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Summary

Recent insights into the cell biology of the epidermis and its appendages are
transforming our understanding of the pathogenesis of basal cell carcinoma
(BCC). The significant progress that has been made warrants a comprehensive
review of the molecular and cellular pathology of BCC. The items addressed
include environmental and genetic risk factors, the biology of the putative pre-
cursor cell(s), and the contribution of aberrations in processes such as apoptosis,
cell proliferation, differentiation and signalling to carcinogenesis. Furthermore,
established and novel treatment modalities are discussed with particular attention
to future biological approaches.

Basal cell carcinoma (BCC), also called basalioma, basal cell

epithelioma, rodent ulcer and Jacobs’ ulcer, was first described

in 18241 and is the most common cancer among Caucasians.2

BCC accounts for approximately 75% of all skin cancers. Mor-

tality rates are low,3 but BCC may occasionally grow aggres-

sively causing extensive tissue destruction.4 Its frequency of

metastasis is very low (<0Æ1%).5 Metastasis to lymph nodes,

lung, bone and liver has been described.6,7

BCCs are commonly subdivided according to their differ-

ences in histological appearance.8,9 The major histological pat-

terns are nodular, micronodular, superficial and morpheaform

BCC. The nodular type is characterized by a rounded mass of

neoplastic cells with well-defined peripheral contours and per-

ipheral palisading. The superficial type is defined by one or

more tumour foci that extend from the epidermis into the

papillary dermis. Peripheral palisading occurs and the periph-

eral contours are smooth. The micronodular subtype grows as

small nodules, hence the name. Peripheral palisading is usually

present. The morpheaform subtype consists of tumour islands

of varying size with an irregular outline and spiky configur-

ation. Peripheral palisading is poorly developed. Mixed types

of these histological patterns may occur, with the nodular–

micronodular combination being the most common.10 Fur-

thermore, central nodular and peripheral morphea-like growth

can occur. Finally, a so-called adenoid pattern is seen in 1–7%

of the tumours and is mainly associated with the nodular

growth type.11 Nodular (~60%) and superficial (~25%) BCCs

are often considered as non-aggressive subtypes, whereas mor-

pheaform (~2%) and micronodular (~15%) BCCs are often

referred to as aggressive subtypes, associated with a higher

risk of local recurrence.12

Risk factors

The risk for development of BCC is associated with environ-

mental factors as well as several patient-dependent factors.

Environmental risk factors

Sun exposure

BCCs generally occur on sun-exposed areas of the body13 and

high-risk patients are often fair-skinned with a history of

burning, not tanning, when exposed to sunlight.14 Male sex,

older age and number of previous second-degree sunburns are

also factors indicating a higher risk for development of BCC.15

Corona et al. 16 showed in 2001 that there is a significant

association between BCC development and recreational sun

exposure during childhood and adolescence, as well as a

strong relationship with family history of skin cancer. Patients

with a BCC located on the trunk are at increased risk of devel-

oping multiple BCCs, and these tumours develop at a faster

rate than BCCs located elsewhere on the body.17 Grossman

and Leffell18 showed that there is a correlation between ultra-

violet (UV)-B exposure and the development of skin cancer.

However, the significant number of BCCs arising on non-sun-

exposed areas of the body suggests that other risk factors may

play a role in the development of BCC.19

Chemical carcinogens and radiation

Diepgen and Mahler20 found that chemical carcinogens such

as arsenic, coal tar products and psoralens as well as ionizing
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radiation increase the risk of non-melanoma skin cancer,

mainly squamous cell carcinoma (SCC). With respect to the

relationship between smoking and skin cancer development,

de Hertog et al.21 showed an association with SCC but not

BCC, while Boyd et al.22 recently proved that an association

exists between smoking and BCC in young women. Further-

more, exposure to fibreglass dust and dry-cleaning agents has

also been reported to enhance the risk for BCC development.19

However, this is one report and the findings in it have yet to

be confirmed. We find it difficult to think of a pathogenic

mechanism to explain the carcinogenic potential of fibreglass

on skin.

