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Prologue 

Imagine a bag filled with air that is constricted with great pressure to produce 
an outgoing airflow passing a vibrating membrane. The vibration is transferred 
across the molecules in the air in the form of a periodic wave. This wave first 
passes several edges and cave-like structures before it continues to travel a distance 
of 1.23 meters in open space at a speed of approximately 330 meters per second. 
After 0.005 seconds a small part of the wave enters another cave-like compound in 
which it impacts another membrane. The membrane itself sets three small rigid, 
connected objects in motion. The last of those is connected to a closed and fluid-
filled tube where the vibration of the fluid propagates along yet another 
membrane. Obeying to the laws of mechanics this membrane is bending, which 
evokes an influx of charged particles into a cell body that - after a cascade of 
delicate events - initiates an electrical potential within a connected cell. In about 10 
milliseconds this electrical potential reaches a cell agglomeration that belongs to a 
most complex, biological organ. An orchestrated arrival and further propagation of 
more electrical potentials makes you say after 2 seconds: “Oh, sorry John, what did 
you say?”   

 

A mechanistic description of a particular moment in a conversation with one person sharing 
his view of life and another one daydreaming.  

 

  



General Introduction 

 
9 

Brain processing of Voices 

It is actually astonishing that after such an endless chain of events described in 
the prologue one is saying “Oh, sorry John” and not Brian or Peter. It is even more 
astonishing when one realizes that the briefly mentioned ‘orchestrated arrival and 
further propagation of more electrical potentials’ points towards the large, complex, and 
intriguing study of the human brain. This thesis combines these two remarks and 
investigates the brain mechanisms underlying speaker identification. 

Recognizing the voice of the person who is talking to us is an ecologically 
relevant skill. The importance of this skill we mostly learn to appreciate whenever 
it fails, as it likely puts us in an uncomfortable social situation. Extreme examples 
of such failures are patients with phonagnosia. As a consequence of brain damage, 
these patients are unable to discriminate and recognize previously familiar voices, 
despite normal hearing and speech perception (Van Lancker et al., 1989); see also 
(Garrido et al., 2009).  

In normal listeners, identifying a person from his/her voice involves the 
formation of a categorical (abstract) representation of that person’s voice, which 
enables mapping the wide range of acoustical signals that a particular voice can 
produce to a single entity. Psychophysical and computational modeling studies 
have suggested a number of properties of the vocal signal that the auditory system 
may use in order to form such a representation, including the fundamental 
frequency of the speaker’s voice, its timbre and/or its breathiness (e.g. Baumann 
and Belin, 2010; D. H. Klatt and L. C. Klatt, 1990; Lavner et al., 2000; Murry and 
Singh, 1980; see Dellwo et al., 2007 for an overview). With the advent of 
functional neuroimaging and functional magnetic resonance imaging (fMRI) in 
particular (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992), new and 
promising experimental approaches became available to examine the neural 
mechanisms underlying the human brain functions, including the processing and 
recognition of human voices. Following a seminal report by Belin and colleagues 
(2000), numerous studies have examined the neural processing of voices by 
comparing brain responses to human vocal sounds and other sound categories 
using fMRI (Belin et al., 2000; Bonte et al., 2013, chapter 4; Charest et al., 2013; 
Ethofer et al., 2013; 2009; Latinus et al., 2011; 2013; Moerel et al., 2012). These 
studies have established that a network of non-primary auditory regions in the 
superior temporal cortex - often referred to as temporal voice areas (TVAs) – is 
involved in the processing of human voices (see Regional tuning to voices). However, 
it remains largely unsolved how (i.e. based on which acoustic features) and where (i.e. 
in which of the regions) the identity of a speaker is derived. It is also unknown 
whether perceptual representations of speaker identity emerge in specialized 
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modules within this superior temporal network or, alternatively, from distributed 
general purpose auditory mechanisms involving also early auditory areas 
(Formisano et al., 2008). 

This thesis describes both methodological and empirical contributions aimed at 
addressing these open questions. More specifically, the first part of the thesis 
(chapter 2 and 3) describes novel methods for the multivariate (decoding) analysis 
of fMRI and EEG data, respectively. While these methods are general and can be 
applied to the analysis of any dataset, in the work presented here they were 
developed,, fine-tuned and evaluated using data collected to investigate the neural 
representation of speaker identity. The two chapters that form the second part of 
the thesis (chapter 4 and 5), describe empirical studies combining these analysis 
tools with original experimental paradigms to study the influences of top-down 
context (chapter 4) and background noise (chapter 5) on the neural representations 
of speakers. To provide the essential background to the original studies, in the 
remaining part of this introduction, I will first present a concise overview of the 
current state-of-the-art in the decoding analysis of fMRI and EEG data and then 
critically review current neurobiological models of voice processing and speaker 
identification.  

Decoding Analysis in fMRI and EEG 

Decoding brain states from fMRI Data  

The signal obtained with fMRI reflects the metabolic demands that arise during 
neural activation and cause modulations of the ratio between oxygenated and 
deoxygenated hemoglobin in the blood (e.g. Logothetis, 2002; Logothetis et al., 
2001). As such, fMRI measures neural activity indirectly. The combination of high 
spatial resolution and brain coverage is the major advantage of fMRI compared to 
other neuroimaging techniques. That is, with fMRI, a measurement of neural 
activation can be accomplished in about 1-4s in each part of the brain and with a 
spatial resolution of a few millimeters. 

During the first years of fMRI research, the investigations focused on the 
function and responses of specific brain areas. The general linear model (GLM) 
statistical framework soon became a standard analysis tool for testing hypotheses 
on localized response differences and functional specialization (Friston, 1995). 
Within this framework, a model that contains predictors for the different 
experimental conditions and for possible confounding factors is fitted to the 
measured fMRI time series. As the statistical assessment of this model fit and of 
the response differences is performed independently in each location of the brain 
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(i.e. in each volumetric measurement element or voxel) this approach has been 
called mass-univariate. Because of the large number of tests involved - most fMRI 
datasets contain more than 100,000 voxels – this type of analysis needs to be 
combined with appropriate correction for multiple testing (e.g. family-wise error 
rate [FWER], cluster-size threshold [Forman et al., 1995], false discovery rate 
[FDR; Genovese et al., 2002]) to account for false positive outcomes.   

In contrast to the mass-univariate approach, a more recent type of analysis aims 
to detect relations between cognitive or perceptual processes and activation patterns 
covering multiple voxels. In a seminal study by (Haxby et al., 2001), the authors 
showed that categories of pictures could be distinguished based on voxels covering 
ventral temporal cortex. In their analysis, average activation patterns for each 
category were derived from one half of the dataset. To test whether these template 
patterns were specific to categories of pictures, a cross-correlation analysis was 
carried out that assigned unlabeled functional images to the category of the 
template that showed the highest cross-correlation. Comparing the predicted with 
the true labels revealed a high correspondence, which suggested that spatially 
distributed activation patterns in the ventral-temporal visual cortex are highly 
informative of visual categories. Following this study, a large number of methods 
of pattern recognition and machine learning have been introduced in fMRI 
research to examine the relation between stimuli and spatial patterns of responses, 
rather than responses in individual voxels as in the traditional GLM approach. 
Owing to their higher sensitivity compared to the voxel-wise approach, these 
methods have quickly gained popularity. Initially, they were variously termed as 
pattern-based or multivariate decoding or ‘brain reading’. However, more and more 
consistently, researchers refer to the approach as multi-voxel (or multivariate) pattern 
analysis (MVPA) (see Formisano et al., 2008b; Norman et al., 2006; Pereira et al., 
2009 for methodology-focused reviews; for more conceptual descriptions see 
Haynes and Rees, 2006; Tong and Pratte, 2012). 

Independently of the exact type, the procedure of MVPA analysis includes the 
following three steps:  

1) Extracting and selecting features. Feature extraction refers to the definition of the set 
of variables on which the multivariate analyses will be based. An example of 
commonly-employed features is the amplitude of responses to single 
presentations of a stimulus (single-trial responses), which can also be estimated 
as the coefficient (beta) of a model fit. These features are extracted at each 
voxel. Because the number of variables used may have a large influence on the 
analysis outcomes, MVPA often includes the important step of feature (voxel) 
selection (or reduction). The selection of responses may be limited to cortical 
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or subcortical region-of-interests (ROI) on the basis of anatomical or 
functional criteria. Alternatively, data-driven selection approaches can help to 
avoid that noisy voxels (i.e. voxels that are not informative) decrease 
performance (see Guyon and Elisseeff [2003] for feature selection via 
ranking/filtering).  

2) Training a model using machine-learning algorithms. In this step, using a training data 
set, a model (or called classifier) is trained based on the relation between the 
feature set derived from 1) and the known condition labels. One important 
distinction of these models is whether they are linear or non-linear. In linear 
classifiers, the model is expressed as a linear combination of features. Linear 
classifiers are most abundant in fMRI as they are computationally efficient and 
work well for ill-posed problems when the number of features is much larger 
than the number of samples (which most often affects fMRI). Another 
advantage of linear classifiers relates to the straightforward mapping of the 
contribution of single features for classification. Non-linear classification 
approaches are used in particular when the number of voxels/features is small 
and linear class separation seems unlikely.  

Whereas 1) and 2) are presented here – in the interest of simplicity - as 
separate steps, it should be noted that they may also be combined. So-called 
wrapper methods combine feature selection and model training by choosing 
recursively features for upcoming classification based on their impact on 
previous classification models. One example of a wrapper method is recursive 
feature elimination (RFE, Guyon et al., 2002) that iteratively removes the least 
contributing features and has been applied successfully for MVPA studies in 
fMRI (De Martino et al., 2008; Hanson and Halchenko, 2008).  

3) Testing the model’s performance on independent data. As a last analysis step, an 
independent (test) dataset is used to determine the capability of the classifier – 
as derived from step (2) – to correctly classify data not used during the training. 
The model predicts labels of independent feature patterns; the subsequent 
comparison of these predictions with the actual labels determines the 
performance of the classifier. In many studies the training and evaluation sets 
are taken from the same acquired dataset that is split into subsets many times. 
The model training and testing is done for each cross-validation split and their 
average performance is reported.    

Decoding stimuli and brain states from EEG (and MEG) Data  

Electroencephalography (EEG) and Magnetoencephalography (MEG) are 
measurement techniques that are commonly used to study the time course of 
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neural information processing in the human brain with high temporal resolution. 
In contrast to fMRI, EEG and MEG measure synchronized neural activity of a 
large number of cells directly.  

Most studies that use EEG (and/or MEG) to examine cognitive or sensory 
phenomena rely on the comparison of averaged responses to repeated 
presentations of experimental conditions. This can be done in the temporal 
domain (event-related potentials [ERPs] or fields [ERFs], respectively) and/or in 
the frequency domain (event-related desynchronization and synchronization) 
(Pfurtscheller and Lopes da Silva, 1999). The averaging of the responses appears 
necessary because the signal-to-noise ratio (SNR) of EEG signals is generally low 
(MEG offers a larger SNR) and the expected difference between responses to 
different conditions are very subtle. Along with the strong tradition of the 
‘intuitive’ analysis of averaged event-related potential/fields (ERP/ERF), this 
might explain why pattern recognition techniques - which rely on good estimates 
of single trial responses – have only scarcely been used (although there are a few 
recent exceptions both with MEG (Howard and Poeppel, 2010; Luo and Poeppel, 
2007; Rieger et al., 2008)  and  EEG (Kerlin et al., 2010).  

Pattern recognition techniques have been used in the development of EEG-
based brain-computer interfaces (BCI), where EEG signals are used on-line for the 
control of computer and other devices. EEG-based BCI systems allow paralyzed 
and locked-in patients to communicate and interact with their environment 
(Birbaumer, 2006; Wolpaw et al., 2002). One important distinction between the 
formerly described BCI application and studies in cognitive neuroscience is that 
the intended contrast of brain activity between conditions in BCI is maximized to 
assure reliable performance whereas in cognitive neuroscience experimental 
conditions evoke brain responses with subtle differences in most cases. 
Importantly, BCI systems rely on similar data processing and analyses tools as 
MVPA fMRI-studies, i.e. feature extraction and selection, model training and 
evaluation (for reviews please see Bashashati et al., 2007, Besserve et al. 2007, 
Blankertz et al. 2010, Lotte et al. 2007, van Gerven et al. 2009).  

The methodological contributions of this thesis  

Chapter 2 reports original methodological developments aimed at extending a 
MVPA framework to neuro-cognitive EEG studies (Hausfeld et al., 2012). 
Compared to MVPA studies in fMRI, the feature extraction step for EEG and 
MEG datasets offers more alternatives. In fMRI, a measure of response amplitude 
usually constitutes the input to classification algorithms. In EEG and MEG, 
however, different types of features can be considered that range from signal 
amplitude in the temporal domain (Rieger et al., 2008) to coherence measures 
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(Besserve et al., 2007), and power or phase information in the frequency domain 
(Kerlin et al., 2010; Luo and Poeppel, 2007; Rieger et al., 2008). Moreover, more 
sophisticated data transformations like wavelet coefficients (Rieger et al., 2008) 
might also compose the input of the pattern recognition algorithm. To complicate 
further matters, features can be grouped in various ways along, for example, the 
channel and (spectro) temporal domain. Chapter 2 describes the evaluation of six 
types of pattern analyses deriving from the combination of three types of feature 
selection in the temporal domain (predefined windows, shifting window, whole 
trial) with two approaches to handle the channel dimension (channel wise, multi-
channel). These different types of analyses are combined with a Gaussian Naïve 
Bayes classifier to examine a multi-subject EEG data set from a study aimed at 
understanding the task dependence of the cortical mechanisms for encoding 
speaker's identity and speech content (vowels) from short speech utterances 
(Bonte, Valente, & Formisano, 2009). 

Chapter 3 describes a novel method for fMRI MVPA. So far, most fMRI 
studies employing multivariate pattern decoding in the context of experimental 
designs with more than two conditions transformed the multiclass classification 
problem into a series of binary problems. Furthermore, for decoding analyses, 
classification accuracy is often the only outcome reported. However, the analysis 
of the topology of activation patterns in the high-dimensional features space may 
provide additional insights into the underlying brain representations. The method 
developed in Chapter 3 is based on a supervised variant of self-organizing maps 
(SSOM; Kohonen, 2001) and can be used for decoding and visualizing voxel 
patterns of fMRI datasets consisting of multiple conditions. Using simulations and 
real fMRI data, this new SSOMs-based approach is evaluated in the context of 
decoding analyses of single data sets as well as in analyses involving multiple cross-
validation splits and/or multiple subjects. In particular, it is applied to a 
challenging 3-class fMRI classification problem with datasets collected to examine 
the neural representation of human voices at individual speaker level (3 speakers).  

Voice identity representation in auditory cortex 

Regional tuning to voices 

Voices are the most relevant sounds of our daily life, conveying 
multidimensional information including communication messages, emotional 
content and cues on person identity (Belin et al., 2004; Campanella and Belin, 
2007). The existence of brain regions with a preference for voices over other 
complex sounds in both humans (Belin et al., 2000) and non-human primates 
(Petkov et al., 2008) indicates the ecological importance of voices. Voice-sensitive 
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regions or temporal voice areas are found in bilateral middle and posterior superior 
temporal gyri (STG) and sulci (STS), as well as in the right anterior STG/STS (Fig. 
1, Belin et al., 2000; Bonte et al., 2013, chapter 4; Charest et al., 2013; Ethofer et 
al., 2013; 2009; Latinus et al., 2013; 2011; Moerel et al., 2012). While the left 
anterior STS/STG may also show voice-sensitivity, this region is found less 
consistently across subjects. Although most details remain unknown, it is 
hypothesized that speaker identity is derived in this network of areas (or in the 
auditory cortex in general, see Formisano et al., 2008a) through the processing and 
binding of a unique combination of acoustic features which are characteristic of 
vocal signals. The following paragraph describes the acoustic features most 
commonly associated with the neural processing of voices.  

Voice Characteristics 

The human voice is a product of several organs including the lungs, the larynx 
with glottal folds, the pharynx, the mouth and the nasal cavities (Fig. 2). The vocal 
tract is situated above the larynx (supra-laryngeal) and shaped by jaw, tongue and 
lips. An influential theory of speech production is the source-filter model that 
treats speech output as a two-stage process of a sound source and an acoustic filter 
(Fant, 1960; Stevens, 1999; Titze, 2008). The sound source (also called glottal 
source) comprises the airflow from the lungs that passes the rapidly and 
periodically opening and closing vocal folds. The resulting complex tone has a 
characteristic fundamental frequency (F0) that is determined by the glottal pulse rate 
(GPR). The perceptual correlate of the sound’s F0 is voice pitch. Subsequently, the 
sound passes through the vocal tract which acts as a filter by changing its size and 
shape and thereby reducing or enhancing energy at specific frequencies 

 

F igure 1 .  Vo ice Areas as  Determined by a Local izer .  The localizer contrasted voiced 
and speech stimuli with sounds of other categories (here: animals, tools and nature sounds). 
Panel A shows the boundary of cortical grey and white matter. Panel B depicts the inflated 
hemisphere and anatomical landmarks in auditory cortex. Probabilistic maps of voice areas are 
presented in panel C. In particular bilateral clusters of higher voice activation are found in 
posterior and middle STG/STS and in right anterior STG/STS. HG – Heschl’s gyrus, PT – 
planum temporale, STG – superior temporal gyrus, STS – superior temporal sulcus. Adapted 
with permission from Moerel et al. (2012). 
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(resonance). Frequencies that are selectively enhanced are called formants. Formants 
are important for the identification of voiced speech sounds (i.e. when vocal folds 
are non-constricted and vibrate), such as vowels. Usually four or five formants can 
be extracted from voiced speech sounds. During speech, the tension of vocal folds 
changes as well as the state of vocal tract. This leads to modulations of 
fundamental frequency and formant frequencies that are referred to as F0 and 
formant contours, respectively. 

The anatomy of the vocal organs thus determines to a large extent the 
characteristic sound of a speaker’s voice. An important perceptual cue to 
distinguish and/or recognize speakers is the fundamental frequency of their voice 
(e.g. Baumann and Belin, 2010). Because the length of the vocal folds determines 
the rate with which they open and close, voice pitch is typically low in adult man, 
intermediate in adult women and high in children. Besides voice pitch, the length 
of the vocal tract (VTL) provides information about speaker identity by shifting 
formant frequencies (e.g. Smith and Patterson, 2005; Turner et al., 2009).  

When listening to individual vowel sounds (/a/, /i/, and /u/), listeners seem 
to rely mostly on a voice’s fundamental frequency, and additionally on the first 
formant (F1) for the recognition of female speakers and on the fourth (F4) and 
fifth formants (F5) for the recognition of male speakers (Baumann and Belin, 

 

F igure 2 .  Human Speech Apparatus . It is divided into sub-laryngeal tract, larynx and 
supra-laryngeal tract. The sub-laryngeal tract consists of lungs, diaphragm (both not shown) 
and trachea (or air tube). The larynx includes the glottal folds. The supra-laryngeal tract begins 
above the larynx and contains pharynx, oral and nasal cavities, the tongue, palate, jaw and lips. 
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2010). Instead, when listening to acoustically modified versions of the vowel /a/ 
pronounced by different familiar speakers, vocal tract parameters (i.e. formants 
and related measures) may be more important than glottal source features (i.e. 
fundamental frequency/voice pitch; Lavner et al., 2000). Depending on the type of 
speech stimuli, we may also use other voice characteristics including spectro-
temporal regularity as expressed by harmonics-to-noise ratio  (HNR, e.g. Bruckert 
et al., 2010) or, as it is often the case in everyday situations, dynamic voice cues like 
prosody or intonation (Murry and Singh, 1980; Schultz, 2007; Van Dommelen, 
1990). Furthermore, due to the unique combination of acoustic features 
characterizing a person’s voice, different acoustic cues may be weighted differently 
depending on the speaker and context (Lavner et al., 2000). 

Neural encoding of voice identity 

When we hear a familiar voice, in most cases, we have no trouble in 
recognizing the person at hand. This ability is striking as our auditory system is 
faced with the problem of associating a large range of utterances that differ in 
various dimensions to a single voice. For example, you could hear “Hello there!” 
or “Oh no!” and still be certain that it was Sophie shouting. Being able to say who 
uttered something thus entails an adaptive model of voices that uses various and 
flexible dimensions of speech cues.  

A possible model for the representation of voice identities in the human brain 
suggests an organization that encodes the perceived similarity or dissimilarity of 
voices. This organization could be conceptualized as a high-dimensional space, 
whose entries indicate individual voices. Both behavioral (Bruckert et al., 2010; 
Latinus and Belin, 2011; Papcun, 1989) and imaging evidence (Andics et al., 2013; 
2010; Latinus et al., 2013) suggests that the origin (and dimensions) of this 
hypothetical voice-representative space is not based on absolute, physical or 
stimulus-inherent, features but is rather understood in terms of relative distances 
with respect to an average, prototypical voice. Accordingly, this type of 
representation has been termed norm-based or mean-based coding of voices. 
Interestingly, faces – the visual counterpart of voices (Belin et al., 2004) – seem to 
be represented in a norm-based manner as well (Leopold et al., 2006; 2001; Loffler 
et al., 2005). 

Independently of whether the distances between identities in the 
representational space are expressed in absolute or relative terms, one may 
conceive each voice identity as an auditory category. Recognizing a person from 
his/her voice involves mapping the wide range of acoustical signals that a 
particular voice can produce to an abstract (categorical) representation of that 
person’s voice. The formation of such abstract representations requires a 
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reduction of within-category distances and maximization of between-category 
distances (Harnad, 1987). Recently, Ley and colleagues (2012) used fMRI and 
MVPA to show that learning of newly and artificially established auditory 
categories promotes the formation of categorical sound representations in the 
auditory cortex. A similar mechanism can be hypothesized for the neural encoding 
of familiar voices, which might entail small distances between representations of 
distinct utterances from the same speaker and large distances across different 
voices (i.e. a supra-individual space). This provides a rationale for studying the 
neural encoding of voices using an MVPA approach. The successful decoding of 
speaker identity from brain responses to stimuli that differ largely in terms of 
acoustic content and backgrounds, can be taken as evidence for the invariance (or 
robustness) of the underlying neural representations to the sensory differences, 
and thus point to a categorical representation of voice identity.  

The empirical contributions of this thesis  

The study described in chapter 4 employed a decoding approach to investigate 
how attention to speaker or vowel identity modulates the spatial pattern of 
auditory cortical responses to the same speech sounds. The stimulus design was 
similar to the EEG data analysed in chapter 2. In this case, however, children 
voices (a boy and a girl) were employed in addition to an adult male voice. This 
allowed investigating the processing of children voices that, unlike adult voices, are 
not readily distinguished based on fundamental frequency and whose identification 
additionally relies on formant frequencies (Bennett and Weinberg, 1979; Perry et 
al., 2001). The effects of selectively attending to relevant acoustic features on the 
response patterns were tested by asking subjects to perform a delayed-match-to-
sample task on either speaker or vowel identity. We expected to find more 
information in activation patterns about the task-relevant compared to the task-
irrelevant stimulus dimension. 

In chapter 5 we applied the decoding algorithm developed in chapter 3 to 
investigate the robustness to noise of representations of speaker identity in 
auditory responsive areas of the temporal cortex. Apart from using highly varying 
vocalizations with large dynamics in pitch and formant contours, we investigated 
how the representations of individual speakers change when the relevant vocal 
signals are mixed with stationary white noise or with background noise as 
encountered in real life situations (e.g. in a cafeteria or train station).  
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Abstract 

Pattern recognition algorithms are becoming increasingly used in functional 
neuroimaging. These algorithms exploit information contained in temporal, spatial, 
or spatio-temporal patterns of independent variables (features) to detect subtle but 
reliable differences between brain responses to external stimuli or internal brain 
states. When applied to the analysis of electroencephalography (EEG) or 
magnetoencephalography (MEG) data, a choice needs to be made on how the 
input features to the algorithm are obtained from the signal amplitudes measured 
at the various channels.  In this article, we consider six types of pattern analyses 
deriving from the combination of three types of feature selection in the temporal 
domain (predefined windows, shifting window, whole trial) with two approaches 
to handle the channel dimension (channel wise, multi-channel). We combined 
these different types of analyses with a Gaussian Naïve Bayes classifier and 
analyzed a multi-subject EEG data set from a study aimed at understanding the 
task dependence of the cortical mechanisms for encoding speaker’s identity and 
speech content (vowels) from short speech utterances (Bonte, Valente, & 
Formisano, 2009). Outcomes of the analyses showed that different grouping of 
available features helps highlighting complementary (i.e. temporal, topographic) 
aspects of information content in the data. A shifting window/multi-channel 
approach proved especially valuable in tracing both the early build up of neural 
information reflecting speaker or vowel identity and the late and task-dependent 
maintenance of relevant information reflecting the performance of a working 
memory task. Because it exploits the high temporal resolution of EEG (and 
MEG), such a shifting window approach with sequential multi-channel 
classifications seems the most appropriate choice for tracing the temporal profile 
of neural information processing.  
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Introduction 

Electroencephalography (EEG) and magnetoencephalography (MEG) are 
commonly used to study the time course of neural information processing in the 
human brain with high temporal resolution. In most cases, EEG/MEG studies 
rely on the comparison of averaged responses to repeated presentations of 
experimental conditions either in the temporal domain (event-related potentials 
[ERPs] or fields [ERFs], respectively) and/or in the frequency domain (event-
related desynchronization and synchronization) (Pfurtscheller and Lopes Da Silva, 
1999).  Often, the statistical analyses (and related inferences on neural processing) 
are limited to a-priori specified (spectro-) temporal windows of interest – at 
channel or estimated source level - and therefore only a small subset of the 
measured signal is actually utilized.  

This article illustrates several approaches to EEG data analysis based on 
pattern recognition (e.g. Bishop, 2007; Duda et al., 2001). In contrast to the 
conventional approach where a single dependent variable is examined (univariate 
statistics), these techniques exploit the information content in patterns of 
dependent variables (features), which are extracted from the measured signals. 
Pattern recognition allows analyzing EEG data in a more exploratory and data-
driven manner and - similar to the recent developments in fMRI (e.g. Haynes and 
Rees, 2006) - promises to complement conventional approaches for EEG/MEG 
analysis.  

