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Abstract

This paper introduces a new modelling for detecting the presence of commonalities in a set
of realized volatility measures. In particular, we propose a multivariate generalization of the
heterogeneous autoregressive model (HAR) that is endowed with a common index structure. The
Vector Heterogeneous Autoregressive Index model has the property to generate a common index
that preserves the same temporal cascade structure as in the HAR model, a feature that is not
shared by other aggregation methods (e.g., principal components). The parameters of this model
can be easily estimated by a proper switching algorithm that increases the Gaussian likelihood
at each step. We illustrate our approach with an empirical analysis aiming at combining several
realized volatility measures of the same equity index for three di¤erent markets.
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1 Introduction

The presence of co-movements in volatility measures is usually explained by a common reaction of
investors, policy makers or central banks to news in some macroeconomic and �nancial variables.
Engle and Marcucci (2006) �nd evidence in favor of the presence of common ARCH factors (Engle
and Susmel, 1993) between 435 pairs obtained from 30 stocks of the Down Jones industrial index.
However, their statistical approach might su¤er from severe size distortions while applied in a
multivariate setting (see Cubadda and Hecq, 2011; Hecq, Laurent and Palm, 2015). Anderson and
Vahid (2007) propose to look at information criteria for determining the presence and the number
of principal component factors out of 21 Australian weekly stock return volatilities. It turns out
that this latter approach is probably more robust to the presence of jumps and fat tails than the
canonical correlation framework of Engle and Marcucci (2006). However, in those contributions
the dynamics of the system is assumed to be very parsimonious, in contradiction with the observed
time series properties of daily volatility measures. For instance, the univariate Heterogeneous
Autoregressive model (HAR, see Corsi, 2009) captures the long range dependence observed in daily
time series by a restricted autoregressive model of order 22.

We propose in this paper a new modeling for analyzing the joint behavior of a set of daily
volatility measures. First, we start with a multivariate version of the HAR, namely the Vector
HAR (VHAR henceforth, see Bubák, Koµcenda and µZike�, 2011). Next, we test and consequently
restrict the VHAR by means of a multivariate autoregressive index model (Reinsel, 1983). In
particular, we impose proper reduced rank restrictions on the coe¢ cient matrices of the VHAR to
obtain the Vector Heterogeneous Autoregressive Index model (VHARI henceforth).

The VHARI is nested within the unrestricted VHAR, which is in turn a restricted version of
a vector autoregressive model (VAR) of order 22. The VHARI provides a parsimonious modeling,
whose forecasting performance can be compared with those of either less restricted multivariate
models (e.g., VHAR or VAR(22)) or univariate HAR equations. At the representation theory level,
the common factors obtained from the VHARI, namely the indexes, preserve the same temporal
cascade structure as in the HAR, i.e., the weekly (monthly) index is equal to the weekly (monthly)
moving average of the daily index. This is an important property of the VHARI that is not shared
by most of the alternative aggregation methods (e.g., principal components, canonical correlations,
etc.). Moreover, in a VHARI with one common component, a speci�cation that is not rejected by
the data in our empirical section of this paper, the unique index is generated by an univariate HAR
model. This is also not generally the case for alternative aggregation strategies.

The rest of the paper is as follows. Section 2 presents the VHAR and the VHARI models as
well as their implications. Statistical inference is discussed in details in Section 3. Note that we use
a switching algorithm to maximize the Gaussian likelihood of a given VHARI speci�cation. Hence,
in principle the adequacy of our set of restrictions can be checked using either information criteria
or likelihood ratio tests. This strategy cannot be implemented, for instance, for factors obtained
through principal component analysis. Moreover, in the same vein as Takeuchi (1976), we propose
some modi�ed versions of the usual information criteria that are better suited for non-Gaussian
series. In Section 4, a Monte Carlo simulation exercise documents the small sample properties
of our modelling strategy. Section 5 applies the suggested framework in order to combine ten
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realized volatility measures of the same equity index for three di¤erent markets using data from
the Oxford-Man Institute of Quantitative Finance. Finally, Section 6 concludes.