Exposure to psoralens combined with UVA-treatment

(PUVA) in psoriasis patients has been reported to result in an

increased risk for BCC and SCC.23–25 However, later studies

failed to substantiate the increased risk of BCC and it is

currently doubted whether BCC can really result from PUVA

therapy.26,27 Melanoma risk is also increased by PUVA.27 Prior

non-diagnostic X-ray treatment for skin conditions also

enhanced the risk for BCC.19 In general, it seems that DNA-

damaging agents predispose more to SCC than they do to

BCC. This observation is consistent with the spectrum of

malignancies observed in congenital disorders of DNA repair

(discussed below).

Viral carcinogenesis

Several authors demonstrated an association between infection

with the oncogenic types of human papillomavirus (HPV) and

development of BCC,28–30 while Harwood and Proby31

showed that HPV could abrogate UV-induced apoptosis. Fur-

thermore, HPV DNA was detected in BCC patients by Barr

et al.28 and Weinstock et al.30 suggesting that HPV infection

may play a role in developing BCC. To date, a causal connec-

tion has not been established and it seems doubtful that one

will be found.

Hereditary predisposition

Detoxifying proteins

Proteins that mediate detoxification processes, including indi-

vidual responses to UV irradiation by protecting from oxida-

tive stress, are likely to be involved in susceptibility for BCC.32

For example, glutathione S-transferase (GST) enzymes are part

of the cells’ defence mechanism against harmful chemicals

produced endogenously and in the environment.33 UV irradi-

ation causes oxidative stress in the skin, which leads to lipid

peroxidation and DNA hydroperoxide formation.34 GST is

responsible for the disposal of these potential mutagens.35

Cytosolic GST activity in mammalian tissues is due to the pres-

ence of multiple GST isozymes, which can be assigned to five

classes, e.g. a, h, l, p and r.36 In human skin, GST activity is

found predominantly in sebaceous glands and in the outer

root sheath (ORS) of hair follicles, the p-class of GST being

the predominant isozyme.37 GST-p has been suggested to be

an oncofetal protein that is re-expressed during carcinogene-

sis.38 A significant increase in skin tumorigenesis is observed

in mice lacking p-class GST.39 This finding seems to contradict

the oncogene hypothesis, but in humans, GST-p is expressed

in malignant melanomas,40 whereas BCCs show only a weak

expression of the protein.41 Obviously, this apparent contra-

diction needs to be addressed if we are to understand the role

of GST-p in human tumorigenesis, if any. Conditional (skin-

specific) GST-p knockout mice could be used as a model

system. Several polymorphisms in GST family members

exist36,42 and have been associated with impaired detoxifica-

tion, thus influencing the risk for several cancers, including

non-melanoma skin cancer.43,44 A GSTT1 null genotype is asso-

ciated with high UV sensitivity,45 and a GSTM1 null genotype

also predisposes for BCC, probably due to its role in defence

against UV-induced oxidative stress.32,46 Polymorphism of

GSTM3 was also shown to increase risk for BCC.47 Another

genetic factor involved in detoxification of photosensitizing

agents, and thus involved in BCC carcinogenesis, is poly-

morphism of CYP2D6 (the gene encoding cytochrome P450),

which is correlated with an increased number of BCCs.46

Furthermore, some allelic variants of CYP2D6 are associated

with a multiple presentation phenotype of BCC48,49 and these

patients are also at higher a priori risk for developing BCC.50

DNA repair

In 1973, Milstone and Helwig51 noted that patients with xero-

derma pigmentosum (XP), a group of rare autosomal recessive

disorders characterized by severe photosensitivity due to var-

ious defects in DNA repair, are prone to developing cutaneous

cancers, mostly SCC but also BCC and malignant melan-

oma.52–54 There are several variants of the disease, all caused

by a different genetic defect in nucleotide excision repair, glo-

bal genome repair, transcription-coupled repair or combina-

tions thereof. Some of the genes involved are essential

components of the TFIIH transcription complex; their absence

is associated not only with UV sensitivity but also with some-

times severe neurological defects and growth retardation

(as in de Sanctis–Cacchione syndrome).55 Interestingly, at least

two types of XP are caused by defects in DNA helicases that

are involved in nucleotide excision repair and in transcription.