A typical application of pattern recognition methods includes three steps, (1) 
extracting and selecting features (i.e. dependent variables), (2) learning a model 
with a machine-learning algorithm, and (3) determining the generalization ability of 
the learnt model using an independent evaluation dataset. In EEG/MEG, various 
types of features can be considered, ranging from signal amplitude in the temporal 
domain (e.g. Rieger et al., 2008) to power or phase information in the frequency 
domain (Kerlin et al., 2010; Luo and Poeppel, 2007; Rieger et al., 2008). Specific 
transformations, such as wavelet coefficients (Åberg and Wessberg, 2007; Rieger et 
al., 2008), and coherence measures (Besserve et al., 2007) can also be used. 
Furthermore, features can be differently grouped in the (spectral-) temporal and 
spatial domain. For example, limiting the information to pre-defined temporal 
windows of interest is essential to many realizations of EEG-based brain-computer 
interface (BCI) systems (e.g. Birbaumer, 2006; Blankertz et al., 2011; Wolpaw et al., 
2002).  Alternatively, the information contained in a sliding time interval of EEG 
data can be used, e.g. to detect the occurrence of seizures in epileptic subjects 
(Schad et al., 2008). Concerning the spatial (channel) domain, many BCI systems 
employed spatial filters (i.e. linear combinations of channels; see Blankertz et al., 
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2011) to enhance performances. For the same reason sophisticated feature 
selection or reduction methods were applied in BCI systems (see Bashashati et al., 
2007).  

Several machine-learning algorithms have been used to learn the relation 
between selected features of the EEG/MEG data and experimental labels. These 
algorithms include simple correlation (e.g. Luo and Poeppel, 2007), support vector 
machines (SVMs) (Vapnik, 1995), linear discriminants analysis (LDA) (e.g. Duda et 
al., 2001), and neural networks or Bayesian approaches (Bishop, 2007). Most 
frequently, learning algorithms are based upon linear models (e.g. Lotte et al., 2007; 
Rieger et al., 2008; van Gerven et al., 2009) due to their fast computation, 
robustness and simplicity of results interpretation. 

To determine the generalization ability of the computed model, an independent 
set of test data is required. This can be done at single-subject level, splitting the 
measured data into training and testing sets (e.g. Luo and Poeppel, 2007) or across 
subjects, using a subjects’ subset for training and the other for evaluating the 
generalization performance (e.g. Kerlin et al., 2010).  

In this study, we consider and evaluate the effects of differently combining and 
grouping the features in the temporal (predefined windows, shifting window, whole trial) 
and channel domain (single channel, multichannel) in the context of a neuro-cognitive 
EEG paradigm. Using Gaussian Naïve Bayes (GNB; Mitchell, 1997) classification, 
we analyze data from an auditory EEG study aimed at understanding the task 
dependence of the cortical mechanisms underlying the processing of voice and 
speech identification (Bonte et al., 2009) and illustrate the results of each possible 
feature combination in the temporal and channel domain.  

Materials and Methods 

Machine-learning approaches for the analysis of neuroimaging data require 
single trials to be described by an n-dimensional vector of features. In our 
approach, basic features are defined as EEG voltages and include time (samples) 
and measurement channels (electrodes). In particular, we consider six types of 
classification analyses derived from combining three types of features grouping in 
the temporal domain (predefined windows, shifting windows, whole trial) with two 
approaches to handle the channel dimensions (single channel, multichannel, see Fig. 1). 
These different types of analyses can be combined with any classification 
algorithm (e.g. LDA classifier or SVMs). Here, we use a modified Gaussian Naïve 
Bayes classification, because of its simplicity which implies lower computational costs 
(e.g. compared to SVM classification) and interpretability of model parameters. We 
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examine the case of pair-wise classifications of EEG responses to simple vowels 
(/a/, /i/, /u/) spoken by three speakers (sp1, sp2, sp3) (see 2.3). 

Types of Feature Grouping 

Predefined Windows. In the first approach, we use prior hypotheses (e.g. typical 
ERP windows) to select the temporal windows entering the analysis. As depicted 
in Fig. 1.a, the temporal samples within a specific interval are used as features to 
classify single trials either for each of the K channels (right upper panel) or for all 
channels (right lower panel). In the latter case, the feature set is defined by 
concatenating sampling points of multiple channels. In the case of a channel-by-
channel analysis accuracy values are obtained for each electrode. This allows 
creating a topographic map of classification performance for the predefined 
intervals. Classifying based on features from multiple channels results in one 
classification accuracy value. In this case, a topographic map is created from the 
weights estimated during model training (see eq.4) that indicate the relevance of 
each electrode contribution to the classification.  

Shifting Windows. In the second approach (Fig. 1b), the analyses are not 
restricted to specific latencies and are based upon features from shifting windows 
either on a channel-by-channel basis  (right upper panel) or by concatenating 
features from multiple channels (right lower panel). Results of the single-channel 
approach can be depicted as a time series of topographic plots indicating 
classification performance. The multi-channel classification allows retrieving the 
information content over time (information time-course). A weight vector - 
indicating the relevance of individual channels - is obtained for each time window. 

Whole Trial Period. In the third temporal approach (Fig. 1.c) all temporal samples 
within a trial period are used. Classifications are performed either using the 
channel-wise (right upper panel) or multi-channel (right lower panel) approach. 
Results for the channel-wise approach may be used to create a topographic map of 
the information content within the entire trial period. For the multichannel 
approach, the analysis returns an overall accuracy value. Weights are defined for 
each sampling point and channel and thus indicate the temporal and topographical 
variation of the information content. 

 

F igure 1 . Overview of the S ix Dif ferent Types of Class i f icat ion Considered in th is 
Study. Different selections and groupings of data in the spatial and temporal dimension result in 
different types of classification. (a) Temporal Approach 1: Classifications are performed using signal 
amplitudes within predefined windows of interest, e.g. I1, which need to be specified based on prior 
hypotheses. (b) Temporal Approach 2: Using K shifting windows (I1,…, IK), separate classifications are 
performed, which results in a time-course of the information content (accuracies) (c) Temporal … 
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… Approach 3: The overall information content within a trial is estimated using a single 
classification that employs all samples within the trial period. In addition to the different types of 
temporal grouping, the spatial dimension can be accounted for either by performing separate 
classifications at each channel (Spatial Approach 1, left panels) or concatenating all channels 
(Spatial Approach 2, right panels), which results in a single classification. t1, …, tT  denote trials of 
EEG signals, measured at each recording channel. See text for detailed information. 
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Gaussian Naïve Bayes Classification 

We report below a short description of GNB classification with reference to 
EEG data; see Mitchell (1997), for a more complete and general formulation of 
this algorithm. 

Let us consider a supervised learning problem in which we wish to 
approximate the function !:! → ! or equivalently !(!|!), where C is a Boolean 
random variable representing the categories in our classification problem and 
! = !!,… , !!  is a n-dimensional feature vector obtained from the EEG data. 
Using Bayes rule we can write:  

                  ! ! = !!|!!,… , !! = ! !!,…,!!|!!!! ! !!!!
! !!,…,!!|!!!! ! !!!!

         (1) 

where cm represents the mth category. One way to learn !(!|!) is to use the 
training data to estimate !(!|!) and !(!) and then use eq. 1 to classify any new 
instance of X. The Naïve term is introduced when in the estimation of !(!|!) the 
n features are assumed to be conditionally independent and eq. 1 can be written as:  

            ! ! = !!|!!,… , !! = ! !!|!!!! ! !!!!!
!

! !!|!!!! ! !!!!!
!!

.         (2) 

Following eq.2 and having estimated !(!!|!) and !(!) from the training data, 
any new EEG trial !!"# = !!,… , !!  can be classified following: 

           ! ← !"#$!%!! ! = !! ! !!|! = !!!
!!! ,         (3) 

where argmax returns the class (cm) with highest probability given Ynew. In spite of 
the naïve assumption, the GNB was shown to perform well for many examples of 
neuroimaging datasets and to be fast and robust (e.g. Pereira et al., 2009). To solve 
the multi-class classification problem we used a one-versus-one approach, which 
reduced the problem to a series of binary (2-class) classifications (see 2.4). We 
furthermore assumed equal covariance matrices of the two classes in the 
estimation of !(!!|!). This allowed us to pool the training data set of the two 
classes in the estimation of the variance of the classes. In order to derive the 
relative importance of features in the classification problems we estimated weights 
for each of the n features as: 

                       !! = !
!!!

!!! − !!!           (4) 

where !!! represents the estimated variance and !!! (!!!) represent the mean of the 
two classes (+, -) for the ith feature (Pereira et al., 2009). For visualization purposes, 
weights were further transformed by a ranking procedure (values ranged from 1-
100 with 1 representing the lowest and 100 the highest weight). 
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EEG Experiment and Data 

We illustrate the different types of classification analyses in the context of a 
recent auditory EEG study aimed at understanding the timing and mechanisms of 
cortical processing of voice and speech (Bonte et al., 2009). For reader’s 
convenience, essential information on experimental design, EEG measurements 
and data pre-processing is reported below. A more detailed description can be 
found in Bonte et al. (2009).   

Participants. Fourteen Dutch undergraduate students (8 female; 1 left-handed) 
took part in this study. No history of hearing losses or neurological abnormalities 
was reported. Participants gave their informed consent and received course credits 
or payment for participation. The study was approved by the Ethical Committee 
of the Faculty of Psychology at the University of Maastricht.  

Stimuli. Stimuli were speech sounds of three Dutch vowels (/a/, /i/, and /u/) 
uttered by three native Dutch speakers (sp1: female, sp2: male, sp3: female). To 
introduce acoustic variability, for each vowel and each speaker three different 
tokens were recorded. Stimulus length was equalized to 230ms. Sound intensity 
levels were equalized by matching RMS values. For analysis, stimuli were either 
grouped according to speaker identity (speaker grouping) ignoring the vowel 
dimension or according to vowels (vowel grouping) ignoring the speaker dimension. 

Experimental Design and Procedure. Task dependent processing was induced by 
introducing one-back tasks on either speaker or vowel identity (speaker and vowel 
task). A passive task denoting passive listening of the stimuli was also included but 
not used in our analyses. For the active tasks, subjects were instructed to respond 
with a button press every time that the same vowel (vowel task) or the same 
speaker (speaker task) was presented in two subsequent trials (target trials), which 
occurred in 6.25% of all trials. Trials including targets, and/or button responses 
(correct responses, omissions, false positives) were not included in the analysis. 
Each task involved two blocks amounting to a total of 450 non-target trials. 
Stimulus onset asynchrony varied between 3.0 and 3.5s. All subjects participated 
for two EEG sessions and performed either two passive blocks followed by two 
speaker task blocks or two passive blocks and two vowel task blocks. The order of 
sessions was counterbalanced across subjects. Before the speaker and vowel tasks 
a short practice session assured that participants understood the task.  

EEG Recording and Preprocessing. Data were recorded (sampling rate: 250Hz) in 
an electrically shielded and sound attenuating room from 61 equidistant electrode 
positions (Easycap, Montage No.10) relative to left mastoid reference. Impedance 
levels were kept below 5kΩ. Artifacts were removed in two steps. First, artifacts 
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like high-amplitude, high frequency muscle noise, swallowing, or electrode cable 
movements were rejected. Second, eye-blinks, eye movements, heartbeat effects 
were corrected by using ICA as implemented in EEGlab (Delorme and Makeig, 
2004; Makeig et al., 2002). For each task, ICA components were decomposed into 
brain-related activity and non-brain artifacts by visual inspection. Electrode signals 
were recreated by using all brain-related components (speaker task: 24±4 
components; vowel task: 23±4; passive task: 20±4) and baseline corrected (1s 
before stimulus onset) (see Bonte et al., 2009). Finally, signals were recomputed 
using the average reference. 

EEG Data Classification  

For all different types of classification we followed a 20-fold cross-validation 
procedure by assigning randomly selected trials to non-overlapping training (Trainl; 
l = 1,…,20) and testing sets (Testl). In order to prevent model learning to be 
affected by the number of training examples, we made use of a leave-in procedure 
(i.e. resulting in a constant number of training trials). For each iteration l the 
training set Trainl consisted of 30 trials per condition whereas the amount of trials 
in Testl varied (~15) due to trial rejection. Three binary comparisons were 
performed for each grouping (i.e. Speaker Grouping: sp1 vs. sp2, sp1 vs. sp3, sp2 
vs. sp3; Vowel Grouping: /a/ vs. /i/, /a/ vs. /u/, /i/ vs. /u/).  

To evaluate classification performance, we computed the accuracy of predicting 
class labels for the independent test set for each binary comparison. Accuracy was 
defined as the percentage of correctly classified trials.  

Classification performances and feature weights were averaged over the 20 
folds. Accuracies and weights for the speaker and vowel grouping were obtained 
by averaging results of the respective three binary comparisons. Significance of 
classification accuracies on individual subject level was obtained with permutation 
testing (Golland and Fischl, 2003). The empirical null distribution was derived for 
each classification strategy and subject by repeating the whole classification one 
thousand times with permuted labels of trials in Trainl. In the case of shifting window 
analysis, we made use of the permutation distribution obtained for the predefined 
windows approach to avoid massive computations by computing permutations for 
each window. We assessed the significance for each channel and window using the 
channel’s most conservative chance level estimation of the five windows examined 
in the predefined windows approach for the respective task and grouping. 

At group level, we calculated the significance of classification using a binomial 
test (e.g. Darlington and Hayes, 2000) with n = 14 (number of subjects), p = 0.05, 
and k expressing the number of subjects with a significant (p < 0.05) classification 
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performance according to individual permutation tests. Differences between 
stimulus groupings [speaker grouping - vowel grouping] were examined by paired t-tests 
on the respective classification accuracies for each task (grouping effect). For 
visualization of scalp topographies, only significant channels with at least one 
significant neighboring channel were considered (i.e. significant but isolated 
channels were not displayed).  

Parameters for Feature Extraction and Grouping 

For the analysis in pre-defined time intervals (see 2.1.1), we selected five 
intervals of 60 ms (i.e. N1: 80-140 ms; P2: 170-230 ms; N270: 240-300 ms; P340: 
310-370 ms; LateP: 500-560 ms) based on results from Bonte and colleagues 
(2009) that consisted of 15-16 time samples. Classification was performed 
following two different strategies: 1) separately for each participant, channel and 
window (the feature set reduced to either 15 or 16 values per trial); 2) considering 
all channels together for each subject and window (leading to 915 or 976 features 
for each trial). In both cases we obtained classification accuracies for each subject 
and interval. The relevance of a single channel was either accessed by its 
performance (single channel classification) or averaging feature weights 
(multichannel approach).   

For the classification analysis with shifting windows (see 2.1.2), we selected a 
window length = 60 ms, a sliding step = 10 ms and a trial period from -250 to 810 
ms). Finally, the same temporal interval (-250 ms – 810 ms) was used for the whole 
trial-based classification (see 2.1.3). Both classifications were performed 
considering either single channels or multiple channels. Note that pre-stimulus 
data was included to compare results (classification performance and feature 
weights) of time windows containing no information to informative ones.  

Results  

Predefined Windows 

We first considered the classifications of speakers and vowels in five predefined 
temporal intervals (N1, P2, N270, P340, LateP). Fig. 2.a shows – for the single 
channel case - group classification results for speaker and vowel grouping during the 
speaker (top panels) and vowel task (lower panels), respectively. To estimate 
reproducibility across subjects, we created topographic maps depicting, at each 
channel, the number of subjects with a significant classification performance. For  
each subject, significance was assessed channel-by-channel by permutation testing 
and corrected to account for multiple testing [no. of channels] using false 
discovery rate (FDR [Benjamini and Hochberg, 1995], q < 0.05).  
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Differences between speaker and vowel groupings are depicted in Figure 2.b for the 
two tasks separately. The N1 and P2 topographic maps included several channels 
showing higher classification performance for the vowel grouping during both tasks, 
with early left lateralization n in the case of the vowel task, The later intervals N270, 
P340 and LateP were characterized by better classification performances for the 

 

F igure 2.  Result s of the Predef ined Windows/S ingle Channel Analysis . (a) Single 
channel classification performances are presented - for each interval, task and grouping  - by 
scalp topographies depicting the number of subjects with significant classification accuracy (see 
text). Values for speaker and vowel grouping are depicted in blue and red colors, respectively. 
(b) Higher classification performance for speaker vs vowel grouping are indicated by blue and 
red colors for each channel. Tests were restricted to channels with a significant accuracy for 
one of the groupings. For visualization of scalp topographies, only channels with at least one 
significant neighboring channel were considered. 
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dimension relevant for the task. During the speaker task better speaker 
discrimination was observed for right temporo-parietal (N270, P340) and right 
occipito-parietal channels (LateP). Higher accuracy values for the vowel grouping 
during the vowel task were found at left lateral (N270, P340, LateP) and parietal 
channels (LateP).  

Fig. 3 shows results obtained when features extracted from all channels were 
employed. Group averaged accuracy values for speaker and vowel groupings and both 
tasks are presented in Fig. 3.a together with the average 95% confidence intervals, 
resulting from permutation tests at single-subject level. Corresponding weight 
differences between groupings are presented as topographic maps in Fig. 3.b for 
each of the two tasks. Classification performances for the two groupings and tasks 
for most of the windows were small but above chance. Largest average accuracies 
were found in the P2 interval for the classification of vowels both during the 
speaker and vowel task. Within this window, a significantly higher accuracy was 
observed during the vowel task in the classification of vowels compared to the 
classification of speakers (paired t-test, p = 0.026). For both tasks the topographies 
of weight differences were comparable to single channel accuracy differences (Fig. 
2.b) but possessed additional channels being more relevant during one of the 
groupings especially for the task irrelevant dimension (i.e. during the speaker task 
for vowel grouping and vice-versa).  

Shifting Windows 

To obtain a detailed temporal profile of speaker and vowel discrimination we 
conducted classification analyses using shifting windows. Fig. 4.a shows the results for 
the shifting window/single channel analysis. For display, different channels are arranged 
along the y-axis of the plot; blue and red color-coding denotes significant 
differences between speaker and vowel grouping (p < 0.05, uncorrected). In 
addition, topographic plots of accuracy differences (speaker grouping - vowel grouping) 
are shown below for relevant latencies.  Statistical tests and color-coding were 
limited to channels and intervals with speaker and/or vowel classification 
performance above chance level (i.e. exceeding the most conservative 95% 
confidence interval in the prvious analysis). During the speaker task enhanced 
classification accuracies for vowels were observed between 150 and 240 ms 
(frontal, central, posterior channels at [150-200 ms]; frontal, parietal channels at 
[200-240 ms]). At [230-400 ms] and [500-730 ms] higher classification accuracies 
for speakers were found. Right temporo-parietal channels discriminated better  
between speakers during the medium latencies interval and posterior and left 
lateral channels showed this effect during the later intervals. Accuracy differences 
for the vowel task were characterized by enhanced vowel discrimination at two 
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intervals ([120-230 ms], [450-550 ms]). During the early interval vowels were better 
classified at central and frontal channels. Central, left temporal and lateral channels 
classified vowels better than speakers during the late interval.   

Using a multichannel approach we extracted the overall information content over 
time. Fig. 4.b visualizes classification performance of the speaker and vowel grouping 
as a function of time for the speaker (right) and vowel task (left). Accuracies were 

                   

F igure 3 .  Resu lts  of  the Predef ined Windows/Multichannel Analysis . (a) Average 
classification accuracies are shown for tasks and groupings (red: speaker grouping; blue: vowel 
grouping) for each window separately. Bars denote average accuracies and SEM. Grey bars 
show average 95% CIs for individual permutation tests. (b) Weight differences of speaker and 
vowel grouping for each time window and task are presented in the lower panel. Note the 
similarities to the results for the corresponding single channel analysis (see Fig. 2.b). Only 
channels with at least one significant neighboring channel were considered for visualization of 
scalp topographies. 
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defined to be above chance when the respective most conservative 95% 
confidence interval in the predefined windows/multichannel analysis was exceeded  (see 
above). Analyses of task differences were limited to intervals with classification  
performance above chance for at least one grouping. Shadings denote latencies 
that showed significant differences between speaker and vowel grouping (p < 0.05, 
uncorrected). Grouping differences that remain significant after correcting for 

 

F igure 4 .  Result s of  Sh ift ing Window Analyses .  (a) Single channel analysis: accuracy 
differences between speaker and vowel grouping are presented for the speaker (left) and vowel 
task (right panel). For better visualization scalp topographies of accuracy differences at specific 
latencies indicated by dashed lines are shown below. (b) Multichannel analysis: Classification 
performances for shifting windows are shown for the speaker (left) and vowel task (right panel). 
Average accuracy for both speaker (blue) and vowel (red) grouping are depicted (blue and red 
shadings denote significance of higher speaker and vowel grouping, respectively). Green lines 
indicate grouping differences with FDR-corrected (q < 0.1) significance levels. Horizontal dashed 
lines depict the most conservative estimation of the chance level in the predefined 
windows/multichannel analysis. Topographic plots show weight differences between the speaker 
and vowel task at latencies with significant performance differences. For visualization of scalp 
topographies, only channels with at least one significant neighboring channel were considered. 
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multiple comparisons [FDR, q < 0.10] are indicated by green lines. Enhanced 
classification of vowels compared to speakers can be noted for an early interval for 
both tasks (speaker task [190-240 ms], vowel task [150-240 ms]) with similar 
topographies of weight differences. Task dependent effects as shown by higher 
speaker classification during the speaker task and higher vowel classification during 
the vowel task are observed at late intervals (speaker task [580-700 ms], vowel task 
[480-550 ms]). For the speaker task the enhanced speaker discrimination was 
accompanied by higher weights in right parietal channels whereas the enhanced 
vowel  discrimination during the vowel task was characterized by higher weights at 
central and lateral channels.  

Whole Trial Period 

Next, we considered all samples within the trial period and performed single 
channel and multichannel classifications. Results for the single channel analysis are 
depicted in Fig. 5.a by means of topographic maps of accuracy differences 
between speaker and vowel grouping (p < 0.05, uncorrected) for both tasks. Maps were 
restricted to channels that were significant for at least one grouping (FDR-
corrected, q < 0.05). Fig 5.b shows - for selected channel clusters - the temporal 
profile of the weights resulting for the classification of speakers and vowel. Time 
intervals with high values for the weights are those mostly contributing to the 
classification. Accuracy differences during the speaker task showed a left parieto-
temporal and a right temporal cluster with enhanced classification performance for 
speakers. Weight differences for these two clusters were found to be larger for 
speakers at an early interval [220-260 ms] for both clusters (Fig. 5.b). A later 
interval [440-480 ms] showed larger weights for the speaker grouping for the left 
parieto-temporal cluster. After ~570 ms larger weights for speakers were observed 
for both clusters but differences were more pronounced within the right lateral 
cluster. For the vowel task three clusters (a central cluster and both a left and right 
posterior lateral cluster) showed enhanced accuracies for vowels compared to 
speakers. Early intervals showing higher weights for vowels were found for two 
clusters (central at [160-210 ms]; left lateral at [100-190 ms]). For later intervals at 
[260-300 ms] and [450-500 ms] higher weights for the vowel grouping were 
observed for the central and left lateral clusters (for the right lateral cluster higher 
weights for vowels were found at [380-500 ms]; results not shown). 

Finally, classifications were performed by employing the full spatio-temporal 
set of features. Accuracy values for the two tasks and effects (top panel) and  
corresponding weight differences of selected channels between the two groupings 
(lower panel) are shown in Fig. 6. For each task both types of groupings were 
above chance level (p < 10-11, for all task by grouping combination). When 
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comparing speaker and vowel groupings, larger classification performances could 
be found for the vowel grouping during the vowel task (p < 0.001) but not during 
the speaker task, during which there was a trend for enhanced speaker 
classification (Fig. 6.a). Weight differences between speaker and vowel groupings 
(Fig. 6.b) revealed similar results compared to the accuracies obtained in the shifting 
windows/single channel classification with some differences. 

In sum, outcomes of the single channel analysis for the whole trial period produced 
maps revealing the spatial distribution of classification differences between speaker 
and vowel groupings. These were characterized by higher classification  
performances for the task-relevant stimulus dimension (i.e. grouping) compared to 
the dimension that was not relevant for the task. A similar task-dependent effect 

 

F igure 5 .  Resu lts  of the  Whole Tr ia l/S ingle Channel Analysis . (a) Channel-wise 
differences of classification performances for each task are shown in the upper panel. Tests 
were restricted to channels that had a significant accuracy value for one of the groupings. (b) 
For clusters showing significant performance differences in (a), average weight differences of 
speaker and vowel grouping are shown. Weights for speaker and vowel groupings are depicted 
in blue and red, respectively. Shadings denote larger speaker (red) and vowel (blue) weights. 
Only channels with at least one significant neighboring channel were considered for visualization 
of scalp topographies. 
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was also found when the whole set of data was analyzed by means of the 
multichannel analysis.  

Discussion 

Pattern recognition and EEG Data 

We have illustrated different strategies for analyzing EEG data using a pattern 
recognition algorithm. We have shown that it is feasible to distinguish 
experimental conditions above chance level, at the fine-grained level of speaker 

                   

F igure 6 .  Result s of the  Whole Tr ia l/Multichannel Analysis .  (a) Classification 
performances using all sampling points and channels are presented for the speaker (left) and 
vowel task (right panel). Bars denote the average and SEM of classification performance across 
subjects. (b) Weight differences for all channels are presented by blue and red colors indicating 
larger weights for the speaker and vowel grouping, respectively.  
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and vowel identity. Although low, our single-trial classification accuracies were 
significant even at a single subject level, which indicate that –- although noisy – 
EEG single trial responses carry information on the neural processing of 
individual speech sounds. Significance was assessed with a resampling approach 
(permutation testing) that detects systematic classification biases and provides an 
empirical estimation of the chance level. In particular, our classification 
performances were lower than those typically reported in EEG-based BCI 
experiments (e.g. ~70-90% for motor imagery based BCIs [Lotte et al., 2007]). 
There may be several reasons for this. First, our experimental paradigm included 
stimuli and conditions that result in largely similar EEG signals (low CNR) 
compared to BCI paradigms that are constructed to maximize response differences 
between classes. Another reason may be the data processing scheme prior to 
classification. Compared to our approach, analyses in BCI experiments often 
employ more sophisticated preprocessing and feature selection techniques (e.g. 
Laplacian filtering, common spatial patterns, genetic algorithms [Bashashati et al., 
2007; van Gerven et al., 2009]). In this study, preprocessing of data included 
standard filtering and ICA but no further feature selection and enhancement.  
Univariate or multivariate feature selection algorithms – which may lead to 
considerable increases of accuracy values especially in high-dimensional cases – 
were not applied. Especially in cases of classifications with many features (whole-
trial/multichannel), wrapper methods such as Recursive Feature Elimination (Guyon 
et al., 2002; De Martino et al., 2008) should be beneficial for both to obtain higher 
accuracies and select informative features. 

