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Abstract

We consider several related set extensions of the core and the anticore of
games with transferable utility. An efficient allocation is undominated if
it cannot be improved, in a specific way, by sidepayments changing the
allocation or the game. The set of all such allocations is called the undom-
inated set, and we show that it consists of finitely many polytopes with
a core-like structure. One of these polytopes is the L1-center, consisting
of all efficient allocations that minimize the sum of the absolute values
of the excesses. The excess Pareto optimal set contains the allocations
that are Pareto optimal in the set obtained by ordering the sums of the
absolute values of the excesses of coalitions and the absolute values of the
excesses of their complements. The L1-center is contained in the excess
Pareto optimal set, which in turn is contained in the undominated set. For
three-person games all these sets coincide. These three sets also coincide
with the core for balanced games and with the anticore for antibalanced
games. We study properties of these sets and provide characterizations
in terms of balanced collections of coalitions. We also propose a single-
valued selection from the excess Pareto optimal set, the min-prenucleolus,
which is defined as the prenucleolus of the minimum of a game and its
dual.
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1 Introduction

The core of a game with transferable utility can be interpreted from a strategic
point of view – a coalition may ‘deviate’ from the grand coalition if it obtains
less than its stand-alone worth – but also from a fairness point of view: if one
coalition obtains its worth or more, then it is only fair that all coalitions obtain
at least their worths. From the fairness point of view, a natural extension of the
core for games in which the core is empty, would be the anticore, provided that
this is a nonempty set. The anticore is the set of efficient allocations where every
coalition obtains at most its worth, and the fairness argument now says that,
if one coalition obtains its worth or less, then it is only fair that all coalitions
obtain at most their worths. In general, however, both the core and the anticore
of a game may be empty, and then the question is what a ‘natural’ extension of
the core or the anticore for such games could be.

Of course, this question is not new. A classical extension of the core is the ε-
core, based on subtracting ε from the coalitional worths, and the least core, i.e.,
the intersection of all nonempty ε-cores (Shapley and Shubik, 1966; Maschler et
al, 1979). Recently, Bejan and Gómez (2009) propose, alternatively, to increase
the worth of the grand coalition to obtain a nonempty core, where this increase
is financed by taxing individual players. The resulting solution concept is called
the extended core. All such extensions have in common that, essentially, the core
restrictions are relaxed in order to obtain a nonempty solution. Our approach
is quite different, and there are no obvious relations between the mentioned
extensions (least core, extended core) and our extensions.

We start by defining undominated efficient allocations. An efficient alloca-
tion x is undominated in a game v if there is no other efficient allocation z and
no game w arising from sidepayments between players (i.e., by adding an addi-
tive game to v) such that for each coalition S the minimum of z(S) (its total
payoff from z) and w(S) is at least as large as, and sometimes strictly larger
than, the minimum of x(S) and v(S); the allocation z and the game w are inter-
preted as arising from bargaining over x and v, respectively, and considering the
minimum is based on an assumption of (pessimistic) max-min preferences con-
cerning uncertainty of reaching a final agreement (x or z) or not (v or w). The
set of all undominated efficient allocations is called the undominated set, and
we show, indeed, that for balanced games this set coincides with the core and
for antibalanced games with the anticore. We characterize the undominated set
by balancedness conditions. These conditions imply that being undominated is
equivalent to the impossibility of redistributing the payoffs among all coalitions
with nonpositive excesses such that no coalition with negative excess loses, and
redistributing the payoffs among all coalitions with nonnegative excesses such
that no coalition with positive excess loses. In fact, this characterization can
serve as an intuitive alternative definition, and in a specific sense reflects the
fairness consideration discussed earlier.

We propose two other set extensions of the core and the anticore. The L1-
center, first introduced in Spinetto (1974), consists of all efficient allocations
that minimize the sum of the absolute values of the coalitional excesses. The
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excess Pareto optimal set consists of all efficient allocations that are associated
with Pareto optimal points (with the understanding that lower values are bet-
ter) of the set of vectors arising from computing, for each coalition, the sum of
the absolute value of its excess and the absolute value of the excess of its com-
plement, over all possible efficient allocations. The L1-center is contained in the
excess Pareto optimal set, which in turn is contained in the undominated set.
The latter two coincide on the interesting class of proper games (i.e., games in
which the worth of a coalition plus the worth of its complement is never larger
than the worth of the grand coalition). All three sets coincide with the core for
balanced games and the anticore for antibalanced games. They also coincide for
all three-person games. The undominated set is the union of a finite collection
of polytopes, each with a core-like structure. The L1-center is exactly one of
these polytopes, and the excess Pareto optimal set is the union of a specific
subcollection of these polytopes.

Besides studying further properties of these three set extensions we also
propose a single-valued solution which selects from the excess Pareto optimal
set and thus from the undominated set. This solution is a modification of the
prenucleolus (Schmeidler, 1969), called the min-prenucleolus, and it assigns to a
game the prenucleolus of the coalition-wise minimum of that game and its dual.
We present an axiomatic characterization, based on the characterization of the
prenucleolus of Sobolev (1975).

The paper is organized as follows. After preliminaries in Section 2 we introduce
the undominated set in Section 3, and characterize it by balanced collections
and relate it to the core and the anticore in Section 4. The L1-center and the
excess Pareto optimal set are discussed in Sections 5 and 6, respectively. In
Section 7 we show that the excess Pareto optimal set is contractible. Section
8 is devoted to the min-prenucleolus and its characterization, while Section 9
briefly reconsiders the undominated set for proper games. Section 10 concludes.

2 Preliminaries

A game with transferable utility or, simply, a game is a pair (N, v), where
N = {1, . . . , n} with n ∈ N is the set of players and the function v : 2N → R
with v(∅) = 0 is the characteristic function, assigning to each coalition S ⊆ N
its worth v(S). We also call (N, v) an n-person game and often write v instead
of (N, v) if there is no confusion about the player set. We sometimes write
ijk . . . for a coalition {i, j, k, . . .} ⊆ N .

An (n-person) allocation is a vector x ∈ RN . For an allocation x and a
coalition S ⊆ N we denote x(S) :=

∑
i∈S xi, with the convention x(∅) := 0.

An allocation x is efficient in the game v if x(N) = v(N). The set of efficient
allocations in v is denoted by X(v).

A game v is additive if v(S ∪ T ) = v(S) + v(T ) for all S, T ∈ 2N such that
S ∩ T = ∅. Note that such a game is completely described by the worths of the
singleton coalitions. In particular, any allocation x can be identified with an
additive game vx by letting vx({i}) = xi for all i ∈ N ; in this case we usually
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write x instead of vx. The sum v + w of two games v and w is defined by
(v+w)(S) = v(S)+w(S) for all S ∈ 2N . In particular, for x ∈ RN , v+x is the
sum of v and the additive game induced by x.

A collection of coalitions B ⊆ 2N is balanced if there are positive numbers
λ(S), S ∈ B, such that

∑
S∈B: i∈S λ(S) = 1 for every i ∈ N . The numbers λ(S)

are called balancing weights.
A sidepayment for the player set N is a vector y ∈ RN with y(N) = 0.
A game v is balanced [antibalanced ] if

∑
S∈B λ(S)v(S) 6 [>]v(N) for every

balanced collection B, with balancing weights λ(S). Clearly, an additive game
is both balanced and antibalanced, but any other game is either balanced or
antibalanced or none of the two. The core C(v) of a game v is the set {x ∈ X(v) |
x(S) > v(S) for all S ∈ 2N} and the anticore AC(v) is the set {x ∈ X(v) |
x(S) 6 v(S) for all S ∈ 2N}. It is well-known (Bondareva, 1962; Shapley, 1967)
that C(v) ̸= ∅ if and only if v is balanced, and similarly that AC(v) ̸= ∅ if and
only if v is antibalanced.

Sidepayments and balanced collections can be related as follows. For B ⊆
B′ ⊆ 2N , we say that B is balanced within B′ if there exists a balanced collection
B′′ with B ⊆ B′′ ⊆ B′. Then we have the following useful result.

Lemma 2.1 A collection B is balanced within a collection B′ if and only if for
each sidepayment y ∈ RN with y(S) > 0 for all S ∈ B′ we have y(S) = 0
for all S ∈ B. In particular, a collection B is balanced if and only if for each
sidepayment y ∈ RN with y(S) > 0 for all S ∈ B we have y(S) = 0 for all
S ∈ B.

A proof of this lemma, based on Farkas’ Lemma, can be found in Derks and
Peters (1998).

3 The undominated set

Our definition of the undominated set of a game v will be based on a new
concept of domination among efficient allocations. In order to motivate this
new concept, consider a game v and an efficient allocation x ∈ X(v). Assume
that the proposal x is on the table, and consider a coalition S. From the point
of view of S, if the final decision is exclusively about x, then S is going to
obtain x(S) if an agreement on x is reached, and v(S) otherwise, hence S is
sure to obtain the minimum of x(S) and v(S). This reflects a coalition having
max-min preferences over the uncertain issue of reaching agreement or not.
However, consider the following two possibilities before the actual agreement
or disagreement decision on a proposal is taken. First, x may be replaced by
another efficient allocation z ∈ X(v); equivalently, x is replaced by x+ y, where
y is a sidepayment. Second, players may make prepayments among each other,
effectively turning the game v into a new game v + y′, where y′ is the additive
game induced by these prepayments, i.e., y′ is again a sidepayment. After such
a bargaining phase, from the point of view of coalition S, if an agreement will
be reached then S is going to obtain (x + y)(S), and otherwise it is going to
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obtain (v + y′)(S); hence, S is sure to obtain the minimum of (x + y)(S) and
(v + y′)(S).

With this setting in mind, we present the following definition.

Definition 3.1 Let v be a game and let x ∈ X(v). Then x is dominated if
there are sidepayments y and y′ such that

min{(x+ y)(S), (v + y′)(S)} > min{x(S), v(S)} for all S ∈ 2N

with at least one of these inequalities strict. If x is not dominated, then it is
undominated. The set of all undominated effcient allocations is the undominated
set, denoted by UD(v).

