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Abstract

Many real-life applications of house allocation problems are dynamic. For example, each

year college freshmen move in and seniors move out of on-campus housing. Each student stays

on campus for only a few years. A student is a �newcomer� in the beginning and then becomes

an �existing tenant.� Motivated by this observation, we introduce a model of house allocation

with overlapping generations. In terms of a dynamic rule without monetary transfers, we

examine two static rules of serial dictatorship (SD) and top trading cycles (TTC), both of

which are based on an ordering of agents and give a higher-order agent a more advantageous

position in the assignment procedure. We support a seniority-based SD rule by showing its

dynamic Pareto e�ciency. Similarly, we support a seniority-based TTC rule under time-

invariant preferences by showing its dynamic Pareto e�ciency and incentive compatibility.
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1 Introduction

The static allocation problem of assigning indivisible goods, called �houses,� to agents without

monetary transfers has been studied extensively and applied to real-life markets such as on-campus

housing for college students (Abdulkadiro§lu and Sönmez, 1999; Chen and Sönmez, 2002; Guillen

and Kesten, 2010), kidney exchanges for patients (Roth, Sönmez, and Ünver, 2004, 2005), and

school choice for U.S. public schools (Abdulkadiro§lu and Sönmez, 2003). Until now, there have

been few attempts to analyze dynamic house allocation problems.1

Considering the dynamic aspects of the issue enables us to study features of the allocation

problem that cannot be captured by static models. For example, in the case of on-campus housing

for college students, each year freshmen move in and graduating seniors leave. Each student stays

on campus for only a few years. A student is a �newcomer� in the beginning and then becomes

an �existing tenant.�2 In general, students are overlapping. In this structure, it is not always

dynamically Pareto e�cient to have a static Pareto-e�cient matching in each period.

To illustrate this point, suppose that in the �rst period t = 1, there is one agent a0, called an

initial existing tenant, who has come before the market starts and lives there only in this period.

Moreover, in each period t ≥ 1, one agent at arrives to live in a house in periods t and t+1. In each

period t, there is an existing tenant at−1, who has come in the previous period, and a newcomer

at. There are two durable houses h1 and h2. Each agent prefers h1 to h2, and (h2, h1) to (h1, h2).3

Consider the following plan:

t = 1 t = 2 t = 3 t = 4 · · ·
a0 h2

a1 h1 h2

a2 h1 h2

a3 h1 h2
...

...
...

In each period, an existing tenant is assigned h2 and a newcomer is assigned h1. This plan is

Pareto e�cient for each period's static market. However, consider an in�nite exchange between an

1See recent exceptions: Abdulkadiro§lu and Loertscher (2007), Bloch and Cantala (2008), Kamijo and Kawasaki

(2010), and Ünver (2010).
2In the literature of house allocation with existing tenants (Abdulkadiro§lu and Sönmez, 1999), existing tenants

have the property rights on houses and newcomers do not. Contrary to this usage, in this paper, given any period of

time, existing tenants are the agents who have come to the market in a previous period, while newcomers are those

who have just arrived. Property rights can be endogenous in a dynamic rule. We introduce and study a dynamic

rule with speci�c property rights transfer, i.e., a spot rule with property rights transfer, in which in any peirod of

time, existing tenants have the property rights on a previously lived-in house and newcomers do not.
3For example, (h2, h1) is a consumption path where an agent consumes house h2 in the �rst period, and h1 in

the next. Note that this preference violates the discounted utility model. However, considering a critique of the

discounted utility model as reviewed by Frederick, Lowenstein, and O'Donoghue (2002), we allow for any preference

relation on {h1, h2} × {h1, h2} in this paper. See footnote 16 for further discussion.
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existing tenant and a newcomer in each period, where an existing tenant exchanges her house h2
for the newcomer's house h1. As a result, the initial existing tenant is assigned h1, and each of

the other agents is assigned (h2, h1). Every agent prefers this new plan to the original. Thus, the

original plan is not dynamically Pareto e�cient.

Many universities in the United States use a variant of the so-called random serial dictatorship

rule to allocate dormitory rooms.4 This rule randomly orders the agents and then applies the serial

dictatorship (SD) rule: the �rst agent is assigned her top choice, and the next agent is assigned

her top choice among the remaining rooms, and so on. This ordering is not entirely random, but

rather depends on seniority. That is, existing tenants are favored over newcomers.

In the previous example, consider period orderings that order a newcomer at as the �rst and an

existing tenant at−1 as the second in each period. Applying an SD rule in each period, we obtain

the same plan as indicated in the previous table. As we saw, this plan is not dynamically Pareto

e�cient. By contrast, consider other period orderings that order an existing tenant �rst, and a

newcomer next. The plan by the SD rule with these orderings Pareto dominates the original and is

dynamically Pareto e�cient. That is, when we apply the SD rule each period, the orderings based

on seniority perform well in terms of dynamic Pareto e�ciency.

The subject of this paper is to present a new dynamic framework for the house allocation problem

by considering an overlapping generations structure,5 and to analyze the impact of orderings on

dynamic Pareto e�ciency and the incentive compatibility of rules. To our knowledge, we are the

�rst to o�er the rationale for seniority-based rules in terms of the positive properties.6

Our model extends the standard overlapping generations (OLG) model7 to the house allocation

problem. Time is discrete and lasts forever. There are �nitely many durable houses8 that are

collectively owned, but only initial existing tenants may have the right to live in a house in the �rst

period. In each period, �nitely many agents arrive to stay for two periods, while the oldest agents

leave the market. Each agent consumes one house in each period. Each agent has a time-separable

preference over consumption paths, consisting of period preferences. Her preference does not evolve

over time: during her stay, she has the the same preference as she had upon arrival. However, we

do allow period preferences to vary across periods. A real-life example that �ts this model is

that of dormitory room-assignment for on-campus housing and room assignment for apartment

management companies.

4We will mention some of real-life examples later in this section.
5Block and Cantala (2008) independently consider a similar model to ours. See the Section on Related literature

for the di�erence.
6There are almost no papers on the importance of seniority-based rules, but an exception is Sönmez and Ünver

(2005). They show in a house allocation problem with existing tenants that the core rule from random endowments

of vacant houses to newcomers, which is a natural appealing approach based on Abdulkadiro§lu and Sönmez (1998),

is extremely biased in the sense that it is equivalent to a stochastic AS-TTC rule favoring newcomers.
7See Samuelson (1958), or Ljungqvist and Sargent (2004).
8In the standard OLG model, a consumption good is not durable but perishable. Another equivalent assumption

of durability of houses in our OLG model is that houses are perishable but the same supply of houses �falls from

heaven� every period, as pointed out by a referee. But we do not take this interpretation, because our main

applications are dormitory rooms and apartments as indivisible objects that are considered to be durable.
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We focus on a particular dynamic rule, called a spot rule: each agent reveals her period pref-

erences instead of the full preference. Based on the reported period-preference pro�le, a spot rule

chooses a plan. Depending on whether property rights are transferable, we analyze the two types

of spot rules: In a spot rule with property rights transfer, the houses occupied by the oldest agent

become vacant in the next period, but those occupied by the other agents become their properties

that they can trade or continue to occupy. On the other hand, a spot rule without property rights

transfer has no transfer of property rights.

At any point in time, our spot rule without property rights transfer resembles a house allocation

problem (Hylland and Zeckhauser, 1979) where no agent has property rights on any house. The

representative rule in theory and practice is a (static) random serial dictatorship (RSD) (Abdulka-

diro§lu and Sönmez, 1998). Some colleges, such as Davidson College, Lafayette College, and St.

Olaf College, use a seniority-based RSD spot rule with the requirement that all students participate

every year. A serial dictatorship (SD) spot rule is a spot rule without property rights transfer in

which an SD static rule is applied in each period, given period orderings. As we saw in the previous

example, period orderings that favor newcomers do not always induce a dynamically Pareto-e�cient

plan (Theorem 2). On the other hand, a speci�c period ordering that favors existing tenants does

induce a dynamically Pareto-e�cient plan (Theorem 3).

We also introduce a notion of �acceptability�: an acceptable spot rule always induces a plan

under which each existing tenant �nds her current house at least as desirable as her previous one.9

The importance of acceptability comes from observations of on-campus housing and apartment

assignments.

In on-campus housing, the RSD rule is rarely used, although it is simple, Pareto e�cient, and

strategy-proof (Svensson, 1994). Rather, many universities use its modi�ed rule, called an RSD

rule with squatting rights, where existing tenants either keep their current rooms or give up them

and participate in the RSD rule. This seniority-based rule is used at Northwestern University,

the University of Michigan, and the University of Pittsburgh, among others. Students in these

universities can choose to stay o� campus. Even colleges that require all students to live on

campus use this seniority-based rule, for example, Gordon College, Guilford College, and Lawrence

University. This rule is acceptable for existing tenants who keep their current rooms, but not

acceptable for those entering the RSD rule who might end up with a worse house; i.e., it is not

(ex-post) individually rational. The main reason for its use10 is that universities want to keep

9The acceptability reminds us of the Ratchet e�ect−the tendency of performance standards in an incentive system

to be adjusted upward after a particularly good performance (for example, see Milgrom and Roberts (1992)). I thank

William Thomson for pointing this out.
10James Earle, Assistant Vice Chancellor for Business at the University of Pittsburgh, gave me the following

o�cial reason: �The goal of the Department of Housing is, �rst and foremost, customer satisfaction. By allowing

students the opportunity to retain a room they like, we are guaranteeing the satisfaction of these returning customers.