2 Model representation

2.1 The Vector Heterogeneous Autoregressive model

Our starting point for capturing the dynamic interactions within a set of n daily realized volatility

measures Y (d)t �
�
Y
(d)
1;t ; : : : ; Y

(d)
n;t

�0
is a multivariate version of the univariate HAR model (Corsi,

2009) as used, inter alia, in Bubák et al. (2011), and Souµcek and Todorova (2013).
The vector Y (d)t can include either the same kind of volatility measure (e.g., the realized vari-

ance)1 for di¤erent markets in a study of volatility co-movements or several volatility measures
(realized variance, bipower variation, etc.)2 for the same market in order to construct an optimal
linear combination like in Patton and Sheppard (2009). The latter analysis is pursued in Section 5
of this paper.

The Vector Heterogeneous Autoregressive model (VHAR) reads as follows:

Y
(d)
t = �0 +�

(d)Y
(d)
t�1d +�

(w)Y
(w)
t�1d +�

(m)Y
(m)
t�1d + "t; t = 1; 2; :::; T; (1)

where (d), (w), and (m) denote, respectively, time horizons of one day, one week (5 days a week),
and one month (assuming 22 days within a month) such that

Y
(w)
t =

1

5

4X
j=0

Y
(d)
t�jd; Y

(m)
t =

1

22

21X
j=0

Y
(d)
t�jd:

Innovations "t are i.i.d. with E("t) = 0, E("t"0t) = � (positive de�nite), �nite fourth moments.
Beyond the fact that the HAR is a popular forecasting tool, two considerations arising from

our empirical analysis have lead us to refer to (1) as a starting point. First, having estimated
unrestricted VAR(p) models on a set of di¤erent volatility measures for each of the markets at
hand, it emerges that we reject the null of no error autocorrelation for lags p equal to 5 or higher.
This means that a higher dependence from the past is present in the data. In principle one could
considerably increase the VAR order but the curse of dimensionality remains a problem even when
the sample size is as large as in typical �nancial applications. Hence, (1) is a good compromise in
terms of parameter proliferation since a VAR(22) has N2�22 mean parameters, whereas model (1)
needs N2� 3 of them. Second, for the considered set of realized volatilities the coe¢ cient matrices

1Realized covariances may also be included in Y (d)
t , see Fengler and Gisler (2015).

2The realized variances are computed using RVt �
PM

i=1 r
2
t;i; where rt;i are the high frequency intra-day returns,

observed for M intra-day periods each day. For instance M = 79 for 5-min returns when the market is open between
9 a.m. to 4 p.m. The bipower variation BVt � �

2
M

M�1
PM

i=2 jrt;ijjrt;i�1j is one of the measures of the integrated
volatility that is designed to be robust to jumps. See, i.a., Barndor¤-Nielsen and Shephard (2004) and Bauwens,
Hafner and Laurent (2012)
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�(d);�(w) and �(m) are far from being diagonals and consequently a set of individual HAR models
does not seem appropriate.

Next subsection introduces additional meaningful restrictions to (1), namely the steps to go
from the VHAR to the VHARI.

2.2 The VHAR-Index model

Let us further assume that (1) can be rewritten as follows

Y
(d)
t = �0 + �

(d)!0Y
(d)
t�1d + �

(w)!0Y
(w)
t�1d + �

(m)!0Y
(m)
t�1d + "t; (2)

where ! is a n � q full-rank matrix. In terms of parameters, (2) needs 4(n � q) � q2 instead of
n2� 3 in (1). Following Reinsel (1983), we label (2) as the VHAR-index (VHARI) model. To some
extent, the VHARI modeling is related to the pure variance model of Engle and Marcucci (2006)
in the sense that a reduced-rank restriction is imposed to the mean parameters of a multivariate
volatility model. However, a fundamental di¤erence between (2) and the common volatility model
(see also Hecq, Laurent and Palm, 2015) stems from the fact that the former has in general a
di¤erent left null space for the loading matrices of the factors � =

�
�(d) : �(w) : �(m)

�
: Obviously,

common volatility is allowed in the VHARI model if there exists a full-rank n � s (with s < q)
matrix such that �0� = 0:

Beyond the important aspect in terms of parsimony, there are two further motivations for using
(2). First, the indexes f (d)t = !0Y

(d)
t�1d obtained from (2) satisfy the property

f
(w)
t =

1

5

4X
j=0

f
(d)
t�jd; f

(m)
t =

1

22

21X
j=0

f
(d)
t�jd: (3)

as for the observed univariate realized volatilities. Hence, the temporal cascade structure of the
HAR model is preserved meaning that the weekly (monthly) index is equal to the weekly (monthly)
moving average of the daily index. This would not be generally the case with either traditional
reduced-rank regression models as in Engle and Marcucci (2006) or principal component methods.

Second, premultiplying both side (2) by !0 yields

f
(d)
t = !0�0 + !

0�(d)f
(d)
t�1d + !

0�(w)f
(w)
t�1d + !

0�(m)f
(m)
t�1d + !

0"t; (4)

which shows that the indexes themselves follow a VHAR model. When q = 1 the unique index
is generated by an univariate HAR model. This property is not shared by alternative methods
to aggregate time series (e.g., averages, principal components, canonical correlations, etc.) since
the resulting linear combination would generally follow a rather complicated ARMA structure; see
Cubadda, Hecq and Palm (2009), Hecq et al. (2015) and the references related to the �nal equation
representation of multivariate models therein.
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3 Statistical inference

In order to estimate the parameters of model (2), we resort to a switching algorithm that is widely
applied in cointegration analysis (see Boswijk and Doornik, 2004, and the references therein). The
strategy consists in alternating between estimating ! for a given value of � and �, and estimating
� and � for a given value of !. In details, the procedure goes as follows:

1. Conditional to an (initial) estimate of the !, estimate � and � by OLS on (2).

2. Premultiplying both the sides of (2) by ��1=2 one obtains

��1=2Y
(d)
t = ��1=2�(d)!0Y

(d)
t�1d +�

�1=2�(w)!0Y
(w)
t�1d +�

�1=2�(m)!0Y
(m)
t�1d +�

�1=2"t:

Applying the Vec operator to both sides of the above equation and using the property
Vec(ABC) = (C 0 
A)Vec(B) one gets

Vec
�
��1=2Y

(d)
t

�
=
�
Y
(d)0

t�1d 
 �
�1=2�(d)

�
Vec(!0) +

�
Y
(w)0

t�1d 
 �
�1=2�(w)

�
Vec(!0)

+
�
Y
(m)0

t�1d 
 �
�1=2�(m)

�
Vec(!0) + Vec

�
��1=2"t

�
; (5)

from which we can �nally estimate by OLS the ! coe¢ cients conditional to the previously
obtained estimates of the parameters � and �.

3. Switch between steps 1 and 2 till numerical convergence occurs.

As shown by Boswijk (1995), the proposed switching algorithm has the property to increase the
Gaussian likelihood in each step. With respect to the Newton-Raphson method that was originally
proposed by Reinsel (1983), the suggested switching algorithm has several advantages and one
disadvantage. On the one hand, the switching algorithm (i) is computationally simpler; (ii) it
does not require any normalization condition on the parameters !; (iii) it can be easily modi�ed
to impose over-identifying restrictions on both � and !. On the other hand it converges slower
than Newton-type methods. Consequently, it is important to properly choose the initial values for
the index weights !. We suggest to resort to a canonical correlation analysis between Y (d)t and�
Y
(d)
t�1d + Y

(w)
t�1d + Y

(m)
t�1d

�
. The canonical coe¢ cients of the latter variable provide the Gaussian ML

estimators of elements of ! when �(d) = �(w) = �(m).
Note that a numerical stability problem may arise when the number of series is very large. A

possible solution is to resort to a properly �regularized" estimate of the autocorrelation matrix
function of series Y (d)t instead on the natural one that is implicitly used in our procedure (see
Bernardini and Cubadda (2015) for details).