Thus, if x ∈ X(v) is undominated, then there are no sidepayments y, y′ such
that all coalitions are better off and at least one coalition is strictly better off by
deciding on the allocation x + y instead of x and at the same time performing
sidepayments y′. Observe, again, that ‘better off’ is based, implicitly, on the
coalitions having max-min preferences to deal with the uncertainty of the players
reaching an agreement on a proposal.

Remark 3.2 This concept of domination is closely related to the dominance
relation between pairs of allocations considered in Bossert, Derks and Peters
(2005) in the context of uncertain cooperative games.

4 Characterization of the undominated set by
balanced collections

The undominated set can be characterized in terms of balanced collections.
This yields a finite check on (un)dominatedness of an efficient allocation, and is
convenient for computational purposes. Moreover, the characterization provides
relations with the core and the anticore of a game. More generally, it is useful
for investigating the geometric structure of the undominated set. Specifically,
we will show that the undominated set is a union of finitely many polytopes.

We start with an auxiliary lemma on extending balanced collections.

Lemma 4.1 Let B1 and B2 be balanced collections in 2N . Then there are bal-
anced collections C1 and C2 such that

(1) B1 ⊆ C1 ⊆ B1 ∪ (2N \ B2),

(2) B2 ⊆ C2 ⊆ B2 ∪ (2N \ B1),

(3) C1 ∪ C2 = 2N .

Proof. Suppose that S ∈ 2N such that S /∈ B1 ∪ B2. If N \ S ∈ B1 then
{S} ∪ B1 is still balanced; if N \ S ∈ B2 then {S} ∪ B2 is still balanced; and
if N \ S /∈ B1 ∪ B2 then {S,N \ S} ∪ B1 (or {S,N \ S} ∪ B2) is still balanced.
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Thus, S or S and N \ S can be added to B1 or B2. The desired sets C1 and C2
are obtained by repeating this argument. �

In order to state the characterization theorem, for a game v and an efficient
allocation x ∈ X(v) we define the following collections of coalitions:

L(x, v) = {S ∈ 2N | x(S) < v(S)}
E(x, v) = {S ∈ 2N | x(S) = v(S)}
H(x, v) = {S ∈ 2N | x(S) > v(S)} .

When there is no confusion about what the game is, we often write L(x), E(x),
and H(x) instead of L(x, v), E(x, v), and H(x, v).

Theorem 4.2 Let v be a game and let x ∈ X(v). Then x is undominated
if and only if there are balanced collections B1 and B2 such that L(x) ⊆ B1,
H(x) ⊆ B2, and B1 ∩ B2 ⊆ E(x).

Proof. For the only-if part, let x be undominated. We show that L(x) is
balanced within L(x)∪E(x). Suppose not, then according to Lemma 2.1 there
is a sidepayment y with y(S) > 0 for all S ∈ L(x)∪E(x) and y(S) > 0 for some
S ∈ L(x). Choose α > 0 such that x(S)+αy(S) > v(S) for all S ∈ H(x). Then
we have

min{x(S) + αy(S), v(S)} > min{x(S), v(S)} for all S ∈ 2N

with at least one inequality strict, as is easy to verify. This violates undom-
inatedness of x. Hence L(x) is balanced within L(x) ∪ E(x). Similarly, one
shows that H(x) is balanced within H(x) ∪ E(x). So we have shown that
there are balanced collections B1 and B2 with L(x) ⊆ B1 ⊆ L(x) ∪ E(x) and
H(x) ⊆ B2 ⊆ H(x) ∪ E(x).

For the if-part, let B1 and B2 be as in the statement of the theorem. In
view of Lemma 4.1 we may assume that B1 ∪ B2 = 2N . Suppose there are
sidepayments y and y′ such that

min{x(S) + y(S), v(S) + y′(S)} > min{x(S), v(S)} for all S ∈ 2N . (1)

For S ∈ L(x)∪E(x), (1) implies min{x(S) + y(S), v(S) + y′(S)} > x(S), which
in turn implies y(S) > 0. Since B1 is balanced it is also balanced within L(x)∪
E(x), which by Lemma 2.1 implies y(S) = 0 for all S ∈ B1. Similarly, one shows
that y′(S) = 0 for all S ∈ B2. Since B1∪B2 = 2N , it follows that all inequalities
in (1) are equalities, so that x is undominated. �

The following corollary follows from Theorem 4.2 and Lemma 4.1.

Corollary 4.3 Let v be a game and let x ∈ X(v). Then x is undominated
if and only if there are balanced collections B1 and B2 such that L(x) ⊆ B1,
H(x) ⊆ B2, B1 ∩ B2 ⊆ E(x), and B1 ∪ B2 = 2N .
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Lemma 2.1 and Theorem 4.2 (or Corollary 4.3) provide a further explanation
of undominated allocations and, indeed, could be used as alternative definitions.
Define the excess of a coalition S in a game v at an efficient allocation x by
e(S, x, v) = e(S, x) = v(S)− x(S). Then an efficient allocation is undominated
exactly if by any sidepayment (redistribution) that makes no coalition with non-
positive excess worse off no coalition with negative excess can strictly improve,
and by any sidepayment that makes no coalition with nonnegative excess worse
off no coalition with positive excess can strictly improve.

As an illustration, in the next example we compute the undominated set
for three-person symmetric games (already considered in von Neumann and
Morgenstern, 1944).

Example 4.4 Let N = {1, 2, 3}, let α ∈ RN , and consider the three-person
symmetric game v with v(i) = 0 for all i ∈ N , v(ij) = α for all i, j ∈ N
with i ̸= j, and v(N) = 1. For α 6 2

3 we have UD(v) = C(v) = {x ∈ R3 |
xi > 0 for all i ∈ N , x(N) = 1, and xi + xj > α for all i, j ∈ N, i ̸= j}. For 1 >
α > 2

3 we have C(v) = ∅ and UD(v) = {x ∈ R3 | xi > 0 for all i ∈ N , x(N) = 1,
and xi + xj 6 α for all i, j ∈ N, i ̸= j}. For α > 1 we have UD(v) = {x ∈ R3 |
x(N) = 1 and xi > 0 for all i ∈ N}. All these statements can be checked by
using Theorem 4.2 or Corollary 4.3.

The next result shows that the undominated set extends the core and the
anticore.

Theorem 4.5 Let v be a game. If C(v) ̸= ∅ then UD(v) = C(v) and if AC(v) ̸=
∅ then UD(v) = AC(v).

Proof. Suppose that C(v) ̸= ∅, and let z ∈ C(v). Since E(z)∪H(z) = 2N and
2N is balanced, Theorem 4.2 implies that z is undominated, so C(v) ⊆ UD(v).
To prove the converse inclusion, let x̃ be an arbitrary element of C(v). Then
for every S ∈ 2N and every x ∈ X(v) we have min{x(S) + (x̃− x)(S), v(S)} =
v(S) > min{x(S), v(S)}. If, in particular, x is undominated then we must have
min{x(S) + (x̃ − x)(S), v(S)} = v(S) = min{x(S), v(S)} for all S ∈ 2N , hence
x(S) > v(S) for all S ∈ 2N . So UD(v) ⊆ C(v). This proves the first implication
in the theorem. The proof of the second implication is analogous1. �

The following example shows that in general the undominated set does not
have to be convex.

Example 4.6 Consider the four-person game v with worths given in the fol-
lowing table.

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
v(S) −5 −5 −2 5 5 −5 5 5 −5 5 −1 −5 −5 −5 0

Then x = (−2,−2, 2, 2) ∈ UD(v) (check the balancedness conditions in Theorem
4.2) and so is y = −x. However, x+y

2 = 0 /∈ UD(v): E(0) = {∅, N}, and

1Alternatively, one can use the first implication together with the observations UD(v) =
UD(v∗) and AC(v) = C(v∗), where v∗ is the dual game of v, see Sections 6 and 8 below.
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L(0) = {12, 23, 34, 14, 4}, which cannot be extended to a balanced collection by
adding elements from E(0). So UD(v) is not convex.

We now further explore the relation between the undominated set, the core
and the anticore. For a game v and an arbitrary collection B ⊆ 2N define the
B-restricted core and anticore by

C(B, v) = {x ∈ X(v) | x(S) > v(S) for all S ∈ B}

and
AC(B, v) = {x ∈ X(v) | x(S) 6 v(S) for all S ∈ B} .

Let P = PN denote the set of all pairs of balanced collections with player set
N such that all coalitions are used, i.e.,

P = {(B1,B2) ⊆ 2N × 2N | B1, B2 are balanced and B1 ∪ B2 = 2N} .

An element of P is called a constellation.
We now have:

Theorem 4.7 Let v be a game. Then

UD(v) =
∪

(B1,B2)∈P

AC(B1, v) ∩ C(B2, v) .

Proof. If x ∈ UD(v) then by Corollary 4.3 there are balanced collections B1 and
B2 with L(x) ⊆ B1 ⊆ L(x)∪E(x), H(x) ⊆ B2 ⊆ H(x)∪E(x), and B1∪B2 = 2N ,
and clearly x ∈ AC(B1, v)∩C(B2, v). Conversely, let x ∈ X(v) and (B1,B2) ∈ P
such that x ∈ AC(B1, v) ∩ C(B2, v). Then L(x) ⊆ B1 ⊆ L(x) ∪ E(x) and
H(x) ⊆ B2 ⊆ H(x) ∪ E(x) with both collections balanced, so x ∈ UD(v) by
Theorem 4.2. �

Theorem 4.7 says that the undominated set is the union of finitely many
polyhedra, each one with a core-like structure. We can actually say more.

Lemma 4.8 Let v be a game and let (B1,B2) ∈ P. Then the set AC(B1, v) ∩
C(B2, v) is compact.