With regard the to classification algorithm, we selected a GNB classifier that 
may be seen as a ‘pseudo’ multivariate approach, which has the advantage of 
providing interpretable weights (similar to t statistics) as it assumes independency 
among features (i.e. diagonal covariance matrix). Other machine-learning 
techniques such as linear discriminant analysis (e.g. Duda et al., 2001) and support 
vector machines (Vapnik, 1995), which take feature correlations into account, have 
been previously applied to EEG datasets in the context of BCI (e.g. Bashashati et 
al., 2007; Lotte et al., 2007). The use of these or other classifiers may lead to higher 
accuracies compared to GNB-based classification, but this may come at the cost of 
the interpretability of the results and increase of computation time.   

In this study, trials were classified based on EEG time courses. However, 
representing trials by means of event-related (de)synchronization (Pfurtscheller 
and Lopes da Silva, 1999) or measures of coherence and synchrony (e.g. Besserve 
et al., 2007; Bonte et al., 2009; Varela et al., 2001) and classifying those may provide 
complementary and more detailed information (e.g. phase estimates, band-pass 
filtered signals and wavelet coefficients have been employed by Luo and Poeppel 
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[2007], Kerlin et al. [2010], and Rieger et al. [2008], respectively). Finally, our 
analyses could only detect effects that were strictly time-locked to the stimulus. 
Thus, single trials of the same condition that differed in terms of latencies could 
not be accurately classified. As this may be a relevant aspect in EEG/MEG, it is 
desirable - for future extensions of the proposed method - to include classification 
schemes that account for possible latency differences across trials.  

Types of Classification 

The focus of the present study was on examining how grouping of features in 
the temporal and spatial (channel) domain influences the results of EEG 
classification analyses (see Table 1). With regard to the temporal domain, a choice 
needs to be made between a hypothesis-driven analysis limited to a few temporal 
windows of interest (i.e. predefined windows approach which is closest to conventional 
ERP analyses) and a data-driven analysis with feature sets consisting of signal 
amplitude at all time points within a trial. This whole-trial approach promises to be 
more sensitive as several ERP components may contribute to distinguishing 
between two experimental conditions (Blankertz et al., 2011). As a possible  
alternative, we also examined a shifting-window approach with multiple sequential 
classifications that - compared to the whole trial approach -possesses the 
advantage of assessing information content over time. Regarding the spatial 
domain, the choice is between performing multiple classifications channel-by-
channel and a single classification using all channels simultaneously. 

In general, a multichannel and whole-trial approach seems desirable as it does 
not rely on previous assumptions and enables the pattern recognition algorithm to 
fully exploit information contained in both the topographic and temporal 

Table 1 . Qual ita tive Compar ison o f C lassi f icat ion Approaches 

 

aThe numbers in brackets denote the amount of statistical tests required in this particular study with 61 
channels, 5 predefined time windows, and 101 shifting windows. 

 



Chapter 2 

 44 

distribution of signal amplitudes. Furthermore, such a data-driven approach relies 
on a single classification, thus avoiding the problem of multiple comparisons, 
which applies – at different extents – to all other combinations (see Table 1: 
Amount of tests).  

Results of our analyses, however, highlighted several aspects that need to be 
considered when using this type of approach. When using all available features in a 
single classification (whole-trial/multi-channel), detection of both informative time 
windows and topographies is based on feature weights whereas a single accuracy 
value describes the overall information content. As illustrated in Figure 6, this 
approach detected the general effect on accuracy of the vowel task for the 
classification of vowels compared to speakers (Fig. 6.a, right panel) but failed to 
detect the expected opposite modulation for the speaker task (Fig. 6.a, left panel). 
Furthermore, the interpretation (and statistical testing) of weights to derive 
topographical and temporal information is not straightforward (Fig. 6.b). 
Especially when the number of features is very large, estimates of weights may be 
noisy. In case of SVM or LDA –based classification, additional issues may arise. 
For instance, Blankertz et al. (2011) describe a hypothetical case where high 
weights (as determined by a LDA classifier) are associated with one channel that 
does not contribute any class-related information. At the cost of increasing the 
number of classifications, the number of features can also be reduced by using a 
whole trial/single channel approach (Fig. 5). The analysis resulted in 
neurophysiologically plausible accuracy-based topographic maps that clearly 
highlight the task dependence of the informative neuronal sources but could only 
roughly indicate which intervals are relevant (Fig. 5.b).  

Our results for the shifting window approaches (Fig. 4) indicate that these are the 
most appropriate for tracing information content over time. In fact, both single 
and multi-channel analyses were able to detect – without prior hypotheses on the 
temporal windows - the early and task-independent processing of vowels, which 
becomes maximal at ~200ms (corresponding to P2). This is in accordance with the 
idea that an early stimulus-driven analysis processes – by default – acoustic 
features which are informative of speech content, like first or second formant 
frequencies (e.g. Obleser et al., 2004; Bonte et al. 2009). Although less significantly, 
our results additionally show that speaker identity information is present at similar 
latencies indicating bottom-up processing of speaker-relevant acoustic features, 
like fundamental frequency and timbre (Belin et al., 2004; Charest et al., 2009; 
Bonte et al., 2009).  

Later task dependent processing (~280ms), expressed by enhanced 
classification performance (single channel analysis) or higher weights (multichannel 
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approach) for the task-relevant dimension of stimuli, was found to occur mostly at 
right (speakers) or left lateralized (vowels) channels, which is in accordance with 
earlier studies (Belin and Zatorre, 2003; Formisano et al., 2008; Hickok and 
Poeppel, 2007; van Kriegstein and Giraud, 2004). Additionally, a late task-
dependent effect between 450 and 700ms after sound onset was detected that is 
most likely related to the memory maintenance of the relevant information for 
performing correctly the one-back task.  

In the case of the single channel/shifting window analysis the amount of multiple 
testing is highest and statistical testing would require a proper correction. Using 
the Bonferroni approach is known to result in over-conservative corrections. A 
proper correction requires an empirical estimate of the likelihood that k 
consecutive windows are significant by chance, which in turn requires permutation 
testing for each channel and time window. The computational load for this is very 
high, however it is becoming tractable thanks to the increasing availability of 
parallel processing. The number of classifications is greatly reduced with a multiple 
channel approach, which thus seems the most viable choice for tracing the 
temporal profile of information content also because the number of features 
considered in each classification is not excessively large (corresponds to the 
number of channels). As a consequence of the reduced number of tests, early and 
late effects on speaker and vowel grouping could be still detected after correcting 
for multiple testing (FDR) for the multichannel but not the single channel approach 
(Fig. 4).  

Conclusions 

We have illustrated different ways of analyzing EEG data by means of a pattern 
classification algorithm. Outcomes of the analyses show that grouping or 
separating available features (channels, time windows) helps highlighting different 
aspects of information content in the data. Because of the high temporal 
resolution of EEG (and MEG) a shifting window approach with sequential multi-
channel classifications proved to be the most valuable as it allows tracing the 
temporal evolution of stimulus and task-related neural information processing.  
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Abstract 

When multivariate pattern decoding is applied to fMRI studies entailing more 
than two experimental conditions, a most common approach is to transform the 
multiclass classification problem into a series of binary problems. Furthermore, for 
decoding analyses, classification accuracy is often the only outcome reported 
although the topology of activation patterns in the high-dimensional features space 
may provide additional insights into underlying brain representations. Here we 
propose to decode and visualize voxel patterns of fMRI datasets consisting of 
multiple conditions with a supervised variant of self-organizing maps (SSOMs). 
Using simulations and real fMRI data, we evaluated the performance of our 
SSOM-based approach. Specifically, the analysis of simulated fMRI data with 
varying signal-to-noise and contrast-to-noise ratio suggested that SSOMs perform 
better than a k-nearest-neighbor classifier for medium and large numbers of 
features (i.e. 250 to 1000 or more voxels) and similar to support vector machines 
(SVMs) for small and medium numbers of features (i.e. 100 to 600 voxels). 
However, for a larger number of features (>800 voxels), SSOMs performed worse 
than SVMs. When applied to a challenging 3-class fMRI classification problem 
with datasets collected to examine the neural representation of three human voices 
at individual speaker level, the SSOM-based algorithm was able to decode speaker 
identity from auditory cortical activation patterns. Classification performances 
were similar between SSOMs and other decoding algorithms; however, the ability 
to visualize decoding models and underlying data topology of SSOMs promotes a 
more comprehensive understanding of classification outcomes. We further 
illustrated this visualization ability of SSOMs with a re-analysis of a dataset 
examining the representation of visual categories in the ventral visual cortex 
(Haxby et al., 2001). This analysis showed that SSOMs could retrieve and visualize 
topography and neighborhood relations of the brain representation of eight visual 
categories. We conclude that SSOMs are particularly suited for decoding datasets 
consisting of more than two classes and are optimally combined with approaches 
that reduce the number of voxels used for classification (e.g. region-of-interest or 
searchlight approaches).  

 

Keywords — fMRI; decoding; multiclass classification; self-organizing maps 
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Introduction 

During the past years, the traditional voxel-wise analysis of fMRI data has been 
complemented by so-called Multi-Voxel Pattern Analysis (MVPA; e.g. Haynes and 
Rees, 2006; Norman et al., 2006). In contrast to the conventional activation-based 
statistical analysis, which examines each voxel separately for activation differences 
between experimental conditions using, for example, the General Linear Model 
(GLM; Friston, 1995), MVPA represents an information-based analysis 
(Kriegeskorte et al., 2006) that exploits information contained in spatial (i.e. multi-
voxel) activation patterns.  

Various decoding algorithms have been proposed in MVPA fMRI studies. 
These algorithms differ in terms of their complexity and include correlation-based 
approaches (Haxby et al., 2001), Gaussian-naïve Bayes classifiers (Mitchell et al., 
2004), linear discriminant analysis (Cox and Savoy, 2003, Kriegeskorte et al. 2006), 
linear and non-linear support vector machines (SVMs; Cox and Savoy, 2003; 
LaConte et al., 2005; Mourão-Miranda et al., 2005) and sparse logistic regression 
(SLR; Miyawaki et al., 2008; Ryali et al., 2010; Yamashita et al., 2008). More 
recently, the combination of classification algorithms and voxel selection strategies 
(e.g. De Martino et al., 2008; Langs et al., 2011; Yamashita et al., 2008) and use of 
multiple classifiers has been proposed (e.g. Kuncheva and Rodríguez, 2010).  

In this paper, we present an fMRI decoding approach based upon self-
organizing maps (SOMs). SOMs were developed to visualize high-dimensional 
data by converting the topology of data points into simple geometrical 
relationships on a two-dimensional grid (Kohonen, 2001). By preserving only the 
most important topological relationships, this algorithm abstracts from high-
dimensional input and provides insight into the underlying data structure. These 
properties rendered it an important tool for data exploration in various domains. 
Supervised SOMs (SSOMs) inherit these characteristics and extend the SOMs such 
that they can classify unseen samples. The decoding of fMRI data with SSOMs 
differs with respect to other approaches in two relevant aspects.  

First, SSOMs are not restricted to binary comparisons and thus allow for 
inherent multiclass decoding (i.e. when the fMRI measurements include more than 
two conditions). Many studies that analyzed fMRI data by means of MVPA 
employed experimental designs with two conditions or translated multiclass 
problems into a series of binary comparisons (one-versus-one or one-versus-all 
schema) paired with post-hoc processing (e.g. majority voting) to determine the 
predicted class (e.g. Beauchamp et al., 2009; Cox and Savoy, 2003; Ethofer et al., 
2009; Kamitani and Tong, 2005; Mourão-Miranda et al., 2006; Reddy et al., 2010; 
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Swisher et al., 2010; Walther et al., 2009). One reason is that one of the most 
applied classification algorithms in MVPA fMRI applications, the SVM, is in its 
basic form restricted to two class problems (but see Crammer and Singer [2002] 
and Weston and Watkins [1999] for multiclass SVM formulations and Martínez-
Ramón et al. [2006] for decoding of fMRI data using multiclass SVM). So far, only 
few fMRI studies applied MVPA in a multiclass setting without employing binary 
comparisons and necessary post-processing. In these studies decoding was 
performed with naïve Bayes (Brouwer and Heeger, 2009; Mitchell et al., 2004) or 
neural network classifiers (Hanson et al., 2004; Polyn et al., 2005).  

Second, SSOMs offer the possibility to visualize the underlying distribution of 
fMRI activity patterns used to train the decoding model. These visualizations can 
reveal the topology of the underlying activity patterns in high-dimensional feature 
(voxel) space. When analyzing fMRI activation patterns by MVPA, the 
experimenter is interested in the degree of separation between classes in feature 
space. In the case of two classes, the interpretation of classification results is 
straightforward, i.e. the accuracy of predictions describes the degree of separation 
of the response patterns. However, for classification of response patterns with 
more than two classes, focusing on overall classification accuracy or performances 
of many binary comparisons provides only a partial, non-intuitive view on class 
distributions in high-dimensional voxel space. Thus, when performing multiclass 
classification an additional post-processing step is usually required to infer and 
visualize underlying class distributions (or topology), e.g. via confusion matrices. 
For example, Abdi and colleagues (2009) visualized class distributions in a 
multiclass setting by first computing pairwise comparisons between classes and 
visualizing, based on these outcomes, the underlying topology using Principal 
Component Analysis (PCA) and a bootstrapped Multidimensional Scaling (MDS). 
It should be stressed that, in these cases, class distributions are deduced using the 
classification performance of the decoding algorithm. Conversely, SSOMs visualize 
the data directly and thus do not require additional post processing. Another 
approach that allows visualizing data in fMRI is representational similarity analysis 
(RSA; Kriegeskorte et al., 2008). In RSA, representational dissimilarity matrices 
(RDMs) are calculated using pairwise distances (e.g. correlation distance) between 
activity patterns evoked by distinct stimulus classes. Subsequently, topology of 
activity patterns can be visualized by MDS of the dissimilarity matrices. A notable 
distinction compared to SSOMs is that RDMs are calculated from the entire 
feature set with equal weighting, whereas SSOMs-based topologies rely on the 
optimized combination of features, which results from learning of the stimulus 
labels. Thus, SSOM-based visualization may lead to a better abstraction of high-
dimensional activity patterns. 
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Below we illustrate how SSOMs can be used in the context of fMRI decoding 
to perform multiclass classification and visualize class topology. We present results 
on simulated fMRI data to illustrate the validity and usefulness of SSOM 
classification and visualization in the decoding of single data sets as well as in 
analyses involving multiple cross-validation splits and/or multiple subjects. 
Furthermore, the proposed method is applied to the analysis of two fMRI studies. 
First, we examined the performances of our SSOM-based method in a challenging 
case of brain-based decoding of speaker identity using new fMRI data collected 
while participants listened to short non-linguistic vocalizations from three speakers 
(dataset 1, 3-class problem). Second, we re-analyzed publicly available fMRI data 
from the Haxby et al. (2001) study, where participants were presented with 
pictures of eight different object categories (Haxby et al., 2001; dataset 2, 8-class 
problem). Many other classification strategies have already been tested using this 
dataset, which thus provides a good benchmark for evaluating our method.  
Furthermore, the rich variety of visual categories employed allows showcasing the 
added value of visualizing the class topologies using SSOMs.  For both simulated 
and real fMRI data, we compared the classification performances of SSOMs to 
linear and non-linear SVMs and a kNN classifier. 

Methods 

Self-Organizing Maps (SOMs) 

Self-organizing maps (also called Kohonen maps or networks) are a special 
type of neural network that was first proposed by (Kohonen, 1982). Several 
properties have rendered it an important tool for exploration, visualization and 
abstraction of high-dimensional data (Kohonen, 2001). The SOM typically consists 
of a two-dimensional rectangular grid of nodes or units (in the following nodes 
and units are exchangeable terms) each associated with a model of the high-
dimensional input data. The weights of these models are iteratively adapted during 
a learning process, which changes models to optimally span the range of input 
data. SOM nodes with their associated weights organize such that similar patterns 
in the high-dimensional space are grouped in clusters using a non-linear 
competitive learning strategy (Kohonen, 2001). More specifically, nodes that are 
close to each other in the two-dimensional SOM after training represent patterns 
of the input space that are similar (i.e. have a small distance). Furthermore, regions 
in high-dimensional feature space that are more densely populated are represented 
by more nodes compared to sparse regions with few data points. These properties 
arise from the learning process that occurs in three main stages (Kalteh et al., 
2008). First, the nodes are initialized to span the range of input values for each 
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dimension. Second, the competitive, unsupervised learning scheme assigns each 
input pattern to the closest node, i.e. the best matching unit (BMU), using Euclidean 
distance in most implementations. Then, the weight vectors of the BMU and 
neighboring units defined by a neighborhood function are updated to better match 
the input pattern (i.e. these associated models are shifted towards the input 
pattern). These training steps are repeated until a specified number of iterations or 
a convergence criterion is met (e.g. Cheng, 1997; Kohonen, 2001). In a third step, 
the resulting nodes and attached models can be visualized using several strategies 
(e.g. Vesanto, 1999). 

Formally, a SOM consists of a rectangular two-dimensional grid with U units. 
Each unit i is described by a N-dimensional model or weight vector mi = [mi1,…, 
miN] where N is the number of input features. The basic organization of SOMs is 
usually a rectangular or hexagonal lattice (i.e. SOM nodes have four or six 
neighbors, respectively). We used a hexagonal lattice because they are preferable 
for visualization purposes (Kohonen, 2001; Vesanto, 1999). For SOM learning, 
training samples xk = [xk1,…, xkN] (k = 1,…, K) are iteratively presented and the 
best-matching unit (BMU) mBMU is selected according to smallest distance, i.e. 

!! −!!"# != !min
!

!! −!! , (1)!
where || denotes Euclidean distance. In the following, weights of map units are 
modified with the following update rule: 

!!!! = !!! + !!ℎ!"#(!!) !! −!! !, (2)!
where t denotes the learning iteration, αt the learning rate and hBMU (rt) the 
Gaussian neighborhood kernel around winning unit mBMU with radius rt. After 
weight adaption, BMUs are redefined with the new unit-specific weight vectors. 
Both learning rate and radius of the neighborhood are decreasing functions over 
time. This learning leads to an early stage that sets the general layout of the map by 
allowing large adjustments and a fine-tuning stage with small changes. In this 
paper we used the batch computation of the SOM and not the stepwise, recursive 
algorithm as it is faster and more robust (e.g. Kohonen, 2001). The MATLAB-
based SOM-toolbox (http://www.cis.hut.fi/somtoolbox/) was used for SSOM 
training.  

Supervised SOMs (SSOMs) 

Kohonen (2001) outlined how unsupervised SOMs could be modified to 
predict unseen instances (see Wongravee et al. [2010] and Xiao et al. [2005, 2006] 
for applications of this type of SSOM). The basic idea is to append a vector that 
specifies class membership to the SOM input. In this way, the training 
incorporates both the measured data (multivoxel patterns) as well as the class label 
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for model learning simultaneously, i.e. the algorithm does not differentiate 
between labels and input data. Melssen and co-workers (2006) proposed two 
alternatives for a supervised SOM algorithm. Both of these approaches consist of 
two separate SOMs, one representing the input data (multivoxel patterns in this 
paper) and the other reflecting the assigned class labels. During the training 
process a shared BMU or separate BMUs for the two maps are determined by 
taking distances in both SOMs into account. The weight vectors of SOM units for 
both maps are updated as in usual SOMs. In this paper, we apply the supervised 
SOM as proposed by Kohonen (2001) mainly for lower computational costs.  

The extension suggested by Kohonen (2001) is based on a modified input 
vector x*k = [xk ck] for model training that results from concatenating input trials 
xk and a C-dimensional (C denotes the number of classes) class-vector ck = [ck1,…, 
ckC] where cki = 1 if trial k belongs to class i and ckj = 0 (j ≠ i) otherwise (1-of-K 
coding; Bishop, 2006). Similarly, a vector vi = [vi1,…, viC] is appended to the weight 
vectors of SSOM-units mi to form m*i = [mi vi] with N+C elements. After SSOM 
training, map units are ascribed to one class by inspecting the last C elements of 
the map weight vectors vi: the index with the largest value determines the label of 
map unit mi. In general, class-vectors ck have norm τ (e.g. ck = [0 τ 0] would be 
the class-vector coding the second class out of three). Large τ lead to better class 
separation of the supervised SOM but simultaneously increase the risk that SSOMs 
reflect the ‘artificial’ concatenated inputs x*k rather than the original inputs xk, 
which might lead to poor generalization performance. The parameters τ and U for 
the two fMRI datasets were set according to results from the respective simulated 
datasets (τ = 0.2 and U = 64 for dataset 1; τ = 1.0 and U = 100 for dataset 2) and 
not optimized using measured data. The chosen parameters provided a good 
trade-off between data-driven organization and supervision leading to reasonable 
degree of clustering necessary for generalization and visualization (see 
supplemental material S1 for choices of τ and U). SOM units were initialized with 
weights that corresponded to eigenvectors of the largest U eigenvalues of the 
training data.  

For the prediction of testing trials, the elements of the weight vectors 
containing class information are detached and unseen instances xtest (i.e. without 
class vector ctest) are presented. In contrast to the usual approach in which a trial is 
classified according to the label of the BMU, we employed the 10 best-matching 
units (10-BMUs) to accumulate evidence for classification (see Fig. S3 for results 
of k-BMUs). As SOMs reflect the topology underlying the input data, using k-
BMUs (k>1) can be seen as taking the neighborhood of the BMU into account, 
which leads to more robust classification performances (e.g. Haufeld et al., 2012; 
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Silva and Del-Moral-Hernandez, 2011). In particular, we computed a classification 
index 

!"! = (v!" ∙ exp − !!"# − !!"#$ ! !
!!!…!"

, (3)!

to obtain evidence that trial xtest belongs to class c (vic denotes the class specific 
certainty of ith best-matching unit and xBMUi is the model of the ith best-matching 
unit). The supervised SOM predicts an unseen trial according to the class 
obtaining largest CI. 

Multi-Split and Multi-Subject SSOMs.  

One main advantage of using SSOMs is that these offer opportunities to 
visualize decoding models (see Fig. 1B). In this study, we visualized the decoding 
model, i.e. the SSOM, and results by projecting the weight vectors mi onto two 
dimensions using principal component analysis (PCA; see e.g. Vesanto [1999]  and 
Xiao and colleagues [2005] for other types of visualization). We chose the PCA-
based approach because it is a simple and comprehensive linear approach that, in 
most cases, provided similar visualizations compared to non-linear mappings like 
multi-dimensional scaling (MDS). 

SSOMs are trained for each cross-validation split and each of these single-split 
SSOM possesses its own topology. In order to have an understanding of the 
common topology across cross-validations it is necessary to create a multi-split 
SSOM, i.e. a representation that generalizes from SSOMs of single splits. Similarly, 
to identify the common topology of SSOMs across single subjects requires 
establishing a multi-subject SSOM. Here, we suggest abstracting from single to 
multiple SSOM properties (i.e. weight vectors, label certainties, and 
training/testing trial occupation) with a two-step procedure: First, single-split or 
subject-specific response patterns are transformed into a common space and, 
second, an optimal correspondence between the nodes of single SSOMs is found.  

SSOM Alignment. The first obstacle to create general SSOMs is the fact that 
underlying activation patterns might not be based on the same voxels (e.g. in this 
study voxel selection depends on properties derived from the training set and not a 
region-of-interest [ROI] or searchlight approach for which the same voxels are 
used across splits). To resolve this alignment problem we follow an approach 
recently proposed by Haxby and colleagues (2011) that was developed to align 
response patterns of different participants by creating a common space. Here, a 
procrustean transformation is applied to align the centroids of all nodes with the 
same label of single SSOMs to find a transformation that maps SSOM nodes into 
a common space. The parameters for the linear transformations (i.e. rotation and 
translation; we did not include a scaling parameter as data were already 
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normalized) are estimated in a three-step process (cf. Haxby et al., 2011). First, the 
single SSOM weight vectors are aligned to an iteratively updated reference to form 
an initial reference SSOM. A randomly chosen single SSOM served as the first 
reference. Consecutively, this reference was updated by the average of the old 
reference and the newly aligned SSOM. The reference obtained in the end of this 
stage formed the initial reference. For the second processing stage, all single SSOMs 
were aligned to the initial reference SSOM and the average of the aligned single 
SSOMs formed the final reference. As a last step, single SSOMs were aligned to the 
final reference.  

The estimated parameters of the final procrustean transformation for each 
SSOM were used to convert the weight vectors of single SSOMs to a common 
space. Note that for cases in which the same voxels are selected across splits the 
alignment via procrustean transformation is not needed and can be skipped.  

Node Matching. In this step, the aim is to find a matching of nodes across 
different splits (or subjects) to form the general SSOM. Once the matching is 
found, node properties (i.e. coordinates, node labeling, training- and testing trial 
occupation) are averaged accordingly. In order to find a good matching of nodes 
we defined an error function and used the simulated annealing algorithm (SA; 
Kirkpatrick et al., 1983) to approximate its global minimum. The error function E 
we aimed to minimize was  

! = !!!! + !!!!! + !!!!, (5)!
where E1, E2 and E3 denoted distance, connection and correspondence error, 

respectively (see supplemental material S2). For SA all errors were rescaled to lie 
between 0 and 1 and the parameters of the error function were ω1 = 0.7, ω2 = 0.2, 
and ω1 = 0.1. We chose this error weighting to base the matching mostly on the 
obtained SSOM node weights and less so on node labels. In order to ensure a 
visually comprehensive connection layout, we introduced the connection error, 
however, with small weighting.  

In each step of the SA, we perturbed two randomly selected nodes of one 
randomly chosen SSOM. A node matching with a lower energy state was always 
accepted whereas for a higher energy state the new matching was accepted with 
probability ! = !"# !!"# − !!"# /!!"#$ , where Titer decreases with iterations 

( !! = 10 , !!"#$ = !!"#$!! ∙ !!  and ! = 0.9  for dataset 1; !! = 1 , !!"#$ =
!!"#$!! ∙ !! and ! = 0.75 for dataset 2). The result of this procedure was a node 
matching between SSOMs that minimized the energy function (Eq. 5) and a 
general SSOM could be created. To determine node labels and training/testing 
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trial node occupation we averaged the single SSOM counterparts. This general 
SSOM can be visualized similarly to single SSOMs (see above). 