Furthermore, if these students were forced out of their room, they could not only become a dissatis�ed customer,

if they then get a room they don't like, but they could also decide to live o� campus and become someone else's

customer. Why risk the loss of revenue, when you have the potential to have a satis�ed customer simply by allowing

them to retain their room?�
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students on campus, which makes the universities �nancially less risky. Thus, an acceptable rule

is desirable to both students and universities.

Turning to apartment assignment, companies face a legal contract where a tenant is protected

from eviction during the lease so long as the tenant does not violate any substantial provision or

any local housing laws or code.11 Thus, apartment assignment must also be acceptable.

The above two observations also motivate us to examine a spot rule with property rights transfer.

At any point in time, this spot rule resembles a static house allocation problem with existing tenants

(Abdulkadiro§lu and Sönmez, 1999) in which there are newcomers (agents without property rights)

and existing tenants (agents with property rights). In a static context, Abdulkadiro§lu and Sönmez

(1999) show that the RSD rule with squatting rights is neither (ex-post) individually rational nor

statically Pareto e�cient. For this reason, they propose a rule based on the Gale's top trading

cycles (TTC) rule (Shapley and Scarf, 1974), referred to as AS-TTC rule.12 This rule restores

static Pareto e�ciency that the RSD rule with squatting rights lacks, while satisfying individual

rationality and strategy-proofness.

Any SD spot rule is not acceptable, since all houses that an existing tenant �nds at least as

desirable as her previously owned one can be obtained by higher-order agents. On the other hand,

acceptability is always achieved when in each period an existing tenant is assigned the property

rights of her previously owned house and is then assigned a house induced by an individually

rational static rule. Thus, we consider the spot rule with property rights transfer where we apply

an individually rational AS-TTC rule in each period. This rule is called a TTC spot rule.

However, we get the impossibility result (Theorem 1) in which no spot rule is dynamically Pareto

e�cient and acceptable. Therefore, any TTC spot rule is not dynamically Pareto e�cient although

it induces a statically Pareto-e�cient matching in each period. By restricting the problem to the

time-invariant preference domain, where the preference of each agent consists of identical period

preferences, we avoid the impossibility result and show that a speci�c seniority-based TTC spot

rule is both dynamically Pareto e�cient and acceptable, as well as incentive compatible (Theorems

5 and 7). But a non-seniority based rule, i.e., a TTC spot rule favoring newcomers, is neither

dynamically Pareto e�cient nor incentive compatible (Theorems 6 and 8).

We emphasize that in the time-invariant preference domain, a TTC spot rule is not just a

repetition of an AS-TTC static rule but has distinct features:13 We have entry and exit of agents

with di�erent preferences in each period. Also, property rights are endogenous.

11For example, see http://www.housingnyc.com/index.html for the rent guidelines by New York City Rent Guide-

lines Board.
12AS-TTC rule works as follows: Given the ordering of agents, assign agents their favorite houses one-at-a-time

following their ordering and whenever an agent demands the house of an existing tenant, modify the ordering by

inserting the existing tenant at the top. Whenever a loop of existing tenants forms, assign each of them the house

she demands and proceed.
13Although the consistency concept in a static model takes care of the variable population, it does not allow

endogenous property rights. For the consistency concept, see Sönmez and Ünver (2010) for a house allocation

problem with existing tenants, Ergin (2000) for a house allocation problem, and Thomson (2008) for the various

resource allocation problems.
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Our main theoretical contributions are to show, when one applies an SD or AS-TTC rule that is

statically Pareto-e�cient and strategy-proof in each period, how and whether such static properties

carry over to dynamic Pareto e�ciency and incentive compatibility in a dynamic matching model.

We show that this question depends on whether the static rules are seniority based or not. To this

end, after describing the model in Section 2, we examine a general spot rule in Section 3. Then,

we contrast seniority-based rules with the non-seniority-based ones of SD rules and TTC rules in

Sections 4 and 5, respectively. In Section 6, we discuss the case where agents live for at least three

periods. Finally, in the last section we discuss our results.

1.1 Related literature

There is an extensive literature on static house allocation problems. Pápai (2000a) introduces hier-

archical exchange rules, which are similar to but wider than the AS-TTC rules by Abdulkadiro§lu

and Sönmez (1999) in that Pápai's rules accommodate a more general than theirs and uses the

idea of Gale's TTC algorithm. Her rules characterize a class of Pareto-e�cient, reallocation-proof,

and group strategy-proof rules. Recently, Pycia and Ünver (2010) proposed a wider class of rules,

called trading cycles rules, which characterize a class of Pareto-e�cient and group strategy-proof

rules. See Sönmez and Ünver (2011) for a recent survey.

A dynamic house allocation problem can be classi�ed depending on how and when agents arrive

and exit. With the deterministic arrival and exit of agents like ours, Bloch and Cantala (2008)

independently consider a model similar to ours. Instead of rules as a function of preferences, they

focus on a Markovian assignment rule as a function of the past assignment.

An important application of house allocation problems is kidney exchange for patients (Roth,

Sönmez, and Ünver, 2004, 2005). Ünver (2010) studies a dynamic kidney exchange problem where

agents arrive stochastically. We cannot apply our model to kidney exchange for two reasons. First,

a patient with live donors (i.e. an agent with property rights) arrives in each period, whereas in our

model only the initial existing tenants may have endowments. Second, kidney patients immediately

leave the market once their exchange is done, but our model does not allow for this.

Let us turn to the model without the arrival and exit of agents. Abdulkadiro§lu and Loertscher

(2007) study a dynamic house allocation problem with two periods where each agent's type is drawn

in each period. Kamijo and Kawasaki (2010) study stability and competitive equilibrium in the

dynamic housing market with time-invariant preferences. This type of model can be analyzed by

static models: in multiple-type housing markets (Konishi, Quint, and Wako, 2001; Wako, 2005;

Klaus, 2008), the number of types is interpreted as the life span of agents; in multiple assignment

problems (Pápai, 2000b, 2001; Klaus and Miyagawa, 2001; Ehlers and Klaus, 2003), the quota

of houses is identical across houses and then interpreted as the life span of agents. Adding the

feasibility constraint of matching where a house is consumed by at most one agent in each period,

we can see this as a dynamic model with time-invariant preferences.

Finally, there is a growing literature on dynamic rules with monetary transfers. For example,

see Athey and Segal (2007) and Gershkov and Moldovanu (2009).
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Table 1: Demographic structure and a plan: The left table shows when an agent is present. For

example, agent ati is present in periods t and t + 1. The right table shows a plan {µ(t)}∞t=1 where

there are two houses h1 and h2, and only one agent arrives in each period.

1 2 · · · t t+ 1 · · ·
a0i −
a1i − −
...

. . .

at−1i −
ati − −
at+1
i − · · ·
...

. . .

1 2 · · · t t+ 1 · · ·
µ(1) µ(2) · · · µ(t) µ(t+ 1) · · ·

a0 h1

a1 h2 h1
...

. . .

at−1 h1

at h2 h2

at+1 h1 · · ·
...

. . .

2 The Model

Time is discrete, starts at t = 1, and lasts forever. There is a �nite set, H, of indivisible goods,

called houses, which are collectively owned. Houses are in�nitely durable.

In each period t, n agents, where n ∈ N++, arrive to consume houses for two periods, and then

leave. In period 1, there are n initial existing tenants who live only in period 1. We imagine

that initial existing tenants have arrived in period 0 before the model starts. An agent is denoted

by ati (t ≥ 0 and i = 1, · · · , n) where the superscript indicates her arrival period and the subscript

indexes her in her cohort (Table 1). Let N(t) := {at1, · · · , atn}. In each period, the agents who

have just arrived are called newcomers, while those who have arrived in the previous period are

called existing tenants. In other words, in period t, newcomers are agents in N(t), and existing

tenants are agents in N(t − 1). Let E(t) := N(t − 1) be the set of all existing tenants in period

t. In particular, E(1) is the set of all initial existing tenants. Unlike the model of Abdulkadiro§lu

and Sönmez (1999), here existing tenants do not necessary have property rights for a house. Let

A(t) := N(t) ∪ E(t) be the set of all agents present in period t. Thus, for each period t ≥ 1,

|A(t)| = 2n. Let A := ∪∞t=1A(t) ≡ E(1)∪ (∪∞t=1N(t)) be the set of all agents. Note that there is an

in�nite number of periods and also an in�nite number of agents in this model. It is this �double

in�nity� that di�erentiates ours from the static models, which always assume a �nite number of

agents and houses.14

In each period, each agent consumes one house. The number of houses is equal to that of agents

present in each period, that is, |H| = |A(t)| = 2n. We �x H and A throughout the paper.