Proof. Closedness is obvious. Suppose the set were not bounded. Then there
must be a player i ∈ N such that, for every number K ∈ R there is an x ∈
AC(B1, v) ∩ C(B2, v) with xi > K. Clearly, {i} ∈ B2. Since B2 is balanced we
have

∑
S∈B2

λ(S)x(S) = x(N) = v(N) for every x ∈ X(v), where λ(S) > 0,
S ∈ B2, are balancing weights associated with B2. By choosing x ∈ AC(B1, v)∩
C(B2, v) with x({i}) = xi large enough, there must be a coalition T ∈ B2

with x(T ) < v(T ), contradicting the fact that x ∈ C(B2, v). Hence the set
AC(B1, v) ∩ C(B2, v) must be bounded. �

Lemma 4.8 and Theorem 4.7 imply that the undominated set is the union
of finitely many polytopes. In particular, we have the following consequence.
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Corollary 4.9 For every game v the set UD(v) is compact.

Many of the polytopes in Theorem 4.7 can be empty. For instance, if v is a
balanced game, then for the only nonempty polytope, the core, we can take the
constellation P = (B1,B2) where B1 = {∅, N} (so that AC(B1, v) = X(v)) and
B2 = 2N (so that C(B2, v) = C(v)), as follows from Theorem 4.5. Nonemptiness
of the undominated set for arbitrary v will follow as a result in the next section
(Corollary 5.4).

In general, different pairs (B1,B2) ∈ P may lead to the same set AC(B1, v)∩
C(B2, v). In order to achieve a canonical representation, call (B1,B2) ∈ P
maximal with respect to the game v if there exists an x ∈ AC(B1, v)∩C(B2, v)
such that

L(x) = B1 \ B2 and H(x) = B2 \ B1 . (2)

The following lemma shows that we indeed obtain a canonical, ‘unique’ repre-
sentation of UD(v) based on maximal constellations.

Lemma 4.10 Let v be a game and let Pm
v denote the set of maximal constel-

lations with respect to v. Then

UD(v) =
∪

(B1,B2)∈Pm
v

AC(B1, v) ∩ C(B2, v) (3)

and

UD(v) !
∪

(B1,B2)∈Pm
v \{(B̂1,B̂2)}

AC(B1, v) ∩ C(B2, v) for all (B̂1, B̂2) ∈ Pm
v . (4)

Proof. Clearly, an allocation x as in (2) for a maximal constellation does not
belong to the polytope of any other maximal constellation with respect to v.
Together with Theorem 4.7 this implies (4). Also one inclusion of (3) follows
from Theorem 4.7. In order to show the other inclusion let z ∈ UD(v) and take
(B1,B2) ∈ P such that z ∈ P := AC(B1, v) ∩ C(B2, v). Define the sets L, E,
and H by

L = {S ∈ 2N | S ∈ L(x) for some x ∈ P}
E = {S ∈ 2N | S ∈ E(x) for all x ∈ P}
H = {S ∈ 2N | S ∈ H(x) for some x ∈ P} .

Let B̂1 = L∪E and B̂2 = H ∪E. By convexity of P there is an x̂ ∈ P such that
L(x̂) = L = B̂1\B̂2 and H(x̂) = H = B̂2\B̂1. Also, P = AC(B̂1)∩C(B̂2), so it is

sufficient to prove that B̂1 and B̂2 are balanced. Consider a sidepayment y ∈ RN

with y(S) > 0 for all S ∈ B̂1 = L ∪ E. We may assume that (x̂+ y)(S) > v(S)
for all S ∈ H. Since L ⊆ B1 ⊆ L ∪ E and B1 is balanced, we have y(S) = 0 for
all S ∈ B1 by Lemma 2.1. Then we must have y(S) = 0 for all S ∈ E as well,
since otherwise x̂+y would be an element of P with (x̂+y)(S) > v(S) for some
S ∈ E, contradicting the definition of E. Hence, y(S) = 0 for all S ∈ L ∪ E,

implying balancedness of B̂1 = L∪E by Lemma 2.1. One similarly proves that
B̂2 is balanced. �
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Remark 4.11 Lemma 4.10 says that the undominated set of a game v con-
sists of a collection of distinct polytopes which correspond one-to-one with the
maximal constellations with respect to v. The proof of the lemma in fact shows
that any nonempty polytope generated by some arbitrary possibly nonmaximal
constellation is equal to one of these polytopes.

Note, further, that if (B1,B2) ∈ P is maximal with respect to v then the
dimension of the set AC(B1, v) ∩ C(B2, v) – i.e., the dimension of the smallest
affine subspace of Rn containing it – is equal to n−|B1∩B2|+1, hence maximally
n− 1.2

We denote the relative interior of a set Z ⊆ Rn – i.e., the interior of Z
relative to a smallest affine subspace of Rn containing Z – by relint(Z). Now
we have:

Lemma 4.12 Let the constellation (B1,B2) ∈ P be maximal with respect to the
game v. Then for every x ∈ X(v) we have x ∈ relint(AC(B1, v) ∩ C(B2, v))
if and only if L(x) ∪ E(x) = B1 and H(x) ∪ E(x) = B2. In particular, if
x ∈ relint(AC(B1, v)∩C(B2, v)), then L(x)∪E(x) and H(x)∪E(x) are balanced.

Proof. Let x ∈ X(v). Then x ∈ relint(AC(B1, v) ∩ C(B2, v)) if and only if
x(S) < v(S) for all S ∈ B1\B2, x(S) > v(S) for all S ∈ B2\B1, and x(S) = v(S)
for all S ∈ B1 ∩ B2. Hence, x ∈ relint(AC(B1, v) ∩ C(B2, v)) if and only if
L(x) ∪ E(x) = B1 and H(x) ∪ E(x) = B2. The last claim in the lemma is
obvious. �

In a game v, the sets L(x) ∪ E(x) and H(x) ∪ E(x) for an undominated
allocation x ∈ X(v) are not necessarily balanced themselves. Lemmas 4.10
and 4.12 however imply that these sets are balanced if x is a relative interior
allocation of the polytope to which it belongs. Hence, such allocations are
elements of the set sUD(v) defined by

sUD(v) = {x ∈ X(v) | L(x) ∪ E(x) and H(x) ∪ E(x) are balanced} .

Thus we have∪
(B1,B2)∈P

relint(AC(B1, v) ∩ C(B2, v)) ⊆ sUD(v) ⊆ UD(v) . (5)

Since for every (B1,B2) ∈ P the set AC(B1, v) ∩ C(B2, v) is the (topological)
closure of relint(AC(B1, v)∩C(B2, v)), it follows that the set at the left-hand side
in (5) and thus also the set sUD(v) is dense in UD(v). The following example
shows that both inclusions can be strict.

Example 4.13 Let (N, v) be defined by N = {1, 2, 3}, v(12) = v(3) = 1,
v(13) = v(1) = −1 and v(S) = 0 for all other S ⊆ N . Then the undominated
set is the convex hull of the set {(0, 0, 0), (−1, 0, 1), (−1, 1, 0), (0, 1,−1)}. For

2For a set D, we denote its cardinality by |D|.
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x = (0, 0, 0) we have L(x) = {3, 12}, E(x) = {∅, 2, 23, N}, and H(x) = {1, 13}
so that x ∈ UD(v) \ sUD(v). For z = (−1, 0, 1) we have L(z) = {12}, E(z) =
{∅, 1, 2, 3, N}, and H(z) = {13, 23}, so that z ∈ sUD(v) \ relint(UD(v)). This
example may be extended to more than three players by adding null-players.

Remark 4.14 Yanovskaya (2002) introduces the ‘extended prenucleolus’ of a
game v, which we denote by Y (v). Theorem 1 in Yanovskaya (1998) states
that x ∈ X(v) belongs to Y (v) if and only if the collection L(x) ∪ E(x) is
balanced. For balanced games, Y (v) coincides with the relative interior of the
core, and hence is a strict subset of the undominated set. In general, there is
no inclusion relation: the condition on Y (v) is weaker in the sense that there
is no balancedness condition involving H(x), but stronger in the sense that
L(x)∪E(x) is required to be balanced instead of L(x) within L(x)∪E(x), as in
the undominated set. For an example, consider the three-person game v′ with
v′(12) = 2 and v′(S) = v(S) for all other coalitions S, with v as in Example
4.13. Then for x = (0, 0, 0) we have L(x, v′) = {3, 12}, E(x, v′) = {∅, 2, 23, N},
and H(x, v′) = {1, 13} so that x ∈ UD(v) \ Y (v). For z = ( 13 ,

4
3 ,−

5
3 ) we

have L(z, v′) = {3, 12, 13, 23}, E(z, v′) = {∅, N}, and H(z, v′) = {1, 2}, so that
z ∈ Y (v) \ UD(v).

5 The L1-center

The L1-center of a game v was introduced by Spinetto (1974), who showed that
it coincides with the core for balanced games. We will see that it is also closely
related to the undominated set. More precisely, it is exactly one of the polytopes
of which the undominated set consists.

Definition 5.1 For a game v, let the function ℓ : RN → R be defined by

ℓ(x) =
∑
S∈2N

|v(S)− x(S)| .

The L1-center of the game v is the set

L1(v) = {x ∈ X(v) | ℓ(x) 6 ℓ(x′) for all x′ ∈ X(v)} .

Thus, the L1-center consists of all efficient allocations that minimize the
sum of the absolute values of the coalitional excesses. Since f is a continuous
function and we can restrict ourselves to a bounded and closed subset of X(v) to
find its minima, it follows by the extreme value theorem of Weierstraß that the
L1-center is nonempty; it is also clear that it is closed and therefore compact.
By using the triangular inequality for absolute values it is easy to see that the
L1-center is a convex set. Altogether we have the following result.

Lemma 5.2 Let v be a game. Then L1(v) is nonempty, compact and convex.

The next result shows that the L1-center coincides with exactly one of the
polytopes in Theorem 4.7.
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Theorem 5.3 Let v be a game. Then there is a pair (B1,B2) ∈ P such that
L1(v) = AC(B1, v) ∩ C(B2, v).

Proof. We first prove the following two claims.