SSOM Visualization 

For visualizations of SSOMs, we projected the trained SSOMs onto the first 
two principal components using customized functions provided by the MATLAB-
based SOM toolbox (see 2.1). In addition, for dataset 2, class-specific maps were 
derived by computing a weighted average over the (linear) models of all nodes of 
the class considered. For weighting, we ranked the nodes with respect to their 
distance from the center of mass of the respective class (i.e. nodes weighting was 
computed according to ! − !"#$!"#$ + 1 ! where Y denotes the number of 
nodes of the respective category). Note that the maps in Figure 12 do not show 
the average activation for each category but – owing to the SSOM algorithm – 
they display the set of features (voxels) that discriminate one category optimally 
from the other categories.  

2.5 fMRI Datasets 

Simulated fMRI Data. A 3-class fMRI dataset including 3 runs was simulated 
following procedures described in (De Martino et al., 2008). For each class we 
simulated 30 trials using SNRs (i.e. signal amplitude/standard deviation of noise) 
of 0.35 and 0.5 (referred to as low and high SNR, respectively) and CNRs 
(amplitude difference between conditions/noise standard deviation) of 0.15, 0.25, 
and 0.35 (referred to as low, medium and high CNR, respectively). SNR and CNR 
values were randomly assigned independently to each voxel with a standard 
deviation of 0.1 (SNR) and 0.01 (CNR). The underlying anatomy and region 
definitions were based on a real dataset employing auditory stimuli (see 2.6.2). For 
generating spatio-temporal activation patterns, boxcar time-courses were 
convolved with hemodynamic responses that varied across voxels with respect to 
its time to positive peak (drawn from normal distribution with µ = 4s and σ = 
0.5s). Subsequently, we added temporally auto-correlated noise to obtain the 
simulated signal with an autocorrelation of ρ ~ N(0.5, 0.1) for each voxel (cf. De 
Martino et al., 2008). Finally, voxel time-courses were sampled at a repetition time 
(TR) of 2.6s that was also used for acquiring the auditory fMRI dataset (see 2.6.2) 
resulting in ~180 TRs per run (trials lasted between 5 and 7 TRs). We simulated 
two regions in the auditory cortex with different response properties. Voxels of 
the first region (432 voxels) responded to all classes but with larger amplitude to 
one of the C classes. In the second region (1453 voxels), voxels responded to 
sounds but did not differentiate between classes. These responsive regions were 
embedded within a dataset of temporally correlated noise including a total of 
16,505 voxels (cortex mask).  
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In a second set of simulations that we used for estimation of parameters for the 
dataset 2, specifications of the above-mentioned simulations remained the same 
but the number of classes was set to 8 (corresponding to the fMRI data) and 12 
trials per class were simulated. We defined one region (523 voxels) that 
differentiated classes with an SNR of 0.5 and CNR of 0.25. 

Speaker Identification Study. To examine the classification approach with a 
challenging dataset (i.e. difficult to decode), we acquired fMRI data while 5 
participants performed a speaker identification task. Vocalized sounds (< 1s) were 
played during a 1.2s period of silence between image acquisitions in a slow event-
related design (5-7 TRs between single trials) and subjects were asked to indicate 
the speaker identity after sound presentation. Functional runs were collected at 3 
Tesla (Allegra, Siemens) and consisted of 18 slices positioned parallel to the 
Sylvian fissure obtained with a T2-weighted gradient echo, EPI sequence (TR 2.6s, 
TE 30ms, TA 2.4s; voxel size 2×2×2mm3). Anatomical images were obtained 
using a high resolution (1×1×1mm3), T1-weighted MPRAGE sequence. Presented 
sounds were 30 different short non-linguistic vocalizations (e.g. “aww”, “uuh”) of 
three speakers (1 female, 2 males referred to as f, m1, m2). Before scanning, 
participants were familiarized with the voice identities with a short practice session 
consisting of 20 vocalizations not presented during fMRI data acquisition.  

Visual Object Categories Study. We reanalyzed a publicly available data set from 
the Haxby et al. (2001) study. In this study, participants viewed pictures of faces, 
cats, houses, chairs, scissors, shoes, bottles, and scrambled version thereof. 
Provided data were converted to BrainVoyager QX format (v2.4, Brain 
Innovation). We restricted our analysis to the Region of Interest (ROI) defined by 
the mask included in the dataset covering the ventral temporal object-selective 
cortex. Thus, neither univariate nor multivariate voxel selection was necessary. For 
more specifications on the experiment and data the reader is referred to the 
original study (Haxby et al., 2001). 

Data Processing and Analysis 

Preprocessing. The preprocessing of fMRI data consisted of slice-scan-time 
correction, motion correction, transformation into Talairach space, temporal high-
pass filtering (0.005 Hz) including removal of linear trends and spatial smoothing 
with a Gaussian kernel (2mm FWHM) using BrainVoyager QX.  

Cross-Validation and Voxel Selection. For cross-validation of the first dataset and 
corresponding simulations, we divided each run into two half-runs (the first half 
contained trials 1 to 15 and the second trials 16 to 30 of the respective run; 
conditions were balanced over half-runs) and performed 6-fold cross-validations 
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to assess classification performance. For model training we defined datasets 
consisting of 5 of the 6 half-runs. The remaining half-run was used to determine 
how well the trained model was able to generalize. The second dataset (visual 
object categories) was analyzed in a leave-run-out scheme. This resulted in a 12-
fold cross-validation for five subjects and 11-fold cross-validation for one subject.  

For the first dataset we performed a series of feature selection steps (see Fig. 
1A). We limited the analysis on an anatomical mask covering auditory responsive 
regions of temporal cortex and reduced the number of voxels with a GLM, which 
was computed using the training set by selecting the strongest responding 2000 
voxels across conditions. An ensemble feature selection method (e.g. Abeel et al., 
2010) was used to define feature sets with different numbers of voxels. This 

                             

F igure 1 .  F lowchart  o f Data Analysis  and Creation of General SSOMs. Panel A 
presents the main processing components employed in this study. After data acquisition and 
preprocessing, the dataset was divided according to a k-fold cross-validation scheme into an 
independent training and testing set. A univariate selection of features (i.e. voxels) via a GLM 
and subsequent multivariate selection using an SVM-based approach was performed on the 
training data (please note that the voxel selection steps were only used for analyzing dataset 
1). The set of voxels surviving feature selection were used to construct the testing set. Next, 
different decoding algorithms were applied to create classification models that were validated 
using the validation set. Panel B shows the different processing steps to derive a general 
SSOM. Models of SSOMs (obtained in the Classification Models step in panel A) were aligned 
to be represented in a common high-dimensional space with procrustes transformation. Then, 
simulated annealing was employed to match nodes of single SSOMs that, in the end, were 
used to construct the general SSOM by averaging node membership and testing trial 
occupation. 
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feature selection approach relies on bootstrapped aggregation of SVM-based 
feature ranking. In this work, for each of 25 bootstrap samples, features surviving 
univariate selection were ranked according to model weights of a linear SVM (Csvm 
= 1; one-versus-one scheme) and ranks across bootstrap samples were averaged to 
obtain the final ranking. We created 12 differently sized feature sets by removing 
iteratively the lowest ranked 20% voxels starting with 1000. This resulted in feature 
sets of 1000, 800, 640, 512, 410, 328, 262, 210, 168, 134, 107, and 86 voxels. 

For both sets of data the single-trial response (in percent signal change) was 
fitted to a hemodynamic response model for each voxel. The obtained β values 
indicating response amplitude were used as features representing single trials. We 
normalized features of both training and test trials with an inter-quartile-range 
(IQR) normalization (median and 1st and 3rd quartile were estimated using 
training data): !!!"# = 1.35 ∗ (!! − !!")/(!!" − !!"), where xi is the estimated β 
value of the ith trial and Q50, Q25 and Q75 are the median, first and third quartile, 
respectively. Compared to z-score normalization, using the median and IQR for 
normalization is more robust to outliers. The scaling factor assures that z-score 
and IQR normalization is comparable for normally distributed data. For 
simulations we decoded the three simulated classes and, similarly for the real 
dataset, we classified the identity of the three speakers (f, m1, m2), whose 
vocalizations were presented to the subjects. We compared outcomes of SSOMs 
with a kNN classifier (k  = {1, 2, 3, 5, 10, 15, 20}), a linear SVM (Csvm = 1), and a 
non-linear SVM (RBF-kernel; grid search of soft-margin and kernel parameter Csvm 
[2-6, 2-4,…, 24] and σsvm [2-7, 2-5,…, 23]). Parameters for kNN and non-linear SVMs 
were optimized in 5-fold cross-validation. For SVM classification, the multiclass 
classification problem was transformed into binary classification using the one-
versus-one scheme. We used the Spider toolbox 
(www.kyb.tuebingen.mpg.de/bs/people/spider) for SVM (linear and non-linear) 
and the BioInformatics toolbox for kNN classification 
(www.mathworks.nl/products/bioinfo/). Generalization performance was 
assessed with accuracy (i.e. the number of correct predictions divided by the total 
number of testing trials) and true positive rates (TPR) for each class to assess class-
specific performance. 

Statistical Testing. For simulations, we tested whether performances with 
discriminative voxels were higher than simulations without discriminative voxels 
using a Monte Carlo approximate permutation test (e.g. Good, 2000). We created 
1999 randomly shuffled resamplings of the 20 simulations with and 10 simulations 
without discriminative voxels. The difference between the two types of simulations 
of the true groups was compared to the empirical distribution created by the 
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resampling procedure. The significance was calculated by dividing the count of 
instances in the permutation distribution that was larger than the actual difference 
(one count was added to both numerator and denominator). The 95% confidence 

interval of the estimated p-value is given by ! ± 1.96 ∗ !(1 − !)/!, where ! is the 
estimated p-value and n the number of permutations. Comparisons between 
classification algorithms were done similarly. However, in contrast to the above-
mentioned procedure, we randomly changed the sign of the elements of the 
difference vector between two classification approaches 1999 times and compared 
the actual average difference to the differences obtained with the Monte Carlo 
procedure.  

For real data we tested – for each voxel selection level - whether classification 
performance was better than expected by chance by permuting class labels at a 
single subject level. Due to high computational costs (see Table S.1) the number of 
permutations was limited to 99. However, we also examined in detail a selected 
voxel selection level, for which we performed 999 permutations at single subject 
level. Corresponding single-subject accuracies and their confidence interval were 
derived as described for the simulations. For group statistics we employed an exact 
permutation test. Specifically, we determined the difference between the accuracy 
with true labels and the average permutation accuracies (observed 95% CI of 
average permutation accuracy for individual subjects 0.33±.098). The amount of 
occurrences of larger differences in the permutation distribution divided by the 
number of permutations denoted the significance. Comparisons between 
classification algorithms were performed with the same exact permutation test by 
computing accuracy differences between two classification approaches. 

Results and Discussion 

Simulations  

SSOM properties and visualization. Figure 2 shows a SSOM obtained for one data 
split (low SNR, medium CNR; 262 voxels). The maps visualize the model as 
follows. First, weight vectors mi of SSOM-units are projected onto two 
dimensions using PCA. Each node of the SSOM has a colored shading according 
to the class it represents (determined by the winning index of the class-defining 
vector vi). It can be seen that the SSOM grid reflects the properties of the 3-class 
dataset by forming a triangular-like shape with a clustering of nodes at the tips that 
represent one class. The shape indicates that, after training of the SSOM 
algorithm, nodes representing voxel activation patterns of the training set cluster at 
three regions in the high-dimensional input space. The occurrence of three clusters 
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is expected because input vectors contain class information leading to the class-
distinguishing SSOM. To investigate the model’s properties, we computed the 10-
BMUs for training and testing trials. The radii of the grey circles in figure 2A (2B) 
indicate for each node the amount of trials that were best described by the node 
weight vectors mi (i.e. the number of occurrences that this node belonged to the 
10 BMUs). It can be seen that the model succeeds in describing training trials: 
nodes at the tips of the triangle are more often among the BMUs (Fig. 2A). In 
contrast, testing trials occupy more often nodes in the center of the triangle 
revealing that the model cannot differentiate as well between classes for the testing 
trials compared to trials in the training set (Fig. 2B). To provide a visual account of 
the generalization performance of the SSOM, pie charts describe to which class 
the testing trials belong (Fig. 2C). Here, colors indicate the proportion of classes of 
testing trials whereas the radius reflects the amount of trials falling onto single 
nodes (same as in Fig. 2B). It can be seen that nodes in the center of the triangle 
show similar proportions of testing trials for all classes. Nodes at the tips, 
however, do not attract many testing trials but are more specific with respect to 
classes. For this model it can be seen that testing trials falling on nodes at tips are 
most often consistent with the node’s class label, thereby suggesting above chance 
classification (classification accuracy for this split: 0.40). Note that examining the 
performance of SSOMs on test trials is essential for a correct interpretation of 
topologies. In fact, due to supervised nature of the training, a clustering of nodes 
from the same class occurs to some extent also for random data. However, this is 
meaningful only if it generalizes to new trials. Hence, visualizations should only be 
consulted when classification performance is above chance level (similar to MVPA 

 

F igure 2.  Vi sual izat ion o f S ingle-Spl it  SSOM. The shading of nodes indicates which of 
the three classes the node represents. The radius of the inner grey circles denotes the number 
of training (A) and testing trials (B) for which the node was among the 10-BMUs. The pie 
charts in (C) show the class membership of testing trials of the respective units (the radii of pie 
charts denotes as in B the number of testing trials). See text for details.  
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studies presenting discriminative maps). In such cases, the SSOMs visualization 
can provide interesting insights into the decoding process. For example, when 
performing 3-class classification and the underlying representation of two classes is 
similar, SSOMs would show smaller distances for these classes in comparison to 
the other class (see Fig. 3A for an example). Similarly, strong evidence for 
separating one class into two classes would lead to subclusters of nodes within a 
class (Fig. 3B). In addition, other measures besides classification accuracy can be 
conveyed ‘at a glance’ (e.g. misclassification for specific classes).  

To create a general SSOM from single-split SSOMs (Fig. 4 shows projections 
of SSOMs for different splits) we applied the alignment and node-matching 
procedure (see 2.3) that assures that class centroids overlap in common space. This 
linear transformation is then applied to produce a general SSOM. Note that for 
visualization purposes we did not present the classes of testing trials as pie charts 
for single-split SSOMs but their class-specificity, which we defined as the ratio of 
the classification index (cf. Eq.3) for the class with most and medium number of 
trials.  

The center of figure 4 shows the corresponding general SSOM derived from 
single-split SSOMs. The nodes that share class labels cluster together forming 
triangular shapes in the PCA mapping. Similar to properties observed in single 
SSOMs, nodes between class clusters possess a higher attraction for testing trials, 
however, with less class-specificity. Nodes at the tips attract fewer testing trials but 
are more class-specific. It can be seen that for some of these nodes, the majority of 

      

Figure 3 . Examp les of In formation Provided by SSOM Topology.  SSOMs show the 
same information as in Fig. 1A but for two special cases. In (A) the simulated 3-class dataset 
contains two classes that have similar activation patterns. Panel (B) shows a case in which 
binary classification was carried but the simulated data actually contained three classes. 
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testing trials did not belong to the class attributed to the node according the 
SSOM algorithm. In those cases this indicates misclassification and, more 
specifically, which classes are being confused. In the results for the particular 
simulation presented in figure 4, a faithful classification of the yellow class can be 
observed whereas the purple and orange one are often confused. This is also 
reflected in TPRs (yellow: 0.60, purple: 0.30, orange: 0.33; classification accuracy: 
0.41).   

Performance of SSOMs compared to other decoding approaches. For statistical evaluation 
of performances, we created 20 simulations with different noise patterns and 
randomized voxel’s class preference in the discriminative region (as described in 
2.5). In addition, we created 10 simulations in which we replaced voxels in 
discriminative region with voxels that were still responsive but no longer 
discriminative (i.e. these simulations did not contain any information about 
conditions).  

            

F igure 4 . Vi sual izat ions of S ing le-Spl it  and Mult i-Spl it  SSOMs. Shadings of nodes 
denote the three associated classes and inner circles of single-split SSOMs reflect the class 
specificity of testing trials for which nodes were BMUs (diameter scales with class specificity 
and color denotes the prevalent label of testing trials). Pie charts in the multi-split SSOM show 
class membership of testing trials and radii denote the number of training trials. Scales of 
principal components are equal to figure 1. The general SSOM was enlarged by a factor of 2.0 
compared to single-split SSOMs. 
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As can be seen in figure 5 all decoding algorithms were able to classify class 
labels successfully independent of SNR for medium and high CNR (summed 
accuracies across selection levels, p = .005±.0031 [significance estimate and 95% 
confidence interval thereof] for all decoding algorithms) and for high SNR and 
low CNR (p < .005±.0031 for all decoding algorithms). We found that 
classification accuracy increased with a larger number of features. 

 

Focusing on SSOMs, we found that they perform better compared to kNN 
classification for simulations with medium CNR and high SNR (summed 
accuracies across selection levels, p = .0215±.0064) and high CNR and low and 
high SNR (p = .011±.0046). Level-specific comparisons showed that SSOMs 
could better discriminate classes compared to kNN classification for voxel 
selections consisting of medium-sized feature sets (i.e. 328-640 voxels; p = 
.0555±.0100) for three SNR-CNR combinations (SNR/CNR: low/high, 
high/medium, and high/high). This suggests that although SSOMs and kNN 
classification share properties like computing distances to training samples (kNN) 
and nodes (SSOM) to predict test instances, SSOMs outperform kNN 
classification. One possible explanation is that in contrast to kNN classification, 
SSOM abstracts from individual training patterns to form SSOM nodes. This 

 

F igure 5 . Decoding Accuracy o f S imu lated Data for  Dif fe rent SNR and CNR. 
Solid lines denote decoding performance for simulations with informative voxels and dotted 
lines show performance without informative but responsive voxels. Note that results depict an 
average decoding performance across simulations with independent noise patterns and 
randomly assigned voxel specificity in the discriminative region. Markers with black edge 
indicate classification performances above chance (p < .05; exact permutation test). 
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might lead to more robust generalization due to less sensitivity to noise or outlier 
samples.  

Compared to both types of SVMs, the decoding accuracy of SSOMs was not 
significantly different (summed accuracies across selection levels, p = .135±.150 
for all SNR and CNR settings). Focusing on performances for single selection 
levels SVMs outperformed SSOMs only when the number of voxels in the feature 
set was large (i.e. 800 and 1000 voxels; p = .045±.0091) for simulations with three 
SNR/CNR combinations (low SNR/high CNR, high SNR/medium CNR, and 
high SNR/high SNR).   

To better understand the decoding results, we examined the sets of voxels 
selected by the ensemble feature selection. As can be seen in figure 6, the number 
of voxels that belonged to the region with discriminative (i.e. informative) voxels 
increased until the largest set of features (dashed lines). This indicates why 
decoding algorithms show a general increase in performance. However, the 
number of informative voxels decreased compared to the number of noise voxels 
(i.e. voxels that did not contain information about class identity) for increasing sets 
of features (solid lines). This might explain the performance plateau for SSOMs 
for high CNR cases as the larger number of noisy voxels entering the set of 
features counteracts the increase of informative voxels. SVMs are more robust to 
this increase of noisy voxels by their intrinsic weighting of features, which is in line 

                   

F igure 6 .  Voxel Select ion o f S imulated  Data for  d i f fe rent SNR and CNR. Solid 
lines depict the ratio of informative versus non-informative voxels among selected voxels. 
Dashed lines indicate the number of selected voxels within the discriminative region divided 
by total number of informative voxels. Grey lines show the respective results for simulations 
without informative but responsive voxels.  
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with the observed performance increase observed also for large sets of voxels. 
Thus, for cases with a large number of features (e.g. whole-brain classification), 
SVMs should be chosen over SSOMs.  

Speaker Identification Study 

Voxel Selection. Figure 7 shows the group map of the voxel ranking for the left 
and right hemispheres established by the ensemble feature selection procedure. We 
used cortex-based alignment (CBA) to transform single-subject selection maps 
into a common space (Goebel et al., 2006). For the group results, we computed 
maps that focus on the consistency of important regions across subjects. In 
particular, we selected the highest ranked 262 voxels for each subject and created a 
group map thereof that depicts for how many subjects a region was included in the 
combined univariate-multivariate selection procedure. Voxels selected with high 
consistency among subjects were found in left planum temporale (PT), bilateral 
middle superior temporal gyrus (STG)/Heschl’s sulcus (HS), lateral Heschl’s gyrus 
(HG), right posterior superior temporal sulcus (STS), and left anterior and 
posterior portions of STG. The right STS and HG/HS are in agreement with 
regions found to be involved in processing of voices (Belin et al., 2000; Moerel et 
al., 2012) and in the discrimination of individual speakers (Formisano et al., 2008). 
However, in contrast to Formisano et al. (2008) - where subjects were passively 
listening to the stimuli - we also observed left anterior STG as being important for 
speaker classification. This might be due to the active speaker discrimination task 
employed in our new experiment (see also Andics et al. [2010] that found the same 
region to be involved in an active speaker identification task).  

 

       

F igure 7 .  Group Maps f rom the Ensemble Feature Selection Approach . For each 
subject the most important 262 voxels were selected and projected onto the group-aligned 
cortex. The colors depict for how many subjects a region was included in the combined 
univariate-multivariate selection procedure.  
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Performance of SSOMs compared to other decoding approaches. We compared the 
SSOM decoding performance with those of kNN and SVM (linear and RBF-
kernel) classification. Figure 8 shows the average decoding performance for the 
different voxel selections and classification algorithms. We found that all 
algorithms perform above chance level for medium numbers of voxels (p < .05).  

 

Compared to kNN classification, SSOMs perform similarly (summed across 
selection levels, p = .2903) but with a better decoding accuracy for medium 
numbers of voxels. In particular, SSOMs were found to classify better compared 
to kNN classification for 210, 262 and 512 voxels (p = .0323). This finding is in 
line with the results of the simulations (see 3.1.2). In addition, SSOMs show 
similar performance to linear and non-linear SVMs for this set of data (summed 
across selection levels, p > .40). The increase of classification performance with 
larger voxel sets can be observed earlier in SSOMs and reaches its maximum at 
262 voxels. In contrast, linear and non-linear SVMs show a more gradual increase 
and classify most accurately using 640 voxels. For single voxel selection levels, we 
found that SSOMs performed better compared to linear SVMs for 262 voxels (p = 
.0323) and worse than linear and non-linear SVMs for large number of voxels, i.e. 
640 and 800 voxels (p = .0323).  

In addition to decoding accuracy, we also examined class-specific outcomes. In 
figure 9 (upper left panel) we plotted for SSOMs the average TPR for each of the 
three voices (see table 1 for single subject results). We found that the female 

                           

F igure 8 .  Average Classi f i ca tion Accuracy for Real fMRI Data.  Solid lines show 
average accuracy and dashed lines denote empirical chance level computed by permuting class 
labels. Markers with black edge indicate significant classification performance on a group level 
(p < .05; exact permutation test). 
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speaker is decoded more truthfully compared to male speakers for most voxel 
selection levels. This is in line with the acoustic properties and corresponding 
behavioral results showing that the distinction between two male speakers is more 
challenging compared to detecting the female speaker (results not shown).  With 
respect to TPRs the class-specific performances were found to be similar between 
SSOMs and SVMs. In contrast, class-specific performances obtained with kNN 
classification show a different pattern. Here, the first male speaker showed the 
highest TPR for most selection levels.  

The decoding results for the real dataset suggest that SSOMs perform similar 
or slightly better compared to linear and non-linear SVMs for a small and medium 
number of voxels. For voxel sets with many voxels SVMs could discriminate 
better between classes probably due to their better robustness to noisy voxels. 
Compared to kNN classification we found that SSOMs had superior classification 
performance and that the TPRs of SSOMs for single classes matched the 
behavioral results in contrast to kNN classification. Thus, these results suggest 
that a classification with SSOMs is applicable for smaller regions when inherent 
multiclass classification is important.   

         

F igure 9 .  C lass -Spec if ic  TPR for  Decoding Algor ithms.  Colored solid lines denote 
single speaker TPRs (purple-f, yellow-m1, orange-m2), the black lines classification accuracy 
and dashed lines indicate TPR for permutations. Markers on the classification accuracy show 
decoding performance above chance. 
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SSOM visualization. Figure 10A shows the visualizations of general SSOMs (i.e. 
abstracting from single-split SSOMs) with 262 voxels for all subjects. For most 
subjects the nodes indicating the female voice attracted the testing trials of the very 
same class. In contrast, male voices were often confused among each other. For 
subject S4 and S5 (Fig. 10A, lower right SSOM) one can see a different pattern 
revealing faithful classification also for one male voice. 

Figure 10B visualizes the group SSOM resulting from single-subject SSOMs. In 
the upper panel the average occupation of training trials is shown. It can be seen 
that in the center of class-specific clusters (i.e. at the tips of the triangle) the 
training trials belonged to the assigned node label. The further away from the class 
center a node is situated, the more training trials from the neighboring class cluster 
fall onto the node. This, as a proof of concept, indicates that the generalization 
procedure for SSOMs as proposed in section 2.3 seems to work well when applied 
twice (first to form the single-subject SSOMs and second to create the group 
SSOM). Focusing on testing trials (Fig. 10B lower panel) the group SSOM 
indicated that the dataset was challenging (small class-specificity) but in line with 

    

F igure 10.  S ing le Sub ject and Group SSOMs. Speaker labels for nodes are color-
coded (f-purple, m1-orange, m2-yellow). Panel (A) shows single-subject SSOMs with class-
specificity of testing trials. In (B) the group SSOM with the class-specificity for training (upper 
panel) and testing trials (lower panel) is presented. All SSOMs depict the decoding model with 
262 voxels. Note that for group SSOMs in (B) class-specificity expressed by circle diameter is 
scaled equally for training and testing trials whereas the scaling of class-specificity changes for 
single subject SSOMs in (A). Group SSOMs are enlarged by a factor of 1.5 compared to 
single-subject SSOMs. 
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classification accuracies and TPRs showed that all speakers are relatively well 
separated but especially in the case of one male speakers (m2) test trials were often 
mislabeled. With respect to SSOM topology, we did not observe differences in 
class relationships in the projections.  