In order to identify the number of factors q, one can use the usual information criteria proposed
by Schwarz (BIC), Hannan-Quinn (HQIC) and Akaike (AIC). We propose some variants of them
that are based on the theoretical framework developed by Takeuchi (1976). In short, this author
extends the AIC by relaxing the strong assumption that the set of the candidate models includes
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the true model. This extension is relevant in our case for at least two reasons. First, HAR
processes are generally seen as an approximation to long-memory processes (Corsi, 2009). Second,
the residuals of HAR models are typically non-Gaussian and heteroskedastic (e.g., Corsi, Audrino
and Reno, 2012; Corsi, Mittnik, Pigorsch and Pigorsch, 2008), whereas our switching algorithm aims
at maximizing the Gaussian likelihood. In the Appendix, we develop a Takeuchi-type modi�cation
to the traditional information criteria for our VHARI models. We denote the modi�ed criteria as
MAIC, MHQIC, and MBIC.

4 Monte Carlo analysis

This section presents a Monte Carlo study with the aim to evaluating the �nite sample performances
of our method. The previous section has shown how to estimate ! using a switching algorithm
for a �x number of factors q of the VHARI: We now investigate the relative merits of both the
traditional and modi�ed information criteria for model identi�cation, estimation, and forecasting.

In the Monte Carlo design we simulate demeaned realized volatilities Y
(d)
t = Y

(d)
t � E

�
Y
(d)
t

�
that are generated by the following model:

Y
(d)
t = A�(d)A�1Y

(d)
t�1d +A�

(w)A�1Y
(w)
t�1d +A�

(m)A�1Y
(m)
t�1d + "t; t = 1; 2; :::; T; (6)

where A is a full-rank n � n matrix, �(d) is a diagonal matrix with the �rst q diagonal elements
drawn from a Un(0:36; 0:399) and the remaining elements equal to zero, �(w) and �(m) are two
diagonal matrices with the �rst q diagonal elements drawn from a Un(0:28; 0:30) and the remaining

elements equal to zero. Notice that Equation (6) implies that series Y
(d)
t are generated by a VHARI

model with parameters
�(j) = A�

(j)
�q ; !

0 = A�1q� ; for j = d;w;m;

where �(j)�q is the matrix formed by the �rst q columns of �(j), and A�1q� is the matrix formed by
the �rst q rows of A�1. In order to reproduce the positive co-movements of the realized volatility
measures that we observe in our data, the matrix A is generated by a n�n half-normal distribution

In order to take into account the positiveness of realized variances as well as to reproduce the well
known volatility in volatility phenomenon (Corsi et al., 2008), elements of "t have a conditional log-
normal error distribution with GARCH variances (see e.g., Barndor¤-Nielsen and Shephard (2002)
on the use of the log-normal distribution for realized volatilities). In particular, "it = zit

p
hit for

i = 1; : : : ; n; where zit = [uit � E(uit)] =
p
Var(uit), ln(uit) is the i -th element of an i.i.d. N(0; In),

and hit = 0:01 + 0:25"2it�1 + 0:74hit�1.
We generate 1000 + 200 observations of each series where the �rst 100 points are used as burn-

in-period, the central T = 1000 observations are used for estimation, and the �nal points are used
to compute 100 one-step ahead forecast errors. We use both n = 10 and n = 20 systems with
q = 1; 2,4 factors. Our choices about q and T are guided by the features of the variables that we
analyze in the empirical application.

We evaluate the merits of the six information criteria by means of three statistics over 1000
replications. First, the percentage with which the estimated number of factor bq is equal to the
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Table 1: Monte Carlo results

n = 10 n = 20
q IC %(bq = q) RFD ARMSFE %(bq = q) RFD ARMSFE
1 BIC 99.10 19.47 89.70 100.00 10.50 79.61

HQIC 90.50 21.44 89.94 95.50 11.10 79.70
AIC 17.80 51.22 93.30 19.40 34.73 83.18
MBIC 100.00��� 19.30��� 89.68�� 99.90 10.51 79.62
MHQIC 98.8��� 19.58��� 89.72��� 99.50��� 10.57��� 79.62���

MAIC 68.20��� 28.88��� 90.72��� 65.4��� 18.82��� 80.80���

2 BIC 98.80 27.83 91.31 100.00 14.55 79.98
HQIC 89.70 29.92 91.55 96.40 15.02 80.05
AIC 19.20 56.29 94.45 18.70 37.18 83.65
MBIC 99.10 27.72 91.59 99.90 14.56 80.04
MHQIC 98.80��� 27.81��� 91.29��� 99.00��� 14.73��� 80.01���

MAIC 65.10��� 37.44��� 92.29��� 61.70��� 22.99��� 81.18���

4 BIC 99.30��� 42.61��� 94.11��� 98.90��� 22.15��� 82.24���

HQIC 94.40 43.57 94.12 97.80 22.44 82.19
AIC 27.70 62.88 96.02 21.80 41.35 84.97
MBIC 86.10 43.17 96.87 91.30 22.32 83.18
MHQIC 99.10��� 42.71��� 94.05 99.00��� 22.29��� 82.17��

MAIC 71.59��� 49.24��� 94.65��� 55.50��� 31.81��� 83.46���

Note: %(bq= q) is the percentage with which each information criterion IC detects the true
number of factors in the VHARI model. RFD is the Frobenius distance between the
estimated parameters and the true ones relative to the Frobenius distance of OLS. ARMSFE
is the average mean square forecast errors relative to the n HAR univariate forecasts. The
best result for each pair (n; q) is in bold. ** (***) indicates signi�cance at the 5% (1%) level
of the t-tests of equal ARMSFEs or RFDs and of the McNemar�s test on the di¤erences
between %(bq= q) of the methods identi�ed by a given IC and its Takeuchi-type version.

true one q. Second, the average of the mean square forecast errors relative to the unrestricted
VHAR forecasts (ARMSFE). Third, the Frobenius distance between the estimated mean VHARI
parameters and the true ones relative to the Frobenius distance of the OLS estimates of the mean
VHAR parameters (RFD). In order to asses the signi�cance of the di¤erences in performances
between the traditional information criteria and the modi�ed ones, we use the t-test for the null
hypothesis that the di¤erences between the ARMSFEs or the RFDs over the 1000 replications are
centered on 0, and the McNemar�s test for the null hypothesis that the probabilities of identifying
the true number of factors are the same. The results are reported in Table 1.

We observe that the MBIC is the best criterion according to all the three statistics when q = 1,
and it does signi�cantly better than the BIC for n = 10. When q = 4, the best criteria are
instead BIC and MHQIC. The performances of BIC, MBIC, and MHQIC are similar when q = 2.
The AIC, its modi�ed version, and the HQIC never perform best. Regarding the usefulness of
our modi�cations to the traditional information criteria, AIC and HQIC perform uniformly worse
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Table 2: Data used

Realized volatility measure Acronym
Realized Variance (5 min.) RV5
Realized Kernel RK
Realized Variance (5 min. using 1 min. subsamples) RV5_1
Realized Variance (10 min.) RV10
Realized Variance (10 min. using 1 min. subsamples) RV10_1
Bipower Variation (5 min.) BV5
Bipower Variation (5 min. using 1 min. subsamples) BV5_1
Median Truncated Realized Variance MTRV
Realized Semivariance (5 min.) RSV5
Realized Semivariance (5 min. using 1 min. subsamples) RSV5_1

than their modi�ed counterparts, whereas matters are more controversial for the BIC. Indeed,
MBIC signi�cantly improves over BIC when n = 10 and q = 1 but the viceversa is true when
q = 4 regardless of the system dimension. Interestingly, the most accurate forecasts are very often
matched with the highest percentages of correct model identi�cation. This suggests that, in case
that the best performing information criteria should provide con�icting results, an out-of-sample
forecasting exercise provides valuable information on the choice of q. We will pursue this strategy
in the empirical application.

5 Empirical application

In this section we illustrate our approach with the aim to detecting the existence of common
components within ten realized volatility measures. Following Patton and Sheppard (2009), the
main idea is to build linear combinations of di¤erent volatility indicators and to evaluate their
merits through an out of sample forecasting exercise. In particular, the target variable should
be an unbiased proxy for the unobserved quadratic variation, whereas the predictors are (linear
combinations of the) lags of both the individual indicators and their linear combinations. As Patton
and Sheppard (2009) and Liu et al. (2015), we use the daily squared open-to-close return ~r2t as our
target variable.