Each initial existing tenant, a0, has a strict preference relation,15 Ra0 , on H. On the other

hand, consider an agent, a, who is a newcomer in period t ≥ 1. Her consumption set is H × H.

14The double in�nity is the major source of the theoretical peculiarities of the standard OLG model (Shell, 1971).
15A preference relation is a complete, re�exive, and transitive binary relation. A strict preference relation is a

preference relation where no two distinct alternatives are indi�erent.
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(ht, ht+1) ∈ H × H indicates that ht and ht+1 are the consumed houses when she is a newcomer

and an existing tenant, respectively. She has a (weak) preference relation Ra on H ×H, which is

not always strict. Let Pa be the asymmetric part of Ra. Given x, x′ ∈ H ×H, x Ra x
′ means that

agent a �nds x at least as desirable as x′, and x Pa x′ means that she prefers x to x′. Moreover, the

preference relation Ra is time separable,16 that is, there are strict preferences Ra(t) and Ra(t+1)

on H such that for each ht, ht+1, h
′
t, h
′
t+1 ∈ H,

1. if ht Ra(t) h
′
t and ht+1 Ra(t+ 1) h′t+1, then (ht, ht+1) Ra (h′t, h

′
t+1),

2. if ht Ra(t) h
′
t and ht+1 Ra(t+ 1) h′t+1 such that at least one of them holds with Pa(t) or

Pa(t+ 1), then (ht, ht+1) Pa (h′t, h
′
t+1).

We call Ra(t) a period t preference. A preference Ra is time invariant if all of its period

preferences are identical, i.e., Ra(t) = Ra(t + 1). Note that if we know the preference relation Ra

of agent a in N(t), we obtain a collection (Ra(t), Ra(t+ 1)) of her period preferences, but not vice

versa.

In some cases, a time-invariant preference is derived from a cardinal utility function on H as the

sum of utilities across periods: for some utility function ua : H → R, a preference Ra is represented

by the utility function Ua(ht, ht+1) := ua(ht) + ua(ht+1) . In other words, the preference depends

on how many periods an agent consumes each house.

Let Ra be the set of all preference relations of agent a, and Ra(t) be the set of all period-

preference relations of agent a where for each initial existing tenant a, we take Ra(1) = Ra. Let

R :=
∏

a∈ARa, R(t) :=
∏

a∈A(t)Ra(t), R−a :=
∏

b∈A\{a}Rb, and R−a(t) :=
∏

b∈A\{a}Rb(t). The

generic elements are denoted by R, R(t) and R−a, and R−a(t), respectively.

We call a collection of all time-separable preference pro�les the general preference domain.

On the other hand, the time-invariant preference domain is the collection of all preference

pro�les where each agent has a time-invariant preference relation. This domain is appropriate

when the period is so short that all agents perceive their period preferences to be unchanging over

time.

A period t matching, µ(t), is a bijection from A(t) to H such that house µa(t) is the one

assigned to agent a. Let M(t) be the set of all period t matchings. See Table 1 for an example.

A plan, µ := {µ(t)}∞t=1, is a collection of period t matchings. Let M be the set of all plans. µa
indicates the houses assigned to agent a ∈ A under plan µ ∈ M: If a ∈ E(1), µa = µa(1), and if

a ∈ N(t) with t ≥ 1, µa = (µa(t), µa(t+ 1)).

Given a preference relation Ra of agent a, initially de�ned over the product of houses, we extend

it to the set of plans in the following natural way: agent a prefers plan µ to plan ν if and only if

16As we discussed in the Introduction, our assumption of time-separable preference violates the discounted utility

(DU) model in two ways: Even if her preference is time invariant, an agent may prefer an improving path of houses

over declining paths, which violates the DU model. If not, a period preference in some period may be a�ected by

houses experienced in prior or future periods, which violates the independence assumption of the DU model. We

do not go into details of experimental results on the validity of these assumptions. See Frederick, Lowenstein, and

O'Donoghue (2002), especially sections 4.2.4 and 4.2.5, for further discussions.
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she prefers µa to νa. Similarly, we extend a period preference to the set of period matchings.

An endowment pro�le indicates on which house each initial existing tenant has a property

right only in period 1. Formally, it is a period 1 matching restricted to the set of initial existing

tenants, e(1)|E(1). Each agent except the initial existing tenants has no property right on any house

when she arrives. We consider two kinds of house allocation problems with overlapping

generations, or simply, dynamic problems, depending on the assumption of endowments: In

a dynamic problem without endowments (A,H,R), no initial existing tenants have property

rights, while in a dynamic problem with endowments (A,H,R, e(1)|E(1)), all initial existing

tenants have property rights.

3 Spot Rules

3.1 De�nitions

In a dynamic rule, each agent is asked to send a message, and then a plan is determined based on

the message pro�le sent by all agents. Formally, a dynamic rule is a function from
∏

a∈A Sa toM
where Sa is the message space of agent a ∈ A. A dynamic rule is direct if for each a ∈ A, Sa = Ra.

A spot rule is a dynamic rule such that if a is an initial existing tenant, Sa = Ra ≡ Ra(1), and if

a is a newcomer in period t ≥ 1, Sa = Ra(t)×Ra(t+ 1). Note that any spot rule is not direct. We

consider two kinds of spot rules: In a spot rule with property rights transfer, in each period,

the houses consumed by newcomers become their properties that they can trade or continue to

consume in the next period, while those consumed by existing tenants become vacant in the next

period. A spot rule without property rights transfer has no transfer of property rights. A

period t (static and direct) rule is a function from R(t) toM(t). Note that a spot rule can be

constructed from all period rules.

A plan µ dynamically Pareto dominates a plan ν at R ∈ R if for each a ∈ A, µa Ra νa,

and for some a ∈ A, µa Pa νa. A plan is dynamically Pareto e�cient at R ∈ R if it is not

dynamically Pareto dominated by any other plan at R, i.e., there is no other plan that all agents

�nd at least as desirable and at least one agent prefers. Denote by PD the mapping that associates

with each R ∈ R the set of all dynamically Pareto-e�cient plans at R. A period t matching µ(t) is

statically Pareto e�cient at R(t) ∈ R(t) if there is no ν(t) ∈M(t) such that for each a ∈ A(t),

νa(t) Ra(t) µa(t), and for some a ∈ A(t), νa(t) Pa(t) µa(t).17 Denote by P t
S the mapping that

associates with each R(t) ∈ R(t) the set of all statically Pareto-e�cient period t matchings at R(t).

We introduce the notion of acceptability:

De�nition 1. In a dynamic problem without endowments, a plan µ is acceptable at R ∈ R
if for each existing tenant a in period t ≥ 2, µa(t) Ra(t) µa(t − 1). For a dynamic problem with

endowments, it is acceptable at R ∈ R if the above condition holds, and for each initial existing

17The example in the Introduction shows that a plan consisting of statically Pareto-e�cient period-matchings is

not dynamically Pareto e�cient.
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tenant a ∈ E(1), µa(1) Ra(1) ea(1). Denote by A the mapping that associates with each R ∈ R
the set of all acceptable plans at R.

As discussed in the Introduction, an acceptable plan is desirable to students and universities in

on-campus housing, and is necessary for apartment assignments because of the rental contracts.

A direct dynamic rule Γ is dynamically Pareto e�cient if for each R ∈ R, Γ(R) ∈ PD(R).

Moreover, it is acceptable if for each R ∈ R, Γ(R) ∈ A(R). A period t rule π is statically

Pareto e�cient if for each R(t) ∈ R(t), π(R(t)) ∈ P t
S(R(t)).

To de�ne properties for a spot rule, we introduce some notation: For each a ∈ A and each

Ra ∈ Ra, denote by pa(Ra) a function that transforms her preference Ra to her constituent period

preferences. That is, if a ∈ E(1), pa(Ra) = Ra, and if a ∈ N(t) with t ≥ 1, pa(Ra) = (Ra(t), Ra(t+

1)). Let p(R) :=
∏

a∈A pa(Ra) and p−a(R−a) =
∏

b∈A\{a} pb(Rb).

A spot rule Π is dynamically Pareto e�cient if for each R ∈ R, Π[p(R)] ∈ PD(R). Moreover,

it is acceptable if for each R ∈ R, Π[p(R)] ∈ A(R).

Proposition 1. If a spot rule is dynamically Pareto e�cient (acceptable), then there is a direct

dynamic rule that is dynamically Pareto e�cient (acceptable).

Proof. For a spot rule Π, consider the direct dynamic rule Γ: for each R ∈ R, Γ(R) := Π(p(R)).