Visual Object Categories Study 

Performance of SSOMs compared to other decoding approaches. For the data of the 
visual object categories study by Haxby and colleagues (2001), all decoding 
algorithms provided high classification performances clearly above theoretical 
chance level of 0.125 (see Fig. 11) using voxels in object-selective ventral temporal 
cortex. Results showed that SSOMs resulted in higher classification accuracy 
compared to kNN classification. In addition, linear SVMs - showing the highest 
performance among the tested algorithms – were found to have significantly 
higher classification accuracy compared to the other classification techniques.  

Investigating TPRs for single classes shows similar patterns of decoding 
performance for all classification algorithms. These show - similar to results of the 
original paper (see supplemental material of Haxby et al. [2001]) - that faces, 
houses and scrambled pictures could be identified best, followed by chairs and cats 
and the lowest decoding accuracies for scissors, bottles and shoes (see Fig. 11).  

  

SSOM Visualization. Figure 12A shows the group SSOM of the visual object 
categories study. Apart from the observation that node classes and classes of 
testing trials were consistent (reflecting the high classification performance for this 
dataset), the SSOM visualization revealed several features of the dataset. First, 

 

F igure 11. C lass i f ication Performance for  Visual Object  Category Data.  Bars show 
the TPR for different classes and average classification accuracy. Results for the four classification 
algorithms employed in this study are presented in different bar colors (blue: SSOM, red: linear 
SVM, green: non-linear SVM, grey: kNN). Dashed lines denote significant differences between 
algorithms (p < .05; exact permutation test). 

 



fMRI Data Decoding using Supervised Self-Organizing Maps 

 
73 

scrambled objects formed a tight cluster separated from all other categories. The 
face and house categories appeared at opposite sides of the SSOM reflecting the 
highly differential activation patterns for these categories in object-selective ventral 
temporal cortex. Interestingly, the nodes of the cat category were close to the face 
category forming a larger cluster probably reflecting an animate/inanimate or a 
natural/man-made ordering principle for objects (see Kriegeskorte et al., 2008). 
The categories bottles, shoes and scissors showed overlapping or merging clusters 
that suggests more similar cortical activation patterns compared to other 
categories. Activation patterns used by the SSOM algorithm to classify new 
instances are presented in Figure 12B. These maps show the set of voxel that 
separate one category optimally from others.  

Conclusions  

In this study, we applied supervised self-organizing maps to decode simulated 
and real fMRI datasets. The feasibility of SSOMs was shown by means of a 
simulated set of data. We found that SSOMs performed similarly to SVMs for 
small and medium numbers of voxels (i.e. 100-600 voxels) and were superior to 

 

F igure 12.  SSOM and Category Maps for  V isual Object  Category Data.  Panel A 
shows the Group SSOM for the 8-class dataset projected using the first two principal 
components. Colors denote the different categories.  Category maps of one exemplary subject 
are presented in panel B. These maps are constructed from a weighted average of nodes 
belonging to the same class and represent activation patterns.  
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kNN classification especially for voxel sets of medium size. For large feature sets 
(>  800 voxels), SVMs outperformed SSOMs. For real data acquired from a 
challenging voice identification experiment, we showed that SSOMs performed 
similar to SVMs and kNN classification. We found that, as expected, the female 
speaker was easier to decode compared to the two male voices using activity 
patterns from auditory responsive regions of temporal cortex. Results for a dataset 
with known high classification performance showed that SSOMs were able to 
classify a dataset with 8 classes. It would be interesting to extend the comparison 
to other classification algorithms used in fMRI data analysis, especially inherently 
multivariate ones like Gaussian Processes (Rasmussen & Williams, 2006), sparse 
logistic regression (Yamashita et al., 2008; Ryali et al., 2010), Naïve Bayes (Brouwer 
& Heeger, 2008; Mitchell et al., 2004), Decision Tree classifiers (e.g. Kuncheva et 
al., 2010; Richiardi et al., 2011), or neural networks (Hanson et al., 2004; Polyn et 
al., 2005). Making use of the visualization possibilities from SOMs, we suggested 
one approach to plot the classification model and its generalization performance 
that provides information about underlying representations. To generalize from 
single SSOMs to a general SSOM we put forward an approach that first establishes 
a mapping of SSOMs into a common space and subsequently matches the SSOM-
units. Group SSOMs were created and visualized by applying the summarizing 
approach twice (first, to create single-subject SSOMs form single splits and 
second, to generalize from single-subject SSOMs to a group SSOMs). SSOM 
visualizations for the two real datasets highlight the potential to depict the 
topology of the activation patterns underlying the successful decoding results.  
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Supplemental Material 

Parameter Selection for SSOMs 

The performance and properties of the SSOM are influenced by the parameter 
setting of the algorithm. These parameters include the number of map units U, the 
parameter τ describing the amount of supervision and the number of nearest 
nodes k used to compute the prediction.  

As a general rule, we favored medium numbers of map units (U; to allow for 
enough insights about clustering with visualizations still being comprehensive) and 
small values of supervision weighting (τ; to assure that SSOMs reflect the 
underlying data and not the concatenated input vector of data and class 
membership). To estimate the impact of parameter choices we computed outcome 
measures for different combinations of parameters on the simulated fMRI datasets 

 

                  

F igure S1. In f luence o f Map Si ze and Supervis ion Weight ing on Accuracy and 
Range  of TPRs o f SSOMs. Panel (A) shows the classification accuracy and (B) the range 
of TPRs for combinations of different map sizes (U) and values of supervision weighting (τ) for 
the 3-class simulation. Similarly, panel C and D present classification accuracy and TPR range 
for 8-class simulation, respectively. Note that map size is indicated by its side length, i.e. square 
root of the total number of maps units. 
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(see 2.5.1). Focusing on the 3-class dataset, we found a region of parameter 
combinations of high classification performance for map sizes between 16 and 64 
units and supervision parameter τ between 0.2 and 10000 (Fig. S1A). The lowest 
range of TPRs was observed for a supervision weighting between 0.2 and 10 (Fig. 
S1B). These two outcomes motivated our choice of parameters (U = 64, τ = 0.2) 
because we aimed to have a medium number of map units U and the smallest 
supervision weighting τ with high classification performance and small TPR range. 
With a similar reasoning we chose the parameters for the 8-class dataset (U = 100, 
τ = 1.0; see panels C and D of Fig. S1). 

To quantify the amount of clustering we calculated the average silhouette index 
(SI; Rousseeuw, 1987) for combinations of map size U and supervision τ (Fig. S2) 
using the underlying SSOM models. Interestingly, we found two different states of 
SI. For the 3-class dataset we observed one low level of SI for values of τ < 0.2 
indicating poor clustering and a state with higher SI for τ ≥ 0.2 that suggest 
faithful clustering. This supports our choice of τ = 0.2 and indicates why 

classification performance increases in particular from τ = 0.1 to τ = 0.2. For the 
8-class dataset a state with low clustering was found for τ < 0.5 and the high state 
for τ ≤ 0.5. 

Similar to our earlier findings (Haufeld et al., 2012) we observed that increasing 
the number of nodes for predictions leads to more robust and accurate 

 

F igure S2. Degree o f C lus ter ing as  Assessed by S i lhouette Index (SI)  for 
SSOMs with  Dif ferent Numbers of Nodes.  Panel A shows SI for the 3-class 
simulations and B for 8-class simulations. Large SI denote that data are appropriately clustered. 
Line colors denote SI for SSOMs with different numbers of nodes. The dashed red line 
indicates the chosen supervision parameter τ and the dashed turquoise line the chosen 
number of nodes U. Note that map size is indicated by its side length, i.e. square root of the 
total number of maps units. 
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performance (Fig. S3). Classification performance in this 3-class problem increased 
both with larger voxel selections and the number of nearest nodes used for class 
prediction. For the chosen k, i.e. k = 10, we computed two different outcome 
measures dependent on map size U and supervision parameter τ: classification 
accuracy and the range of TPR (i.e. the difference in TPRs between classes with 
highest and lowest TPR; the fact that the simulations were created with equal 
information for all 3 classes entails that models reflecting the data faithfully should 
result in a small range of TPRs). 

Error definitions for Simulated Annealing 

In order to form the multi-split and multi-subject SSOM, it is necessary to 
determine a good matching of nodes across different splits and subjects. Our 
approach was to define an error or energy function and to employ simulated 
annealing (SA; Kirkpatrick et al., 1983) to determine its global minimum. The error 
function E we aimed to minimize consisted of three errors (i.e. distance, 
connection and correspondence error): 

! = !!!! + !!!!! + !!!!,!!!!!!!!!(!1)!
 where ω1 = 0.7, ω2 = 0.2 and ω1 = 0.1. 

       

F igure S3.  Inf luences o f k-BMUs and Voxel  Selection on Classi f i ca tion 
Accuracy.  Larger voxel sets led to higher accuracies. Similarly, classifying with more BMUs led 
to increases in decoding performance. Larger voxel sets led to higher accuracies. Similarly, 
classifying with more BMUs led to increases in decoding performance. 
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The distance error !! denotes the average Euclidean distance between nodes for 
all pairwise comparisons of corresponding nodes of SSOMp and SSOMq (Eq. S2), 
namely: 

                                   !!! = ! !!
(!) −!!

(!) !
!!(!"#$)!,!!(!!"#) , ! > !,                 (S2) 

where  !!
(!) denotes the n-th node of the p-th SSOM. The connection error !! was 

introduced to penalize visually complex node connectivity layouts by punishing 
connections between nodes of different classes within each SSOM. The error is 
calculated as the sum of the number of neighbors with different class labels 
normalized by the total number of neighbors across SSOMs and nodes (Eq. S3). 

                                     !! = !
! !!

!
!∈!!
!!! !"#$!!"# ,!!                         (S3) 

where !!is the set of neighboring nodes of node n, |!!| its cardinality and !!
(!) is 

0 if node j belongs to the same class as node n. 

                                             !!
(!) = 1, !! ≠ !!

0, !! = !!.                                     (S3.1) 

The correspondence error !! favors nodes with the same label across different SSOMs 
(Eq. S4). It yields small values when the class labels across SSOMs are similar: 

                       !! = !!!"# −max!(! !, 1 ,… ,! !, ! )!!(!"#$) ,          (S4) 

where ! !, !  denotes in how many SSOMs node n represented class j. 

Computational Costs 

As an estimate of the complexity of the employed processing steps (cf. Fig. 1) 
we measured their duration for one participant of the speaker identification study. 
Costs for univariate and multivariate selection were 2.12s and 14.74s, respectively. 
Table S1 shows that computational costs for SSOM training were small compared 
to, for example, training of rbf SVM and increase with the number of features 
included in the training set. However, these costs were small compared to the 
Node Matching procedure via SA. 
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Table S1.  Computational Costs for Classification and SSOM Visualization in Seconds.   

  Number voxels 

Classification 86 107 134 168 210 262 328 410 512 640 800 1000 

SSOM 0,12 0,15 0,18 0,23 0,31 0,42 0,61 0,88 1,53 1,99 3,02 5,30 

linear SVM 0,09 0,05 0,05 0,04 0,04 0,04 0,05 0,05 0,05 0,05 0,05 0,06 

rbf SVM 12,41 12,65 12,79 13,08 12,60 12,35 13,10 13,52 14,11 14,76 15,63 16,51 

kNN 0,08 0,05 0,06 0,07 0,06 0,07 0,12 0,14 0,17 0,14 0,26 0,21 

Visualization 

Alignment 0,11 0,18 0,28 0,47 0,82 1,44 2,69 6,75 28,09 26,52 66,97 155,58 

Node Matching 235 229 243 313 293 439 372 479 520 697 1021 1531 
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Abstract 

Selective attention to relevant sound properties is essential for every day 
listening situations. It enables the formation of different perceptual representations 
of the same acoustic input and is at the basis of flexible and goal-dependent 
behavior. Here we investigate the role of the human auditory cortex in forming 
behavior-dependent representations of sounds. We use single-trial functional 
magnetic resonance imaging (fMRI) and analyze cortical responses collected while 
subjects listen to the same speech sounds (vowels /a/, /i/ and /u/) spoken by 
different speakers (boy, girl, male) and perform a delayed-match-to-sample task on 
either speech sound or speaker identity. Univariate analyses show a task-specific 
activation increase of the right superior temporal gyrus/sulcus (STG/STS) during 
speaker categorization and of the right posterior temporal cortex during vowel 
categorization. Beyond regional differences in activation levels, multivariate 
classification of single trial responses demonstrates that the success with which 
single speakers and vowels can be decoded from auditory cortical activation 
patterns depends on task demands and subject’s behavioral performance. 
Speaker/vowel classification relied on distinct but overlapping regions across the 
(right) mid-anterior STG/STS (speakers) and bilateral mid-posterior STG/STS 
(vowels), as well as the superior temporal plane including Heschl’s Gyrus/Sulcus. 
The task dependency of speaker/vowel classification demonstrates that the 
informative fMRI response patterns reflect the top-down enhancement of 
behaviorally relevant sound representations. Furthermore, our findings suggest 
that successful selection and processing of task-relevant sound properties relies on 
the joint encoding of information across early and higher-order regions of the 
auditory cortex.  
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Introduction 

In natural listening situations, we are surprisingly efficient in selecting, 
processing and grouping relevant acoustic elements of a sound while ignoring 
other elements of the same sound and the possible interference of background 
noise. This processing enables deriving distinct perceptual representations from 
the same acoustic input and is at the basis of adaptive and goal-oriented behavior. 
Whether and how the auditory cortex contributes to the formation of these 
representations remains largely unknown. In ferrets, neurons in the primary 
auditory cortex (PAC) have been shown to selectively tune their receptive field 
properties to behaviorally relevant auditory features (Fritz et al., 2003; Atiani et al., 
2009), which suggests that goal-dependent sound representations may emerge 
already in PAC. In humans, fMRI responses in posterior auditory cortical regions 
were shown to become right lateralized during a pitch categorization task and left 
lateralized during a duration categorization task using the same frequency 
modulated tones (Brechmann and Scheich 2005), which suggests that modulatory 
and task-dependent effects are strongest in non-primary sub-regions within the 
auditory cortex.  

Selective processing and grouping of specific acoustic elements is also pertinent 
to the extraction of different types of information from complex and socially 
relevant signals such as speech. For example, extracting phonemic categories 
requires a grouping of auditory features along the relevant dimension (e.g. 
formants of a vowel), independently of variations in other dimensions (e.g. 
fundamental frequency [F0] of a speaker’s voice). Similarly, recognizing a voice 
requires extracting speaker specific acoustic characteristics (e.g. F0, timbre), 
independently of phonemic content. Task-dependent perceptual representations of 
multidimensional speech stimuli may emerge in specialized higher-order modules 
in the posterior superior temporal cortex for speech content (von Kriegstein et al., 
2010; Mesgarani and Chang, 2012) and in the right anterior superior temporal 
sulcus for speaker identity (von Kriegstein et al., 2003). Alternatively, these 
representations may rely on spatially distributed general purpose auditory 
mechanisms involving also early auditory areas (Formisano et al., 2008; Kilian-
Hütten et al., 2011a). Within such a distributed system, speech or speaker 
categories may emerge via task-dependent temporal binding of the responses of 
multiple (and spatially distant) neuronal populations, each one encoding for 
relevant acoustic features (Bonte et al., 2009). 

The present fMRI study investigates the role of early and higher-order auditory 
cortex in forming goal-dependent representations of speech. Previous fMRI 
studies have investigated task-dependent speech processing by analyzing regional 
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changes in averaged activity across different experimental conditions. Here we 
apply multivariate pattern recognition techniques to single-trial fMRI responses 
and examine how task demands influence the spatial pattern of neural responses to 
individual sounds. We ask our subjects to perform delayed-match-to-sample tasks 
on either speaker or vowel identity and decode the neural representation of 
individual vowels or speakers in these two task contexts. Furthermore, we study 
the specific contribution to speaker identification of higher-order voice-selective 
areas by performing region-of-interest-based analyses using independently-
acquired voice localizer data (Belin et al., 2000). 

Methods 

Participants  

Ten healthy native Dutch adults (mean age 24.1 ± 2.4 years; 6 females; 9 right-
handed) gave their written informed consent and participated in the study. 
Handedness was assessed by a handedness questionnaire adapted from Annett 
(1979). None of the participants had a history of neurological abnormalities and all 
had normal hearing as assessed with a pure tone audiogram (detection thresholds 
of frequencies from 250-8000 Hz at 0-20 decibels). Participants received a 
monetary reward for participation. Approval for the study was granted by the 
Ethical Committee of the Faculty of Psychology and Neuroscience at Maastricht 
University.   

Stimuli   

Stimuli were speech sounds consisting of three natural Dutch vowels (/a/, /i/, 
and /u/) spoken by three native Dutch speakers (sp1: 9-year-old boy, sp2: 9-year-
old girl, and sp3: adult male). To introduce acoustic variability typical of natural 
speech perception, for each vowel and for each speaker we included two different 
tokens. For instance, condition ‘a-sp1’ included two different utterances of the 
vowel /a/ spoken by speaker 1 (Fig. 1). We used children voices in addition to an 
adult voice because a shorter version of the experiment was used in a subsequent 
developmental fMRI study. Furthermore, this allowed investigating the recognition 
of children voices that, unlike adult voices, are not readily distinguished based on 
F0 and whose identification additionally relies on formant frequencies (Bennet and 
Weinberg, 1979; Perry et al., 2001). Stimuli were digitized at a sampling rate of 44.1 
kHz, D/A converted with 16 bit resolution, band pass filtered (80 Hz to 10,5 
kHz), downsampled to 22.05 kHz, and edited with PRAAT-software (Boersma 
and Weenink, 2002). Stimulus length was equalized to 350 ms (original range 258 
to 364 ms), by using PSOLA (100-400 Hz as extrema for the F0 contour). We 
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carefully checked our stimuli for possible alterations in F0 after length equalization 
and did not find any detectable changes. Sound intensity level was numerically 
equalized across stimuli by matching peak amplitudes. To avoid acoustic transients 
(clicks) that would be created by a sharp cut-off, stimuli were faded with 100 ms 
exponential onset and offset ramps. 

Experimental design and procedure 

We investigated task dependent processing of speaker and vowel identity by 
comparing the processing of the 9 speech conditions (a-sp1, a-sp2, a-sp3, i-sp1, i-
sp2, i-sp3, u-sp1, u-sp2, u-sp3) during the performance of delayed-match-to-
sample tasks on either speaker or vowel identity (Fig. 1C). Both tasks consisted of 
(1) the presentation of one of the speech stimuli (350 ms), followed by (2) a 
decision picture presented at the center of the screen, 5.1 seconds after speech 
stimulus offset, followed by (3) a match/mismatch response of the participant, 
indicated by pressing a response button with the right index or middle finger 
respectively. During the speaker task, decision pictures consisted of cartoons of a 

   

F igure 1 . Stimul i  and Design . A. Spectrograms of one exemplar of each of the 9 speech 
conditions. Stimuli consisted of three vowels (/a/, /i/, /u/) pronounced by three speakers 
(sp1:boy, sp2:girl, sp3:male). B. F1/F2 formant values for all stimuli (2 utterances per vowel for 
each speaker) and mean ± SD fundamental frequency (F0) values for each of the three 
speakers. C. Schematic overview of an experimental trial and the fMRI stimulation protocol 
including a black-and-white version of the ‘boy’ decision picture. Decision pictures consisted of 
cartoons of a boy, a girl or a man (speaker task), or the letter combinations ‘aa’, ‘ie’ and ‘oe’, 
corresponding to the pronunciation of the 3 Dutch vowels (vowel task). 
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boy (see Fig. 1C for a black-and-white version), a girl or a man. During the vowel 
task, decision pictures consisted of the letter combinations ‘aa’, ‘ie’ and ‘oe’, 
corresponding to the pronunciation of the 3 Dutch vowels. Decision pictures 
remained on screen until the button press or for a maximum time of 5 seconds. 
The sequence of speech stimuli was pseudo-randomized to avoid immediate 
repetitions of the same speech condition (e.g. a-sp1). Half of the trials included 
matching and the other half mismatching pictures, presented in a pseudo-
randomized order, balanced per task, across experimental runs, and for each of the 
9 speech conditions.  

All subjects participated in two fMRI sessions with a between session break of 
1 to maximally 10 days. At the start of the first session participants were 
familiarized with the three voices and performed practice trials to make sure both 
speaker and vowel tasks were understood and the three speakers and vowels were 
recognized correctly. The practice trials were repeated at the start of the second 
session. Both fMRI sessions consisted of three experimental runs, each run 
consisting of 4 alternations of the speaker and vowel tasks (run 1, 3 and 5: speaker 
task – vowel task –vowel task –speaker task; run 2, 4 and 6: vowel task – speaker 
task –speaker task –vowel task). We used 12 different sequences of speech stimuli, 
each of them occurring once in the speaker and once in the vowel task, across 
different fMRI sessions or (in two cases) in the first and third run of a session. In 
total, each run included 21 trials per task and 2 or 3 presentations of each of the 9 
speech conditions. Across both fMRI sessions, each of the 9 speech conditions 
was presented 14 times per task.  

Functional MRI measurement  

Brain Imaging was performed with a Siemens Allegra 3 Tesla scanner (head 
setup) at the Maastricht Brain Imaging Center. During both fMRI sessions three 
12 minute functional runs were collected (3 mm × 3 mm × 3 mm) using a 
standard echoplanar-imaging (EPI) sequence (repetition time [TR] = 2500 ms, 
acquisition time [TA] = 2000 ms, field of view [FOV] = 192 mm x 192 mm, 
matrix size = 64 x 64, echo time [TE] = 32 ms). Each volume consisted of 33 
slices (distance factor 10%), covering the whole brain, except the most superior 
part of the posterior parietal cortex in some participants. Speech stimuli were 
presented binaurally at a comfortable listening level via MR compatible 
headphones, in the 500-ms silent gap between two volume acquisitions (Fig. 1C). 
According to a slow event-related design, the average inter-trial-interval between 
two speech stimuli was 15 seconds (range 12.5 to 17.5 seconds). Decision pictures 
were presented 5.1 seconds after the offset of the speech stimuli to allow a clear 
estimation of the auditory activation before the onset of visual and response-
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related activity. During both experimental sessions a high-resolution structural 
scan (1 mm × 1 mm × 1 mm) was collected using a T1-weighted three-
dimensional ADNI sequence ([TR] = 2050 ms, [TE] = 2.6 ms, 192 sagittal slices). 

In the second session, an additional 12.5 minute voice localizer run was 
collected using the same EPI sequence and slice positioning of the main 
experiment, but with a TR of 3.0 seconds, leaving 1 second of silence for sound 
presentation. The voice localizer run consisted of 24 stimulation blocks (18 
seconds / 6 volumes per block, one sound per volume) alternated with 12 seconds 
rest (4 volumes). During the stimulation blocks, participants listened to either (1) 
vocal sounds (including 7 non-speech sounds and 5 meaningless speech sounds), 
(2) other natural categories (musical instruments, environmental and animal 
sounds), both adapted from Belin et al. (2000), or (3) amplitude modulated (8 Hz) 
tones ranging from 0.3 to 3 kHz.  

fMRI pre-processing  

Functional and anatomical data were first analyzed using BrainVoyager QX 2.6 
(Brain Innovation). Pre-processing of functional data included slice scan-time 
correction (using sinc interpolation), high-pass temporal filtering to remove 
nonlinear drifts of five or less cycles per time course, 3-dimensional motion 
correction, co-registration to individual structural images and normalization of 
anatomical and functional data to Talairach space (Goebel et al., 2006). All 
participants minimized head movements to maximally 2 mm in any direction. For 
univariate analysis functional data were spatially smoothed with a Gaussian kernel 
of 4 mm × 4 mm × 4 mm FWHM. Multivariate analysis was performed on 
unsmoothed functional data. Based on the high-resolution anatomical scans, 
individual cortical surfaces were reconstructed from gray–white matter 
segmentations. An anatomically aligned group-average cortical surface 
representation was obtained by aligning the individual cortical surfaces using a 
moving target-group average approach based on curvature information (cortex-
based alignment, Goebel et al., 2006).  

Univariate fMRI analysis 

In order to map fMRI signal time courses from volume space to surface space, 
values located between the grey/white matter boundary and up to 4 mm into grey 
matter towards the pial surface were sampled with trilinear interpolation and 
averaged, resulting in a single value for each vertex of a cortex mesh. Random 
effects (RFX) general linear model (GLM) analysis was performed on time course 
data sampled on individual cortical surface meshes, aligned to the cortical group 
surface mesh using cortex-based alignment. The GLM model included one 
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predictor per stimulus condition (convolved with a double gamma hemodynamic 
response function) as well as confound predictors including each participant’s 
motion correction parameters. Functional contrast maps (t-statistics) were 
calculated to assess sound-evoked fMRI responses during the speaker and vowel 
tasks (all sounds speaker task > baseline; all sounds vowel task > baseline). Direct 
task contrasts were analyzed for speaker task specific activity ((speaker task > 
vowel task) & (speaker task + vowel task > baseline)) and vowel task specific 
activity ((vowel task > speaker task) & (speaker task + vowel task > baseline)). 
Univariate stimulus effects were analyzed for each of the three speakers, 
independently of which vowel they pronounced (e.g. a-sp1 + i-sp1 + u-sp1 > (a-
sp2 + i-sp2 + u-sp2 + a-sp3 + i-sp3 + u-sp3)/2) and for each of the three vowels, 
independently of who pronounced the vowel (e.g. a-sp1 + a-sp2 + a-sp3 > (i-sp1 
+ i-sp2 + i-sp3 + u-sp1 + u-sp2 + u-sp3)/2). Stimulus effects were analyzed in 
both the speaker and in the vowel task condition. All functional contrast maps 
were corrected for multiple comparisons by applying a cluster-size threshold with 
an initial voxel-level threshold of p=0.01 (overall activity) or p=0.05 (task and 
stimulus contrasts) and submitting the maps to a whole-brain correction criterion 
based on the estimate of the map’s spatial smoothness (Forman et al., 1995; 
Goebel et al., 2006).  