Werner and Bloom syndromes are hereditary skin cancer dis-

orders that are associated with helicase defects but, curiously,

not with the development of BCCs.56,57 Rothmund–Thomsen

syndrome, which in some cases is caused by defects in a DNA

helicase,58 does seem to predispose to BCC.59 The reason for

this difference is poorly understood. The expression patterns

of helicases may play a role but it is not clear why helicases

should be tissue-specific. Chromosomal breakage disorders

such as ataxia teleangiectasia and Nijmegen breakage

syndrome do not predispose to BCC. Neither does Li–Fraumeni

syndrome, which can be caused by germline mutations in the

p53 gene,60 nor dyskeratosis congenita, a disorder associated

with failure to maintain telomeres.61,62 Why these forms of

genomic instability do not seem to be causally related to BCC
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is uncertain. It may reflect a very basic biological difference

between BCC and other malignancies. Whereas most tumours

sooner or later show chromosomal instabilities,63 BCC does

not seem to do so.

Embryonic signalling pathways – Hedgehog, Wingless,

Ectodysplasin and NF-kB

Patients with the nevoid BCC syndrome (NBCCS) or Gorlin

syndrome,64 show a rapid development of numerous BCCs

at a young age. Whereas XP is an autosomal recessive

disorder, NBCCS is an autosomal dominant disorder.65 A

human homologue to the Drosophila segment polarity gene

patched, PTCH1 (there is also a PTCH2 of as yet unknown

importance) is mutated in NBCCS patients, suggesting a

contribution to the tumorigenesis.66,67 As NBCCS patients

normally inherit one mutated copy of the PTCH gene,

tumours are likely to arise after inactivation of the remain-

ing allele.68 Haploinsufficiency of the PTCH1 gene is prob-

ably responsible for the dysmorphisms. XP patients and

sporadic BCCs may also show mutations in the PTCH

gene.69–71 The PTCH1 gene product is part of a receptor for

a protein called Sonic Hedgehog, which is involved in

embryonic development.72 Sonic hedgehog (SHH) is

expressed in the Hensen node, the floorplate of the neural

tube, the early gut endoderm, the posterior limb buds and

throughout the notochord, and encodes a signal responsible

for patterning the early embryo.73–75 When SHH binds to

PTCH, it releases smoothened (SMOH), a transmembrane

signalling protein, from inhibition by PTCH (Fig. 1).76 It is

now believed that PTCH modulates SMOH in an indirect

manner,77 although it is not known how. There is some

evidence that PCTH may influence the localization or intra-

membrane conformation of SMOH.78 SMOH in turn signals

to GSK3b, which phosphorylates GLI3 (a human ortholog

of the Drosophila gene cubitus interruptus). It is assumed that the

human orthologues of Costal2, Fused and Suppressor of Fused

(Su(Fu)) then form a tetramer as they do in Drosophila but so

far, only Su(Fu) has been demonstrated in humans.79 The

complex then translocates, possibly via the microtubule-

binding activity of Costal2, which has kinesin activity, to the

nucleus where it can regulate activity of target genes such

as WNT genes, BMP and PTCH1 itself (Fig. 1 and reviewed

in80). WNT signals are transduced via the APC ⁄Axin ⁄DSH
complex which inhibits GSK3b activity; as a result, b-catenin
is not degraded and complexes with TCF ⁄Lef1 into a tran-

scription complex which is active in early hair follicle

growth and in the initiation of anagen.81 b-catenin, in turn,

can influence the NFkB pathway (see below). Activating

mutations of b-catenin give rise to pilomatricoma, another

hair follicle tumour, clearly showing the importance of

b-catenin-mediated signalling for hair follicle growth.82,83

Such mutations have not yet been found in BCC, and it

would be of interest to look for such alterations in sporadic

BCCs. Thus, a staggeringly complex regulatory network

emerges. It is of interest to note that it is essential for hair

follicle morphogenesis, suggesting that the development of

BCC in the context of PTCH1 mutations may represent

uncontrolled hair follicle morphogenesis.