Let us now turn to incentive compatibility of rules. The de�nition of strategy-proofness

in a direct (dynamic or period) rule requires truth-telling to be a dominant strategy for each

agent, or equivalently, a pro�le of true preferences to be a Nash equilibrium in its associated

preference revelation game. On the other hand, since a spot rule is not direct, we cannot use it

for a spot rule. In a spot rule, an agent faces an extensive form with simultaneous moves. A

strategy for an agent is her contingency plan. Note that truth-telling of her period preferences is a

history-independent strategy that speci�es only one period preference in each period. Our notion

of incentive compatibility is as follows.18

De�nition 2. A spot rule Π is incentive compatible if a pro�le of true period preferences is a

Nash equilibrium in its associated period-preference revelation game, i.e., for each R ∈ R and each

a ∈ A,

• if a is an initial existing tenant, then for each R̂a(1) ∈ Ra(1), Π[p(R)] Ra Π[R̂a(1), p−a(R−a)],

• if a is a newcomer in period t ≥ 1, then for each R̂a(t) ∈ Ra(t) and each R̂a(t+1) ∈ Ra(t+1),

Π[p(R)] Ra Π[(R̂a(t), R̂a(t+ 1)), p−a(R−a)].

18If our incentive compatibility required truthful revelation of period preferences to be a dominant strategy for

each agent, our main positive results of Proposition 3 and Theorem 5 would not hold. But if a spot rule is incen-

tive compatible as in De�nition 2, then the truthful revelation is a dominant strategy among history-independent

strategies for each agent, but not vice versa (this is because an agent can bene�t from a strategy depending on

history-dependent strategies of the others).

In our speci�c rules of SD and TTC, which are introduced in Sections 4 and 5, if a pro�le of true period preferences

is a Nash equilibrium, it is also a subgame perfect equilibrium. This is shown in footnotes 21 and 24.
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Our incentive compatibility of a spot rule is linked with strategy-proofness of a direct dynamic

rule as follows:

Proposition 2 (Revelation principle). If a spot rule is incentive compatible, then there is a

direct dynamic rule that is strategy-proof.

Proof. Given a spot rule Π, de�ne the direct dynamic rule Γ: for each R ∈ R, Γ(R) := Π(p(R)).

Let R ∈ R, a ∈ A, and R′a ∈ Ra. Since a spot rule Π is incentive compatible, Π[p(R)] Ra

Π[pa(R
′
a), p−a(R−a)]. Thus, Γ(R) Ra Γ(R′a, R−a).

In spite of the revelation principle, because the spot rule captures the situation where a static

rule is applied in each period as in real-life markets, we focus on the spot rule.

3.2 Impossibility result

We might want to search for a dynamically Pareto-e�cient and acceptable spot rule. The following

result rules out such a rule. The proof is in the Appendix.

Theorem 1. 19 Consider the general preference domain in a dynamic problem with or without en-

dowments. Suppose that at least two agents arrive in each period. Then no spot rule is dynamically

Pareto e�cient and acceptable.

In checking dynamic Pareto e�ciency, we have to look at two types of exchanges that do not

exist in a static model: in�nite exchanges between agents from di�erent cohorts as in the example

of the Introduction, and �nite exchanges across periods among agents in the same cohort. The

former is speci�c to the OLG structure. The latter, which we focus on in our proof, is for any kind

of dynamic model.

In the proof, we assume that there is a spot rule satisfying dynamic Pareto e�ciency and

acceptability. We �rst specify a preference pro�le. Using the two properties, we narrow down a

possible plan as a candidate of the plan induced by the spot rule in the following way. We pick

two agents from the same cohort whose period preferences are reversed across two periods (thus,

their preferences are not time invariant). Then, acceptability constrains the possible plan. For

example, if an agent a is assigned a house h that is the worst house in her period preference Ra(t)

and the next period preference Ra(t+ 1) ranks h as her top choice, then by acceptability she must

be assigned h in the next period. Finally, we use the property of spot rules: when two preference

pro�les are distinct but have the same period-preference pro�le, by de�nition, a spot rule induces

the same plan. Thus, we �nd another preference pro�le with the same period-preference pro�le

where a candidate plan might be dynamically Pareto e�cient in one preference pro�le, but not so

in another pro�le. This contradicts the dynamic Pareto e�ciency of the spot rule.

19If there are at least two agents who live for at least three periods, then we have the impossibility result for a

direct dynamic rule: no direct dynamic rule is dynamically Pareto e�cient and acceptable. See Kurino (2009) for

the detail.
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Restricting our attention to the time-invariant preference domain, we show that we avoid the

impossibility result for a dynamic problem both with and without endowments (Remarks 1 and 2).

4 Serial Dictatorship (SD) Spot Rules

We consider a speci�c spot rule without property rights transfer, called a serial dictatorship (SD)

spot rule, whose underlying period rule is a serial dictatorship (SD) rule. For simplicity, we always

consider the rule for a dynamic problem without endowments, so that no agent has property rights

in any period.

4.1 Period and cohort orderings of agents

All spot rules that we examine are based on some ordering of agents. Given a set B ⊆ A of agents,

an ordering in B is a linear ordering,20 denoted by fB. We denote it as the ordered list:

fB := (b1, b2, · · · , bm) if and only if b1 fB b2 fB · · · fB bm.

We say that b1 is the �rst agent in B, b2 is the second agent in B, and so on. In addition,

agent a has a higher order than agent b if a fB b.

We look at two speci�c orderings: A period t ordering is an ordering in A(t) that is the set

of all agents present in period t. A cohort ordering is an ordering of agents in the same cohort,

i.e., an ordering in E(1) or N(t) for t ≥ 1.

To investigate what kind of period orderings have an e�ect on various properties of spot rules,

we elaborate on the period orderings:

De�nition 3. 1. A period t ordering fA(t) favors existing tenants if each existing tenant

has a higher order than any newcomer in fA(t). It favors newcomers if each newcomer has

a higher order than any existing tenant in fA(t).

2. A sequence of period orderings favors existing tenants (newcomers) if in each period

t, the period t ordering favors existing tenants (newcomers).

3. A sequence of period orderings is constant if the relative ranking of agents is the same across

periods. That is, if an agent a has a higher order than another agent a′ in some period, then

a has a higher order than a′ in any other period when they are both present.

In later sections, we investigate spot rules when the underlying sequence of period orderings is

constant and favors existing tenants. In this case, we can create the ordering of all agents by which

we can reproduce the period orderings:

20A linear ordering is a complete, re�exive, transitive, and antisymmetric binary relation.
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Observation 1. Given a constant sequence {fA(t)}∞t=1 of period ordering favoring existing tenants,

we can construct an ordering in the set A of all agents, denoted by F , which consists of cohort

orderings (fE(1), {fN(t)}∞t=1) such that F := (fE(1), fN(1), fN(2), · · · ), fA(1) = (fE(1), fN(1)) ≡ F |A(1),
and for each t ≥ 2, fA(t) = (fN(t−1), fN(t)) = F |A(t).

This observation is the key to prove our main positive results.

4.2 De�nition: SD spot rules

In period t ≥ 1, agents in A(t) are present, houses in H are available, each agent a ∈ A(t) has a

strict period preference Ra(t) on H, and no agent has property rights on any house. That is, it is

a house allocation problem (A(t), H,R(t)) (Hylland and Zeckhauser, 1979).

Let R(t) ∈ R(t), and fA(t) be a period t ordering. A serial dictatorship (SD) period t rule

induced by fA(t) is determined as follows.

Step 1: The �rst agent in fA(t) is assigned her top choice according to Ra(t).
...

Step k: The kth agent in fA(t) is assigned her top choice among the remaining houses according

to Ra(t).

It is known that an SD static rule is strategy-proof and statically Pareto e�cient (Svensson,

1994).

Now, we are ready to de�ne an SD spot rule: A serial dictatorship (SD) spot rule induced

by a sequence of period orderings, {fA(t)}∞t=1, is a spot rule without property rights transfer

where for each period t, the period t rule is the SD period t rule induced by fA(t). Moreover, an

SD spot rule favoring existing tenants (newcomers) is an SD spot rule induced by some

sequence of period orderings favoring existing tenants (newcomers). Also, a constant SD spot

rule is an SD spot rule induced by some constant sequence of period orderings. When we say an

SD spot rule, we mean an SD spot rule induced by some sequence of period orderings.

An SD spot rule consists of statically Pareto-e�cient and strategy-proof SD period rules. The

question is whether these properties can carry over to those in the dynamic setting. We see that

the answer depends on whether it favors existing tenants or newcomers.

4.3 Strategy-proofness

An SD spot rule consists of strategy-proof period rules. Also, it ignores the past assignment in

each period. Thus, we have:

Proposition 3. In the general preference domain, any SD spot rule is incentive compatible.21

21In an incentive-compatible SD spot rule without property rights transfer, a pro�le of true period preferences is

a subgame perfect equilibrium: To see this, note that by de�nition, a pro�le of true period preferences is a Nash

equilibrium. Also, since a spot rule has no property rights transfer, each history starts an SD spot rule for a new

dynamic problem without endowments which is isormorphic to the original. This induced SD spot rule is incentive

compatible, so a pro�le of true period preferences restricted to the game tree at the history is a Nash equilibrium.
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Proof. (Sketch) The logic is useful in understanding another spot rule in the next section. The

point is that in any period an agent cannot a�ect the assignments of others with a higher order

than her by lying.22

Consider any newcomer. When it is her turn to choose in the algorithm, all agents with a higher

order than she are already assigned houses. Thus, her lying cannot in�uence the assignments of

higer-order agents and get her a preferred house. On the other hand, consider any existing tenant.