Multivariate fMRI Analysis  

Multivoxel patterns of sound-evoked fMRI responses were analyzed by 
applying a machine learning algorithm (support vector machine, SVM; Vapnik, 
1995) in two functional regions of interest (ROIs) based on each single subject’s 
voice-localizer data. The first ROI included all auditory responsive voxels in the 
superior temporal cortex (STC). The STC ROI was defined from the independent 
localizer data by calculating for each subject a functional contrast map (voices + 
other + tones > silent baseline), applying a false discovery rate (FDR) correction 
for multiple comparisons (at p<0.05) and taking the intersection of this functional 
contrast map with an anatomical STC mask. The same anatomical STC mask was 
applied across subjects and in all subjects included the superior temporal plane, 
STG and STS as well as all superior temporal activity to voices, other natural 
categories and tones. The second ROI comprised the individually determined 
voice selective STC voxels also based on the independent localizer data. Voice 
ROIs were defined as regions showing significantly stronger activity to voices as 
compared to both other sound categories and tones (voices > (other + tones)/2). 
To prevent large between-subjects differences in the size of the voice ROIs, the 
exact statistical threshold was set on an individual basis (Frost et al., 2012; Bonte et 
al., 2013).   
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Classification procedure. Preprocessed functional time series were first divided into 
“trials” (one trial per sound presentation). Testing and validation sets were created 
using a 14-fold cross-validation procedure in which one trial out of 14 was left out 
for every condition. As input to the classifiers (features) we used beta estimates of 
the fitted double-gamma hemodynamic response, which were computed for single 
trials and voxels. For trial estimations we considered one TR before sound onset 
and the first two TRs following sound onset. The beta values were normalized 
across trials for each voxel using interquartile-range normalization (median, 1st and 
3rd quartile were estimated using training trials): 

!!!"# = 1.35 ∗ !! − !!!! − !!
 

where xi is the beta value of the ith trial and Q2, Q1 and Q3 are the median, first 
and third quartile, respectively. This normalization is less sensitive to outliers than 
z-scores and - due to the scaling factor - provides comparable results when data 
are normally distributed. The voxels that were used to discriminate different 
speakers or vowels were specified by the ROIs as defined above. For classification 
we employed the SVM algorithm (soft margin parameter C = 1) as implemented in 
the spider toolbox (http://people.kyb.tuebingen.mpg.de/spider/). The three-class 
problem (classification of 3 speakers/vowels) was transformed into binary 
classifications using a one-versus-one scheme (i.e. sp1 vs. sp2, sp1 vs. sp3, sp2 vs. 
sp3 for speakers and /a/ vs. /i/, /a/ vs. /u/, /i/ vs. /u/ for vowels). In this 
approach multiclass classification is based on classifying pairs of conditions and 
the prediction for a test trial is determined by the condition that the binary 
classifiers predict most often. When one trial was equally often assigned to two 
classes, the class with the highest score of the classifier was chosen as the 
predicted one. Speaker classification was performed by grouping the trials of the 
three speakers regardless of vowels (e.g. sp1 = a-sp1 + i-sp1 + u-sp1). Vowel 
classification was performed by grouping the trials of the three vowels regardless 
of speakers (e.g. /a/ = a-sp1 + a-sp2 + a-sp3). For each of the three binary 
classifications per task, model-weights were used to indicate the importance for 
single voxels (see below, ‘Mapping of Informative Regions’). Classification 
performance was reported in terms of overall accuracy, i.e. the number of correct 
predictions across speakers/vowels divided by the total number of speaker/vowel 
test trials.  

Statistical Testing. To test whether classification values were significantly above 
chance, we performed the same multivoxel pattern analysis as described above 
with randomly shuffled condition labels per subject (number of permutations = 
99). On a group level we performed a random-effects analysis using an exact 
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permutation test (number of permutations = 1022; Good, 2000), and comparing 
the single-subject accuracy of speaker/vowel classification with the average 
permutation accuracy of the respective subject. Single-subject and group 
significance levels were estimated by counting the number of permutations where 
the accuracy was larger than the actual classification accuracy and then dividing by 
the number of permutations (one count was added to both numerator and 
denominator for a more robust estimate of the significance value). To investigate 
the task-dependence of speaker/vowel classification we performed repeated 
measures ANOVAs on the ranked single-subject accuracies and assessed 
interaction effects between task and speaker/vowel classification accuracy.  

Mapping of Informative Regions. Discriminative maps of locations that contributed 
most to the classification of the speakers/vowels were determined within the STC 
ROI. For each binary comparison, weights were linearized by ranking the absolute 
values. In a next step, we averaged the maps of binary comparisons to create a 
rank map for the multiclass classification. Single-subject maps were created by 
averaging the maps across cross-validations. These maps were projected onto the 
cortical surfaces of the individual subjects and subsequently projected on the 
group-averaged and cortex-based aligned cortex mesh. Inter-individual consistency 
maps were created by indicating for each vertex the number of subjects for which 
this vertex was within the fourth quartile of the SVM ranking (i.e. among the 
highest ranked 25%).  

Self-Organizing Maps. For visualization of informative activation patterns we 
used self-organizing maps (SOMs; Kohonen, 2001; Formisano et al., 2008). For 
the speaker and vowel task we selected the 15 most informative voxels for single 
trial classification of speakers and vowels respectively. We concatenated the 
normalized vectors for all subjects and trained a rectangular SOM with 4x5 units 
with hexagonal connections using the MatLab based SOM toolbox 
(http://www.cis.hut.fi/somtoolbox/). We visualized the SOMs by showing the first 
two principal components of the high-dimensional model of SOM units. For both 
the speaker and the vowel task, the SOMs were trained using the average response 
patterns of the nine stimulus conditions (a-sp1, i-sp1, …, u-sp3). After training the 
‘best-matching units’ (BMUs) for single trials were computed using Euclidean 
distance. Then, we labeled each SOM unit with the stimulus condition label for 
which this unit was most often the best matching one. The selectivity for each unit 
was determined by dividing the number of trials of the winning class by the total 
number of trials for which this unit was the BMU. 

Regression Analysis. We employed a generalized linear model with a logit link 
function (McCulloch and Searle, 2001) to test whether behavioral accuracy of 
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speaker/vowel identification could be predicted from speaker/vowel classification 
accuracy within the STC and Voice ROIs. In this regression analysis, the log-odds 
ratio of the behavioral performances (modeled with a binomial distribution) was 
fitted using a design matrix consisting of a constant (intercept) and a predictor 
based on the fMRI classification accuracy. To assess whether a predictor (beta 
coefficient) was significantly different from 0, z-scores were computed for each 
predictor by dividing the corresponding beta coefficient by its standard error. The 
overall fit of the regression model was assessed using a χ2 - test of residual 
deviances (with low χ2 and pfit >0.05 indicating a good model fit).  

Results 

Behavioral results 

All participants correctly identified each of the three speakers and vowels 
during a practice session outside the scanner. During the fMRI experiment, all 
participants performed well-above chance level (50%) during the delayed match-
to-sample speaker and vowel identity tasks, although they had more difficulty to 
identify the children as compared to the adult speaker. That is, during the speaker 
task, percentage correct answers was (mean (SD)): boy 88.8 (7.6)%; girl 83.3 
(9.3)%; man 98.3 (3.0)%. These differences led to a significant main effect of 
speaker F(2,18)=13.0; p=0.000, and pair wise differences between identification 
accuracies for the boy and the man (t(9)=3.9; p=0.004), the girl and the man 
(t(9)=4.4; p=0.002), but not for the boy and the girl (t(9)=-1.8; n.s.). During the 
vowel task, percentage correct answers corresponded to: vowel /a/ 99.8 (0.8)%; 
vowel /i/ 99.8 (0.8)%; vowel /u/ 98.8 (2.0)%, without significant differences 
between vowels. 

Univariate responses during the Speaker and Vowel task 

During both the speaker and the vowel task, sounds evoked significant blood-
oxygen-level dependent (BOLD) responses in a wide expanse of the superior 
temporal cortex, including early auditory areas (Heschl’s Gyrus/ Heschl’s Sulcus), 
the planum temporale and extending along the superior temporal gyrus (STG), 
superior temporal sulcus (STS) and middle temporal gyrus (MTG) (Fig. 2). Outside 
the temporal lobe, the medial prefrontal cortex was activated during both tasks 
whereas the bilateral posterior STS/MTG, and the right superior frontal gyrus 
were significantly activated only during the vowel task. Because the GLM focused 
on modeling of sound-evoked BOLD responses prior to both the presentation of 
the decision picture and the subsequent motor response, our maps did not show 
significant activation in visual or motor areas.  
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Results further suggested task specific activations for the speaker (Fig. 3 – blue 
colors) and the vowel (Fig. 3 – red colors) task. Although most of these activations 
were symmetrical across hemispheres, only two right hemispheric clusters survived 
cluster-size multiple comparisons correction. A cluster in the right middle 
STG/STS showed enhanced activity during the speaker as compared to the vowel 
task, whereas a cluster in the right posterior STS/MTG was more active during the 
vowel as compared to the speaker task (Fig. 3 – highlighted clusters and BOLD 
time-courses). Exclusion of the fMRI responses to sounds that were followed 
(after 3-5 TR) by an incorrect response did not change these task effects.  

Analysis of stimulus effects did not show systematic univariate stimulus 
differences. Speaker and vowel stimuli did not show any significant activation 
differences along the task relevant dimension (boy, girl or man during the speaker 
task; /a/, /i/ or /u/ during the vowel task). Along the task-irrelevant dimension 
two stimulus contrasts did reach significance. During the speaker task the vowel 
/u/ elicited significantly stronger activity as compared to both other vowels in a 
region on the left mid to anterior STG. During the vowel task, the adult voice 
elicited significantly stronger activity as compared to both children voices in 

 

F igure 2 .  Speech Sound Processing during Speaker and Vowel Tasks.  Functional 
contrast maps (t-statistics) illustrating the overall pattern of cortical responses during 
performance of the speaker task (speaker task > baseline) and vowel task (vowel task > 
baseline). Maps are visualized on inflated representations of the left (LH) and right (RH) 
hemispheres (light gray: gyri and dark gray: sulci), resulting from the realignment of the cortices 
of the 10 subjects. The maps are corrected for multiple comparisons by applying a cluster-size 
correction at p<0.01.  
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bilateral clusters on the temporal plane. No significant stimulus effects were found 
for the other two speakers or vowels. 

Task-dependent decoding of Speaker and Vowel identity 

Beyond regional differences in overall activation levels, we investigated the 
task-dependent representations of individual speaker and vowel stimuli with a 
machine learning classification algorithm (SVM). In a first analysis, classification 
was performed within individually determined regions of auditory responsive 
superior temporal cortex (STC ROI, see Methods). The algorithm’s success in 
speaker/vowel discrimination was strongly modulated by task demands. That is, in 
the STC region (Fig. 4A – middle panel), speaker stimuli were successfully 
discriminated based on fMRI responses obtained during the speaker but not 

 

F igure 3 .  Univaria te Speaker and Vowel Task  Effects.  Functional contrast maps (t-
statistics) of task effects are shown for the speaker (blue colors) and vowel (red colors) tasks. 
Maps are visualized on inflated and aligned group-averaged representations of the left (LH) and 
right (RH) hemispheres. The maps show uncorrected activation clusters (> 9mm2). Two right 
hemispheric clusters survived multiple comparisons correction (cluster-size threshold at 
p<0.05): a mid STG/STS cluster that showed larger activity during the speaker task and a 
posterior STS/MTG cluster that showed larger activity during the vowel task. The time-course 
of task-related activity in both clusters is illustrated by plotting BOLD percentage signal change 
with respect to volume acquisitions (TR resolution). Talairach coordinates (x,y,z) refer to the 
center of gravity of the two clusters. 
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during the vowel task, while vowel stimuli were successfully discriminated based 
on fMRI responses obtained during the vowel but not during the speaker task. 
This task-dependent decoding success was confirmed by a significant stimulus-by-
task interaction for ranked single-subject accuracies (F(1,9)=5.67; p=0.041).  

To assess the spatial layout and consistency across subjects of discriminative 
voxels underlying this task-dependent speaker and vowel classification, we 
constructed binary discriminative maps (Fig. 4B). These maps illustrate for how 

 

F igure 4 .  Task dependent Classi f ication o f Speakers and Vowel s. A. Group 
averaged classification accuracies for speakers and vowels in the superior temporal cortex 
(STC ROI), during the speaker and vowel task. LH = left hemisphere, RH = right hemisphere. 
Statistical significance was determined with respect to empirical (permutation-based) chance 
level (dotted lines, range: 0.331-0.336, mean: 0.333, i.e. corresponding to theoretical chance 
level). B. Discriminative maps are illustrated for speaker classification during the speaker task 
and for vowel classification during the vowel task. These binary maps show for how many 
subjects a voxel was among the 25% most discriminative voxels and are visualized on inflated 
and aligned group-averaged representations of the temporal cortex. C. Self-organizing map 
(SOM) displays illustrating brain-based representation of speakers during the speaker task and 
of vowels during the vowel task. The maps are based on the 15 most discriminative 
speaker/vowel STC voxels across the 10 participants. The colors (speakers) and symbols 
(vowels) show which stimulus condition was assigned to a unit. The size of the unit indicates 
how often the stimulus condition was assigned to that unit (unit selectivity, see Methods). 
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many subjects a voxel was among the 25% most discriminative voxels. Speaker 
discriminative voxels (blue colors) clustered on the temporal plane, along Heschl’s 
Gyrus/Heschl’s Sulcus, and, especially in the right hemisphere, along the mid to 
anterior STG/STS. Vowel discriminative voxels (red colors) were distributed more 
bilaterally than those of speakers, and clustered on the temporal plane, along 
Heschl’s Gyrus/Heschl’s Sulcus, and on the mid to posterior STG/STS.  

We visualized the spatial proximity and grouping of discriminative voxels 
contributing most to speaker and vowel classification using self-organizing maps 
(SOMs) (Fig. 4C). As expected from the significant classification accuracies in 
these conditions, the SOM-based two-dimensional displays showed vowel-
invariant speaker grouping during the speaker task and speaker-invariant vowel 
grouping during the vowel task. Visual inspection of the spatial proximity of the 
individual speakers and vowels further indicates that speaker representations are 
ordered according to the average F0 of the speaker’s voices (i.e. from left to right: 
male (135 Hz), girl (277 Hz) and boy (299 Hz)), while vowels are ordered 
according to their combined F1 and F2 values (i.e. from left to right: /u/, /i/ and 
/a/, following the diagonal of their representation in F1/F2 space, see Fig. 1B). 

Hemispheric lateralization. Possible differences in lateralization were assessed by 
inspecting classification accuracies separately for the left and right STC (Fig. 4A – 
left and right panels). Results showed accurate speaker discrimination during the 
speaker task in both the left and right STC, and also during the vowel task in the 
right STC. Instead, accurate vowel discrimination only occurred during the vowel 
task and only in the left STC. The decoding accuracies in the separate left and right 
hemisphere STC ROIs did not show significant interaction effects.  

Contribution of Voice selective regions. In a further analysis, classification was 
performed within individually determined regions of voice selectivity (Voice ROI, 
see Methods and Fig. 5AB) as well as within the STC ROI after subtracting the 
voice ROI (Fig. 5C). When restricting speaker/vowel classification to voxels in the 
bilateral Voice ROI (Fig. 5B), speakers could be discriminated above chance 
during the speaker task and vowels could be discriminated above chance during 
the vowel task, but there was no significant stimulus-by-task interaction 
(F(1,9)=1.5; n.s.). The same pattern of results was obtained when classifying 
speakers/vowels within the larger STC ROI after subtracting the Voice ROI (Fig. 
5C), this time accompanied by a significant stimulus-by-task interaction 
(F(1,9)=13.0; p=0.006). Possible differences in lateralization were assessed by 
inspecting classification accuracies separately for the left and right hemisphere 
Voice and STC-Voice ROIs (Fig. 5BC – left and right panels). Within each of the 
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four hemisphere specific ROIs, classification accuracies showed above chance 
classification of speakers during the speaker task. Only voxels in the left STC-
Voice ROI also discriminated vowels during the vowel task, leading to a significant 
stimulus-by-task interaction (F(1,9)=4.9; p=0.054). Together, these results confirm 
an important role of the temporal voice areas (Belin et al., 2000) in the neural 
representation of speaker identity. However, they also show that parts of the STC 
that do not belong to these category selective regions are informative of speaker 
(and vowel) identity.  

Relation with Behavioral performance. We used regression analysis to investigate 
whether individual differences in the accuracy of speaker classification predicts 
individual differences in behavior (accuracy of speaker identification). We 
concentrated on the speaker task because behavioral performance was close-to-

     

F igure 5 .  Contr ibution of Voice Select ive Regions.  A. Probabilistic maps illustrating 
spatial overlap of the individually determined Voice selective regions (Voice ROI). The maps are 
visualized on inflated and aligned group-averaged representations of the temporal cortex and 
show 20 to 100% subject overlap (n=2 to n=10). LH= left hemisphere, RH= right hemisphere. 
B. Group averaged classification accuracies for speakers and vowels during the speaker and 
vowel task in the individually determined Voice selective regions. Statistical significance was 
determined with respect to empirical (permutation-based) chance level (dotted lines, range: 
0.330-0.334, mean = 0.333). C. Classification accuracies within the superior temporal cortex 
(STC ROI) after subtracting the Voice selective regions (Voice ROI). 
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ceiling on the vowel task. Regression analysis showed that classification 
performance in the left STC could significantly predict participants’ behavioral 
accuracy (model fit: χ2(8)=14.80, pfit=0.063; predictor: z=3.71, p=0.0002; Fig. 6). 
In none of the other ROIs, the relation between classification and behavioral 
accuracy reached significance. 

 

Discussion 
We investigated single-trial fMRI responses measured while participants 

categorized the same natural speech sounds according to speaker or vowel identity. 
The task dependency of the speaker and vowel decoding accuracy demonstrates 
that the fMRI response patterns in auditory cortex (and, possibly, the underlying 
neural representations) reflect the top-down enhancement of behaviorally relevant 
sound representations. Furthermore, our findings highlight the role of early – 
together with higher order - auditory regions in the formation and maintenance of 
these representations.  

To investigate the task-dependent categorization of sounds, we used delayed 
match-to-sample tasks that require the extraction and maintenance of either 
speaker or vowel information for several seconds until the presentation of a 
decision picture. Univariate analysis of sound-evoked responses showed extensive 

 

F igure 6 .  Relat ion between Behav ioral and Classi f i ca tion Accuracy.  Regression 
plot illustrating the relation between participant’s behavioral accuracy of speaker identification 
and corresponding speaker classification accuracy in the left superior temporal cortex (left STC 
ROI). The vertical dotted line reflects the group averaged empirical chance level for 
classification accuracy. 
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and largely overlapping activation bilaterally in superior temporal cortex in both 
task contexts, reflecting sensory/perceptual analysis of the speech sounds (Belin et 
al., 2000; Binder et al., 2000; Scott et al., 2000). Both tasks also activated medial 
prefrontal regions, probably reflecting cognitive aspects of the tasks including 
maintenance of speaker/vowel identity in short-term memory and/or activation of 
task-relevant stimulus-response mappings (Duncan and Owen, 2000; Euston et al., 
2012). Our analysis did not show other regions often implicated in speech 
perception, such as the left inferior frontal cortex (Hickock and Poeppel, 2007; 
Rauschecker and Scott, 2009). This may relate to specific stimulus and/or task 
demands. In particular, left inferior frontal activity is often observed during 
effortful lexical-semantic analysis of e.g. vocoded or spectrally rotated speech 
(Davis and Johnsrude, 2003; Eisner et al., 2010; Obleser and Kotz, 2010) and may 
contribute to decoding of ambiguous consonant-vowel stimuli (Lee et al., 2012).  

Besides this network of largely overlapping brain activations, task-specific 
effects were observed in two regions. First, the right middle STG/STS, as well as 
smaller sub-threshold bilateral STG/STS and temporal plane clusters, showed 
stronger activation during the speaker task. This speaker task modulation confirms 
and extends previous reports of the involvement of these superior temporal 
regions in the passive and/or active processing of human voices (Belin et al., 2000; 
von Kriegstein et al., 2003; Andics et al., 2010; Moerel et al., 2012; Bonte et al., 
2013; Latinus et al., 2013). Second, the right posterior STS/MTG showed stronger 
activation during the vowel task. Although this region is not typically involved in 
speech sound processing, it overlaps with an extended region in the inferior 
parietal lobe that has been related to the processing of learned audio-visual 
relations (Killian-Hütten et al., 2011b; Naumer et al., 2009). It can be speculated 
that the observed activation of the posterior STS/MTG during the vowel task 
relates to the nature of our delayed match-to-sample task which required matching 
of vowel sounds to their well-known visual counterparts (letters). 

Beyond regional differences in overall activation levels, our multivariate 
decoding results demonstrate that distinct but overlapping response patterns 
across early and higher-order auditory cortex entail abstract goal-dependent 
representations of speech stimuli. Speaker discrimination most consistently relied 
on voxels clustering in early auditory regions (Heschl’s gyrus/Heschl’s Sulcus), on 
the temporal plane, as well as in regions along the mid-to-anterior (right) 
STG/STS that overlap with the superior temporal voice areas (Fig. 6A; Belin et al., 
2000; Moerel et al., 2012; Bonte et al., 2013; Latinus et al., 2013) and with right 
STG/STS regions recruited during voice recognition tasks (von Kriegstein et al., 
2003; Lattner et al., 2005; Andics et al., 2010). Vowels could be significantly 
decoded from voxels clustering in similar early auditory regions (Heschl’s 
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gyrus/Heschl’s Sulcus), on the temporal plane, as well as in bilateral regions along 
the mid-to-posterior STG/STS that have been related to the processing of isolated 
phonemes (Jäncke et al., 2002; van Atteveldt et al., 2004; Obleser and Eisner, 2009; 
Kilian-Huetten et al., 2011a) and to the processing of speech spoken by different 
speakers (von Kriegstein et al., 2010; Mesgarani and Chang, 2012). Our task-
dependent speaker/vowel discriminative maps bear striking resemblance to those 
previously obtained when decoding speaker/vowel identity from fMRI responses 
to adult voices in a passive listening paradigm (Formisano et al., 2008). This 
similarity holds despite the use of different stimuli (children versus adult voices), a 
different experimental design (active tasks versus passive listening), scanning 
parameters (e.g. resolution of 3 mm isotropic versus 2 mm isotropic) and decoding 
methods (e.g. ROI-based feature selection versus recursive feature elimination). 
One interesting exception involves the left anterior STG that only contributed to 
speaker decoding in the present study. While this region may also show voice 
selectivity when using a voice localizer, this selectivity is found less consistently 
across subjects as compared to the right anterior STG/STS (in our localizer it 
showed voice selectivity in 7 out of 10 subjects, see also Moerel et al., 2012). 
Although the specific role of the left anterior STG remains to be determined, it 
may entail the active selection and perceptual representation of children and/or 
adult voices in the presence of task-irrelevant (verbal) information.  

The task dependence of speaker/vowel classification accuracies suggests that 
the observed auditory cortical responses patterns reflect the perceptual 
categorization of sounds along the task-relevant stimulus dimension. Furthermore 
– in left STC - the speaker decoding accuracy significantly predicted participant’s 
identification accuracy, which emphasizes the behavioral relevance of these 
patterns. In a pervious study (Andics et al., 2010), voice identification 
performances correlated significantly with activation changes in clusters of the left 
and right STG/STS. The left focus in the present study may be due to two factors. 
First, our multivariate analysis allowed relating behavioral performances to direct 
measures of identity information in the fMRI response patterns. This may reflect 
more closely the neural encoding of speaker identity as compared to activation 
level differences. Second, the behavioral variability in our study was mainly driven 
by the children voices, which - unlike adult voices - are not readily distinguished 
based on F0 (Murry and Singh, 1980; Baumann and Belin, 2010). Their 
identification may require the use of more subtle differences, e.g. in formant 
frequencies (Bennet and Weinberg, 1979; Perry et al., 2001) that may be processed 
in the left STC.   

Whereas our findings confirm the involvement of voice/speech selective 
superior temporal regions, they show that auditory cortical maps of speaker and 
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vowel identity are not limited to these higher-order regions. Instead these 
categorical speech maps extend ‘backwards’ to regions that are assumed to restrict 
themselves to sensory processing of individual acoustic-phonetic speech features 
(Hickock and Poeppel, 2007; Rauschecker and Scott, 2009). The role of early, in 
addition to higher-order, auditory cortex in the task-dependent encoding of sound 
is consistent with evidence from animal electrophysiology (Fritz et al., 2003; Atiani 
et al., 2009). Furthermore, recent human fMRI-decoding studies show that 
similarly distributed superior temporal cortical patterns predict the abstract 
categorical representation of natural sounds (Formisano et al., 2008; Staeren et al., 
2009), the subjective perceptual interpretation of ambiguous speech syllables 
(Kilian-Hütten et al., 2011a), and sound category learning (Ley et al., 2012). Within 
such a distributed system, task-dependent grouping of relevant speech features 
may emerge via transient phase alignment of neuronal responses in multiple non-
adjacent cortical patches, each encoding for one or more of these speech features. 
Indeed, using EEG, we previously observed a task-dependent temporal alignment 
of oscillatory responses to individual speakers/vowels, that starts around 200 ms 
after stimulus onset and follows an initial analysis of acoustic-phonetic stimulus 
differences (Bonte et al., 2009). Furthermore, single-trial decoding of the same 
EEG data demonstrated task-independent classification of both speaker and vowel 
identity in early time windows, followed by sustained and task-dependent 
classification of speakers during the speaker task and of vowels during the vowel 
task (Hausfeld et al., 2012). Because the BOLD signal integrates neural processing 
over longer time-scales, these stronger and later task-dependent stimulus 
modulations may be most prominent in our findings, suppressing short-lived and 
earlier stimulus-driven processes. In fact, when presenting the same speech 
conditions in the context of a passive listening paradigm both vowels and speakers 
could be decoded (Formisano et al., 2008). Note, however, that in the present 
study the decoding accuracy in the task irrelevant dimension – although weaker - 
show above-chance (non significant) trends. It is thus possible that when 
increasing the spatial resolution (e.g. Formisano et al., 2008) and/or functional 
contrast to noise ratio (e.g. using higher magnetic fields), also the weaker signals 
along the task-irrelevant dimension may become significantly decodable. 

