Muscle wasting: the role of the ubiquitin-proteasome pathway in muscle atrophy and remodelling

Citation for published version (APA):


Document status and date:
Published: 01/01/2006

DOI:
10.26481/dis.20060921rm

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 16 Oct. 2023
Summary – Samenvatting
Summary

Muscle wasting occurs as a result of several diseases, including sepsis and cancer. When this loss of muscle mass is extensive it is very detrimental to the patient. Extensive muscle wasting is associated with an impaired prognosis and increased mortality rates. Moreover, muscle wasting limits patients in performing the activities of daily living and prolongs recovery. Since muscles are mainly built from proteins, it is the muscle protein mass that determines muscle mass and function. Muscle proteins are continuously synthesized and degraded (protein turnover). A continuous turnover is necessary to replace damaged or dysfunctional proteins. In healthy persons, muscle protein synthesis and breakdown are balanced and muscle protein mass does not change. During disease, muscle protein degradation can become larger than protein synthesis, causing the muscle protein mass to decrease. It is now known that during several diseases an increased protein breakdown is largely responsible for the observed muscle wasting. Although several molecular mechanisms exist to degrade proteins, muscle proteins are mainly degraded by the ubiquitin-proteasome (Ub-P) pathway. This pathway is an intricate network of different enzymes and protein structures that work together to specifically degrade many different muscle proteins. Basically, protein degradation by this pathway can be divided in two main steps. Firstly, muscle proteins are bound with a chain of ubiquitin molecules, ‘marking’ them for degradation. A large protein structure called the proteasome recognizes the ‘marked’ proteins, after which the proteins enter the proteasome where they are degraded to small pieces (peptides). This pathway of protein breakdown is active in muscle continuously, providing a constant rate of protein breakdown. However, during for example infectious diseases (like sepsis) or cancer the Ub-P pathway is activated beyond the normal level, leading to an increased protein breakdown and muscle wasting. Thus, to develop interventions to prevent muscle wasting during these diseases, it is crucial to understand the exact mechanisms activating the Ub-P pathway. In this thesis we therefore aimed to study the regulation and activation of the Ub-P pathway during sepsis and cancer, two diseases in which muscle wasting is a common problem.

In our experiments we used zymosan injections in rats as an experimental model of sepsis. In chapter 2 we characterized the zymosan sepsis model with respect to muscle wasting and function. Zymosan injection caused a
large drop in both body and muscle mass in these rats, 5-6 days after which body and muscle mass slowly started to recover. Muscle wasting occurred very rapidly after zymosan injection with a maximum loss of 35-40% measured on day 6 in both the tibialis anterior and gastrocnemius muscles (two lower leg muscles). Not surprisingly, we found that these muscles had a lower functional capacity. Strikingly, muscle quality did not change as a result of sepsis, an observation which has been described during sepsis. In chapter 2, we also studied the effect of sepsis on muscle fibers. Muscles are composed of bundles of these small fibers. Several types of muscle fibers exist, each with different functional capacities. Roughly, type 1 fibers are slow, develop a low maximal force, but have great endurance, whereas type 2 fibers are fast, develop a high maximum force, but fatigue rapidly. As expected, we found that muscle wasting led to a decrease of cross-sectional area in both fiber types. In type 2 fibers, this decrease was much larger than in type 1 fibers. Thus, type 1 fibers are more resistant to muscle wasting during sepsis than type 2 fibers. To explain this phenomenon we compared the activity of the proteasome during sepsis between muscles with mainly type 1 fibers and muscles with mainly type 2 fibers. We showed an increased activity during sepsis in the type 2 fiber muscle but not in the type 1 fiber muscle, showing that probably sepsis increases protein breakdown more in type 2 muscle fibers than in type 1 muscle fibers.

In chapter 3, we studied the activation of the Ub-P pathway in rat skeletal muscle after zymosan injection. As explained above, the two main steps in muscle protein degradation by the Ub-P pathway are the binding of ubiquitin molecules to muscle proteins, and the degradation of these proteins by the proteasome. We found that after zymosan injection, both processes were activated. Muscle proteins were increasingly bound with ubiquitin, implying an activation of the cascade of ‘ubiquitination’-enzymes after zymosan injection. In addition, muscle proteasomes were more active (faster protein degradation) after zymosan injection. Our experiments showed that an increased Ub-P pathway activity is likely to play a role in causing muscle wasting during sepsis and that this pathway is activated at different levels.