Since the past assignment is irrelevant to the current period rule, we can use the same logic to say

that she cannot get a preferred house. By time-separability of preferences, she �nds the assignment

under true period-preferences at least as desirable as the one under false period-preferences.

4.4 Dynamic Pareto e�ciency and acceptability

It is straightforward to obtain the following by generalizing the example in the Introduction to the

case where there are at least two newcomers.

Theorem 2. Even in the time-invariant preference domain, an SD spot rule favoring newcomers

is not dynamically Pareto e�cient.

As in the example of the Introduction, in some preference pro�le, an SD spot rule favoring new-

comers induces a plan that is dynamically Pareto dominated by the one from an in�nite exchange

between newcomers and existing tenants. In this case, there is a con�ict among agents from di�er-

ent cohorts.23 As we saw in the impossibility result, another type of exchange−a �nite exchange

among those in the same cohort−can be a source of dynamic Pareto ine�ciency. However, when

an SD spot rule favors existing tenants and is constant, such possibilities are also excluded:

Theorem 3. In the general preference domain, a constant SD spot rule favoring existing tenants

is dynamically Pareto e�cient.

The proof is in the Appendix. Here is the intuition: By Observation 1, we can have the ordering

F of all agents such that we can reproduce each period t ordering by restricting F to A(t). Thus,

the �rst agent in F is always the �rst in period orderings. Thus, she is assigned her most preferred

house according to her period preference in each period. Hence, she cannot be better o�. The

second agent in F is the second in period orderings unless the �rst agent leaves. If the �rst agent

leaves, the second agent becomes the �rst in period orderings. Thus, the second agent is assigned

her most preferred among the houses except the �rst agent's assigned house in each period. Hence,

the second agent cannot be better o� without hurting the �rst agent in F . Repeating this argument

gives the desired result.

22This logic would fail if incentive compatibility were de�ned as a dominant strategy of truth-telling for each

agent.
23We discuss a preference domain in the Conclusion where there is no such con�ict. In this case, an SD spot rule

favoring newcomers is dynamically Pareto e�cient.
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Note that dynamic Pareto e�ciency is achieved by the spot rule that extracts only period

preferences, not the full preferences. Moreover, this spot rule becomes more desirable when agents

have time-invariant preferences, as the following indicates.

Proposition 4. In the general preference domain, when at least two agents arrive in each period,

a constant SD spot rule favoring existing tenants is not acceptable. However, in the time-invariant

preference domain, it is acceptable.

Proof. By Theorem 3, such a spot rule is dynamically Pareto e�cient. By the impossibility result,

it is not acceptable. The proof of the second part is obvious.

Remark 1. In the time-invariant preference domain, by Theorem 3 and Proposition 4, we avoid

the impossibility result, i.e., a constant SD spot rule favoring existing tenants is dynamically Pareto

e�cient and acceptable.

5 Top Trading Cycles (TTC) Spot Rules

In apartment assignments for an apartment management company, tenants cannot be evicted from

the currently rented apartment. This constrains a spot rule to be acceptable. Moreover, accept-

ability is desirable to both students and universities for on-campus housing. In this section, we

investigate an acceptable spot rule.

We consider a speci�c spot rule with property rights transfer, called a TTC spot rule, whose

underlying static rule is Abdulkadiro§lu and Sönmez's top trading cycles (AS-TTC). For simplicity,

we always consider the rule for a dynamic problem with endowments so that all existing tenants

have property rights on houses.

5.1 De�nitions

In period t ≥ 1, agents in A(t) ≡ E(t) ∪ N(t) are present and houses in H are available. Each

agent a has a period preference Ra(t) on H. Each existing tenant in E(t) has the property rights

on the house she lived in the previous period, while newcomers in N(t) do not. That is, it is a

house allocation problem with existing tenants (E(t), N(t), e(t)|E(t), R(t), H) where each existing

tenant a has the property right on house ea(t) (Abdulkadiro§lu and Sönmez, 1999). To simplify

the expression, when agent a has the property rights on house h, we say that a owns or occupies

h, and a is the owner of h.

A period t matching µ(t) is individually rational at R(t) if for each existing tenant a ∈ E(t),

µa(t) Ra(t) ea(t), that is, she is assigned a house at least as desirable as her owned house.

Given an endowment pro�le e(t)|E(t), a period t static rule assigns a period t matching for

each period-preference pro�le. A period t rule is individually rational if it always selects an

individually rational period t matching for each problem.
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Abdulkadiro§lu and Sönmez (1999) propose a rule referred to as Abdulkadiro§lu and Sön-

mez's top trading cycles (AS-TTC) period t rule: Let fA(t) be a period t ordering, R(t) ∈
R(t), and an endowment pro�le, e(t)|E(t). The rule selects a period tmatching through the following

AS-TTC algorithm:

• Assign the �rst agent her top choice, the second agent her top choice among the remaining

houses, and so on, until someone requests the house of an existing tenant.

• If at that point the existing tenant whose house is requested is already assigned another

house, then do not disturb the procedure. Otherwise modify the remainder of the ordering

by inserting the existing tenant before the requester at the ordering of agents and proceed

with the �rst step of procedure through this existing tenant.

• Similarly, insert any existing tenant who has not already been served just before the requestor

in the ordering of agents once her house is requested by an agent.

• If at any point a cycle forms, it is formed by exclusively existing tenants and each of them

requests the house of the existing tenant who is next in the cycle. (A cycle is an ordered list

of agents, (a1, a2, · · · , ak), where agent a1 demands the house of agent a2, agent a2 demands

the house of agent a3, · · · , agent ak demands the house of a1.) In such cases, remove all

agents in the cycle by assigning them the houses they demand and proceed similarly.

Example 1 (The execution of AS-TTC algorithm). This example will be used in the proof

of Theorem 6. We consider period t = 2. Let E(2) = {a11, a12}, N(2) = {a21, a22}, and H =

{h1, h2, h3, h4}. Suppose a11 owns h3 and a12 owns h2. Let R(2) ∈ R(2) be given as:

a11 a12 a21 a22
h1 h1 h2 h4

h3 h2

h2 h3

Let fA(2) = (a21, a
2
2, a

1
1, a

1
2) be the period 2 ordering that favors newcomers. The following four

�gures illustrates the execution of AS-TTC algorithm that proceeds from left to right. In each of

the �gures, the orderings of remaining agents are from left to right, and the owned houses h2 and

h3 point to their owners a12 and a11 as long as the owners are not removed, while available houses

do not point to any agent.
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In the �rst graph, the �rst agent is a21, who requests h2 of existing tenant a12. Because existing

tenant a12 is not assigned a house, modify the ordering by inserting existing tenant a12 before the

requester a21, as indicated by the blue arrow; in the second graph, the �rst agent is a12, who requests

vacant house h1. Thus, assign agent a12 house h1. Then, the second agent is a21, who requests h2
of existing tenant a12. This time, since a12 is already assigned, assign agent a21 her requesting house

h2. Remove the matched agents and houses; in the third graph, the �rst agent is a22, who requests

vacant house h4. Assign agent a22 her requesting house h4; in the last graph, the �rst agent is a11,

who requests house h3 owned by herself. This forms a trivial cycle consisting only of a11. Assign

agent a11 her owned house h3. There are no agents left, and so the procedure stops. As a result,

µ(a11,a
1
2,a

2
1,a

2
2)

(2) = (h3, h1, h2, h4). ♦

Note that any AS-TTC static rule is individually rational. This is because a house owned by an

existing tenant is not assigned to another agent before this existing tenant is assigned a house. If

another agent demands the house of this existing tenant, she is promoted to the top of the ordering.

At the top of the ordering, if there is no house available better than her owned house, then the

existing tenant demands her own house. At this point, a trivial cycle consisting of this agent forms.

Then, she leaves and is assigned at worst her owned house.

Theorem 4 (Abdulkadiroglu and Sönmez, 1999). For any period ordering, fA(t), the induced AS-

TTC static rule is individually rational, statically Pareto e�cient, and strategy-proof.

A top trading cycles (TTC) spot rule induced by a sequence of period orderings

{fA(t)}∞t=1 is a spot rule with property rights transfer in which each period t, the period t rule is

the AS-TTC static rule induced by period t ordering fA(t). In the same way as SD spot rules, we

can de�ne a TTC spot rule favoring existing tenants (newcomers), a constant TTC spot

rule, and a TTC spot rule.

Since an AS-TTC static rule is individually rational, any TTC spot rule is acceptable. There-

fore, from the impossibility result, in the general preference domain, any TTC spot rule is not

dynamically Pareto e�cient. We focus on the time-invariant preference domain, because this do-

main avoids the impossibility result (Remark 2) and has di�erent implications from those of static

models.