Claim 1 If x, x′ ∈ L1(v) and S ∈ L(x), then S /∈ H(x′).
To show this, suppose to the contrary that x, x′ ∈ L1(v), S ∈ L(x), and

S ∈ H(x′). Let 0 < t < 1 and consider the efficient allocation z = tx+(1− t)x′.
Then |v(S)−z(S)| = |t(v(S)−x(S))+(1−t)(v(S)−x′(S))| < t|v(S)−x(S)|+(1−
t)|v(S)−x′(S)| since v(S)−x(S) > 0 and v(S)−x′(S) < 0. Also, for any T ∈ 2N ,
we have |v(T )− z(T )| 6 t|v(T )−x(T )|+(1− t)|v(T )−x′(T )| by the triangular
inequality. Hence, ℓ(z) < tℓ(x) + (1 − t)ℓ(x′) = min{ℓ(x′′) | x′′ ∈ X(v)},
contradicting the fact that z ∈ X(v). This proves Claim 1.

Claim 2 Let x ∈ L1(v). If y is a sidepayment with y(S) > 0 for all S ∈ E(x),
then

∑
S∈L(x) y(S) 6 0 and

∑
S∈H(x) y(S) > 0.

To show this, let y be a sidepayment with y(S) > 0 for all S ∈ E(x). Let
ε > 0 be so small that L(x+ εy) = L(x), H(x+ εy) ⊇ H(x), L(x− εy) ⊇ L(x),
and H(x− εy) = H(x) . Then

ℓ(x+ εy) =
∑

S∈L(x+εy)

(v(S)− x(S)− εy(S))

+
∑

S∈H(x+εy)

(x(S) + εy(S)− v(S))

=
∑

S∈L(x)

(v(S)− x(S))− ε
∑

S∈L(x)

y(S)

+
∑

S∈H(x)

(x(S)− v(S)) + ε
∑

S∈H(x)

y(S) + ε
∑

S∈E(x)

y(S)

= ℓ(x)− 2ε
∑

S∈L(x)

y(S) .

This implies
∑

S∈L(x) y(S) 6 0 since x ∈ L1(v). One similarly shows

ℓ(x− εy) = ℓ(x) + 2ε
∑

S∈H(x)

y(S)

which implies
∑

S∈H(x) y(S) > 0. This proves Claim 2.

We now define L = {S ∈ 2N | S ∈ L(x) for some x ∈ L1(v)} and H =
{S ∈ 2N | S ∈ H(x) for some x ∈ L1(v)}. For each S ∈ L take an xS ∈
L1(v) such that S ∈ L(xS) and for each S ∈ H take an xS ∈ L1(v) such
that S ∈ H(xS). Let x̂ be a convex combination of all these xS with positive
weights. By convexity of the L1-center (Lemma 5.2) we have x̂ ∈ L1 and by
Claim 1, L = L(x̂) and H = H(x̂). Writing E = E(x̂) = 2N \ (L ∪ H) (so
E ⊆ E(x) for all x ∈ L1(v)), we claim that L ∪ E and H ∪ E are balanced.
Let y be a sidepayment with y(S) > 0 for all S ∈ L ∪ E. By Claim 2 we
have

∑
S∈H(x̂) y(S) > 0, hence

∑
S∈L∪E y(S) 6 0 (since

∑
S∈2N y(S) = 0), so

that y(S) = 0 for all S ∈ L ∪ E. Lemma 2.1 implies that L ∪ E is balanced.
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Similarly one shows that H ∪ E is balanced. Thus, (L ∪ E,H ∪ E) ∈ P and
clearly L1(v) ⊆ AC(L ∪ E, v) ∩ C(H ∪ E, v).3

For the converse inclusion L1(v) ⊇ AC(L ∪ E, v) ∩ C(H ∪ E, v), let z ∈
AC(L∪E, v)∩C(H∪E, v). If z(S) < v(S) for some S ∈ 2N then S ∈ L and thus
x̂(S) < v(S). If z(S) > v(S) for some S ∈ 2N then S ∈ H and thus x̂(S) > v(S).
Hence, if x̂(S) = v(S) for some S then also z(S) = v(S). Define the sidepayment
y by z = x̂ + y, then y(S) = 0 for all S ∈ E. By Claim 2 it follows that
ℓ(z) = ℓ(x̂), so that z ∈ L1(v). Thus, L1(v) ⊇ AC(L ∪ E, v) ∩ C(H ∪ E, v). �

An immediate consequence of Theorems 5.3 and 4.7 and Lemma 5.2 is
nonemptiness of the undominated set.

Corollary 5.4 L1(v) ⊆ UD(v) and in particular UD(v) ̸= ∅ for every game v.

The following result shows that for three-person games the L1-center and
the undominated set coincide.

Theorem 5.5 Let v be a three-person game. Then L1(v) = UD(v).

The proof of this theorem is based on an extensive case distinction, and
deferred to the appendix of this paper.

For games with more than three players the L1-center can be a strict subset
of the undominated set. This follows from the fact that the undominated set is
not necessarily convex, as was shown by Example 4.6.

6 Excess Pareto optimal allocations

The L1-center of a game v contains the efficient allocations that minimize the
sum of the absolute values of the excesses. In this section we further study
the relation between these excesses and the undominated set. For a game v, a
coalition S ⊆ N , and an allocation x ∈ X(v) we define

f(S, x, v) = f(S, x) = |v(S)− x(S)|+ |v(N \ S)− x(N \ S)|

and f(x, v) = f(x) = (f(S, x))S⊆N ∈ R2N . We also define the set D(x, v) =
D(x) by

D(x) = {x′ ∈ X(v) | f(x′) 6 f(x), f(x′) ̸= f(x)} .

Definition 6.1 Let v be a game and x ∈ X(v). Then x is excess Pareto optimal
if D(x) = ∅. The set of excess Pareto optimal allocations is denoted by EP (v).

The amount f(S, x) is the total absolute excess of the coalition S and its
complement at x. If x ∈ X(v) is excess Pareto optimal, then there is no efficient
allocation that has all these amounts lower, and at least one of them strictly

3Observe that (L∪E,H ∪E) is a maximal constellation. Its construction is similar to the
one in the proof of Lemma 4.10. Cf. also Remark 4.11.
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lower.4 Since ℓ(x) = 1
2

∑
S⊆N f(S, x), and ℓ(x) is minimal exactly on L1(v), it

follows that L1(v) ⊆ EP (v). Below we show that EP (v) is a subset of UD(v),
but we start by characterizing EP (v) by balanced collections. For a game v and
for x ∈ X(v) we define the following collections of sets:

LH(x, v) = LH(x) = {S ∈ L(x) | N \ S ∈ H(x)}

and

LEH(x, v) = LEH(x) = {S ∈ L(x) ∪ E(x) | N \ S ∈ H(x) ∪ E(x)} .

Clearly, LH(x) ⊆ LEH(x).
The following lemma characterizes excess Pareto optimal allocations in terms

of sidepayments.

Lemma 6.2 Let v be a game and let x ∈ X(v). Then x ∈ EP (v) if and only
if for every sidepayment y ∈ RN with y(S) > 0 for all S ∈ LEH(x) we have
y(S) = 0 for all S ∈ LH(x).

Proof. We will use the following claim, the straightforward proof of which is
left to the reader.

Claim Let y be a sidepayment. Then there is an ε > 0 with f(x + εy) 6 f(x)
if and only if y(S) > 0 for all S ∈ LEH(x).

For the only-if direction of the lemma, let x ∈ EP (v) and let y ∈ RN be a
sidepayment with y(S) > 0 for all S ∈ LEH(x). Then by the Claim there is an
ε > 0 such that f(x+εy) 6 f(x). Since x ∈ EP (v) this implies f(x+εy) = f(x).
In particular, consider S ∈ LH(x). Then f(S, x+ εy) = f(S, x) implies

v(S)− x(S)− εy(S) + x(N \ S) + εy(N \ S)− v(N \ S)

= v(S)− x(S) + x(N \ S)− v(N \ S)
which in turn implies ε(y(N \ S) − y(S)) = 0, hence ε(−2y(S)) = 0 and thus
y(S) = 0.

For the if-direction assume that the sidepayment condition in the lemma
holds for x. Let z ∈ X(v) such that f(z) 6 f(x). Then by the Claim the
sidepayment y = z − x satisfies y(S) > 0 for all S ∈ LEH(x), so that y(S) = 0
for all S ∈ LH(x). Therefore, if S ∈ LH(x), then f(S, z) = f(S, x), and if
N \S ∈ LH(x), then again f(S, z) = f(S, x). Also, if S,N \S ∈ L(x)∪E(x) or
S,N \S ∈ H(x)∪E(x), then f(S, z) 6 f(S, x) implies f(S, z) = f(S, x), since in
those cases f(S, x) is minimal over all efficient allocations. Hence, f(z) = f(x),
so that z /∈ D(x). Since z was arbitrary we conclude that x ∈ EP (v). �

Lemmas 2.1 and 6.2 now imply:

Theorem 6.3 Let v be a game and let x ∈ X(v). Then x ∈ EP (v) if and only
if LH(x) is balanced within LEH(x).

4Hence, Pareto optimality means ‘Pareto minimality’ here.
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We will use this characterization of EP (v) to show that it consists of a subset
of the finitely many polytopes that constitute UD(v). Define the subset Pc of
P as follows. A constellation (B1,B2) is in Pc if the set

{S ∈ B1 | N \ S ∈ B2}

is balanced.

Theorem 6.4 Let v be a game. Then

EP (v) =
∪

(B1,B2)∈Pc

AC(B1, v) ∩ C(B2, v) .

Proof. First suppose that (B1,B2) ∈ Pc and x ∈ AC(B1, v) ∩ C(B2, v). Let
B = {S ∈ B1 | N \ S ∈ B2}. Then LH(x) ⊆ B ⊆ LEH(x). Since B is balanced,
this implies x ∈ EP (v) by Theorem 6.3.

Conversely, suppose that x ∈ EP (v). Then by Theorem 6.3 there is a
balanced collection B with LH(x) ⊆ B ⊆ LEH(x). Define B1 = {∅, N} ∪
B ∪ {S,N \ S | S ∈ L(x), N \ S ∈ L(x) ∪ E(x)} and B2 = {∅, N} ∪ {S ∈
2N | N \ S ∈ B} ∪ {S,N \ S ∈ 2N | S,N \ S ∈ E(x) ∪ H(x)}. Then
{S ∈ B1 | N \ S ∈ B2} = B ∪ {∅, N} is balanced, B1 and B2 are balanced,
and B1 ∪ B2 = 2N , so (B1,B2) ∈ Pc. Moreover, x ∈ AC(B1, v) ∩ C(B2, v). This
proves the converse inclusion in the theorem. �

Theorems 6.4 and 4.7 and our observation following Definition 6.1 imply the
following result.