Several animal studies show that the Ub-P pathway is also involved in muscle wasting observed during cancer. The condition in which cancer patients lose body weight (both muscle mass and fat mass) very rapidly is called cachexia. In animal experiments it has been suggested that the
transcription factor NF-κB is activated in the muscle and that this triggers muscle wasting by activating muscle protein breakdown by the Ub-P pathway. In chapter 6, we aimed to study this hypothesis in muscle biopsies of lung cancer patients. Cachexia is a common problem in lung cancer patients and therefore it is crucial to understand the underlying mechanisms to develop interventions to prevent this condition. We showed that one of the key ubiquitinating enzymes, Muscle Ring-Finger protein 1 (MuRF1), may be involved in muscle wasting at an early stage. A limited decrease of body and muscle mass is likely to explain why we did not observe additional evidence for an activation of the Ub-P pathway in the lung cancer patients. Cancer patients commonly show a low-grade systemic inflammation, which has been implicated as a cause of cachexia. Interestingly, we showed an association between markers of NF-κB activity and the inflammatory state of the patients. This observation provides the first link between inflammation and muscle NF-κB activity in cancer patients, and suggests that also in humans NF-κB may play a central role in causing muscle wasting during cancer.

Another factor that has been implicated in causing cachexia is an increased energy expenditure. The uncoupling protein 3 (UCP3) has been studied for its effect on energy expenditure. However, it is now clear that UCP3 is not involved in regulating energy expenditure during cachexia, and alternative hypotheses about its role have been postulated. In chapter 4, we investigated the hypothesized role for UCP3 in the defense against oxidative damage during muscle wasting. We show that during muscle wasting induced by zymosan injections UCP3 protein content in the muscle is increased together with an increased abundance of the highly reactive substance 4-hydroxy-2-nonenal (4-HNE). 4-HNE is a highly reactive substance which can cause muscle damage. This shows that UCP3 indeed may fulfill the hypothesized function during periods of muscle wasting and oxidative stress.

A lot of research has been done on the role of protein breakdown and the Ub-P pathway during periods of muscle wasting. In contrast, protein breakdown has been hardly investigated during periods of gain of muscle mass. Resistance exercise has been shown to lead to an increase of muscle mass. There is a lot of evidence showing that an increased rate of protein synthesis in the muscle after this type of exercise is the main cause for the increased muscle mass. However, to get a complete picture more should be
known about the response of protein breakdown. In chapter 5, we therefore investigated the short-term effect of high-resistance exercise on protein breakdown and the activity of the Ub-P pathway in rat muscles. We showed that protein breakdown was largely unchanged shortly after a high-resistance exercise protocol, as was the activity of the proteasome. Interestingly, however, we showed that the binding of ubiquitin to muscle proteins was increased after the exercise bout. This implicates that at least some muscle proteins are increasingly ‘tagged’ to be broken down by the proteasome. We suggest that this may be a mechanism of the muscle to adapt its protein composition to the exercise.

To summarize, our data show that the Ub-P pathway is involved in muscle wasting during sepsis and cancer and that this pathway can be activated at different levels in the cascade of reactions leading to protein degradation by the proteasome. In future studies, however, more information is needed about the triggers activating the Ub-P pathway in each disease. Moreover, to be able to develop targeted interventions more effort is needed to identify the exact muscle proteins that are targeted by the Ub-P pathway during conditions of muscle wasting.
Samenvatting

Spiermassaverlies kan optreden als gevolg van verschillende ziektes, waaronder sepsis en kanker. Als dit massaverlies grote vormen aanneemt, heeft dit ernstige gevolgen voor de patiënt. Deze patiënten hebben een slechterere prognose en een hogere mortaliteit als gevolg van hun ziekte. Spiermassaverlies leidt tot problemen in het uitvoeren van de activiteiten van het dagelijkse leven en vertraagt het herstel van de patiënt.