5.2 Strategy-proofness: some positive results

Recall that because it ignores the past assignment in each period, an SD spot rule is incentive

compatible (Proposition 3). By contrast, a TTC spot rule guarantees each agent a house that is at

least as desirable as the previously assigned house. This opens up the possibility of manipulation

in which an agent obtains a worse house by lying, expecting to be upgraded in the ordering by

being requested by some other agent in the next period. But a speci�c seniority-based TTC spot

rule excludes such a possibility:
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Theorem 5. In the time-invariant preference domain, a constant TTC spot rule favoring existing

tenants is incentive compatible.24

To prove the theorem, we introduce the notion of e�ective period ordering introduced by Sönmez

and Ünver (2005). For each ordering fA(t), the AS-TTC algorithm assigns houses in one of two

possible ways:

1. There is a sub-ordering (a1, · · · , ak) of agents where a1 demands the house of a2, a2 demands

the house of a3, · · · , agent ak−1 demands house of ak, and ak demands any available house.

We call such a sub-ordering a serial-ordering (S).

2. There is a sub-ordering (a1, · · · , ak) of existing tenants where a1 receives ak's house, ak receives
ak−1's house, · · · , a2 receives a1's house. We call such sub-ordering a loop-ordering (L).

For a given ordering, fA(t), we construct the e�ective period ordering, denoted by gA(t), as

follows: Apply the AS-TTC algorithm and order agents according to how their assignments are

�nalized. When there is a loop-ordering, order these agents as in the loop-ordering.

Note that a period matching induced by an AS-TTC algorithm yields the same one induced

by an SD period rule with this e�ective ordering. Also note that the e�ective period ordering is

endogenous, depending on preferences and the exogenous period ordering.

We now examine how e�ective period orderings behave under a constant sequence of period

orderings favoring existing tenants. LetR ∈ R and {fA(t)}∞t=1 be such a sequence of period orderings.

By Observation 1, let F := (fE(1), fN(1), fN(2), · · · ) be the ordering of all agents consisting of cohort
orderings with F |A(t) = fA(t). For expositional simplicity, we use

fN(t) := (at1, a
t
2, · · · , atn)

for each t ≥ 1. Observe that in period 1,

gA(1) =

 E(1)︷ ︸︸ ︷
X, · · · , X︸ ︷︷ ︸

initial existing tenants

,

N(1)︷ ︸︸ ︷
S︸︷︷︸
a11

, S︸︷︷︸
a12

, · · · , S︸︷︷︸
a1n

 =

 E(1)︷ ︸︸ ︷
X, · · · , X, fN(1)

 ,

where X is either S or L. Recall that S stands for a serial-ordering and L for a loop-ordering.

That is, since newcomers do not own a house and the ordering fA(1) favors existing tenants, initial

existing tenants are higher up than newcomers in the ordering. Moreover, because each newcomer

owns no house, she demands an available house and forms a serial-ordering consisting of herself.

24In an incentive-compatible TTC spot rule with property rights transfer, a pro�le of true period preferences is

a subgame perfect equilibrium: To see this, note that by de�nition, a pro�le of true period preferences is a Nash

equilibrium. Also, since a spot rule has property rights transfer, each history starts a TTC spot rule for a new

dynamic problem with endowments where the initial existing tenants are the existing tenants and the endowments

are the houses on which the existing tenants have property rights, which is isormorphic to the original. This induced

TTC spot rule is incentive compatible, so a pro�le of true period preferences restricted to the game tree at the history

is a Nash equilibrium.
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Now, consider period 2. Note that existing tenants in period 2 are also newcomers in period 1

and the houses of existing tenants in period 1 become vacant in period 2. The �rst agent in fA(2)
is a11. In period 1, she prefers her assignment to those assigned to the other newcomers. Thus,

since her assignment in period 1 becomes her endowment in period 2, she never demands the house

owned by agent a1i , i ≥ 2, but demands her own or an available house. Repeat this argument until

there is no existing agent left. Then, the �rst agent among newcomers is a21. Since all existing

tenants left the market in the algorithm, all remaining houses are not owned by any agent. Thus,

she demands an available house. Repeating this argument for all of the other newcomers, we obtain

gA(2) =

 E(2)=N(1)︷ ︸︸ ︷
X︸︷︷︸
a11

, · · · , X︸︷︷︸
a1n

,

N(2)︷ ︸︸ ︷
S︸︷︷︸
a21

, · · · , S︸︷︷︸
a2n

 = (fN(1), fN(2)).

Repeating this process, in period t ≥ 3, we obtain

gA(t) =

 E(t)=N(t−1)︷ ︸︸ ︷
X︸︷︷︸
at−1
1

, · · · , X︸︷︷︸
at−1
n

,

N(t)︷ ︸︸ ︷
S︸︷︷︸
at1

, · · · , S︸︷︷︸
atn

 = (fN(t−1), fN(t)).

Notice the dynamics of the TTC spot rule: exchanges involve only one agent as in a serial or

loop ordering after the initial existing tenants leave.

Proof. (Sketch) Observe that a sequence of e�ective period orderings is constant among all agents

who are not initial existing tenants. Also, a plan induced by the TTC spot rule coincides with the

SD spot rule induced by a sequence of e�ective orderings. By these observations, the logic of the

proof is similar to that in Proposition 3 for an SD spot rule.

Consider any initial existing tenant. She lives there only in period 1. Thus, she faces the

strategy-proof AS-TTC period rule. Thus, truth-telling is a dominant strategy for her.

Consider any newcomer in period t ≥ 1. In each period when she is present, by the construction

of e�ective period orderings, we conclude that her lying does not in�uence the e�ective period

orderings of the higher-order agents. Thus, her lying does not change the assignment of these

agents. Thus, when it is her turn to demand a house in the algorithm, the houses available given

her truth-telling and lying are the same. So truth-telling gets her a house at least as desirable as

the one under lying. By time-separability of preferences, her assignment under truth-telling is at

least as desirable as the one under lying.

5.3 How can a TTC spot rule be manipulated?

Theorem 6. Consider the time-invariant preference domain. Suppose that at least two agents

arrive in each period. Then, a TTC spot rule favoring newcomers is not incentive compatible.
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Proof. Suppose that agents at1 and at2 arrive in each period t ≥ 1, and there are initial existing

tenants a01 and a02. Fix a sequence of period orderings that favors newcomers. Without loss of

generality, at1 has a higher order than at2 in each period t. Note that this sequence may not be

constant, i.e., at2 may have a higher order than at1 in the period t+ 1 ordering. Let R ∈ R be such

that true period preferences satisfy the left table (from best to worst):

a01 a02 a11 a12 a21 a22
h1 h4 h1 h1 h2 h4

h3 h2

h2 h3

a11
h1

h2

h3

where the underlined houses are the endowment of the initial existing tenants. Moreover, agent

a11's preference satis�es

(h2, h1) Pa11 (h3, h3).

We see that agent a11 has an incentive to lie by reporting the period preference in the right

table in periods 1 and 2: Looking at Figure 1, in period 1, when it is a11's turn to choose, h2 and

h3 are available. Truth-telling gives her h3 and lying gives her h2. Looking at Figure 2, under

truth-telling, h1 is assigned to a12. Under lying, a11 successfully gets her top choice h1. Overall,

a11 is assigned (h3, h3) under truth-telling and is assigned (h2, h1) under lying. Hence, she has an

incentive to lie.

Figure 1: AS-TTC algorithms up to agent a11's turn in period t = 1 under the truthful preference

(left) and the manipulated preference (right) in Theorem 6.
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Figure 2: AS-TTC algorithms until h1 is assigned in period t = 2 under the truthful preference

(left) and the manipulated preference (right). Here a11 is the �rst and a12 is the second, but the

reverse ordering gives the same period matching in Theorem 6.

5.4 Dynamic Pareto e�ciency: some positive results

Using the analysis of e�ective period orderings for a constant TTC spot rule favoring existing

tenants, we obtain the following positive result.

Theorem 7. In the time-invariant preference domain, a constant TTC spot rule favoring existing

tenants is dynamically Pareto e�cient.

Proof. (Sketch) The proof is similar to that in Theorem 3 for the dynamic Pareto e�ciency of a

constant SD spot rule favoring existing tenants in that the sequence of e�ective period orderings is

constant among all agents except initial existing tenants, and in each period the period matching

induced by the AS-TTC rule yields the same period matching induced by the SD static rule with

the e�ective period ordering. Thus, we need to take care of initial existing tenants. They face the

Pareto-e�cient AS-TTC period rule in period 1. Hence, they cannot be better o� without hurting

others.

Remark 2. Any TTC spot rule is acceptable. Thus, in the time-invariant preference domain,

by Theorem 7, we avoid the impossibility result, i.e., a constant TTC spot rule favoring existing

tenants is dynamically Pareto e�cient and acceptable.

5.5 When is a TTC spot rule undesirable?

The example in the Introduction shows the dynamic Pareto ine�ciency of an SD spot rule favor-

ing newcomers. There, we demonstrate that an in�nite exchange between existing tenants and

newcomers dynamically Pareto dominates the plan induced by the SD spot rule favoring newcom-

ers. Looking at this example more closely, we might think that acceptability precludes such an

exchange. Since a TTC spot rule is acceptable, one might conjecture that a TTC spot rule favoring

newcomers is dynamically Pareto e�cient. However, this is not the case:

20



Theorem 8. Consider the time-invariant preference domain. Suppose that at least two agents ar-

rive in each period. Then, a TTC spot rule favoring newcomers is not dynamically Pareto e�cient.