We consider daily series spanning the period 01=01=2000 to 10=29=2015 of the measures that
are reported in Table 2 for three equity indexes: S&P500 for the U.S., FTSE 100 for the U.K. and
the Nikkei 225 for Japan. These series are downloaded from Oxford-Man Institute of Quantitative
Finance�s webpage (see Heber, Lunde, Shephard and Sheppard, 2009).

Before carrying out the evaluation of the VHARI as an aggregation method, we �rst check the
adequacy of the VHARI restrictions. In particular, we use a rolling window of 1000 observations to
compute the h-step ahead direct forecast for h = 1; 5; 22 from the individual HAR�s, the unrestricted
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Table 3: ARMSFE and quartiles of the bq distribution - S&P500
ARMSFE

Method/criterion h = 1 h = 5 h = 22 [Q1Q2Q3]

VHARI/BIC 94.4 82.9 94.2 [3 4 7]
VHARI/HQIC 94.6 84.4 95.8 [6 7 8]
VHARI/AIC 94.2 84.1 95.4 [9 10 10]
VHARI/MBIC 92.9 85.6 93.4 [1 1 1]
VHARI/MHQIC 94.3 85.7 90.5 [1 1 2]
VHARI/MAIC 94.5 84.3 93.8 [5 6 7]
VHAR 94.2 84.2 95.4
Note: h is the forecasting horizon. ARMSFE is the average of the
mean square forecast errors relative to the HAR univariate
forecasts. Qi indicates the i-th quartile of the number of factors
distribution. The best result for each h among the multivariate
methods is denoted in bold.

VHAR and the VHARI where the number of indexes q is chosen according to both the usual
information criteria and the Takeuchi-type modi�ed ones. In Tables 3 to 5 we report both the sum
of the mean square forecast errors relative to the HAR forecasts (ARMSFE) and the quartiles of
the number of factors distribution that are obtained by the various information criteria.

The results indicate that the VHARI outperforms the univariate HARs for the S&P500 and the
Nikkei when h = 5; 22 , whereas in the cases of FTSE and the Nikkei when h = 1 the reverse applies.
Interestingly, the VHARI is always superior to the unrestricted VHAR and the former performs
often best when q is chosen according to the MBIC. Looking at the quartiles of the empirical dis-
tributions of the estimated q, we see that the best forecasting model is almost uniformly associated
with a small number of factors, mostly q = 1. Overall, these empirical �ndings suggest that using
the VHARI to build a single linear combination of the 10 volatility indicators is appropriate for the
analysis that follows.

Next, we resort again to a rolling window of 1000 observations to compute the direct h-step
ahead forecasts from the model

~r2t+h = �0;h + �1;hf
(d)
t + �2;hf

(w)
t + �3;hf

(m)
t + "t;h; (7)

where the indexes in (7) are scalar time series, and those obtained from the model

~r2t+h = �0;h;i + �1;h;iY
(d)
i;t + �2;h;iY

(w)
i;t + �3;h;iY

(m)
i;t + "t;h;i;

for the i = 1; :::; 10 individual realized volatility measures.
For each rolling sample, we construct the weights ! of the indexes in (7) with three alternative

methods: (i) the n elements of ! are all set equal to 1/10 (i.e., the index at each frequency is
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Table 4: ARMSFE and quartiles of the bq distribution - FTSE
ARMSFE

Method/ criterion h = 1 h = 5 h = 22 [Q1Q2Q3]

VHARI/BIC 108.6 111.5 106.6 [3 4 4]
VHARI/HQIC 110.1 114.2 105.1 [5 6 6]
VHARI/AIC 108.9 113.8 108.2 [8 9 10]
VHARI/MBIC 105.8 106.7 105.8 [1 1 2]
VHARI/MHQIC 109.1 108.4 112.6 [1 3 4]
VHARI/MAIC 108.5 113.3 109.4 [4 4 5]
VHAR 108.8 114.0 107.8
See the notes of Table 3.