Omdat spieren hoofdzakelijk opgebouwd zijn uit eiwitten, is het de eiwitmassa van de spier die de totale spiermassa en -functie bepaalt. In de spier is er sprake van een constante aanmaak en afbraak van eiwitten (eiwit turnover). Deze constante turnover houdt de spier als het ware ‘gezond’ door ervoor te zorgen dat beschadigde of niet functionele eiwitten vervangen worden. In gezonde personen houden de eiwitaanmaak en -afbraak in de spier elkaar in balans, wat betekent dat de spiermassa constant blijft. In geval van ziekte kan de eiwitafbraak groter worden dan de eiwitaanmaak, waardoor de spiermassa afneemt. Uit verschillende studies is gebleken dat dit spiermassaverlies voornamelijk veroorzaakt wordt door een toename van de eiwitafbraak in de spier. Hoewel de spier beschikt over verschillende moleculaire mechanismen om eiwitten af te breken, wordt kwantitatief de grootste hoeveelheid eiwitten afgebroken via het ubiquitine-proteasome (Ub-P) systeem. Dit systeem is een ingewikkelde cascade van enzymen en andere eiwitstructuren die samenwerken om specifiek een groot aantal eiwitten af te breken. Ruwweg kan het Ub-P systeem onderverdeeld worden in 2 stappen. In de eerste stap wordt er een keten van ubiquitine moleculen gebonden aan een spiereiwit, waardoor dit eiwit gemarkeerd wordt om afgebroken te worden. Een grote eiwitstructuur genaamd het proteasoom herkent de gemarkeerde eiwitten, waarna de eiwitten opgenomen worden in het proteasoom, waar ze vervolgens afgebroken worden tot kleine stukken (peptiden). Het Ub-P systeem is continu actief in de spier, waardoor er een constante afbraak van eiwitten plaatsvindt. Tijdens infecties (sepsis) of kanker wordt dit systeem geactiveerd, waardoor de spiereiwitafbraak verhoogd wordt en er spiermassaverlies optreedt. Om dit spiermassaverlies tegen te gaan, is het daarom cruciaal om de exacte mechanismen te begrijpen die leiden tot een activatie van het Ub-P systeem tijdens deze aandoeningen. De studies beschreven in dit proefschrift hebben daarom als doel de regulatie en de activatie van het Ub-P systeem te bestuderen tijdens...
sepsis en kanker, twee aandoeningen waarin spiermassaverlies een veel voorkomend probleem is.

In de studies beschreven in dit proefschrift is gebruik gemaakt van een proefdiermodel voor sepsis, namelijk het injecteren van ratten met een zymosan-suspensie. In hoofdstuk 2 wordt beschreven wat het effect van sepsis is op de spiermassa en -functie van deze ratten. Injectie met zymosan had een groot verlies van lichaamsgewicht en spiermassa tot gevolg, gevolgd door een langzaam herstel hiervan vanaf dag 5-6 na injectie. Een maximaal verlies van 35-40% van de spiermassa werd gemeten in de tibialis anterior en gastrocnemius spieren, 2 onderbeenspieren, op dag 6 na injectie. Tevens werd een groot verlies van functie gemeten in deze spieren. Opvallend echter was dat de spierkwaliteit intact bleef na zymosan injectie. Een verlies van spierkwaliteit en problemen met de aansturing van de spier zijn namelijk beschreven tijdens sepsis. In hoofdstuk 2 zijn ook de effecten van sepsis op afzonderlijke spierevezels bestudeerd. Spieren zijn opgebouwd uit bundels van deze kleine vezels. Spierevezels zijn onder te verdelen in verschillende types, elk met verschillende kenmerken. In het algemeen zijn type 1 spierevezels langzaam, ontwikkelen een geringe maximale kracht, maar hebben een groot uithoudingsvermogen, terwijl type 2 spierevezels snel zijn, een grote maximale kracht ontwikkelen, maar een gering uithoudingsvermogen hebben. Zoals verwacht leidde het spiermassaverlies na zymosan injectie tot een afname van de dwarsdoorsnede van de spierevezels. Deze afname bleek echter veel groter in type 2 spierevezels, wat er op duidt dat type 1 vezels meer bestand zijn tegen spiermassaverlies tijdens sepsis dan type 2 vezels. Als verklaring voor dit fenomeen laten we zien dat in type 2 spierevezels de activiteit van het proteasoom toeneemt tijdens sepsis, terwijl dit niet het geval lijkt in type 1 spierevezels.