Corollary 6.5 For any game v, L1(v) ⊆ EP (v) ⊆ UD(v).

Lemma 4.8 and Theorem 6.4 imply:

Corollary 6.6 For any game v, the set EP (v) is compact.

Corollary 6.5 and Theorem 5.5 imply that the L1-center, the excess Pareto
optimal set and the undominated set coincide for three-person games. The next
example shows that in general EP (v) can be a proper subset of UD(v).

Example 6.7 Let (N, v) be defined by N = {1, 2, 3, 4} and, for S ⊆ N , v(S) =
1 if S = {1} or |S| = 2, v(N) = v(∅) = 0, and v(S) = −1 for all other coalitions
in N . We claim that x = 0 ∈ RN is an element of UD(v). Indeed, L(x)
consists of coalition {1} and all 2-person coalitions; E(x) = {∅, N}; and H(x)
consists of all other coalitions. So L(x) and H(x) are balanced and therefore
x ∈ UD(v) by Theorem 4.2. However, LH(x) = {1}, which is not balanced
within LEH(x) = {∅, 1, N}, so that x /∈ EP (v) by Theorem 6.3.

Like UD(v) the set EP (v) is not necessarily convex, as the following example
shows. This also implies that L1(v) can be a proper subset of EP (v).
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Example 6.8 Let N = {1, . . . , 4} and let v be defined by

v(13) = v(14) = 1, v(N) = v(∅) = 0, v(134) = −2,
v(12), v(234) = 14, and v(S) = −14, otherwise.

Let x = (0, . . . , 0) and x′ = (9, 3,−6,−6). As L(x) consists of {1, 2}, {1, 3},
{1, 4}, and {2, 3, 4}, x ∈ EP (v) by Theorem 6.3. Similarly, L(x′) = {12, 134,
234} is balanced so that x′ ∈ EP (v). Now, let z = x′/2. Then L(z) = {12, 234}
and E(z) = {∅, N} so that z /∈ EP (v).

In Section 7 we will show that although EP (v) is not necessarily convex, it
is contractible and in particular connected.

We proceed with an interesting class of games for which the undominated set
and the excess Pareto optimal set coincide. First, recall that the dual of a game
(N, v) is the game (N, v∗), defined by v∗(S) = v(N)− v(N \ S) for all S ⊆ N .
Of course, v∗∗ = v. Further, for games (N, v) and (N,w) denote by (N, v ∧ w)
the coalition-wise minimum of v and w, i.e., (v ∧ w)(S) = min{v(S), w(S)} for
all S ⊆ N . We start with the following lemma.

Lemma 6.9 For any game v, EP (v) = EP (v ∧ v∗).

Proof. Let v be an arbitrary game and write w = v ∧ v∗. It is straightforward
to check that for every S ⊆ N we have

w(S) = v(S) and w(N \ S) = v(N \ S) ⇔ v(S) + v(N \ S) 6 v(N)
w(S) = v∗(S) and w(N \ S) = v∗(N \ S) ⇔ v(S) + v(N \ S) > v(N) .

(6)
Moreover, v(N) = w(N) and therefore X(v) = X(w). Hence, if S ⊆ N and
v(S) + v(N \ S) 6 v(N), then f(S, x, v) = f(S, x, w). If S ⊆ N and v(S)+
v(N \ S) > v(N), then f(S, x, v) = |v(S) − x(S)| + |v(N \ S) − x(N \ S)| =
|x(N \S)− v∗(N \S)|+ |x(S)− v∗(S)| = f(S, x,w). Hence, EP (v) = EP (w) =
EP (v ∧ v∗). �

The following definition presents weakenings of the familiar superadditivity
and subadditivity conditions.

Definition 6.10 A game v is proper if v(S) + v(N \ S) 6 v(N) for all S ⊆ N ,
and antiproper if v(S) + v(N \ S) > v(N) for all S ⊆ N .5

Lemma 6.11 For any game v, the game v∧v∗ is proper. Moreover, v is proper
if and only if v = v ∧ v∗.

Proof. Let v be a game and S an arbitrary coalition. Then (v ∧ v∗)(S) + (v ∧
v∗)(N \ S) = min{v(S), v(N) − v(N \ S)} + min{v(N \ S), v(N) − v(S)}. If
v(S) + v(N \ S) 6 v(N), then this expression is equal to v(S) + v(N \ S), and
otherwise it is equal to 2v(N)−v(S)−v(N \S). In the first case, (v∧v∗)(S)+(v∧

5The word ‘proper’ is usually employed for simple games, with the same meaning.
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v∗)(N\S) 6 v(N) = (v∧v∗)(N); in the second case, (v∧v∗)(S)+(v∧v∗)(N\S) =
2v(N)− v(S)− v(N \ S) 6 v(N) = (v ∧ v∗)(N). Hence v ∧ v∗ is proper.

Of the second statement we only still have to show the only-if statement,
but this follows from (6). �

Lemma 6.12 For any game v, EP (v) = UD(v ∧ v∗).

Proof. Let v be an arbitrary game and write w = v ∧ v∗. By Lemma 6.9 and
Corollary 6.5 it is sufficient to show that UD(w) ⊆ EP (w). Let x ∈ UD(w).
By Lemma 6.11, w(S) + w(N \ S) 6 w(N) for all S ⊆ N . Hence LH(x,w) =
L(x,w) and LEH(x,w) = L(x,w)∪E(x,w). Hence LH(x,w) is balanced within
LEH(x,w) by Theorem 4.2, and thus x ∈ EP (w) by Theorem 6.3. �

It is straightforward to check that both EP and UD are self-dual, i.e.,
EP (v) = EP (v∗) and UD(v) = UD(v∗).

Corollary 6.13 For any proper or antiproper game v, EP (v) = UD(v).

Proof. If v is proper the corollary follows from Lemmas 6.11 and 6.12. If v is
antiproper then v∗ is proper so that EP (v∗) = UD(v∗) by the same lemmas.
Now EP (v) = UD(v) follows by self-duality of EP and UD. �

We conclude with the following theorem, which says that any efficient allo-
cation not in EP (v) is excess Pareto dominated by an allocation in EP (v). It
shows that in a specific sense EP (v) is the Pareto optimal set of X(v).

Theorem 6.14 Let v be a game and let x ∈ X(V ) \ EP (v). Then D(x) ∩
EP (v) ̸= ∅.

Proof. Define the set D(x) by D(x) = {z ∈ X(v) | f(z) 6 f(x)}. It can be
checked that z ∈ D(x) if and only if |v(N)+ v(S)− v(N \S)− 2z(S)| 6 f(S, x)
for all S ⊆ N . This implies in particular that D(x) is a nonempty polytope.
Since the map ℓ is continuous we have

∅ ̸= Dm(x) := {z ∈ D(x) | ℓ(z) 6 ℓ(z′) for all z′ ∈ D(x)} .

Take any z ∈ Dm(x), then clearly D(z) = ∅ and z ∈ D(x). Hence, z ∈
EP (v) ∩D(x). �

7 Contractibility of the set of excess Pareto op-
timal allocations

We have already seen that for a game v neither the set of excess Pareto optimal
allocations EP (v) nor the undominated set UD(v) have to be convex. In this
section we show that EP (v) satisfies the weaker condition of contractibility,
implying, in particular that it is connected. It follows (cf. Corollary 6.13) that
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if v is proper or antiproper then also UD(v) is contractible and thus connected.
Contractibility or connectedness of UD(v) in general is left as an open problem.

For a game v define T v = {f(x) ∈ R2N | x ∈ EP (v)} and

T v
+ = T v + R2N

+ = {t ∈ R2N | t > t′ for some t′ ∈ T v} .

Lemma 7.1 Let v be a game. Then T v
+ is nonempty, closed, and convex.

Proof. Nonemptiness of T v
+ is obvious, and convexity follows from convexity

of the functions f(S, ·). For closedness, let t1, t2, . . . ∈ T v
+ converge to t ∈ R2N

and xk ∈ EP (v) with f(xk) 6 tk for each k ∈ N. Since EP (v) is compact
(Corollary 6.6), we may assume that x1, x2, . . . converges to some x ∈ EP (v).
By continuity of f(·), f(x) 6 t and thus t ∈ T v

+. �

Recall that a set X ⊆ Rm is contractible if there exists a continuous map
g : [0, 1] × X → X and a point p ∈ X such that g(0, x) = x and g(1, x) = p
for all x ∈ X.6 Peleg (1972, Theorem 4.6) shows that the set of Pareto optimal
elements of any closed convex subset of some Euclidean space is contractible.
Clearly, this result also applies with Pareto optimality used in our sense of
‘Pareto minimality’. Hence, with Lemma 7.1 we obtain the following result.

Lemma 7.2 For any game v the set T v is contractible.

For t ∈ T v we consider the inverse image f−1(t, v) = f−1(t) = {x ∈ X(v) |
f(x) = t}. By definition, f−1(t) ⊆ EP (v). If x ∈ f−1(t) and z ∈ X(v) then
z ∈ f−1(t) if and only if for all S ⊆ N

S ∈ L(x) and N \ S ∈ H(x) ⇒ z(S) = x(S)
S,N \ S ∈ L(x) ∪ E(x) ⇔ S,N \ S ∈ L(z) ∪ E(z)
S,N \ S ∈ H(x) ∪ E(x) ⇔ S,N \ S ∈ H(z) ∪ E(z) .

(7)

This implies that f−1(t) is a convex polytope for each t ∈ T v. Thus, f−1(·) is
a correspondence mapping elements of T v to convex compact subsets of EP (v).
We now show that this correspondence is continuous, i.e., upper hemicontinuous
(uhc) and lower hemicontinuous (lhc).