The present study measured top-down modulation of fMRI responses in 
healthy adults to three vowels and three speakers that were presented in isolation 
in order to obtain distinct neural activation patterns. Extension of these results to 
attention-dependent processing of words or concatenation of words in streams of 
longer speech segments and in varying acoustic conditions (e.g. noisy 
environments), provides a compelling challenge and will contribute to a general 
brain-based decoder of sounds in the context of real-life situations. Furthermore, 
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extension to different age groups and subject populations may reveal relevant 
aspects of learning and plasticity in auditory cortical representations during normal 
and anomalous development. 
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Abstract 

Listeners effortlessly identify familiar voices regardless of speech content and 
in the presence of background noise. Using functional MRI, we examined the 
neural basis of speaker identification in the context of auditory scenes. To this end, 
participants listened to various short, non-linguistic vocalizations from three 
different speakers presented without noise or with interfering sounds (white noise 
or environmental noise). Then, we investigated whether activation patterns in 
auditory cortex (AC) could be used to decode speaker identity under the different 
listening conditions. Our results showed that speaker identity could be decoded 
above chance for sounds without background noise and with white noise but not 
within natural scenes. Furthermore, we found that activation patterns estimated in 
silence could predict speaker identity from patterns evoked by sounds in white 
noise and vice versa. The successful classifications for silent and white noise cross-
decoding suggest that neuronal populations in AC (including early auditory areas) 
represent individual voices at a level of sound processing which is not purely 
acoustic. Specifically, we take the informative fMRI response patterns to reflect 
neuronal representations of a speaker voice which are robust to large acoustic 
variations (as those observed in different non-linguistic utterances) and to - certain 
extent - to interfering noise. Finally, we speculate that the differences we observe 
in the representation of voices in natural scenes reflect substantially different 
neuronal processing related to mechanisms of selective attention required to 
segregate two natural auditory objects in a scene. 
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Introduction 

Human listeners possess the remarkable skill to recognize a relevant sound 
without seeming effort even in the presence of loud and interfering background 
conditions. Difficult to model and replicate in artificial systems (e.g. Kinnunen and 
Li, 2010), this perceptual capability also holds when the goal is to identify a 
familiar voice that is mixed to concurrent sounds like other voices and 
environmental noise (Cherry, 1953).  The aim of the present study is to investigate 
– using fMRI and multivariate decoding – the neural underpinnings of speaker 
identification in noisy auditory scenes.  

Voice and Voice-Identity Processing 

In the past years, several studies examined the neural processing of voices by 
comparing brain responses to human vocal sounds and other sound categories 
using fMRI (Belin et al., 2002; 2000) and EEG (Charest et al., 2009; Grossmann et 
al., n.d.). FMRI studies identified regions with greater activation for voices in 
bilateral middle and posterior superior temporal gyrus (STG) and sulcus (STS) and 
right anterior STG/STS (Belin et al., 2000; Bonte et al., chapter 4; Charest et al., 
2012; Ethofer et al., 2009; 2013; Latinus et al., 2011; 2013). While it has been 
established that these regions - often referred to as temporal voice areas (TVAs) – 
are involved in the processing of human voices, their “division of labor” in 
processing specific features of the vocal signal is less clear (but see Warren et al. 
[2006] for a proposal). Furthermore, it remains an open question if, how (i.e. based 
on which acoustic features) and where (i.e. in which of the regions) the identity of a 
speaker is derived within this temporal network.  

Psychoacoustical investigations of auditory processing suggest that relevant 
cues for speaker identification are the fundamental frequency (F0 or pitch), which 
is determined by glottal folds of the speakers, and higher formant frequencies (F1-
F4) that are shaped by vocal tract properties of speakers (Baumann and Belin, 
2010; Lavner et al., 2000). It should be noted, however, that - even for short and 
stable stimuli like vowels - the relevance of a specific cue for speaker identification 
might differ depending on the speakers’ voice characteristics and task context 
(Lavner et al., 2000). Beyond vowels, longer speech sounds (e.g. words or 
sentences) offer other cues for reliable speaker identification like formant 
dynamics and prosody (see for example Dellwo et al. [2007] and Hill [2007] for an 
overview). In line with the diversity of the possible speaker identity cues, recent 
behavioral and imaging evidence supports the hypothesis that voices are encoded 
in a flexible multidimensional representational space, which may be based on 
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relative (i.e. prototype based) rather than absolute and feature–inherent properties 
(Bruckert et al., 2010; Latinus and Belin, 2011; Lavner et al., 2001; Papcun, 1989). 

From a neuroscientific and modeling perspective, it is of great relevance 
understanding how speaker identity is derived in the brain. A common model 
assumes that the individual cues are processed in hierarchical and specialized 
processing channels, culminating in one region where speaker identity is 
represented (Andics et al., 2010; Belin et al., 2002; Belin and Zatorre, 2003; 
Imaizumi et al., 1997; Latinus et al., 2011; Nakamura et al., 2001). Alternatively, the 
different cues may be extracted in the auditory cortex via general-purpose auditory 
processing and brought together to form a speaker identity by distributed and 
adaptive neural mechanisms for binding (Bonte et al., 2009; Formisano et al., 2008, 
in press).  The first model is supported by evidence from PET (Nakamura et al., 
2001) and fMRI using stimulus adaptation (Andics et al., 2010; Belin and Zatorre, 
2003; Latinus et al., 2011) and task modulations (Kriegstein et al., 2003). This line 
of evidence points to the right anterior STG as the region where speaker identity is 
represented. The second model is supported by recent findings from our group, 
which suggest that the neural representation of a speaker's identity emerges from 
the encoding of information occurring in early (bilateral lateral Heschl’s gyrus 
[HG] and sulculs [HS]) as well as in higher-level auditory cortical regions (i.e. 
TVAs). The fine-grained temporal realignment of the neural response patterns has 
been put forward as a flexible mechanism that binds together the activity of 
neuronal populations in spatially remote auditory regions (Bonte et al., 2009; 
Hausfeld et al., 2012a). Further support that processing of voices and the 
formation of speaker identity may rely on general-purpose auditory processing 
stems from evidence showing that: (1) carefully controlling for spectral-temporal 
acoustic differences between voices and other categories greatly reduces the 
response differences in the auditory cortex and in the TVAs (Staeren et al., 2009) 
and (2) that TVAs present greater sensitivity for acoustic features which are typical 
of human voices (e.g. frequencies < 1000 Hz) even when they are stimulated using 
non-vocal stimuli and (Moerel et al., 2012). 

Voice processing in noisy scenes 

The present study contributes to this debate on voice processing by examining 
the representation of speaker identity in noisy scenes. To date, only few fMRI 
studies investigated the processing of voices in the presence of interfering 
background (e.g. Binder et al. [2004] and Bishop and Miller [2009]). These studies, 
however, focused on intelligibility and comprehension of speech segments and did 
not specifically investigate the neural processing and representations for speaker 
identification. 



Speaker Identification in Noisy Auditory Scenes 

 
113 

Recently, studies using magnetoencephalography (MEG) or electrocorticographic 
recordings (ECoG) investigated speech processing in multi-talker environments. 
They found that delta and gamma frequency phase and power of signals recorded 
in auditory cortex track attended speech (and speaker) but less so ignored speech 
(Ding and Simon, 2012; Mesgarani and Chang, 2012; Zion Golumbic et al., 2013). 
In contrast to the studies above that presented long speech streams (sentences), 
the present study focuses on short non-linguistic vocalizations. In addition, by 
using fMRI to measure cortical responses we cover the entire auditory responsive 
areas within temporal cortex whereas ECoG electrodes are restricted to small 
regions within auditory cortex. We presented subjects with various types of short 
vocalizations and asked them to perform a speaker identification task while 
measuring their fMRI activation. The voiced sounds were presented in silence but 
also with concurrent white and natural noise. We made use of a decoding analysis 
that has been successfully employed in auditory experiments to examine speech 
content and speaker identity processing (Bonte et al., chapter 4; Formisano et al., 
2008) perceptual interpretations of ambiguous speech (Kilian-Hütten et al., 2011) 
and representations of sound categories (Staeren et al., 2009) and their formation 
during learning (Ley et al., 2012). For decoding of speaker identity in noise, we 
applied a novel fMRI-decoding approach based on supervised self-organizing 
maps (SSOMs) that allows multiclass decoding and offers an intuitive visual 
account of classification results and categorical representation (Hausfeld et al., 
2012b, chapter 3).   

Methods 

Participants 

Five right-handed female participants (29.0 years ± 2.91) employed by 
Maastricht University participated in the study. All subjects reported no history of 
hearing loss and deficits or neurological abnormalities, signed a written consent 
and received a monetary reward after participation. The study was approved by the 
ethics committee of the Faculty of Psychology and Neuroscience at Maastricht 
University.  

Stimuli 

Stimuli were created using vocal sounds and artificial or natural background. 
The experiment consisted of a 3 x 3 stimulus design with speaker and background 
as factors (see Fig. 1). Voice stimuli were recorded  from three Dutch speakers (f: 
female, F0 = 246±43Hz [mean ± standard deviation; see 2.4]; m1: male, F0 = 
172±42Hz; m2: male, F0 = 114±24Hz) and consisted of 50 short non-linguistic 
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vocalizations (e.g. “aww”, “uuh”). Stimuli were digitized at 44.1kHz, D/A 
converted with a resolution of 16bit, band-pass filtered (50Hz–10.75kHz) and 
downsampled to 22.05kHz. The length of vocalizations varied between 600 and 
1000ms (median: 905ms, quartile range: 801-966ms). Backgrounds were either 
Gaussian white noise or natural auditory scenes (e.g. recordings of rain, cars, 
cafeteria noise). Natural scenes had a sampling rate of 44.1kHz and 16bit 
resolution and were downsampled to 22.05kHz. The backgrounds scenes were 
1100ms long and cut from a long recording randomly for each of the stimuli. 
Artificial (i.e. Gaussian white noise) noise was presented at one of five SNRs (6, 0, 
-3, -6, -9dB) with respect to root mean square (RMS) amplitude. Natural 
background was presented with equal RMS compared to vocalizations, i.e. 0dB 
SNR. 

To avoid acoustic transients, voices and background stimuli faded linearly with 
20ms onset and offset ramps. The stimuli for the three experimental conditions 
(silence, artificial or natural noise background; abbreviated as SIL, WN, NN, 
respectively) were created by embedding voice stimuli in 1100ms length segments 
of silence (SIL), artificial noise (WN) or natural noise (NN) (see Fig. 1). The voice 
always started at 50ms and vocal stimuli were as long as noise stimuli (i.e. 1100ms). 

 

 

F igure 1 .  Design o f Stimu l i .  In this study, each sound contained a vocalization of one of 
three voices (f-female, m1/m2-male) and belonged to one of three background conditions: no 
background (SIL), white noise (WN) or natural noise (NN). Spectrograms for one exemplary 
vocalization are shown for all speaker by background combinations. 
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Stimuli Analysis 

The use of natural stimuli in this experiment (utterances and background) 
allows presenting subjects to sounds that are similar to everyday life experiences. 
However, compared to artificial sounds (e.g. tones, broadband noise), properties 
of natural stimuli are more difficult to control. Thus, we performed a careful 
analysis of the stimuli characteristics.   

We analyzed the recorded vocalizations with respect to F0 or pitch and higher 
formants (F1-F4) by extracting F0 and formant contours for each stimulus without 
background noise using Praat v5.3.39 (Boersma, 2001). To retrieve the F0 
contours, we used standard Praat parameters with the exception of F0 range: For 
the female voice we extracted the pitch within a range of 100 to 600Hz, for 
speaker m1 within [75 400] Hz and for speaker m2 within [60 300] Hz. 
Subsequently, the contours for single stimuli were summarized using their average 
and standard deviation (see Table 1 for a summary and Table S1 for properties of 
single stimuli). We also extracted formant contours (F1-F4) with the suggested 
parameter setting (the number of formants was set to 4 with maximum frequencies 
of 6500Hz and 5500 Hz for the female and male voices, respectively). We describe 
formants by their average frequency over time and computed formant dispersion 
(FD) as the average frequency difference between formants (see Table 1).  

In addition, we analyzed the spectral content of the stimuli both in silence and 
within the two types of background noise by computing the power spectral density 
(PSD) with reference to the white noise stimulus of 0dB (dB WN). All analyses 
were performed using a log-frequency scale using 174 bins between 25 and 10000 
Hz. In addition to comparison of spectral power between speakers within each 
spectral bin (Wilcoxon rank-sum test for all combinations of speaker 
comparisons), we performed multivariate speaker classification from the stimuli in 
the three background conditions. We used a linear SVM (C = 1, one vs. one 
scheme, 6-fold cross-validation) and the PSD estimates (174 bins) as input features 
to the classifier.  

Experimental Design 

During the fMRI measurements (see below), subjects performed a speaker 
identification task. To learn the voices and become familiar with the task, 
participants underwent a practice session outside of the scanner. To familiarize 
with the voices subjects first listened to one-minute excerpts of reading from each 
of the speakers. During this initial phase, subjects were shown sketches of faces, 
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which were associated with the voices. Then, participants performed a speaker 
identification task using a subset of stimuli (180 stimuli, i.e. 20 stimuli for each 
speaker/background combination). They were asked to identify speakers by 
pressing one of three buttons; the button configuration was indicated by three face 
sketches at the bottom of the screen and changed between blocks. First, subjects 
received feedback on their performance after each trial for three blocks.  When 
subjects were able to correctly identify 80% of the trials (average true-positive rate 
[TPR] for the male voices), they continued with a test blocks where they did the 
same task but without receiving feedback on their performance trial-by-trial (after 
one block their average performance was presented). Subjects underwent up to 
three test blocks in case the 80% criterion had not been met. Participants that 
performed below the criterion after the last test block were not considered for the 
fMRI scanning session. During scanning, subjects performed three blocks of the 
same identification task and no feedback was given. For the fMRI session, stimuli 
not used in the practice session (270 stimuli, i.e. 30 voice stimuli per 
speaker/background combination) were presented. Similar to the behavioral 
training, button configurations changed after each block within the fMRI session 
to remove the confounding correlation between activities related to button presses 
and speaker presentation. 

Table 1 .  Acoust ic  Parameters o f Sound Stimul i . Parameters are presented for the 
three speakers and sounds presented during fMRI data acquisition and behavioral training. 

 

1 F0 – average fundamental frequency (± SEM) over time; 2 stdF0 – average standard deviation of F0 over 
time; 3 F1/F2/F3/F4 - the average first to fourth formant frequencies over time; 4 FD –average formant 
dispersion (summed differences of adjacent formant frequencies) across stimuli; 5 Dur – the average 
duration of vocalizations across stimuli. 
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MRI Data Acquisition 

Brain imaging was performed with a 3T Siemens Allegra scanner (head setup) 
at the Maastricht Brain Imaging Center (Maastricht, The Netherlands). For each 
subject, three functional runs [mean length: 565 volumes] were collected using a 
standard echo-planar-imaging (EPI) sequence and high-spatial resolution 
acquisitions (2 × 2 × 2mm3) (repetition time [TR] = 2.6s; acquisition time [TA] = 
1.4s, field of view [FOV] = 192 mm x 192mm, matrix size = 128 x 128, echo time 
[TE] = 30ms). Each volume consisted of 18 slices placed parallel to the Sylvian 
fissure, covering the temporal and adjacent peri-Sylvian cortex. During 
measurements, subjects listened - at a comfortable listening level - to the stimuli 
that were presented binaurally in the 1200ms silent gap between volume 
acquisitions via MR compatible ear-buds (Sensimetrics S14, Sensimetrics 
Corporation). The presentation of the stimuli in the silent gap resulted in a clear 
separation between the acoustic stimuli and the scanner noise and ensured a clear 
perception of the stimuli.  We employed a slow event-related design with an 
average inter-trial-interval of 15.6s (range 13 – 18.2s; i.e. 5-7 TRs). The sequence 
of stimuli was randomized for each subject such that each of the three functional 
runs included ten trials per each stimulus condition (90 trials/run) - resulting in a 
total of thirty trials per stimulus condition. Additionally, different white noise 
conditions were balanced across speakers (i.e. for each speaker 6 trials were 
selected for each of the 6 SNRs [1 in each half-run]) and SNR levels were 
randomly assigned to different utterances to avoid SNR by utterance interactions. 
Between the first two functional runs, anatomical images covering the whole brain 
were obtained with a 1 × 1 × 1 mm3 resolution using T1-weighted 3D ADNI 
sequence [TR: 2050ms; TE: 2.6ms; 192 sagittal slices]. The slow event-related 
stimulation scheme provided the possibility of estimating the time-courses of the 
hemodynamic responses to single presentations of sounds, required for our data 
analysis.  

Data Processing and Analysis 

Preprocessing. FMRI data preprocessing was done with BrainVoyager QX (v2.4, 
Brain Innovation) and consisted of slice-scan-time correction, motion correction, 
transformation into Talairach space, temporal high-pass filtering (0.005 Hz) 
including removal of linear trends and minimal spatial smoothing (Gaussian filter 
of 2mm FWHM).  

Univariate Analysis. For univariate analysis of fMRI data, a general linear model 
(GLM; Friston, 1995) was computed by fitting the blood oxygen level-dependent 
(BOLD) response with the predicted time series for the three voice or noise 
classes independent of noise or voice class, respectively. The hemodynamic 



Chapter 5 

 118 

response was modeled by convolving the predicted time courses with a canonical 
(double gamma) hemodynamic response function. We performed a group analysis 
(fixed-effects [FFX]) of the pairwise contrasts for voice and noise classes. Results 
were corrected for multiple comparisons by false discovery rate (FDR; Genovese 
et al., 2002).  

Multivariate Analysis. In this study, we aimed to decode speaker identities (i.e. 
based on a labeled activation patterns we tested whether these could be used to 
predict the speaker in independent trials). In particular, we performed two types 
classification that differed with respect to the trials used as part of the training and 
evaluation set. The within-background classification was done within one background 
condition, i.e. both training and testing sets were restricted to examples of the 
same experimental condition. To test whether models of one condition were able 
to distinguish speakers in another background condition we also classified voices 
in an across-background scheme, in which case training and testing sets were from 
different background conditions. This type of decoding aimed at identifying brain 
activity patterns whose information is robust to background variations.  

For these classification analyses, we made use of a recent decoding approach – 
supervised SOMs (Hausfeld et al., 2012b, chapter 3) – which provide the 
advantage of handling the present multiclass (three class) problem without the use 
of binary comparisons. In the following, a short description of the decoding 
algorithm is provided (for more information see Hausfeld et al., chapter 3). 

Self-Organizing Maps (SOMs). A SOM (Kohonen, 2001) is a neural network that 
consists of a rectangular two-dimensional grid with U units. Each unit i is 
described by a N-dimensional weight vector mi = [mi1,…, miN] where N is the 
number of input features. We set the amount of map units U was set to 64. After 
map units were initialized with random weights within the range of training 
samples training samples xk = [xk1,…, xkN] (k = 1,…, K) were iteratively presented 
and the best-matching unit (BMU) mBMU was selected according to 

                          !! −!!"# != !min! !! −!! ,!!  (1)!
where || denotes the Euclidean distance. In the following, weights of map units 
were modified with the following update rule: 

                        !!!! = !!! + !!ℎ!"# !!(!)! !! −!! !,!! (2)!
where t denotes the learning iteration, �t the learning rate and hBMU (rt) the 
neighborhood kernel of winning unit mBMU with radius r(t). Both learning rate and 
radius of the neighborhood are decreasing functions over time. This results in an 
early stage that sets the general layout of the map and a subsequent fine-tuning 
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stage. For SSOM training, we used the MatLab-based SOM-toolbox 
(http://www.cis.hut.fi/projects/somtoolbox/).  

Supervised SOMs (SSOMs). One extension of SOMs for supervised learning is 
based on a modified input vector x*k = [xk ck] for model training that results from 
concatenating input trials xk and a C-dimensional (C denotes the number of 
classes) class-vector ck = [ck1,…, ckC] where cki = 1 if trial k belongs to class i and 
ckj = 0 (j ≠ i) otherwise. Similarly, a vector vi = [vi1,…, viC] is appended to the 
weight vectors of SSOM units mi to form m*i = [mi vi] with N+C elements. After 
SSOM training, map units are ascribed to one class by inspecting the last C 
elements of the map weight vectors: the index with the largest value determines 
the label of map unit mi. Vectors ck were not of unit length but of length � = 0.2, 
which provided a good compromise between class separation and data fidelity (see 
Hausfeld et al., chapter 3). For the prediction of testing trials, we computed a 
measure of the 10 best-matching units (10-BMU) to accumulate evidence for 
classification, which has been found to lead to more robust classification 
performance (Hausfeld 2012b, Silva and Del-Moral-Hernandez, 2011). In 
particular, we computed a classification index 

                         !"! = (v!" ∙ exp − !"# − !"#! ! !!!!…!" ,!! (3)!
to obtain evidence that trial xtest belongs to class c (vic denotes the class specific 
certainty of ith best-matching unit and BMUi is the ith closest map unit). The 
supervised SOM predicts an unseen trial according to the class obtaining largest 
CI. For more details on how SSOMs were implemented and visualized, the reader 
is referred to Hausfeld and colleagues (chapter 3). 

Cross-Validation. The performance of within-background classification was 
assessed using 6-fold cross-validations. Across classes performance was expressed 
by classification accuracy and the sensitivity index d’ indicated class-specific 
performances (d’ = z[true positive rate] – z[false positive rate]). For model training 
we defined datasets consisting of 5 of the 6 half-runs. The remaining half-run was 
used to determine how well the trained model was able to generalize.  

For classification that involved different conditions for training and testing (i.e. 
across-background classification) the same half-run cross-validation scheme was used 
for training but the total number of trials remained in the test set to obtain a more 
reliable estimate of the accuracy.  

Voxel Selection and Features. First, we limited the decoding analysis to an 
anatomical mask covering auditory responsive regions of temporal cortex. As a 
feature reduction step, we further reduced the number of voxels with a GLM. This 
was computed based on the training set and the strongest responding 2000 voxels 
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were selected. For each voxel, a (double-gamma) hemodynamic response model 
was fitted to each single-trial response (in percent signal change). The obtained � 
values were used as input features for the classifier. We normalized features across 
trials using inter-quartile-range normalization where median and first and third 
quartiles were estimated using training trials (cf. Hausfeld et al., chapter 3).  

To define feature sets with different numbers of voxels we used an ensemble 
feature selection method (e.g. Abeel et al., 2010). For each of 25 bootstrap samples, 
features surviving univariate selection were ranked according to model weights of 
linear SVM (Csvm = 1; one-versus-one scheme). The final ranking was obtained by 
averaging the ranks across bootstrap samples. We created 12 differently sized 
feature sets by removing iteratively the lowest ranked 20% starting with 1000 
voxels, which resulted in sets of 1000, 800, 640, 512, 410, 328, 262, 210, 168, 134, 
107, and 86 voxels.  

Relevance Maps. To define cortical locations that were important for speaker 
classification, we used cortex-based alignment (CBA) to transform single-subject 
selection maps into a common space (Goebel et al., 2006). First, we selected the 
highest ranked 262 voxels for each subject and created a group map that depicts 
for how many subjects a vertex was included in the voxel selection procedure. 
These maps indicate for each vertex the consistency across participants, i.e. areas 
are color-coded by the number of subjects for which these were important for 
speaker identification (≥3/5 subjects). 

Statistical Testing of Decoding Results 

We estimated whether classification outcomes were significantly better than 
chance by using a permutation test (Stelzer et al., 2012). For this permutation 
approach, we created 99 permutations for each subject. Subsequently, we 
compared the average classification performance with the real labels to an 
empirical distribution that was created by drawing with replacement for each 
subject 99,999 times an accuracy outcome from the single subject permutations 
and computing their average. To compute the significance level, we counted the 
number of instances of the permutations that were larger than the accuracy with 
true labels and divided this value by the number of permutations (one instance was 
added to both numerator and denominator for a more robust estimate of the 
significance level).   
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Results 

Analysis of Stimuli Properties 

The extraction of F0 contours (see example in Fig. 2A and Table 1; Table S1 
contains properties of single stimuli) of the vocalizations revealed that the average 
F0 differs between the three speakers (Fig. 2B, two-sample t-test; f - m1: t(98) = 
8.605, p < 10-12; f - m2: t(98) = 18.743, p < 10-33; m1 - m2: t(98) = 8.495, p < 10-12; 
Wilcoxon rank-sum test; f - m1: z = 6.663, p < 10-10; f - m2: z = 8.517, p < 10-16; 
m1 - m2: z = 6.877, p < 10-11). Compared to vowels, which have been presented in 
previous studies (e.g. Formisano et al., 2008) and were recorded here for 
comparison purposes, we found larger deviation of F0 contours for the stimuli 
used in this experiment (std F0vowel = 13.26Hz, std F0exp = 34.76Hz; t163 = 3.25, p 
< .001).  

 

The analysis of the frequency spectra for the different voices indicated in which 
frequency bands the spectral energy differed across speakers. Figure 3A shows the 
median and 95% confidence interval of spectral power for vocalizations without 
background. It can be seen that the spectral power significantly differs (Wilcoxon 
rank-sum test) in three intervals: [60 160Hz],  [850 1500Hz] and [3500 7000Hz]. 
Whereas the first and third interval showed differences between all three voices, 
the second interval was characterized by lower power for speaker m2. Figures 3B 

 

F igure 2 . Fundamental  Frequency o f Vocal izations . Panel A shows for one stimulus 
(“uuh”) the F0 contours and their average. Colors denote F0 contours and average for the 
three speakers. The distribution of average F0 across stimuli is depicted in Panel B. Circles 
denote the average F0 for speakers and solid and dashed lines denote the median and 
quartiles, respectively. 
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and 3C show the average spectrum and variation across stimuli for the stimuli 
obtained by mixing the vocalizations with white and natural noise, respectively. 
The changes in frequency spectra of the stimuli reflected the properties of the 
noise, with flat frequency amplitude for white noise and with the 1/f characteristic 
profile for natural noise. Adding noise to vocalizations decreased the acoustic 
differences between the stimuli. Spectral differences between stimuli were 
narrower (compared to silence) for the low frequency interval ([90 150Hz]) both in 
the white noise and natural noise condition. No amplitude differences between 
stimuli were found in medium and high frequencies, which indicates that artificial 
and natural background stimuli masked amplitude differences for frequencies 
above 250 Hz in this particular set of stimuli.  

 

 

F igure 3 .  Sound Spectra for each Speaker and Background Condit ion .  Average 
and quartiles of spectra for the three speakers (color) are depicted by solid and dashed lines, 
respectively. Thick lines above spectra show for which frequencies pairs of speakers have 
different amplitude. Panel A shows spectra for sounds without background, B for sounds with 
white noise (WN) and C for sounds with natural background (NN). Amplitude is expressed in 
dB WN (see text for details). 
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Stimulus Classification 

The analysis above considers the different frequency range independently of 
each other. We therefore conducted a multivariate classification analysis of the 
stimulus properties which takes into account the entire PSD of the stimuli. As 
expected, the speaker classification based on the stimuli’s PSD (see Fig. 4A) 
showed better voice identification within silence (accuracy: .844; d’: 4.23, 2.25, 
2.35) compared to white noise (accuracy: .677; d’: 2.20, 1.31, 1.76) and natural 
noise (accuracy: .603; d’: 1.47, 1.28, 1.22).  