Vervolgens wordt in hoofdstuk 3 dieper ingegaan op de manier waarop het Ub-P systeem geactiveerd wordt in de spier tijdens sepsis. Zoals hierboven beschreven staat, zijn de twee belangrijkste stappen in de eiwitafbraak door het Ub-P systeem de binding van ubiquitine moleculen aan spiereiwitten, gevolgd door de afbraak van deze eiwitten door het proteasoom. We laten zien dat tijdens sepsis beide processen versneld worden. Tijdens sepsis werden ubiquitine moleculen in grotere mate gebonden aan spiereiwitten, wat betekent dat de cascade van ‘ubiquitinatie’-enzymen verhoogd actief is. Ook bleek dat het proteasoom geactiveerd werd (snellere eiwitafbraak) tijdens sepsis. Onze experimenten laten zien dat het Ub-P systeem een
belangrijke rol speelt in het spiermassaverlies tijdens sepsis en dat dit systeem op verschillende niveaus geactiveerd wordt. Proefdierstudies laten zien dat het Ub-P systeem ook betrokken is bij het spiermassaverlies dat optreedt als gevolg van kanker. Het proces waarin kankerpatiënten als het ware uitgemergeld raken als gevolg van een groot verlies van lichaamsgewicht (zowel spier- als vetmassa) wordt cachexie genoemd. In proefdierstudies wordt gesuggereerd dat de transcriptiefactor NF-κB geactiveerd wordt in de spier tijdens kanker, dat op zijn beurt het Ub-P systeem activeert en zodoende spiermassaverlies veroorzaakt. In hoofdstuk 6 hebben we deze hypothese getest in een groep longkankerpatiënten. Cachexia is een veelvoorkomend probleem bij longkanker en daarom is het cruciaal om de achterliggende mechanismen hiervan te bestuderen, teneinde interventies ter preventie van cachexie te ontwikkelen. We laten zien dat één van de sleutelzymen in de ubiquitinatie van spiereiwitten, genaamd Muscle Ring-Finger protein 1 (MuRF1), mogelijk in een vroeg stadium betrokken is bij het spiermassaverlies. Een gering verlies van lichaamsgewicht en spiermassa verklaart waarschijnlijk waarom we geen additionele bewijzen vonden voor een activatie van het Ub-P systeem in de patiënten. Onderzoek heeft aangetoond dat bij kankerpatiënten bepaalde ontstekingsstoffen vrijkomen, die een rol spelen bij de ontwikkeling van spiermassaverlies. Interessant in dit opzicht is de aanwezigheid van een associatie tussen de aanwezigheid van deze ontstekingsstoffen in de patiëntengroep en de activiteit van NF-κB in de spier. Dit verband suggereert dat NF-κB mogelijk ook in kankerpatiënten een centrale rol speelt in het ontwikkelen van spiermassaverlies. Een toename van het energiegebruik is ook een factor die een rol speelt bij de ontwikkeling van cachexie. Het uncoupling protein 3 (UCP3) eiwit werd in eerste instantie een rol toegewezen in het veroorzaken van het hoge energiegebruik tijdens cachexie. Uit experimenten bleek echter dat UCP3 niet betrokken is in de regulatie van het energiegebruik en daarom zijn er alternatieve hypotheses opgesteld die de rol van UCP3 beschrijven. In hoofdstuk 4 hebben we de hypothese getest waarin UCP3 een belangrijke functie heeft in de bescherming tegen oxidatieve schade tijdens spiermassaverlies. We laten zien dat tijdens spiermassaverlies als gevolg van sepsis de hoeveelheid UCP3 eiwit in de spier toeneemt, samen met een toename van de stof 4-hydroxy-2-nonenal (4-HNE). 4-HNE is een stof met
een grote reactiviteit die spierschade kan veroorzaken. Onze experimenten sluiten aan bij de gehypothetiseerde functie van UCP3 tijdens spiermassaverlies en oxidatieve stress.

Veel onderzoek is verricht naar de rol van eiwitafbraak en het Ub-P systeem tijdens condities die gekarakteriseerd worden door spiermassaverlies. Eiwitafbraak is echter nauwelijks bestudeerd tijdens condities waarin de spiermassa juist toeneemt. Van krachttraining is bekend dat het de spieraanwas stimuleert. Tevens blijkt uit vele studies dat een stimulatie van de spiereiwitaanmaak grotendeels verantwoordelijk is voor deze toename van spiermassa. Het effect van krachttraining op de eiwitafbraak is echter nauwelijks bestudeerd. In hoofdstuk 5 beschrijven we daarom het korte termijn effect van krachttraining op eiwitafbraak en activiteit van het Ub-P systeem in de rattenspier. De resultaten van deze studie laten zien dat kort na een enkele krachttrainingsinspanning er geen toename van de eiwitafbraak in de spier is. Overeenkomstig hiermee vonden we ook geen effect van krachttraining op de activiteit van het proteasoom in de spier.

Een interessante bevinding in deze studie was dat één enkele krachttraining leidt tot een toename van de binding van ubiquitine aan spiereiwitten. Dit impliceert dat tenminste een aantal spiereiwitten verhoogd ‘gemerkt’ wordt om afgebroken te worden door het proteasoom. Dit gegeven suggereert mogelijk dat dit een mechanisme van de spier is om zijn eiwitcompositie aan te passen aan de gevraagde belasting.

Samenvattend kan gesteld worden dat het Ub-P systeem betrokken is bij spiermassaverlies tijdens sepsis en kanker en dat dit systeem geactiveerd wordt op meerdere punten in de cascade van reacties die leidt tot afbraak van spiereiwitten door het proteasoom. Om gerichte interventies te ontwikkelen om dit spiermassaverlies tegen te gaan, is meer kennis nodig over de specifieke triggers die het Ub-P systeem activeren in verschillende aandoeningen. In dit opzicht is het ook cruciaal dat geïdentificeerd wordt welke spiereiwitten doelwit zijn van het Ub-P systeem tijdens spiermassaverlies.