Lemma 7.3 The correspondence f−1(·) : T v � EP (v) is continuous.

Proof. In order to show uhc of f−1(·), let t1, t2, . . . , t ∈ T v with tk → t and let
xk ∈ f−1(tk) for each k ∈ N such that xk → x ∈ EP (v). Then by continuity of
f , we have f(x) = t, and hence x ∈ f−1(t).

For lhc, let again t1, t2, . . . , t ∈ T v with tk → t and let z ∈ f−1(t). We have
to show that there are zk ∈ f−1(tk) for k = 1, 2, . . . with zk → z. We take,
for each k, zk ∈ f−1(tk) such that |zk − z| (Euclidean distance) is minimal:
these points zk exist and are unique since f−1(tk) is a compact convex set.
Since all these points zk are in the compact set EP (v), there is a converging

6I.e., the set X is homotopic to p via the homotopy g.

18



subsequence, say z1, z2, . . . itself, with limit some z̃ ∈ EP (v). It is sufficient to
show that z̃ = z. Note that z̃ ∈ f−1(t) by continuity of f . Since zk → z̃ we may
assume without loss of generality that there is a δ > 0 such that for all S ⊆ N
we have

S ∈ L(z̃) ⇒ zk(S) < v(S)− δ for all k
S ∈ H(z̃) ⇒ zk(S) > v(S) + δ for all k.

(8)

We assume that z̃ ̸= z and derive a contradiction. Since zk → z̃ ̸= z we may
assume without loss of generality that

|zk − z̃| < |zk − z| for all k. (9)

For ε > 0 and each k we define zk,ε = zk + ε(z − z̃). Then

|zk,ε − z| = |(1− ε)zk − (1− ε)z + ε(zk − z̃)|
6 (1− ε)|zk − z|+ ε|zk − z̃|
< |zk − z| ,

where the final inequality follows from (9). Hence, by the choice of zk, it follows
that zk,ε /∈ f−1(tk) for all k and ε > 0. Choose ε > 0 so small that ε(z(S) −
z̃(S)) < δ for all S ⊆ N . We will now show that then f(zk,ε) 6 f(zk) for
all k, contradicting zk,ε /∈ f−1(tk) in case f(zk,ε) = f(zk) and contradicting
zk ∈ EP (v) in case f(zk,ε) 6 f(zk), f(zk,ε) ̸= f(zk).

In order to show f(zk,ε) 6 f(zk) we distinguish the following four cases (the
remaining cases are analogous): (a) S ∈ L(z̃), N \ S ∈ H(z̃); (b) S ∈ L(z̃),
N \ S ∈ L(z̃); (c) S ∈ L(z̃), N \ S ∈ E(z̃); and (d) S,N \ S ∈ E(z̃).

Case (a) S ∈ L(z̃), N \ S ∈ H(z̃). In this case, by (7), z̃(S) = z(S), hence
f(S, zk,ε) = f(S, zk).

Case (b) S ∈ L(z̃), N \ S ∈ L(z̃). In this case, by (8), zk(S) < v(S)− δ and
zk(N \ S) < v(N \ S) − δ. Since ε(z(T ) − z̃(T )) < δ for all T ⊆ N we obtain
zk,ε(S) < v(S) and zk,ε(N \ S) < v(N \ S), so that again f(S, zk,ε) = f(S, zk).

Case (c) S ∈ L(z̃), N \S ∈ E(z̃). In this case, by (7), S,N \S ∈ L(z)∪E(z),
hence zk,ε(N \ S) = zk(N \ S) + ε(z(N \ S)− z̃(N \ S)) 6 zk(N \ S) and thus
zk,ε(S) > zk(S). Since, by (8), zk(S) < v(S)−δ and thus, by ε(z(T )−z̃(T )) < δ,
zk,ε(S) < v(S), we conclude that f(S, zk,ε) 6 f(S, zk).

Case (d) S,N \ S ∈ E(z̃). In this case, by (7), S,N \ S ∈ L(z) ∪ E(z) or
S,N \ S ∈ H(z) ∪ E(z). We assume the former, the argument for the latter is
analogous. Then zk,ε(T ) = zk(T )+ ε(z(T )− z̃(T )) 6 zk(S) for both T = S and
T = N \ S, so that we have zk,ε(T ) = zk(T ) for both T = S and T = N \ S,
and thus f(S, zk,ε) = f(S, zk). �

Theorem 7.4 For any game v the set EP (v) is contractible.

Proof. For every t ∈ T v let xt be the lexicographically maximal element of
f−1(t). Let EP lex(v) = {xt | t ∈ T v}. The map f : EP lex(v) → T v, i.e., the
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restriction of f to EP lex(v), is a continuous bijection. Also its inverse, denoted
by f−1, is continuous, which can be seen as follows. Let t1, t2, . . . , t ∈ T v with

tk → t. We have to show that f−1(tk) → f−1(t), i.e., that xtk → xt. Since xtk

is an element of the bounded (even compact) set EP (v) for each k, there is a
converging subsequence, and it is sufficient to prove that this subsequence has

limit xt. For simplicity of notation let (xtk)k∈N be this subsequence. By Lemma
7.3 (specifically, by lhc of f−1(·)) there is a sequence (xk)k∈N with xk ∈ f−1(tk)

and xk → xt. Since xtk is the lexicographic maximum of f−1(tk) for each k and

xt is the lexicographic maximum of f−1(t), we have xtk → xt.
Thus, f is a homeomorphism between EP lex(v) and T v and therefore, by

Lemma 7.2, EP lex(v) is contractible. This implies that there is an x̂ ∈ EP lex(v)
and a continuous function g : [0, 1]×EP lex(v) → EP lex(v) such that g(0, x) = x
and g(1, x) = x̂ for all x ∈ EP lex(v). Define the function h : [0, 1] × EP (v) →
EP (v) by

h(α, x) =

{
(1− 2α)x+ 2αxf(x) if 0 6 α 6 1

2

g(2α− 1, xf(x)) if 1
2 6 α 6 1

for all (α, x) ∈ [0, 1] × EP (v). Then, by convexity of the set f−1(t), we have
h(α, x) ∈ f−1(t) for all x ∈ EP (v), t = f(x), and 0 6 α 6 1

2 ; and h is continuous,
in particular, since g is. Also, h(0, x) = x and h(1, x) = x̂ for all x ∈ EP (v).
Thus, EP (v) is contractible. �

8 The min-prenucleolus

An interesting question is whether there exists a single-valued solution for TU-
games which always assigns a point in UD(v) or EP (v). An obvious candidate
for such a solution is the prenucleolus (Schmeidler, 1969), since this is contained
in the core if the core is not empty. It is defined as follows. Recall that for a
game (N, v), a coalition S and an allocation x ∈ X(v), e(S, x, v) = v(S)− x(S)

denotes the excess of S at x. By θ(x) ∈ R2|N|−2 we denote the vector in which
the excesses of all nonempty proper coalitions inN are arranged in nonincreasing
order. The prenucleolus of (N, v) is the efficient allocation, denoted ν(N, v) =
ν(v), which lexicographically minimizes θ(x) over all x ∈ X(v).

The following example, however, shows that even in three-player games,
where the undominated set, the excess Pareto optimal set, and the L1-center
coincide, the prenucleolus does not have to be in the undominated set.

Example 8.1 Consider the three-player game v with v(1) = v(2) = v(3) =
v(23) = 1, v(12) = v(13) = −1, and v(123) = 0. The prenucleolus of this game
is x = (0, 0, 0) but E(x, v) = {N, ∅} and H(x, v) = {12, 13}, so that by Theorem
4.2 we have x /∈ UD(v).

We now propose a modification of the prenucleolus and prove that this so-
lution always assigns a point in EP (v) and hence in UD(v).
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Definition 8.2 The min-prenucleolus of v, denoted by ν∧(v), is defined by
ν∧(v) = ν(v ∧ v∗).

If the game v is proper then by Lemma 6.11 the min-prenucleolus of v is
just the prenucleolus of v. The game in Example 8.1 is not proper, and as the
following example shows its min-prenucleolus is in the undominated set.

Example 8.3 Consider the three-player game v from Example 8.1. Then v∗

is given by v∗(2) = v∗(3) = 1, v∗(1) = v(12) = v(13) = v∗(23) = −1,
and v∗(123) = 0. Then the game w = v ∧ v∗ is equal to v∗ and has min-
prenucleolus equal to x = (− 4

3 ,
2
3 ,

2
3 ). Now L(x, v) = {1, 2, 3}, E(x, v) = {∅, N},

and H(x, v) = {12, 13, 23}, so that x ∈ UD(v) by Theorem 4.2.

Proposition 8.4 For any game v, ν∧(v) ∈ EP (v).

Proof. Let w = v ∧ v∗ and x = ν(w). By Lemma 6.9 it is sufficient to show
that x ∈ EP (w). As w(S) + w(N \ S) 6 w(N), S ∈ L(x,w) implies N \ S ∈
H(x,w), i.e., LH(x,w) = L(x,w). By the characterization of the prenucleolus
by Kohlberg (1971), {N}∪L(x,w) is balanced so that the proof is complete by
Theorem 6.3. �

The min-prenucleolus does not have to be in the L1-center, as the following
example shows.

Example 8.5 Let v be the four-person game defined in Example 6.8. For this
game L1(v) ̸= EP (v) and the game is proper so that its min-prenucleolus is
equal to its prenucleolus x = (−51

5 , 10
2
5 ,−2 3

5 , −23
5 ). Then one can check that

ℓ(x) > ℓ(0, 0, 0, 0), so that x /∈ L1(v).

We present an axiomatization of the min-prenucleolus based on a reduced
game property, among other axioms. To this end we make the set of players
variable. The universe of potential players is U ⊆ N, with {1, 2, 3, 4} ⊆ U . A
game is now any pair (N, v) such that ∅ ̸= N ⊆ U is finite and v : 2N → R,
v(∅) = 0. The set of all games is denoted by ΓU .