The analysis of the SVM-weights showed that - in the silence condition - the 
classification relied on amplitude differences in the F0 range and frequencies 
above  2500Hz (Fig. 4B). Both of these frequency ranges match the ones detected 
in the previous analysis (see Analysis of Stimulus Properties). Interestingly, the middle 
range of frequencies that showed differences between speakers in the previous 
analysis was not important for speaker classification, which might be due to the 
fact that PSDs in this range are highly correlated to those in the higher frequencies 
that were weighted high in the classification. The analysis of the SVM-weights for 
the white noise condition indicated that frequencies in F0 range and between 800 
and 1000Hz were important for differentiating speakers whereas high frequencies 
were weighted low for speaker classification. This outcome reflected the frequency 
regions of the previous analysis.  For stimuli within natural noise, weights 
modulations were much smaller compared to the former classification models, 
which might be due to a high variability of weights between splits introduced by 
the acoustic variations of the natural background. However, the weight pattern 

 

F igure 4 .  Decoding Result s for  Spectral Features.  In panel A bars show the accuracy 
to classify speakers based on spectral amplitude for all combinations of background conditions 
for training and test sets. Panel B depicts the importance of spectral features for decoding 
models. Colored lines show the weights of linear classification models for speaker identity 
decoding. Weights are averaged across binary comparisons and centered on zero. 
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was found to follow a mixture of weight modulations of models for stimuli in 
silence and white noise.  

We also tested whether the obtained models could be used to classify speakers 
in other background conditions. The results (Fig. 4A) showed that models trained 
in either noise condition could classify stimuli without noise (WN to SIL: accuracy 
.769, d’: 2.68, 1.85, 2.40; NN to SIL: accuracy .760, d’: 2.48, 2.07, 1.95). 
Interestingly, the performance was higher compared to stimuli that belonged to 
the training condition. In addition to that, the results showed that the SVM model 
obtained from stimuli without noise was worst to generalize to the other 
background conditions (SIL to WN: accuracy .465, d’: 0.03, 1.18, 0.76; SIL to NN: 
accuracy .548, d’: 1.40, 1.12, 0.99). This indicated that the silence model weighted 
features that helped to differentiate speakers, which were distorted by the added 
background noise (e.g. high frequency regions). Conversely, models obtained with 
white or natural noise were able to generalize to the other noise condition (WN to 
NN: accuracy .550, d’: 0.98, 1.12, 0.87; NN to WN: accuracy .587, d’: 1.01, 1.37, 
1.26). 

Behavioral Results 

 The analysis of reaction times (RT; see Table 2 middle column) in correct trials 
showed a main effect of speaker (F2,8 = 67.280, p < .001) and marginally significant 
interaction (F4,16 = 3.016, p = .050). RTs were faster for the female compared to 
the male speakers (m1: t4 = -16.029, p < .001; m2: t4 = -6.498, p = .009). A 
repeated measures ANOVA of response sensitivity (d’; see Table 2 right column) 
revealed a significant main effect of speaker (F2,8 = 19.275, p < .001), a main effect 
of background (F2,8 = 6.099, p = .025) but no interaction (F4,16 = 1.599, p = .223). 
Post-hoc tests (Bonferroni-corrected for multiple comparisons) showed more 
accurate response for the female compared to the two male speakers (m1: t4 = 
4.53, p = .032; m2: t4 = 4.26, p = .039) but no significant differences between 

 

Table 2 . Behavioral Resul ts of  the Speaker Identi f ication Task. Average and 
standard error of the mean are shown for all background-speaker combinations. RT: reaction 
time; d’: sensitivity index computed by d’ = z(true positive rate) - z(false positive rate). 
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background conditions (responses in the silent condition showed a tendency to be 
more accurate compared to WN and NN; p = .057 and p = .0435, respectively 
[uncorrected]).  

Univariate fMRI Results 

Vocalizations evoked significant fMRI responses in regions consistent with 
previous studies (Fig. 5A), including auditory regions in the Heschl’s gyrus, 
multiple regions in the planum temporale (PT), in the superior temporal gyrus and 
sulcus (STG and STS, respectively), as well as in middle temporal gyrus, insular 
cortex and angular gyrus (Davis and Johnsrude, 2003; Hickok and Poeppel, 2007) 
(FDR-corrected: q = .01, cluster-size threshold [CS]: 15). In order to test the effect 
of adding background to the stimuli we contrasted the silence condition with white 
and natural noise (Fig. 5B). The natural noise condition evoked higher activity 
compared to the silence condition in lateral Heschl’s sulcus (left and right) and 
right PT (q = .10, CS: 15; green color). Comparing the silent with artificial noise 
condition, we found higher activity for the white noise condition in left HS (q = 

      

F igure 5 .  Resu lts  of Un ivar iate Analysis .  Panel A shows overall auditory cortical 
activation in response to the auditory stimuli as estimated with univariate FFX GLM (FDR-
corrected: q < .01; cluster-size threshold: 15). Panel B shows activation differences between 
background conditions (FFX GLM; q < .10; cluster-size threshold: 15). All other contrasts for 
backgrounds and voices did not yield significant results.  
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.10, CS: 15; blue color). In addition we found that right middle STS and STG were 
more responsive to voices in silence than artificial noise conditions (q = .10, CS: 
15; orange color). The comparison of artificial and natural noise revealed higher 
activity did not show different activation (q = .10, CS: 15).  

Pairwise contrasts between different speakers - across or within background 
conditions – did not reveal any significant difference in BOLD response amplitude 
(q = .10, cluster-size threshold: 10).  

Multivariate fMRI Results 

Within-Background Decoding of Speaker Identity. We first determined whether it was 
possible to decode speakers from the fMRI responses measured in the silence, 
WN and NN condition (Fig. 6, left, middle and right line pairs). Our decoding 
results showed that speaker decoding was possible when vocalizations were 
presented without interfering background noise (classification accuracy: .436, p = 
.027) and - to smaller extent - with WN background (classification accuracy: .416; 
p = .077). For stimuli that contained natural scenes as background, classifications 
results were not better than empirical chance level (classification accuracy: .411, p 
= .212).These findings suggest that activity patterns evoked by a wide range of 
vocalizations can be used to decode speakers. This holds for the silence and white 
noise condition (only marginally significant) but not for vocalizations accompanied 
by a natural background.  

 

           

F igure 6 .  With in-Background Decod ing of Speaker Identity .  Filled circles show 
classification accuracy of single subjects for permuted labels (i.e. empirical chance level) and 
performance for real labels. Squares denote average decoding accuracy.  
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Across-Background Decoding of Speaker Identity. In the previous analysis, brain-
based decoding of speakers was done within one type of background conditions, 
i.e. the decoding analysis was restricted to examples of the same experimental 
condition for training and testing. However, in the across-background decoding 
we tested whether fMRI responses measured under a specific background 
condition could be used to differentiate speakers in the remaining experimental 
conditions. Successful decoding would indicate that the response patterns reflect 
the representation of features of voices that are robust to changes in the acoustic 
background.  

For this analysis (Fig. 7) we found that models based on stimuli containing only 
vocalizations and no background could decode speakers mixed to white noise but 
not to natural noise (WN: accuracy = .379, p = .025; NN: accuracy = .353, p = 
.854). Models based on stimuli containing artificial noise showed reliable speaker 
identification for vocalizations without noise but not within natural background 
noise (SIL: accuracy = .390, p = .002; NN: accuracy = .371, p = .210). Models 
trained on activation patterns evoked by vocalizations within natural noise could 
neither generalize to stimuli with artificial nor to the silence condition (SIL: 
accuracy = .349, p = .934; WN: accuracy = .358, p = .659).  

 

 
F igure 7 .  Across -Background Decod ing of Speaker Identity . Filled circles (frame 
color denotes testing and fill color the training set) show classification accuracy of single subjects 
for permuted labels (i.e. empirical chance level) and performance for real labels. Squares denote 
average decoding accuracy.  



Chapter 5 

 128 

Voxel Selection. Figure 8 outlines regions that were found to be important for 
speaker discrimination in the different background conditions. Areas important for 
speaker identity decoding in silence were localized in bilateral antero-lateral 
portions of HG/HS, posterior medial HG/HS, right posterior STS and left 
posterior STG and anterior portion of middle STG. Regions contributing to 
speaker decoding in white noise were the similar to the ones silence except that the 
left anterior portion of middle STG was absent. Models in natural noise relied on 
activation in right PT and antero-lateral HG and left HG/HS, middle and 
posterior STG.  

 

                        

F igure 8.  Cons istency Maps o f C lassi f i ca tion Models for  Speaker Identity  
Decod ing.  Colored areas depict areas that were important for at least 3 out of subjects for 
speaker decoding. Panel A shows areas contributing to speaker decoding for sounds without 
background, B for sounds with white noise (WN) and C for sounds with natural background 
(NN) (see text for details).  
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Discussion    

The goal of the current study was to investigate the representation of speaker 
identity in the human auditory cortex in the context of noisy auditory scenes. To 
this end, we used a novel MVPA approach to decode the identity of the speaker 
from the fMRI responses to a variety of short dynamic vocalizations from three 
speakers, presented in silence or mixed to artificial or natural background. Our 
results showed that – based on activation patterns in superior temporal cortex - we 
could decode speaker identity when sounds were presented in silence and, to a 
lesser extent, white noise but not when they were mixed to natural noise. 
Moreover, we found that activity patterns in silence or white noise could be 
utilized to cross-decode the identity of speakers in the other background 
condition, i.e. white noise and silence, respectively.  

Speaker Identity Decoding from Diverse and Dynamic Vocalizations  

Our results showed that speakers could be identified across a wide variety of 
vocalizations in the silence condition using activity patterns in auditory cortex. 
Together with the observation that responses to individual speakers did not differ 
at level of single voxels. This finding is in agreement with the idea that the auditory 
cortex forms a model of a speaker’s voice that generalizes across a wide range of 
utterances. These decoding results extend findings from Formisano and colleagues 
(2008) that classified the identity of speakers using vowel stimuli. In contrast to 
vowels, the stimuli used here were characterized by a larger variability of temporal 
modulations both for F0 contours and for higher formants. This implies that the 
informative spatial patterns used for decoding cannot solely reflect the responses 
to a stationary pattern of fundamental frequency and formants. The response 
patterns may rather reflect a speaker representation - possibly derived from the 
processing of these acoustic parameters - but is at the same time robust to their 
variations across different utterances by the same speaker. 

Speaker Decoding of Vocalizations in White Noise  

In addition to successful decoding of speakers without interfering noise, we 
found a trend for information about speaker identity in activation patterns evoked 
by sounds with added white noise. The acoustic analysis of stimuli in white noise 
showed that spectral amplitude differences informative of speaker identity were 
mostly in the low frequencies (F0 range), whereas the contribution in the higher 
frequency ranges (present in the original utterances) were masked by the addition 
of white noise. This suggests that successful speaker decoding for vocalizations in 
white noise relies mostly on a representation derived from a speaker characteristic 
F0. Further support for this interpretation arises from the finding that a region in 
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left middle STG, which we interpret to process specifically speaker-related 
information in higher frequency bands (> 2500Hz), did not seem to contribute to 
speaker decoding as opposed to models established with sounds in silence (see 
voxel selection).  

Across-Background Decoding of Sounds in Silence and White Noise  

Remarkably, our most significant decoding compared to chance was found for 
models trained with white noise stimuli applied to classify speaker identity in the 
silence condition. Moreover, successful decoding was as well possible for the 
opposite case in which models trained with sounds in silence could predict the 
speaker of vocalizations within white noise. This reciprocity indicates a similarity 
between the evoked activation patterns in these two experimental conditions and 
again suggests that the speaker-specific information derives from some type of 
processing and transformation of the F0 frequency range.   

Decoding of Speakers in Natural Noise at Chance Level 

In contrast to stimuli in silence and white noise we could not decode the 
speaker’s identity when presented within natural scenes. Based on the analyses of 
the acoustics of the stimuli (see Fig. 3C) and of the behavioral performances of the 
listener, this null result would not be expected (see Table 2). Apart from the 
possible methodological causes (e.g. insufficient sensitivity, choice of decoding 
algorithm, voxel selection approach, randomized natural scenes), there might be 
two interesting explanations. First, it might be that – despite the similarity of the 
average acoustic properties between WN and NN  - the larger acoustic variability 
of natural scenes (10 different ones) may have led to a higher variability in the 
measured activation patterns. In turn, may have influenced the quality of the 
training and the performance of the brain-based classifier. Another possible 
explanation for the negative outcome is that natural noise - as opposed to white 
noise background - consisted of real-world auditory objects. Compared to white 
noise, the natural noise condition entails auditory scenes incorporating two or 
more natural objects. Although this is not evident from our behavioral results, 
such a setting might require the involvement top-down cortical mechanisms of 
attentional and stream selection, which may differ scene-by-scene. Similar to the 
effects of acoustic variability, this may result in auditory cortical responses that 
differ substantially trial-by-trial within the NN condition and from those evoked 
by vocalizations without background or within white noise.   

Regions Involved in Speaker Identity Decoding 

MVPA as employed here tests for information about experimental conditions 
in distributed activation patterns spread across the whole cortical surface covered 
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by fMRI measurements. However, we found localized patches on bilateral 
temporal cortex that contributed considerably more than other regions to 
successful speaker identity decoding. In the following, we will discuss these 
clusters in the light of previous studies concerned with voice and speech 
processing. For silence and white noise models, we found three clusters in the 
right hemisphere (posterior STG/STS to anterolateral HG and medial HS/PT) 
and three in the left hemisphere (posterior STG, anterolateral HG, medial HS) to 
be important for speaker identification. In addition to that, a cluster in left anterior 
STG contributed to speaker identity decoding for models based on vocalizations 
in silence but not white noise. As voices could not be distinguished within natural 
background, we will not look more specifically on classification models of this 
condition. 

Recent findings showed that bilateral anterolateral HG seems to be involved in 
particular in processing of voice pitch (Griffiths et al., 2001; Jamison et al., 2006; 
Kriegstein et al., 2007; 2010; Patterson et al., 2002; Penagos et al., 2004) and pitch 
in complex non-voice stimuli (Ley et al., 2012). This is in accordance with the 
stimulus analysis and models of voice decoding with sounds that showed that 
voice pitch could be used to differentiate between speakers (see Figs. 2 and 3) in 
all background conditions.  

A large cluster that contained information about speaker identity was found in 
right posterior STS/STG, which has been suggested to reflect acoustic similarity of 
voices (Andics et al., 2010) and to be involved in the extraction of speaker-related 
vocal tract parameters (e.g. formants; Kriegstein et al., 2010). This is in line with 
the classification of vocalization spectra that revealed that frequencies in the range 
of first, third and fourth formants were important for speaker identification for the 
silence (F3, F4) and white noise condition (F1). Formisano and colleagues (2008) 
found this cluster to contain information in both speaker and vowel classification, 
which is in agreement with the high entanglement of speaker-related vocal tract 
parameters (formant patterns) and speech content (vowel) (e.g. Turner et al., 
2009).  

For classification of speaker identity in silence, we found a cluster in left mid 
STG to contain information about speakers, which was absent in the white noise 
condition. We speculate that this cluster reflects the importance of higher 
frequencies (> 2500 Hz, including F3 and F4), as suggested by the speaker 
classification analysis condicted on the stimuli. First, amplitude differences in high 
frequencies did not differentiate speakers in the presence of white noise, which 
parallels the result that we do not find this region in the white noise condition. 
Second, Bonte and colleagues (chapter 4) find this cluster to be involved in 
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speaker classification for a set of speakers that contained two children voices that 
have been found to be distinguished in particular based on higher formants (e.g. 
Perry et al., 2001). Thus, we speculate that left mid STG might reflect processing 
of specifically fast changing features (F3, F4) that indicate speaker identity. The 
absence of this cluster in the study by Formisano and co-workers (2008) might be 
due to the passive paradigm (a similar cluster has been described by Bonte et al. 
[chapter 4] and Kriegstein et al. [2003] during an active speaker recognition task) 
or by the richer spectro-temporal structure of sounds presented in this study.  

Interestingly, regions in middle and anterior STS/STG that have been 
associated with voice (Belin et al., 2000) and, specifically, voice identity processing 
(Andics et al., 2010; Belin et al., 2004; Belin and Zatorre, 2003; Bonte et al., 
chapter 4, Formisano et al., 2008; Kriegstein et al., 2003; Kriegstein and Giraud, 
2004) did not contribute to speaker identity decoding in this study. A possible 
explanation for the negative outcome might be that these regions represent 
features that do not differentiate between speakers for the stimuli we employed. In 
contrast to other studies examining voice identity that either used vowels 
(Formisano et al., 2008; Bonte et al., chapter 4) or syllables (Andics et al., 2010; 
Belin and Zatorre, 2003), we used non-linguistic dynamic vocalizations. However, 
von Kriegstein (2003, 2004) employed stimuli that contained temporal 
modulations of fundamental and formant frequencies (spoken sentences) and 
showed that right anterior STG/STS responded stronger when participants 
attended voice identity compared to speech content. Note, however, that such 
results provide evidence that this region is involved in processing of non-verbal 
features of speech; however, they do not allow concluding that this region could 
also distinguish between speakers.  

Limitations and Future Directions 

Our experimental settings were restricted to three speakers, which raises the 
question whether our results would also hold for a larger set of talkers. Related to 
this limitation, Lavner and colleagues (2000) found that participants change the 
weighting of voice cues during speaker identification of vowel sounds depending 
on the speaker’s voice characteristics. Nevertheless, the fundamental frequency 
and F1 and F3-F4 are important cues important cue to predict speaker similarity 
ratings in large sets of female and male speakers (Baumann and Belin, 2010; 
Lavner et al., 2000). Presenting a larger set of speakers in a similar paradigm with 
more participants is necessary to show that the results are valid in a more general 
setting.  

Another limitation is that the significance of the effects relied on group 
statistics calculated on a small set of five subjects. Thus, it might be that possible 
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effects (e.g. successful decoding within stimuli with added natural background) 
were not detected because of low sensitivity of these analyses.  

Finally, it could be possible case that our results were due to the specific SOM-
based decoding approach we employed. However, we found similar results when 
using SVMs instead of SSOMs (outcomes not shown) to decode speaker identity. 
All these classification approaches, however, are based on discriminative models, 
which estimate the informative without using any information on the acoustic 
properties of the stimulus. It would be interesting, in future studies, to use a 
generative approach (e.g. encoding, Kay et al., 2008; Mitchell et al., 2008; Moerel et 
al., 2012; Naselaris et al., 2009) and test more directly the cortical representation of 
specific acoustic parameters of the stimuli and their contribution to speaker 
identification.  

Conclusions 

Our results showed that speaker identity could be decoded above chance for 
sounds without background noise and with white noise but not within natural 
noise. Similarly we found that activation patterns in silence could predict speaker 
identity of patterns evoked by sounds in white noise and vice versa. Based on 
these findings, we suggest that neuronal populations in AC form representations 
of human voices, which are mostly based on the extraction of the speaker-
characteristic pitch (F0) but are robust to the within-speaker variability across 
utterances 
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Summary 

Voices convey information about speech content (‘what is being said’), as well 
as the affective state (‘how it is said”) and individual characteristics (‘who is saying 
it’) of speakers (Belin et al., 2004; Campanella and Belin, 2007). This thesis focuses 
on the last aspect, and specifically on the brain’s processing of information that 
vocal signals convey on the speaker’s identity. The brain mechanisms enabling us 
to tell who is speaking are only partially understood. The research presented in this 
thesis contributes to this field (1) by introducing and evaluating new methods for 
decoding analysis in electroencephalography (EEG) and functional MRI (fMRI), and 
(2) by applying these methods to examine neural representations of speaker 
identification in human listeners. In particular, we were interested in the 
representations that are robust to the large acoustic variability associated with the 
virtually infinite number of utterances and in the possible interference of 
background noise.  

Methodological Contributions 

Chapters 2 and 3 present the development and evaluation of pattern 
recognition techniques for EEG and fMRI data analysis. More specifically, 
chapter 2 illustrates and compares different ways to perform single-trial decoding 
as an analysis tool for EEG data. Six types of pattern analyses – resulting from the 
combination of three types of feature selection in the temporal domain 
(predefined windows, shifting window, whole trial) with two approaches in the 
channel dimension (channel wise, multi-channel) – are considered. These analyses 
were applied to EEG data collected to examine the task dependence of the cortical 
mechanisms for encoding speaker identity and speech content (vowels). Results 
show that a different grouping of features helps to highlight complementary 
aspects (i.e. temporal, topographic) of information in the EEG data. The shifting 
window/multi-channel approach could trace both the early build-up of neural 
information reflecting speaker or vowel identity and the late and task-dependent 
maintenance of relevant information reflecting the performance of a working 
memory task. Since it makes use of the high temporal resolution of EEG (or 
MEG), the shifting window approach with sequential multi-channel classifications 
was found to be an appropriate choice for tracing the temporal profile of neural 
information processing.  

Decoding analysis as performed in fMRI studies in most cases investigates 
whether cortical representations of different cognitive or perceptual states can be 
separated in a high-dimensional space as defined by multivoxel activation patterns. 
Visualizing the topology of these patterns may be informative, especially when 
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classifying more than two conditions. This motivates the development described in 
chapter 3, which introduces a novel method to decode fMRI datasets using a 
supervised form of self-organizing maps (SOMs). The feasibility of this method 
for decoding and visualizing high-dimensional fMRI data was evaluated with data 
simulations and real data from a voice identification experiment. To exploit the 
visualization possibilities offered by SOMs, one approach is proposed to visualize 
the classification model and the corresponding classification performance both at 
single-subject and at group level. In the latter case, single-subject SSOMs are 
summarized to form a single subject SSOM and subsequently SSOM units of 
single subjects are mapped into group space. Overall, the analyses show that the 
SSOMs-based method offered both a good capability to perform multiclass 
decoding and to convey information about the underlying data topology within 
one step of analysis. 

Empirical Contributions 

In the second part of the thesis (i.e. chapters 4 and 5) two different aspects of 
speaker identity processing are investigated. In particular, the effects of (1) 
context-specific behavioral demands and (2) interfering background sounds on 
cortical representations of speaker identity are examined. The former was studied 
in chapter 4 by decoding fMRI responses to vowel utterances spoken by different 
speakers while participants were asked to recognize either speakers or vowels. 
Results showed that information about speaker identity or speech content was 
only contained in cortical representations while subjects performed the respective 
task (i.e. the brain-based decoder was able to classify the identity of a speaker 
during the speaker task and, similarly, the correct vowel during the vowel task). 
Regions most important for speaker identity classification were early auditory 
cortex and mid to anterior (right) STG/STS whereas for vowel classification early 
auditory cortex, bilateral superior temporal plane and mid to posterior STG/STS 
were most involved. The outcomes showed that context-specific demands led to 
different processing of the same physical stimuli which was expressed in 
distributed activation patterns rather than localized activation changes.  

To investigate the effect of background noise on representations of speaker 
identity (chapter 5), short non-linguistic vocalizations were presented in auditory 
scenes containing artificial and natural background noise while acquiring fMRI 
responses. We aimed at decoding speaker identity by making use of SSOMs as 
developed in chapter 3. Results showed that speaker identity could be decoded for 
vocalizations without background noise and with white noise but not within 
natural noise. In addition, activation patterns evoked by stimuli without noise 
could be used to decode speaker identity for sounds with white noise and vice 
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versa. These results suggested that cortical representations were robust to changes 
in speech content and to added white noise. In contrast, natural noise seemed to 
interfere with speaker representations more severely, which might be due to its 
richer spectro-temporal structure as compared to white noise or due to differences 
in the neural processing required to segregate two (or more) meaningful and 
ecologically relevant auditory objects. These findings provide evidence for 
activation patterns in temporal cortex that encode speaker identity in an abstract 
manner which generalizes across non-linguistic vocalizations and is robust to white 
noise masking. Further research is needed to gain more insight into the neural 
representations of speaker identity when vocal sounds are accompanied by natural 
background. 

Conclusions  

The work presented in this dissertation dealt with the multivariate analysis of 
both EEG and fMRI datasets concerned with speaker identity processing.  
Different ways to perform decoding of EEG data have been evaluated and an 
approach to apply self-organizing maps to classify and visualize multiclass fMRI 
data has been developed. Two original fMRI investigations demonstrated that 
information on speaker identity is reflected by distributed activation patterns that 
cover early as well as higher-order auditory cortex. Furthermore, these studies 
show that the amount of information of speaker or vowel identity is modulated by 
specific behavioral demands and is robust to distortions by noise with a flat 
spectral response. Taken together, these findings suggest that speaker identity is 
jointly encoded by neuronal populations in multiple auditory areas. This is in 
contrast with results suggesting that speaker identity is exclusively represented in 
specialized regions on a higher level in the processing hierarchy. The finding that 
distributed patterns represent speaker identity rather suggests a temporal coding 
model. A binding of features representing one auditory object by temporal 
coherence could also help to explain task-specific modulations of cortical 
representations (chapter 4; see also Bonte et al. [2009] and Elhilali et al. [2009a, 
2009b], Shamma et al. [2011]).  

One limitation of decoding studies including the ones presented here is that 
while results reveal whether activation patterns are informative for distinguishing 
experimental conditions, in most cases limited insights are provided on the 
processing or transformation of stimulus features that underlie this information. It 
would be interesting to follow a complementary encoding approach that predicts 
brain activity based on hypothesized processing of the sensory stimulus (see 
Naselaris et al., 2011 for a review and Çukur et al., 2013; Kay et al., 2008; Mitchell 
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et al., 2008; Moerel et al., 2012; Pasley et al., 2012 for exemplary studies). In 
combination with high spatial resolution (fMRI) and high temporal resolution 
(EEG or MEG) data, such an approach would allow formulating testable 
predictions on which computational model best describes the extraction and 
processing of features underlying speaker identification. Furthermore, it may help 
elucidating the specific role of the different cortical auditory areas (early and higher 
order) and to understand the sources of current decoding outcomes.  
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Maastricht! Danke für euren Rat bei wichtigen Entscheidungen und eure 
praktische Hilfe. Ich wusste immer, dass ich in jeder Angelegenheit auf euch zählen 
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allem auf jeden Besuch und jedes Wiedersehen.  
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