Proof. Suppose that agents at1 and a
t
2 arrive in each period t, and there are initial existing tenants

a01 and a02. Fix a sequence of period orderings that favors newcomers. Without loss of generality,

we may assume at1 is the �rst agent in each period t ordering, and a01 has a higher order than a02.

Note that this sequence may not be constant; at2 may have a higher order than at1 in the period

t + 1 ordering. But this does not a�ect the induced plan in the example below. Let preferences

satisfy

a01 a02 a11 a12 a21 a22 a31 a32 a41 a42
h3 h4 h4 h4 h3 h3 h1 h1 h2 h2

h1 h2 h2 h4 h3 h1

h1 h2 h4 h3

h3 h1 h2 h4

a12 a22 a32 a42
(h3, h2) (h1, h4) (h2, h3) (h4, h1)

(h1, h1) (h2, h2) (h4, h4) (h3, h3)

The left table shows period preferences. The right table shows entire preferences. The houses

owned by initial existing tenants are underlined in the left table. Each of the other agents has the

following preferences: for each t ≥ 1 and each i = 1, 2,

• Agent a4t+1
i has the same preference as a1i does,

• Agent a4t+2
i has the same preference as a2i does,

• Agent a4t+3
i has the same preference as a3i does, and

• Agent a4t+4
i has the same preference as a4i does.

The TTC spot rule induces the plan µ in Table 2. Clearly, µ is not dynamically Pareto e�cient.

Notice that starting with µ, an in�nite exchange of houses between agents at−12 and at2 in each

period t (t ≥ 2), dynamically Pareto dominates µ.

6 An Extension

We study the general case where agents live for at least three periods. In this case, we show

in Proposition 5 that a constant TTC spot rule favoring existing tenants is no longer incentive

compatible nor dynamically Pareto e�cient. The reason is that some of the initial existing tenants,

who have property rights on houses in period 1, live for multiple periods. By contrast, any positive

results of SD spot rules still hold, because initial existing tenants do not have property rights.

To highlight the above issue without notational complexity, we focus on three periods during

which agents live. The case for any other span of periods can be extended in a straightforward way.

The model starts at t = 1. In each period t ≥ 1, n agents arrive to live for three periods and

then leave (Table 6). In period 1, there are two types of initial existing tenants: those who
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Table 2: In each cell, houses on the left side are the plan µ induced by the TTC spot rule, while

houses with parentheses on the right are given by another plan in Theorem 8.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 · · ·
a01 h3

a02 h2

a11 h4 h4

a12 h1 h1(h2)

a21 h3 h3

a22 h2(h1) h2(h4)

a31 h1 h1

a32 h4(h2) h4(h3)

a41 h2 h2

a42 h3(h4) h3(h1)

a51 h4 h4

a52 h1(h3) h1(h2)
...

...
. . .

live in period 1, denoted by a−1i , i = 1, · · · , n; and those who live in periods 1 and 2, denoted by

a−1i , i = 1, · · · , n. With a slight abuse of notation and for simplicity, we imagine that agent a−1i
has arrived in period −1 that is two periods before the model starts, and also a0i has arrived in

period 0. For t ≥ −1, let N(t) = {at1, · · · , atn} be the set of agents who arrive in period t. In each

period t ≥ 1, agents are from three di�erent cohorts of N(t − 2), N(t − 1), and N(t). Agents in

E(t) := N(t−2)∪N(t−1) are called existing tenants in period t, while agents in N(t) are called

newcomers in period t. Let A(t) := E(t)∪N(t) be the set of all agents present in period t. Also,

let A := ∪t≥1A(t) be the set of all agents. Preferences are de�ned in a similar way as in Section 2.

In a dynamic problem without endowments, no initial existing tenants have property rights.

In a dynamic problem with endowments, all initial existing tenants in E(1) have property

rights on houses for period 1.

It is straightforward to extend all de�nitions and propositions of spot rules in Section 3, all

de�nitions of period orderings and SD spot rules in Sections 4.1 and 4.2, all results of SD spot rules

in Sections 4.3 and 4.4, and all de�nitions of TTC spot rules in Section 5.1. However, we cannot

directly extend the results of TTC spot rules in Section 5, as the following shows.

Proposition 5. Consider the time-invariant preference domain. Suppose that agents live for three

periods. Then, a constant TTC spot rule favoring existing tenants can be manipulated by an initial

existing tenant if at least three newcomers arrive in each period, and is not dynamically Pareto

e�cient if at least two newcomers arrive in each period.

The proof is in the Appendix. The reason is that some of the initial existing tenants stay in

the market for multiple periods. This can be seen by looking at the behavior of the e�ective period
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Table 3: Demographic structure when the life span is three: The table shows when an agent is

present. For example, agent ati is present in periods t, t+ 1, and t+ 2.

1 2 3 · · · t t+ 1 t+ 2 · · ·
a−1i −
a0i − −
a1i − − −
...

at−2i −
at−1i − −
ati − − −

orderings. By the logic used in Section 5.2, we can obtain the following e�ective period orderings:

gA(t) =



( E(1)≡N(−1)∪N(0)︷ ︸︸ ︷
X, · · · , X , fN(1)

)
if t = 1,( E(1)∩A(2)=N(0)︷ ︸︸ ︷

X, · · · , X , fN(1), fN(2)

)
if t = 2,(

fN(t−2), fN(t−1), fN(t)

)
if t ≥ 3.

where X is a serial-ordering or a loop-ordering. Observe that the above sequence of e�ective period

orderings is constant among all agents except initial existing tenants. Thus, we weaken incentive

compatibility and dynamic Pareto e�ciency by focusing on all agents except initial existing tenants.

De�nition 4. 1. A spot rule is incentive compatible among all agents except initial

existing tenants25 if we drop condition (1) in De�nition 2, i.e., the truthful revelation of

period orderings is the best strategy for each agent who is not an initial existing tenant, given

that all of the other agents reveal truthful period preferences.

(a) A plan ν dynamically Pareto dominates another plan µ among all agents except

initial existing tenants at a preference pro�le R if

i. for each t ≥ 1, {µa(t) : a ∈ A \ E(1)} = {νa(t) : a ∈ A \ E(1)}, and
ii. for each a ∈ A \ E(1), ν Ra µ and for some a ∈ A \ E(1), ν Pa µ.

(b) A plan is dynamically Pareto e�cient among all agents except initial existing

tenants at a preference pro�le R if it is not dynamically Pareto dominated by any other

plan among all agents except initial existing tenants at R.

(c) A spot rule is dynamically Pareto e�cient among all agents except initial ex-

isting tenants if, for each preference pro�le, it always selects a plan that is dynamically

Pareto e�cient among all agents except initial existing tenants at this preference pro�le.

25Note that if a spot rule is incentive compatible among all agents except initial existing tenants, then truth-telling

is a dominant strategy among history-independent strategies for each agent who is not an initial existing tenant.

23



Then, we can restore the positive results while retaining the negative results:

Proposition 6. In the time-invariant preference domain, when agents live for three periods,

1. a constant TTC spot rule favoring existing tenants is incentive compatible and dynamically

Pareto e�cient among all agents except initial existing tenants, and

2. if at least two newcomers arrive in each period, then a TTC spot rule favoring newcomers is

neither incentive compatible nor dynamically Pareto e�cient among all agents except initial

existing tenants.

Proof. For the �rst part, because the sequence of e�ective period ordering is constant among all

agents except initial existing tenants, we can use the same logic employed in Theorems 5 and 7.

For the second part, it is straightforward to generalize the examples in Theorems 6 and 8.

A constant TTC spot rule favoring existing tenants does not perform well when initial existing

tenants are present, but it does perform well after they leave. This shows that in terms of market

design, it is important to consider how to treat initial existing tenants and their property rights. It

might be possible to invalidate the property rights of initial existing tenants to obtain full dynamic

Pareto e�ciency and incentive compatibility. If not, such a possibility is excluded but the TTC

spot rule still performs well in the long run after initial existing tenants leave.

7 Conclusion

Real-life examples use the priority ordering of agents to allocate indivisible objects to agents. The

ordering often favors seniors. As long as we stick to the static models, our explanation for this

would be that seniors demand respect. However, turning to the dynamic structure inherent in

real-life markets, this paper uncovers an important advantage of using seniority-based assignment

orderings in terms of positive properties such as Pareto e�ciency and incentive compatibility.