The high frequency of mutations in SMOH and PTCH1 in

BCCs, resulting in continuous activation of target genes, indi-

cates that a disturbed HEDGEHOG pathway, resulting in exces-

sive signalling, may be an important carcinogenic route.84 UV

irradiation enhances BCC development in PTCH1 mutant

mice.85 Of the sporadic BCCs 20% show SMOOTHENED

mutations86 and 30–40% patched mutations.70 In XP patients,

the majority (~80%) of PTCH1 mutations are UV-induced,87

as expected more frequently than in sporadic BCCs,70 where

UV-signature mutations are seen in less than 50%.88 PTCH2,

Fig 1. A simplified representation of the Sonic Hedgehog signalling

network and its cross-talk with the Wnt signalling pathway. See the

text for an explanation. GSK3b, glycogen synthetase kinase 3b; FU,
Fused; SU(FU), suppressor of fused; GLI, cubitus interruptus

homologues; BMP, bone morphogenetic proteins; WNT, secreted

Wingless signalling protein; CBP, CREB binding protein; TCF ⁄LEF,
transcription control factor ⁄ lymphoid enhancer factor; DSH,

dishevelled family protein; APC, adenomatous polyposis coli protein.
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which is 57% identical to PTCH1, probably also serves as a

receptor for hedgehog and related factors.89 Mutations occur

in sporadic BCC,90 and it has been shown that when PTCH1 is

mutated, PTCH2 mRNA is up-regulated.89

NFkB

A good example of the importance of embryonic growth reg-

ulatory pathways in BCC carcinogenesis is the discovery that

defects in one of the components of the NFkB signalling path-

way can also cause BCC (own data, unpublished). The CYLD

gene, which is mutated in familial cylindromatosis or Brooke–

Spiegler syndrome, is a de-ubiquitinating enzyme that negat-

ively regulates NFkB.91–93 Its target is TNFR-associated factor

2 (TRAF2) and, to a lesser extent, TRAF6. Both TRAF2 and

TRAF6 are implicated in the transduction of EDA ⁄EDAR ⁄
EDARADD signals94–97 and thus in the development of skin

appendages, as mutations in EDA, EDAR, EDARADD and

TRAF6 can all cause ectodermal dysplasias in humans and

mice.96,98–100 Recent data indicate that EDA can repress

b-catenin-dependent transcription,101 suggesting a regulatory

connection between the EDA and PCTH pathways and hinting,

again, at the central importance of the PTCH route for basal

cell carcinogenesis. b-Catenin can control EDAR expression,

showing that the EDA–NFkB pathway is subject to negative

autofeedback.

Normally, activation of NFkB is caused by phosphorylation

of the NFkB inhibitor IkB through the IkB kinase complex.102

The gene mutated in incontinentia pigmenti, NEMO (NFkB

essential modulator), is part of the IkB kinase complex. Phos-

phorylation of IkB leads to its ubiquitination and subsequent

disposal through the proteasome. CYLD was found to interact

with NEMO.91–93 This possibly transient interaction is

required for its function, the de-ubiquitination of TRAF2 and

TRAF6. The latter proteins are auto-ubiquitinating and need

the ubiquitin tag for their normal function. Hence, CYLD

down-regulates NFkB activation. Interestingly, CYLD mutations

were recently found in familial trichoepithelioma. The latter

tumour is also observed in familial cylindromatosis and resem-

bles BCC to such a degree that a distinction is often difficult

to make.103 Indeed, we have recently observed the occurrence

of a BCC in a patient suffering from familial cylindromatosis.

These observations suggest that the NFkB pathway, which is

involved in inflammation and in the embryogenesis of epithe-

lial appendages, can also play a role in BCC. It should be of

interest to examine sporadic BCCs for mutations in one of the

components of the NFkB pathway. Likewise, patients suffering

from multiple BCCs may harbour CYLD mutations.

Unknowns

Finally, Rombo and Bazex syndromes are known to predispose

to BCC. Both are characterized by the presence of numerous

small cysts on the face and chest, as well as by hypotrichosis.

The cysts contain vellus hairs.104,105 Rombo syndrome is

distinguished by striking degeneration of elastic fibrils in

sunlight-exposed areas causing dramatic skin alterations

called atrophoderma vermiculatum.104,105 In Bazex syndrome,

so-called ice-pick scars are seen on the backs of the hands.

This disorder is X-linked and has been mapped to Xq24–

27.106 Rombo syndrome is probably autosomal dominant, but

otherwise very similar to Bazex. Identification of the causative

genes should contribute significantly to our knowledge of hair

follicle and BCC biology.