Table 5: ARMSFE and quartiles of the bq distribution - NIKKEI
ARMSFE

Method/ criterion h = 1 h = 5 h = 22 [Q1Q2Q3]

VHARI/BIC 112.7 98.9 92.7 [1 4 5]
VHARI/HQIC 113.7 98.3 94.3 [3 5 9]
VHARI/AIC 113.9 97.6 93.3 [6 8 10]
VHARI/MBIC 110.0 93.8 86.8 [1 1 1]
VHARI/MHQIC 113.8 98.4 90.8 [1 4 4]
VHARI/MAIC 113.5 98.1 93.0 [4 5 6]
VHAR 113.8 97.3 92.2
See the notes of Table 3.
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the simple mean of the individual volatility measures at that frequency); (ii) ! is estimated by the
�rst principal component of the ten daily indicators; (iii) ! is estimated through the VHARI with
q = 1.

In Tables 6 to 8 we report the mean square forecast errors relative to the forecasts obtained
by Model (7) with uniform index weights (RMSFE henceforth). We use the simple mean index
model as the benchmark because Patton and Sheppard (2009) show that it is di¢ cult to beat it
in forecasting comparisons. We also report the results of the version of the Diebold and Mariano
(1995) test by Harvey, Leybourne and Newbold (1997). In particular the null hypothesis that the
MSFE of a given model is the same as the benchmark is tested against the alternative that the worst
of the two models has a larger MSFE. The use of more sophisticated tools, as the model con�dence
set by Hansen Lunde and Nason (2011), is beyond the scope of this empirical illustration.

Overall, the results are as follows. For the S&P500, the VHARI indicator model does much
better than models based on both individual indicators and aggregates when h = 1. The improve-
ment over the benchmark is signi�cant at the 10%. For higher forecasting horizons, the VHARI
factor performs similarly as the mean factor and the best individual indicator, i.e., the 5-minute
realized semivariance. For the FTSE, the VHARI indicator performs best when h = 1; 22, although
the improvements over the benchmark are not signi�cant. When h = 5 the best performer is the
model based on the median truncated realized variance. For the Nikkei, the realized kernel measure
is signi�cantly superior to the benchmark when h = 1 whereas the models based on the 5-minute
realized variance and the VHARI factor are respectively the best performer when h = 5 and h = 22.

Finally, we can conclude from this illustration that the VHARI factor model is the best per-
former in one third of the cases. It is very often superior to models based on the simple mean and
the �rst principal component. Moreover, there is no individual indicators that performs systemati-
cally better than the competitors along di¤erent markets and for di¤erent forecast horizons. These
�ndings suggest that it may be worthy to add the VHARI to the toolkit of multivariate realized
volatility modelling.

6 Conclusions

In this paper we have proposed the VHARI model, a multivariate generalization of the HAR model
by Corsi (2009), which allows for a parsimonious modelling of a vector of realized volatilities. In
particular, the realized volatility measures can be explained as linear functions of few indexes, which
preserve the same temporal cascade structure as the autoregressive terms of the univariate HAR
model. The parameters of the VHARI model can be estimated by means of a switching algorithm
that increases the Gaussian likelihood at each step. Finally, we have illustrated the practical value
of the proposed methods by an empirical application to a ten realized volatility measures for the
S&P500, FTSE and the Nikkei equity indexes

11



Table 6: RMSFE - S&P500

RMSFE
Index h = 1 h = 5 h = 22

VHARI 87.3� 100.5 99.5
PC 99.7 100.0 100.0
RV5 98.0 99.1 99.5
RK 99.5 99.9 99.9
RV5_1 100.3 100.3 100.3
RV10 95.6 98.3 99.6
RV10_1 100.9 100.5 99.9
BV5 104.9 101.5 100.5
BV5_1 102.1 101.0�� 100.5
MTRV 102.0 102.1�� 100.7
RSV5 94.1 99.3 99.4
RSV5_1 96.7�� 99.0 100.0
Note: RMSFE is the mean square
forecast error relative to the mean
factor forecast. VHARI is the index
produced by the proposed model
with q = 1. PC is the �rst principal
component of the ten measures of
realized volatility. See Table 2 for
the remaining acronyms. * (**)
indicates signi�cance at 10% (5%)
of the Diebold-Mariano test of
equal RMSFE of a model and the
benchmark. The best result is in bold.
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Table 7: RMSFE - FTSE