Although we have examined two preference domains, we can apply the rationale and the tools

developed in this paper to the other kinds of domains. For example, suppose agents' preferences are

known to evolve in a speci�c pattern: Suppose the number of houses is equally divided between quiet

and noisy houses. Also, suppose agents live for two periods. Newcomers prefer noisy houses to quiet

ones; existing tenants prefer the quiet to the noisy. Agents have heterogeneous period preferences for

the same type of houses. Note that there is no con�ict among di�erent cohorts, that is, newcomers

prefer noisy houses and existing tenants prefer quiet ones. Thus, if we apply a statically Pareto-

e�cient rule as in a spot rule of SD and TTC, then newcomers are assigned the noisy and existing

tenants are the quiet. Thus, each period rule is not a�ected by the previous assignment. Hence, an

SD spot rule is acceptable and dynamically Pareto e�cient as well as incentive compatible. Also, a

TTC spot rule is incentive compatible and dynamically Pareto e�cient as well as acceptable.
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The research into dynamic house allocation problems has started only recently. This paper

o�ers a new perspective on the performance of seniority-based static rules. Our results raise several

interesting questions about market design: Comparing the results of the two spot rules, we notice

that an SD spot rule is robust to the dynamic structure, but a TTC spot rule is vulnerable to

it. However, the property of acceptability, which is desirable and sometimes necessary in real-

life markets, is not generally satis�ed in an SD spot rule unlike a TTC spot rule. This might

beg the question as to why AS-TTC rules have never been used, although the RSD rule with

squatting rights is widely used despite the lack of some desirable static properties. Our model

is limited and abstracts from many realistic situations in order to highlight the importance of

seniority-based rules. Thus, it would be interesting to see how a TTC spot rule behaves under

more realistic assumptions on the evolution of preferences based on experiences, the entry and

exit of agents, and the introduction of an outside option. Finally, it would be interesting to study

lottery rules in addition to the deterministic rules studied in this paper. These issues remain for

future investigation.

Appendix

Proof of Theorem 1. Suppose that two agents arrive in each period, and live for two periods.

Then, let H := {h1, · · · , h4}. Seeking a contradiction, suppose that there is such a spot rule Π.

Pick two newcomers a11 and a
1
2 in period 1. Let R ∈ R such that

a11 a12
Ra(1) Ra(2) Ra(1) Ra(2)

h1 h2 h1 h2

h2 h1 h2 h1

a11 a12
Ra Ra

(h1, h1) (h2, h2)

(h2, h2) (h1, h1)

Also, for each a ∈ A \ {a11, a12}, each τ ∈ N when a is present in τ , and each h ∈ H \ {h1, h2},
h Ra(τ) h1 and h Ra(τ) h2.

Let µ := Π[p(R)]. Since µ ∈ PD(R), then for each τ = 1, 2, µ(τ) ∈ P τ
S(R(τ)). Thus, for each

τ = 1, 2, either µa11,a12(τ) = (h2, h1) or µa11,a12(τ) = (h1, h2).

Case 1: µa11,a12(1) = (h2, h1). By acceptability, µa11(2) = h2. Thus, µa12(2) = h1. Thus, µa11 = (h2, h2)

and µa12 = (h1, h1). Let ν ∈M such that νa11 = (h1, h1), νa12 = (h2, h2), and for each a ∈ A\{a11, a12},
νa = µa. Then, ν dynamically Pareto dominates µ at R. This contradicts µ ∈ PD(R).

Case 2: µa11,a12(τ) = (h1, h2). By the same reasoning as in Case 1, µa11 = (h1, h1) and µa12 = (h2, h2).

Now, let R′ ∈ R \ {R} be such that for each a ∈ A and each t ∈ N, R′a(t) = Ra(t), and

Ra11
Ra12

(h2, h2) (h1, h1)

(h1, h1) (h2, h2)

Then, Π[p(R′)] = µ. Let ν ∈ M such that νa11 = (h2, h2), νa12 = (h1, h1), and for each a ∈
A\{a11, a12}, νa = µa. Then, ν dynamically Pareto dominates µ at R′. This contradicts µ ∈ PD(R′).
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Proof of Theorem 3. Let R ∈ R. Let f = {fA(t)}∞t=1 be a constant sequence of period orderings

that favors existing tenants. Let µ = SDf (p(R)). To �nd a contradiction, suppose that some plan

ν dynamically Pareto dominates µ at R, i.e.,

for each a ∈ A, ν Ra µ, and for some b ∈ A, ν Pb µ. (1)

From Observation 1, there is an ordering of all agents, F = (fE(1), fN(1), fN(2) · · · ) with F |A(t) =

fA(t). For convenience, suppose F = (a1, a2, · · · , am, · · · ). We show by induction on m that for

each m = 1, 2, · · · , µam = νam , i.e., ν = µ, which contradicts (1).

Induction basis: m = 1. Since f favors existing tenants, a1 is an initial existing tenant. Since

F |A(1) = fA(1), she is the �rst agent in fA(1). Thus, she is assigned her most preferred house in H

according to Ra1 ≡ Ra1(1). Thus, µa1 Ra1 νa1 . By (1) and the strict preference of Ra1(1), we have

µa1 = νa1 .

Induction step: Suppose that the claim is true up to m− 1, i.e., µa1 = νa1 , · · · , µam−1 = νam−1 .

First, we show that

for each t ∈ Nsuch that amis present in period t, µam(t) Ram(t) νam(t). (2)

Let t ∈ N be such that agent am is present in period t. Since F |A(t) = fA(t), then each agent

a ∈ A with a higher order than am in fA(t) is one of agents a1, · · · , am−1. Thus, by the induction

hypothesis, µa(t) = νa(t). Thus, when it is am's turn to choose, the remaining houses are in

H \ {µa(t)|a = a1, · · · , am−1} = H \ {νa(t)|a = a1, · · · , am−1}. Since µam(t) is am's most preferred

house among the remaining houses, µam(t) Ram(t) νam(t). Thus, (2) is true.

If am is an initial existing tenant, since Ram = Ram(1) is a strict preference, by (1) and (2),

µam = νam . Suppose am is a newcomer in period t. Then, by (2) and the �rst condition of time-

separability of preferences, µam Ram νam . Thus, by (1), νam Ram µam . Thus, from the second

condition of time-separability, either [for some τ = t, t + 1, νam(τ) Pam(τ) µam(τ)] or [for each

τ = t, t + 1, νam(τ) Ram(τ) µam(τ)]. The former is impossible. Thus, for each τ = t, t + 1,

νam(τ) Iam(τ) µam(τ) where Iam(τ) is the indi�erence relation of Ram(τ). Because the period

preference is strict, for each τ = t, t+ 1, νam(τ) = µam(τ). That is, νam = µam .

Proof of Proposition 5. Suppose that agents live for three periods.

For the �rst part, suppose that three agents arrive in each period. We focus on initial existing

tenants in E(1) = {a−11 , a−12 , a−13 , a01, a
0
2, a

0
3}. Since there are six initial existing tenants, we explicitly

consider six houses, h1 through h6. Period preferences of each initial existing tenant satisfy the left

table below:

a−11 a−12 a−13 a01 a02 a03
h1 h5 h3 h6 h1 h1

h4 h2 h2

h6

a02
h1

h6
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In addition, agent a02 prefers (h6, h1) to (h2, h2). Endowments are indicated within the paren-

theses in the �rst column in the tables below. Let {fA(t)}∞t=1 be a constant sequence of period

orderings with fA(1)|E(1) := (a−11 , a−12 , a−13 , a01, a
0
2, a

0
3) and fA(2)|E(1) := (a01, a

0
2, a

0
3).

t = 1 t = 2 · · ·
a−11 (h1) h1

a−12 (h2) h5

a−13 (h3) h3

a01 (h4) h4 h6

a0
2 (h5) h2 h2

a03 (h6) h6 h1

t = 1 t = 2 · · ·
a−11 (h1) h1

a−12 (h2) h5

a−13 (h3) h3

a01 (h4) h4 h6

a0
2 (h5) h6 h1

a03 (h6) h2 h2

The left table shows a plan selected by the TTC spot rule when agent a02 reveals her true

period preference, while the right table shows a plan selected by the TTC spot rule when a02 lies

by reporting the period preference in period 1 and 2 as in the right table above. This shows that

a02 manipulates the rule.

For the second part, suppose that two agents arrive in each period. We focus on initial existing

tenants in E(1) = {a−11 , a−12 , a01, a
0
2}. Since there are four initial existing tenants, we explicitly

consider four houses h1 through h4. Suppose all agents a except a−12 have an identical preference

such that Pa(t) : h1, h2, h3,, and a−12 's top choice is h4. In addition, (h2, h2) Pa01 (h3, h1) and

(h3, h1) Pa02 (h2, h2). Endowments are indicated in the �rst column on the table below. Period

orderings satisfy fA(t) = (at−21 , at−22 , at−11 , at−12 , at1, a
t
2) for each t ≥ 1. The TTC spot rule produces

the following plan:

t = 1 t = 2 t = 3 · · ·
a−11 (h1) h1

a−12 (h2) h4

a01 (h3) h3 (h2) h1 (h2)

a02 (h4) h2 (h3) h2 (h1)

Consider another plan in which a01 exchange (h3, h1) for (h2, h2) with a02. This plan dynamically

Pareto dominates the one induced by the TTC spot rule. This shows that the TTC spot rule is

not dynamically Pareto e�cient.
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