Acquired genetic changes in basal cell carcinoma

p53

The most common genetic aberrations in human skin cancers

are found at the level of the p53 gene.107 The p53 gene

encodes a phosphoprotein that is involved in cell-cycle control

and the maintenance of chromosomal stability.108,109 In

response to cellular stress, for example DNA damage, p53 is

activated through phosphorylation.110,111 MDM2 can associate

with p53 and regulates its level and activity depending on the

phosphorylation status of p53. When dephosphorylated, p53

will bind to MDM2 and is then degraded through the ubiqu-

itin–proteosome pathway.112,113 In response to DNA damage,

p53 is phosporylated by DNA damage-sensing proteins such

as ATM and becomes detached from MDM2, resulting in

stabilization and activation of target genes regulated by p53

(Fig. 2).114 The response to DNA damage is either growth

arrest, senescence or apoptosis.115 The relative cellular content

of p53 determines the response following DNA damage; when

the content is low to moderate, cells will go into cell-cycle

arrest to allow DNA repair, but when p53 levels are high, cells

will progress to apoptosis.116 p53 is capable of stimulating

proapoptotic Bax expression117,118 (see also below). In normal

skin, wild type p53 is not detectable but appears within 2 h

after UV irradiation, with peak levels at 24 h after irradiation

and again undetectable levels at 36 h after irradiation.119

Mutant p53 can accumulate in cells and p53 mutations have

been detected in about half of all BCCs.120,121 Furthermore, it

was found that histologically proven aggressive BCCs are signi-

ficantly associated with increased p53 expression, probably

representing the mutated form although that assertion could

not be established with certainty. However, it is striking that

patients suffering from Li–Fraumeni syndrome do not show

increased incidence of BCC. Consequently, it seems reasonable

to assume that p53 mutations are secondary events in BCCs,

occurring after tumour initiation. Considering the apparently

limited contribution of DNA damage and chromosome insta-

bility to the BCC phenotype, the relevance of p53 mutations

for BCC growth remains to be demonstrated. After all, in the

absence of genetic damage, p53 activation will not occur.

Moreover, one of the hallmarks of p53 dysfunction, aberrant

mitosis, perhaps as a consequence of centrosome amplifica-

tion,122 has never been observed in BCC.123

In BCC patients, in a study comparing sunscreen users and

non-users, it was shown that sunscreen users showed a signi-

ficantly lower level of p53 mutations in their BCCs than

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al. 1111



non-users,124 again suggesting that p53 mutations in BCCs

are secondary events that may not contribute significantly to

tumorigenesis. Mutational hotspots have been identified, with

two-thirds of the mutations occurring at nine different

sites.125 Inactivation of p53 occurs predominantly by point

mutation of one allele followed by loss of the remaining

wild-type allele.126 The p53 gene shows UV signature muta-

tions, i.e. predominantly C(C) fi T(T) conversions.125,127 In

33% of BCCs found in Korean patients p53 mutations were

detected69 and up to 50% of the BCCs in Caucasian patients

showed this mutation,120,121 thus suggesting that different

ethnic factors play a role in BCC carcinogenesis although dif-

ferences in sun exposure (with the Westerners engaging

more in recreational sunning) may just as well account for the

differences observed.

p63

The p63 gene, a p53 homologue, encodes multiple products

and is restricted to cells with high proliferation potential and

absent from cells undergoing terminal differentiation.128 p63

has a nucleoplasmic distribution pattern in the basal compart-

ment of stratified epithelia such as skin, tonsil, bladder and

certain subpopulations of basal cells in prostate, breast, uterine

cervix and bronchi.129–131 p63-deficient mice have striking

developmental defects such as absence or truncation of limbs,

absence of hair follicles, teeth and mammary glands, and the

skin lacks stratification and differentiation.132 This indicates that

p63 is essential for several aspects of differentiation during

embryogenesis. Several isoforms of p63 can bind to p53 con-

sensus sequences and activate p53 target genes. Isoform TAp63c
is capable of inducing cell-cycle arrest and apoptosis.133 The DN
isoforms, lacking the N-terminus, are unable to induce tran-