Let σ be a solution, i.e., σ(N, v) ⊆ {x ∈ RN | x(N) 6 v(N)} for all (N, v) ∈
ΓU . Then σ satisfies

(i) single-valuedness (SIVA) if |σ(N, v)| = 1 for all (N, v) ∈ ΓU ;
7

(ii) Pareto optimality (PO) if σ(N, v) ⊆ X(N, v) for all (N, v) ∈ ΓU ;

(iii) anonymity (AN) if, for any (N, v) ∈ ΓU and any injection τ : N → U ,
σ(τ(N), τv) = τ(σ(N, v)), where τv(S) = v(τ−1(S)) for all S ⊆ τ(N),
and τ(x)i = xτ−1(i) for all i ∈ τ(N) and x ∈ RN ;

(iv) covariance under strategic equivalence (COV) if σ(N, av+b) = aσ(N, v)+b
for any (N, v) ∈ ΓU , a > 0, b ∈ RN ;

7In case σ is single-valued we identify σ(N, v) with its unique element.

21



(v) the reduced game property (RGP) if, for (N, v) ∈ ΓU and ∅ ̸= S ⊆ N ,
xS ∈ σ(S, vS,x) for all x ∈ σ(N, v), where xS := (xi)i∈S and where the
reduced game (S, vS,x) is defined by

vS,x(T ) =

 v(N)− x(N \ S) if T = N,
maxQ⊆N\S v(T ∪Q)− x(Q) if ∅ ≠ T  S,
0 if T = ∅.

(vi) self-duality (SD) if σ(N, v) = σ(N, v∗) for all (N, v) ∈ ΓU .

Remark 8.6 Sobolev (1975) showed that the prenucleolus is the unique solu-
tion that satisfies SIVA, COV, AN and RGP, provided that |U | = ∞.

Our solution ν∧ satisfies all of the foregoing properties except RGP. We
weaken this property, as follows. A solution σ satisfies

(viii) the min-reduced game property (min-RGP) if, for (N, v) ∈ ΓU , ∅ ̸= S ⊆ N ,
and x ∈ σ(N, v) we have: if vS,x = vS,x ∧ (vS,x)∗ (i.e., if vS,x is proper),
then xS ∈ σ(S, vS,x).

Moreover, we need the following property, which is stronger than SD. A
solution σ satisfies

(ix) min-self-duality (min-SD) if σ(N, v ∧ v∗) = σ(N, v) for all (N, v) ∈ ΓU .

Observe that, indeed, min-SD implies SD: for a game v, we have σ(N, v) =
σ(N, v ∧ v∗) = σ(N, v∗ ∧ v) = σ(N, v∗) since v∗∗ = v.

Now, ν∧ can be characterized as follows.

Theorem 8.7 The solution ν∧ is the unique solution that satisfies SIVA, COV,
AN, min-RGP, and min-SD, provided that |U | = ∞.

Proof. Let (N, v) ∈ ΓU , let τ : N → U be an injection, b ∈ RN , a > 0, and
w = v ∧ v∗. Then τw = τv ∧ τv∗ and aw + b = (av + b) ∧ (av + b)∗. Hence ν∧
satisfies SIVA, COV, and AN because ν satisfies these properties (see Remark
8.6), and it satisfies min-SD because w ∧ w∗ = w. In order to show that ν∧
satisfies min-RGP, let x = ν(N,w) and ∅ ̸= S ⊆ N such that u = u ∧ u∗,
where u = vS,x. Since the prenucleolus satisfies RGP, it suffices to show that
u = wS,x. As w 6 v, we have wS,x 6 u. Let T ⊆ S. It remains to show
that u(T ) 6 wS,x(T ). If T = ∅ then wS,x(T ) = 0 = u(T ). If T = S then
u(T ) = v(N)− x(N \ S) = w(N)− x(N \ S) = wS,x(T ) since v(N) = v∗(N). If
∅ ̸= T  S, then there exists Q ⊆ N \S such that u(T ) = v(T ∪Q)−x(Q). Let
R = (N \S)\Q. Then u(S \T ) > v((S \T )∪R)−x(R). Since u(T )+u(S \T ) 6
u(S) = v(N)− x(N \ S), we have

v(T ∪Q)− x(Q) + v((S \ T ) ∪R)− x(R) 6 v(N)− x(N \ S)
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hence v(T ∪Q) 6 v(N)− v((S \ T ) ∪R). Then

w(T ∪Q) = min{v(T ∪Q), v(N)− v((S \ T ) ∪R)}
= v(T ∪Q) .

Thus,

wS,x(T ) = max
P⊆N\S

{w(T ∪ P )− x(P )}

> w(T ∪Q)− x(Q)

= v(T ∪Q)− x(Q)

= u(T ) .

In order to show uniqueness, let σ be a solution that satisfies the five axioms.
We show first that σ satisfies PO. Let (N, v) ∈ ΓU and x = σ(N, v). If |N | = 1,
i.e., N = {i} for some i ∈ U , then xi 6 v({i}). By COV we may assume
v({i}) = 0. If we had xi < 0, then 2xi ̸= xi whereas v = 2v, so that COV is
violated. Hence, xi = 0. If |N | > 2, then for any i ∈ N , ({i}, v{i},x) coincides
with its dual so that, by min-RGP, xi = v{i},x({i}) = v(N)−x(N \{i}). Hence,
x(N) = v(N).

Now we are able to finish the proof. Let (N, v) ∈ ΓU and x = ν∧(N, v).
In order to show that x = σ(N, v), by min-SD and COV we may assume that
v = v ∧ v∗ and x = 0 ∈ RN . Hence, in particular, 0 = ν(N, v). According to
Sobolev (1975) there exists a game (M,u) ∈ ΓU with the following properties:
(1) N ⊆ M ; (2) u(N) = 0; (3) for all i, j ∈ M there exists a permutation
τ : M → M such that τu = u and τ(i) = j; and (4) with y = 0 ∈ RM , uN,y = v.
Then, by PO and AN, σ(M,u) = y. By min-RGP, yS = 0 = x = σ(N, v). �

We conclude this section with a few remarks.

Remark 8.8 A careful inspection of Sobolev’s (1975) proof shows that the
game (M,u) in the proof of Theorem 8.7 is proper. Hence, on the set of proper
games the prenucleolus is characterized by SIVA, COV, AN, and min-RGP,
provided that |U | = ∞. This suggests that a characterization of the prenucleolus
on other classes of games may be obtained by modifying the axioms in an
appropriate way. In particular, RGP should be restricted to hold for those
reduced games that are in the class of games under consideration.

Remark 8.9 We show that each of the axioms in Theorem 8.7 is logically
independent of the remaining axioms. Define, for any (N, v) ∈ ΓU , σ

1(N, v) =
X(N, v), σ2(N, v) = x to be the “equal split solution”, i.e., xi = v(N)/|N | for
all i ∈ N , σ4(N, v) = ν(N, v), σ5(N, v) to be the Shapley value of v ∧ v∗. Then
σj , j = 1, 2, 4, 5 satisfies all axioms except the j-th one. We recall that

C+(N, v) = {x ∈ X(N, v) | v(S)− x(S) 6 (v(S)− ν(S))+},

where t+ = max{0, t} for t ∈ R and ν = ν(N, v), is called the positive core of
(N, v) (see Orshan and Sudhölter, 2010). Select a total order ≽ on U and define

σ3(N, v) = {x ∈ C+(N, v ∧ v∗) | x ≽lex y for all y ∈ C(N, v ∧ v∗)},
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where ≽lex is the lexicographic order induced by ≽, i.e., if x, y ∈ RN , then
x ≽lex y is defined by

i ∈ N, yi > xi =⇒ there exists j ∈ N with xj > yj and j ≽ i.

Similarly to Lemma 6.3.15 of Peleg and Sudhölter (2007) it may be shown
that σ3 satisfies SIVA, COV, min-RGP, min-SD, and violates AN. Finally, if
4 6 |U | < ∞ then there exists a solution that satisfies all five axioms, coincides
with ν∧(N, v) for all (N, v) ∈ ΓU with |N | < |U |, and does not coincide with
ν∧(U,w) for some (U,w) ∈ ΓU . For a construction of such a solution see Peleg
and Sudhölter (2007, Remark 6.3.3 and Exercises 6.2.3 and 6.3.3).

Remark 8.10 Yanovskaya (1999) proposes the absolute prenucleolus, which is
defined as the prenucleolus but then replacing the excesses by their absolute
values. Consider the three-person game v with v(N) = v(123) = 0, v(1) =
v(2) = v(3) = v(23) = −1, and v(12) = v(13) = 1. For this (proper) game
the absolute prenucleolus is x = (0, 0, 0), which however does not belong to
UD(v): L(x) = {12, 13} and E(x) = {∅, N}, so that L(x) is not balanced
within L(x) ∪ E(x). So the absolute prenucleolus does not select from UD nor
from EP .

9 Proper games

We have seen that on the interesting class of proper games some of the concepts
above simplify. In particular, the undominated set and the excess Pareto optimal
set coincide, and the min-prenucleolus is by definition just the prenucleolus, and
chooses an allocation from the undominated set.

In this section we reconsider the definition of the undominated set from
Section 3, and show that it can be simplified in an appealing manner if we
restrict attention to proper games. For a game v call an allocation x ∈ X(v)
payoff-undominated if there is no z ∈ X(v) such that

min{z(S), v(S)} > min{x(S), v(S)} for all S ∈ 2N ,

with at least one strict inequality. Let U(v) denote the set of all payoff-
undominated allocations. It is not difficult to see that x ∈ U(v) if and only
if there is no z ∈ X(v) with z(S) > x(S) for all S ∈ L(x), at least one inequal-
ity strict, and z(S) > v(S) for all S ∈ E(x) ∪ H(x). In other words, it is not
possible to make all coalitions that receive less than their worth in x at least
as well off and some strictly better off, while giving all other coalitions still at
least their worth. From the proof of Theorem 4.2 it follows that x ∈ U(v) if and
only if L(x) is balanced within L(x) ∪ E(x). Obviously, UD(v) ⊆ U(v) for any
game v. For proper games the two sets coincide.