RMSFE
Index h = 1 h = 5 h = 22

VHARI 97.8 100.0 98.8
PC 100.1� 100.0 100.0
RV5 100.3� 99.9 99.9
RK 99.6 99.8 99.9
RV5_1 99.7� 100.1 100.0
RV10 100.1 100.6 100.6
RV10_1 99.7 100.2 100.3
BV5 101.0 99.9 99.8
BV5_1 99.9 99.8 100.2��

MTRV 98.8 98.4 99.2
RSV5 101.6�� 99.9 99.9
RSV5_1 100.8 100.4 100.2
See the notes of Table 6.

Table 8: RMSFE - NIKKEI

RMSFE
Index h = 1 h = 5 h = 22

VHARI 103.6 100.8 99.3
PC 100.1 99.9 100.0
RV5 100.4 99.4 100.0
RK 96.0�� 99.8 100.1
RV5_1 97.1 99.5 99.9
RV10 102.8 101.7� 100.4
RV10_1 98.3 100.6 100.1
BV5 102.3 99.9 99.8
BV5_1 98.9 100.5 100.1
MTRV 96.3 101.8 99.6
RSV5 101.7 100.8 100.0
RSV5_1 100.2 101.2 100.1
See the notes of Table 6.
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7 Appendix

Assume that the candidate models have the form

Yt = �
0Xt + "t (8)

where Yt and Xt are respectively random variables of dimension n and k, � is n � k coe¢ cient
matrix, and "t are i.i.d. N(0;�) errors that are independently distributed from Xt, whereas the
true model is

Yt = E(YtjX0;t) + �t
where X0;t is a random variable of dimension k0 � k such that its elements are a subset of those of
Xt, and �t are i.i.d. non-normal errors with E(�t) = 0, E(�t�0t) = �0, and �nite fourth moments.

If Model (8) is estimated by Gaussian ML, the penalty term of the AIC is not fully appropriate
because its derivation is based on the assumption that the set of the candidate models includes the
true model, see e.g., Burnham and Anderson (2002). Takeuchi (1976) relaxed this assumption and
obtained the following criterion

TIC = ln(b�) + 2b�=T
where

b� = TX
t=1

b"0tb��1b"thtt + 12
"
T�1

TX
t=1

�b"0tb��1b"�2 � n(n+ 2)
#

(9)

htt = X 0
t(

tP
i=1
XtX

0
t)
�1Xt, b"t are the OLS residuals, and b� is the residual covariance matrix, see

Yanagihara (2006) for further details.
Notice that if �t are i.i.d. Gaussian errors and the sample size T is large, the �rst term on the

right-hand side of Equation (9) will be centered on nk,3 whereas the second term will be centered
on 0.4 Hence, b� ' nk, namely the number of free parameters in �, as in the AIC.

However, when applying the Takeuchi�s framework to identify the number of indexes q in the
VHARI model (2), it is necessary to take into account that the number of free mean parameters is
equal to 4nq � q2 instead of 3nq , which would be the large sample mean of b� under Gaussianity.
Hence, we propose to use e� = b� + q(n� q)
in place of 4nq� q2 in the formulae of the traditional information criteria. This leads to de�ne the

3This result follows by using the law of iterated expectations and noting that
TP
t=1

htt is the trace of the projection

matrix of variables X �s.
4This results follows from the fact that the term in square brackets in (9) is a consistent estimator of multivariate

kurtosis.
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following modi�ed information criteria

MAIC = ln(b�) + 2e�=T;
MHQIC = ln(b�) + 2e� ln(ln(T ))=T;
MBIC = ln(b�) + e� ln(T )=T;

which are robust to the presence of heteroskedasticity and excess kurtosis.
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