scription, and have an antiapoptotic effect by rendering p53

and TA isoforms inactive. p63 is only rarely mutated in BCC.134

It was shown that p63 functions not only as a stem-cell mar-

ker of keratinocytes135 but may also maintain the stem-cell

phenotype.136 In keeping with its basal localization in normal

epidermis, BCC cells express p63.131,137 It was shown that aber-

rant expression of p63 altered the UVB-induced apoptotic path-

way suggesting that down-regulation of this protein in response

to UV irradiation is important in epidermal apoptosis.138

Immunological factors

Immunosuppression

Organ transplant recipients are at greater risk for developing

malignancies because of the prolonged, often life-long, immu-

nosuppressive therapy.139–141 SCC of the skin is the most

common malignancy occurring in the setting of solid-organ

transplantation and immunosuppression, and its incidence

increases substantially with extended survival after transplanta-

tion.142 SCC occurs more frequently in transplant patients,143

whereas in the general population BCC is three to six times

more frequent than SCC.144 It was shown in Australian heart

transplant recipients that the number of skin cancers is signifi-

cantly correlated with both age at transplantation and duration

of follow-up.145 In Europe, 40% of renal transplant recipients

develop skin cancer within 20 years after grafting.146 Heart

transplant recipients are at higher risk than kidney transplant

recipients most probably due to the fact that they receive

higher doses of immunosuppression agents,147 but it cannot

be overlooked that the different types of immunosuppressive

agents have different effects in this respect. Increased inci-

dence of BCC has not been described in organ recipients.

From the available data, it seems clear that immunosuppres-

sion as practised after organ transplantation does not increase

the risk of developing BCC. As stated above, the incidence of

BCC seems not to be affected by PUVA treatment. A dimin-

ished response to skin application of dinitrochlorobenzene

was found in people with SCC but not in patients with BCC,

again supporting the notion that the incidence of BCC is not

affected by immune status.148

Fig 2. p53 signalling. DNA damage induces stabilization of p53. In the case of repairable damage (A), p53 triggers p21. This in turn inhibits

cyclin-dependent kinases. As a consequence, Rb remains unphosphorylated and stalls the cell in the G1 phase of the cell cycle. In the case of

irreparable DNA damage (B), p53 also induces Bax which then competes with Bcl2 in the mitochondrial membrane. As a result, cytochrome C is

released from the mitochondria, triggering the caspase cascade that causes apoptosis.
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Human immunodeficiency virus

Seemingly in contradiction to the lack of an increase in the

incidence of BCC in organ recipients, people suffering from

acquired immune deficiency syndrome (AIDS) have shown an

elevated risk for the development of BCC.149,150 Human

immunodeficiency virus (HIV) patients with BCC more fre-

quently show blue eyes, blond hair, family history and exten-

sive prior sun exposure.151 The pigmentation phenotype is

probably an independent risk factor that is added to the

increased risk of BCC conferred by the immunosuppression.

There have been some reports of BCCs metastasizing in people

suffering from AIDS,152,153 suggesting that immune surveil-

lance is one of the factors determining the normally non-

metastatic nature of the BCC. Why immunosuppression by

HIV increases the risk of BCC, whereas pharmaceutical immu-

nosuppression does not is not clear. The depletion of CD4

lymphocytes by HIV may lead to a more pervasive defect in

adaptive antitumour immunity than does mere functional sup-

pression by commonly used immunosuppressive compounds.

Human leucocyte antigen (HLA) haplotypes

The major histocompatibility complex (MHC) genes code

for membrane proteins that play important roles in control-

ling immune responses.154 There are two classes of genes,

class I (HLA-A, -B, -C) and class II (HLA-DR, -DQ, -DP),

which play a role in host defence against the development

and spread of tumours.155 For example, loss of class I anti-

gens is related to tumour progression in melanomas.156 Fur-

thermore, abnormalities in cell-mediated immunity have

been reported in patients with multiple BCCs.157 Whereas

normal skin shows high levels of class I molecules, BCC

shows either complete absence or heterogeneous expres-

sion.158 All class I-negative tumours were histologically pro-

ven to be aggressive, whereas all non-aggressive BCCs were

class I-positive. The low levels or absence of expression of

class I antigens may result in escape from recognition by

cytotoxic T cells, which then facilitates tumour growth.159

Evidence for the involvement of HLA genes in the develop-

ment of skin cancer was provided by Bouwes Bavinck

et al.160 These authors showed that the presence of HLA-

DR7 and a decrease of HLA-DR4 are significantly associated

with BCC. This corroborates the previous finding of Rompel

et al. 161 that HLA-DR4 is decreased in BCC, especially in

patients with multiple BCCs located on the trunk.162 The

authors suggested a protective role for HLA-DR4 against the

development of BCC. HLA-DR1 is weakly associated with

the development of multiple BCCs at an early age.163 Fur-

thermore, Bouwes Bavinck et al. presented two studies

showing a correlation between HLA-A11 expression and

skin cancer in immunosuppressed renal transplant recipi-

ents.164,165 One of these studies showed that HLA-A11 was

associated with resistance to skin cancer in renal transplant

recipients,164 while another study, in Australia, showed that

renal transplant recipients with HLA-A11 had an increased

risk for developing skin cancer.165 This apparent discrepancy

may be the result of different genetic backgrounds and

differential environmental factors.

