1. Finding the critical unit of analysis of cortical organization and recognizing its role is crucial for unlocking the secrets of brain functioning. Parcellation methods such as the one applied here is a step towards this direction (this thesis).

2. Brain imaging methods have met an unprecedented development and will continue to develop very fast. When applying them, neuroscientists should be ready to heavily question and appropriately adapt concepts and paradigms about the brain and its organization which are based on extremely crude observations of the past (this thesis).

3. Running statistical tests and actually understanding what you are looking at are essentially two very different things. Interpreting your results is the art of recognizing the true findings given but beyond your methods limitations.

4. Psychiatric disorders are dynamic phenomena which come about as interplay between vulnerability, resilience, past life events and current concerns. The resulting heterogeneity calls for diagnostic assessments and therapeutic interventions that take into account multiple factors and perspectives instead of generic treatments.

5. The neuroimaging findings presented in the current thesis suggest that certain connectivity abnormalities are present well before the development of depressive episodes. Given that the adult brain exhibits some plasticity and that functional connectivity is-at least temporarily-modifiable, we should first establish which of these abnormalities are etiologically linked to depression and then develop preventive interventions (this thesis).

6. In order to develop neuroscience applications in psychiatry we have to move away from mean statistical differences between groups towards neuroimaging markers. The solution of this non-trivial problem involves among other things, adequately characterizing patient subgroups, isolating cause and effect relationships and constructing population norms.

7. Using DSM classifications to understand biological phenomena is similar to looking through a box and trying to describe the sun's shape: it's meant to fail.

8. Scientific research is as non-objective, non-perfect and endlessly fascinating as any other significant human endeavor.

9. “Sometimes research's going to hit you in the head with a brick. Don't lose faith” (adapted from Steve Jobs)