Theorem 9.1 Let v be a proper game. Then U(v) = UD(v).
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Proof. Let x ∈ U(v). It is sufficient to prove that x ∈ UD(v) and for this
it is sufficient to prove that H(x) is balanced within H(x) ∪ E(x). We will
actually prove that H(x) ∪ E(x) is balanced. Let B be a balanced collection
with L(x) ⊆ B ⊆ L(x) ∪ E(x) and let y be a sidepayment with y(S) > 0 for
all S ∈ H(x) ∪ E(x). Then for each S ∈ B we have y(S) 6 0 since N \ S ∈
H(x)∪E(x) by properness of v. Since B is balanced, y(S) = 0 for all S ∈ B by
Lemma 2.1. Since B ∪H(x) ∪E(x) = 2N we have y(S) > 0 for all coalitions S,
implying y = 0. Hence, H(x) ∪ E(x) is balanced by Lemma 2.1. �

10 Concluding remarks

This paper presents an extensive study of four increasing set extensions of the
core and the anticore: the L1-center, the excess Pareto optimal set, the un-
dominated set, and the set of payoff-undominated allocations. It also presents
a single-valued selection from the excess Pareto optimal set, namely the min-
prenucleolus.

We have focussed on geometric properties of these sets and on balancedness
conditions. An interesting avenue for further research is to develop axiomatic
characterizations, perhaps by using reduced game properties such as in the
characterization of the core by Peleg (1986).

We finally mention that many of our results will go through, with appropriate
modifications, if the set of all coalitions 2N is replaced by a balanced collection
B containing the empty set and the grand coalition.

Appendix

Proof of Theorem 5.5. Since the correspondence UD(·) satisfies COV (prop-
erty (iv) in Section 8) we may normalize the game v such that v({i}) = 0 for
each i ∈ N and v(N) = 1, assuming that v(N) >

∑
i∈N v({i}). The proof is

analogous in the case v(N) <
∑

i∈N v({i}), or we may use UD(−v) = −UD(v)
in that case. The case v(N) = 0 will be considered later.

For an x ∈ UD(v) the collections L(x, v)∪E(x, v) and H(x, v)∪E(x, v) each
must contain a balanced sub-collection. Writing, respectively, LE and HE for
potential candidates, ignoring N and ∅, and assuming that v is not balanced
or antibalanced – these cases are covered by Theorem 4.5 – so that we exclude
LE = {∅, N} and HE = {∅, N}, we have the following seven cases, where in
each case some necessary conditions are added for the associated polytope to
be nonempty:

1. LE ⊇ {2, 3, 12, 13}, HE ⊇ {1, 23}; this implies v(23) 6 0, v(13) > 1,
v(12) > 1.

2. LE ⊇ {1, 3, 12, 23}, HE ⊇ {2, 13}; this implies v(13) 6 0, v(12) > 1,
v(23) > 1.
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3. LE ⊇ {1, 2, 13, 23}, HE ⊇ {3, 12}; this implies v(12) 6 0, v(13) > 1,
v(23) > 1.

4. HE ⊇ {2, 3, 12, 13}, LE ⊇ {1, 23}; this implies v(23) > 1, v(13) 6 1,
v(12) 6 1, v(12) + v(13) 6 1.

5. HE ⊇ {1, 3, 12, 23}, LE ⊇ {2, 13}; this implies v(13) > 1, v(12) 6 1,
v(23) 6 1, v(12) + v(23) 6 1.

6. HE ⊇ {1, 2, 13, 23}, LE ⊇ {3, 12}; this implies v(12) > 1, v(13) 6 1,
v(23) 6 1, v(13) + v(23) 6 1.

7. LE ⊇ {12, 13, 23}, HE ⊇ {1, 2, 3}; this implies v(12) > 0, v(13) > 0,
v(23) > 0, v(12) + v(13) + v(23) > 2.

There is prima facie another case, namely as case 7 but with the roles of H and
L swapped, but this is not possible: we cannot have x(N) = 1 and xi 6 0 for
i = 1, 2, 3. Clearly, in each of these seven cases the set of efficient allocations
under consideration forms a polytope in UD(v). We now show that for each
instance where two of these cases are not disjoint, the set UD(v) consists again
of exactly one polytope. Thus, UD(v) always consists of exactly one polytope,
and the theorem (for v(N) = 1) follows from Theorem 5.3 and Corollary 5.4.

Consider case 1. Clearly, cases 2, 3, and 4 are not compatible with case 1.
If cases 1 and 5 are compatible then v(23) 6 0 and v(12) = v(13) = 1; then
the game is balanced (with for instance (1, 0, 0) ∈ C(v)), but this was already
excluded. If cases 1 and 6 are compatible then v(13) = 1, v(12) > 1, v(23) 6 0;
also in this case the game is balanced with (1, 0, 0) ∈ C(v). If cases 1 and 7 are
compatible then v(23) = 0, v(13) > 1, v(12) > 1; again, (1, 0, 0) ∈ C(v).

Cases 2 and 3 are analogous to case 1. Consider case 4. If cases 4 and 5
are compatible then v(13) = v(23) = 1 and v(12) 6 0; then (0, 0, 1) ∈ C(v) and
the game is balanced. If cases 4 and 6 are compatible then v(12) = v(23) = 1
and v(132) 6 0; now (0, 1, 0) ∈ C(v), so v is balanced. If cases 4 and 7 are
compatible then v(23) > 1, 0 6 v(12), v(13) 6 1, and v(12) + v(13) 6 1; also
in this case the game is balanced with C(v) the convex hull of {(0, v(12), 1 −
v(12)), (0, 1− v(13), v(13)}.

The cases 5 and 6 are analogous to case 4. This concludes the proof when
v(N) = 1.

We finally consider the case v(N) = 0, again assuming that the game is not
balanced or antibalanced. Now we have eight cases:

1’. LE ⊇ {2, 3, 12, 13}, HE ⊇ {1, 23}; this implies v(23) 6 0, v(13) > 0,
v(12) > 0.

2’. LE ⊇ {1, 3, 12, 23}, HE ⊇ {2, 13}; this implies v(13) 6 0, v(12) > 0,
v(23) > 0.

3’. LE ⊇ {1, 2, 13, 23}, HE ⊇ {3, 12}; this implies v(12) 6 0, v(13) > 0,
v(23) > 0.
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4’. HE ⊇ {2, 3, 12, 13}, LE ⊇ {1, 23}; this implies v(23) > 0, v(13) 6 0,
v(12) 6 0.

5’. HE ⊇ {1, 3, 12, 23}, LE ⊇ {2, 13}; this implies v(13) > 0, v(12) 6 0,
v(23) 6 0.

6’. HE ⊇ {1, 2, 13, 23}, LE ⊇ {3, 12}; this implies v(12) > 0, v(13) 6 0,
v(23) 6 0.

7’. LE ⊇ {12, 13, 23}, HE ⊇ {1, 2, 3}; this implies v(12) > 0, v(13) > 0,
v(23) > 0.

8’. HE ⊇ {12, 13, 23}, LE ⊇ {1, 2, 3}; this implies v(12) 6 0, v(13) 6 0,
v(23) 6 0.

Like in the first part we consider what happens if two cases are compatible. If
cases 1 and 2 or 1 and 3 are compatible then the game has a nonempty anticore.
If cases 1 and 4 are compatible then the game is the (additive) zero-game with
zero being the unique allocation in the core or anticore. If case 1 is compatible
with any of the cases 6–8 then the zero allocation is in the core. Cases 2 and 3
are analogous to case 1. If case 4 is compatible with any of the cases 5–8 then
again the zero allocation is in the core. Cases 5 and 6 are analogous to case 4.
If, finally, cases 7 and 8 are compatible then v is again the zero-game. �
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Bejan C, Gómez JC (2009) Core extensions for non-balanced TU-games. In-
ternational Journal of Game Theory 38:3–16

Bondareva ON (1962) Theory of the core in the n-person game. Vestnik
Leningradskii Universitet 13:141–142 (in Russian)

Bossert W, Derks J, Peters H (2005) Efficiency in uncertain cooperative games.
Mathematical Social Sciences 50:12–23

Derks J, Peters H (1998) Orderings, excess functions, and the nucleolus. Math-
ematical Social Sciences 36:175–182

Kohlberg E (1971) On the nucleolus of a characteristic function game. SIAM
Journal of Applied Mathematics 20:62–66

Maschler M, Peleg B, Shapley LS (1979) Geometric properties of the kernel,
nucleolus, and related solution concepts. Mathematics of Operations Re-
search 4:303–383

Orshan G, Sudhölter P (2010) The positive core of a cooperative game. Inter-
national Journal of Game Theory 39:113–136

Peleg B (1972) Topological properties of the efficient point set. Proceedings of
the American Mathematical Society 15:531–535

27



Peleg B (1986) On the reduced game property and its converse. International
Journal of Game Theory 15:187–200

Peleg B, Sudhölter P (2007) Introduction to the Theory of Cooperative Games.
Springer, Berlin Heidelberg, 2nd edition

Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM
Journal on Applied Mathematics 17:1163–1170

Shapley LS (1967) On balanced sets and cores. Naval Research Logistics Quar-
terly 14:453–460

Shapley LS, Shubik M (1966) Quasi-cores in a monetary economy with convex
preferences. Econometrica 34:805–827

Sobolev AI (1975) The characterization of optimality principles in cooperative
games by functional equations. In: Mathematical Methods in the Social
Sciences, edited by N.N. Vorobiev, vol. 6, 95–151, Vilnius, Academy of
Sciences of the Lithuanian SSR (in Russian)

Spinetto R (1974) The geometry of solution concepts for N -person cooperative
games. Management Science 20:1295–1299

Yanovskaya E (1998) Set-valued analogues of the prenucleolus for cooperative
TU-games. International Journal on Mathematics, Game Theory and
Algebra 7, no. 4

Yanovskaya E (2002) A family of least power values for cooperative games with
transferable utilities. In: Tangian A, Gruber J (eds.) Constructing and
Applying Objective Functions. Proceedings of the fourth international
conference on econometric decision models. Springer, Berlin, 473–494

von Neumann J, Morgenstern O (1944) Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, NJ

28