Human papillomavirus

Although HPV has been associated strongly with malignant

progression of warts to SCC and with epidermodysplasia

verruciformis,166 different oncogenic subtypes of the virus

were found in 60% of BCCs from immunosuppressed patients

in contrast to 36% of BCCs from non-immunosuppressed

patients, suggesting that these viruses may be involved in the

development of BCC.167 In renal transplant recipients with

skin cancer HPV 5 ⁄8 DNA could be detected,28 and Weinstock

et al.30 suggested immunosuppression to be a factor in BCC

carcinogenesis by affecting HPV infection.

Tumour stem cells

Several cell types have been suggested to be the precursor

cells or stem cells for BCC: interfollicular basal keratinocytes,

basal keratinocytes from hair follicles or sebaceous gland

cells.168–173 In general, stem cells have a relatively undifferen-

tiated and slow-cycling phenotype, but can be stimulated to

proliferate and give rise to transient amplifying cells which

have a limited proliferative potential.174 Stem cells may be the

target of carcinogens and as such play an important role in

tumorigenesis. One observation suggesting that uncommitted

stem cells are the most likely cells of origin for human skin

cancer is the fact that sunlight exposure in childhood may

contribute to tumours many decades later.175 As first sugges-

ted by Taylor et al. 176 the ultimate source of stem cells in the

skin is the bulge region of the ORS.177–179 As a result, hair

follicles are likely to play an important role in skin homeo-

stasis, wound healing and tumourigenesis.174 Chemically

induced BCCs in rats arise from hair follicles,180 but it is not

known whether this is also the case in humans.

Histologically, BCCs may resemble hair follicles,11 and may

show characteristics from both bulge region stem cells and

transient amplifying cells.181 In particular, BCC can histologi-

cally resemble trichoepithelioma, a benign hair follicle

tumour.182 The suprabulbar region of the ORS of the hair

follicle has an immunohistochemical profile that is almost

indistinguishable from that of a BCC.169,183,184 The hair fol-

licle hypothesis is further supported by the fact that when a

carcinogen is added in the anagen phase, in which the hair

follicle bulge region cells undergo transient amplification,

BCCs are generated more frequently.185 Furthermore, BCCs

seldomly occur on non-hairy skin.181 Support for the hair fol-

licle hypothesis can be found in the expression of the basal

cell adhesion molecule (B-CAM) in normal and diseased

skin.186 The fact that this cell-surface protein is preferentially

expressed in suprabasal cell layers and the ORS of the hair

follicle, and also shows high levels of expression in BCCs,

suggests that BCCs originate from hair follicles rather than

from basal keratinocytes, which are negative for B-CAM in
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normal skin. However, the lack of cytokeratin 15 expression

in the tumour cells suggests that BCCs do not differentiate

towards a hair bulge cell fate.187

Howell and Mehregan188 reported that the tiny pits in the

epidermis of palms and soles characteristic of Gorlin syn-

drome64 (or NBCCS, see above) occasionally show basaloid

budding into the dermis, and have therefore suggested that

they resemble tiny BCCs. This observation was taken to sup-

port the idea that BCCs can originate from interfollicular

epidermis. There is no further proof to support this notion.

Finally, our current understanding of the molecular genetics of

BCC as outlined above also supports the notion that the hair

follicle stem cell is the progenitor cell of the BCC. In all, it

seems as if the BCC cell is a hair follicle stem cell in which the

normal differentiation and anagen-initiation programme, of

which the SHH network forms the backbone, has gone awry.

