note that u(b) = ub(b) = uc(b) by (2) and that, by ROI-1
and EU, ub is a positive affine transformation of uc and thus of u for all x ∈ A

with bRxRc. From this it is easily derived that ub(x) = u(x) − λb[u(b) − u(x)]
for all x ∈ A with bRxRc. Since c was an arbitrary element of A with bPc, we
conclude that ub(x) = u(x) − λb[u(b) − u(x)] for all x ∈ A with bRx.

We now show that λb, thus defined, is nonnegative. Let 0 < p < 1 be defined
by the equation pub(c)+(1−p)ub(a) = ub(b), hence by pub(c)+(1−p)u(a) = u(b)

8



in view of (2); p is well-defined since ub(a) > ub(b) > ub(c) by COR. Now ROD
implies puc(c) + (1 − p)uc(a) > uc(b), hence pu(c) + (1 − p)u(a) > u(b) by (2).
Thus, we conclude that u(c) > ub(c); since u(b) > u(c) (by (ii.1)) and since (by
definition) ub(c) = u(c) − λb[u(b) − u(c)], this implies λb > 0.

Next, suppose we apply this construction to two different points b, b′ ∈ A

with aPbPb′Pc, resulting in λb, λb′ > 0. We will show that λb = λb′ . Consider
a lottery ℓ assigning probabilities α, 1

2
− α, 1

2
− β, β and a lottery ℓ′ assigning

probabilities α′, 1

2
−α′, 1

2
−β′, β′ to c, b′, b, a, respectively, where 0 < α < α′ < 1

and 0 < β < β′ < 1 are such that ub(ℓ) = ub(ℓ′), i.e.

ub(ℓ) = α(u(c) − λb[u(b) − u(c)]) + (
1

2
− α)(u(b′) − λb[u(b) − u(b′)])

+(
1

2
− β)u(b) + βu(a)

= α′(u(c) − λb[u(b) − u(c)]) + (
1

2
− α′)(u(b′) − λb[u(b) − u(b′)])

+(
1

2
− β′)u(b) + β′u(a)

= ub(ℓ′).

(It is not difficult to see that such lotteries exist.) The second equation can be
simplified to

(1 + λb)(α′ − α)(u(b′) − u(c)) = (β′ − β)(u(a) − u(b)).

By ROI-2, ub(ℓ) = ub(ℓ′) implies ub′(ℓ) = ub′(ℓ′). Writing out and then simpli-
fying the latter equality yields, similarly,

(1 + λb′)(α′ − α)(u(b′) − u(c)) = (β′ − β)(u(a) − u(b)).

It follows that λb = λb′ , and we write λ for this common value.
If b ∈ A is such that either xRb for all x ∈ A or bRx for all x ∈ A then we

can simply take λb = λ. This concludes the construction of the loss aversion
coefficient λ, and clearly (ii.2) is satisfied. The final claim – uniqueness of u up to
a positive affine transformation – follows since by construction (or, equivalently,
by (ii.2)) u(x) = ua(x) for all a ∈ A and x ∈ A with xRa, and each ua is unique
up to a positive affine transformation. �
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