Carcinogenesis

Tumour formation results from a disruption of the normal

balance between cell proliferation and cell death.189 Three

large categories of genes affect cellular proliferation and survi-

val, i.e. growth-promoting oncogenes, tumour suppressor

genes and mutator or caretaker genes.190 The normal counter-

parts of oncogenes, i.e. the proto-oncogenes, are crucial in

regulating normal cell cycling and division, differentiation and

apoptosis.191–193 When these become mutated or amplified

they can overcome the normal restraints of cell growth.194,195

So-called ‘tumour suppressor’ genes can be involved in differ-

entiation pathways that are coupled to cell growth, PTCH

being a good example in point, and mutations or deletions of

such genes have been reported in various types of cancer.196–198

However, mismatch repair genes are also classified as tumour

suppressors and the functional distinction between oncogenes,

proto-oncogenes and so-called tumour suppressors is blurring.

A more useful distinction is that in general (proto-)oncogenes

need to be activated, and tumour ‘suppressor’ genes inacti-

vated for malignant transformation to occur.199 Defects in

the latter appear to be more common than defects in onco-

genes.200 ‘Mutator’ or caretaker genes (involved in DNA

repair) maintain the genome integrity and when their func-

tion is altered, mutations can accumulate more frequently.190

Proliferation vs. differentiation in basal cell carcinoma

Proliferation indices vary greatly for the different subtypes of

BCC, but in general relatively high percentages of proliferating

tumour cells are found.201–204 Based on immunohistochemical

detection of the proliferation marker Ki-67, an average of

20% of the cells in BCC are found to be prolifer-

ating.202,203,205,206 The proliferating cell nuclear antigen

(PCNA) is present in <10% of non-recurrent BCCs, while

recurrent BCCs show PCNA expression in >30% of the

tumour cells.207,208 In nodular and superficial BCC the prolif-

erative activity is mainly restricted to the periphery of the

tumour nests, whereas morphea-like tumours show a more

scattered pattern of proliferating cells.202,206 An explanation

for the zonal distribution of proliferation-potent cells may be

that tumour cells migrating towards the centre of the tumour

nests become more differentiated, or have less access to nutri-

ents, resulting in lower proliferation potential.209 Alternat-

ively, adhesive properties may determine both behaviours.

Markers for the arrest of cell proliferation include the

A-type lamins, also sometimes known as statins.210 Nuclear

lamins are intermediate filament proteins that form a network

at the nucleoplasmic site of the nuclear membrane and can be

divided in two subtypes, i.e. A-type lamins (lamin A, lamin

AD10 and lamin C) and B-type lamins (lamin B1 and lamin

B2).211,212 Aberrant expression patterns of lamins have been

described in cancer and it is thought that the nuclear matrix

plays a role in carcinogenesis.213 In general, A-type lamin

expression is correlated with a non-proliferating, differentiated

state of cells and tissues,214 and therefore altered expression of

A-type lamins can be expected in cancer. In BCC, it was

recently reported by Venables et al. 215 that the absence of

lamin A correlated with rapid growth, while the absence of

lamin C correlated with slow growth. Furthermore, it was

reported that the expression of A- and B-type lamins varies

with differentiation in normal epidermis216 and skin

tumours.216,217 These authors support the idea that expression

of A-type lamins, but not B-type lamins is associated with

the differentiation phenotype of the tumours. Recently, Tilli

et al. 218 reported four stages in BCC development based on

different patterns of A-type lamin expression. Stage 1 compri-

ses lamin A-negative, Ki-67-positive BCCs, representing the

origin of BCC, while stage 2 comprises lamin A-positive,

Ki-67-positive BCCs. As tumour growth slows down, lamin C

is first relocated to the nucleolus in stage 3 and in stage 4

lamin C expression is largely diminished.

The fact that BCC shows relatively high percentages of pro-

liferating tumour cells is not in line with the clinical finding

that BCC is usually a slow-growing tumour.219 Therefore, cell

loss must be considered as an important factor in the net

growth of BCC. Already in 1972, Kerr et al.220 reported that a

high apoptotic rate in BCC might account for the seemingly

paradoxically slow growth rate. Furthermore, Mooney et al.221

showed that BCCs do indeed exhibit a high apoptotic rate as

based on in situ end-labelling of nicked DNA ends [using

TUNEL staining, terminal deoxynucleotidyl transferase (TdT)-

mediated deoxyuridine triphosphate (dUTP) nick-end label-

ling].

Apoptosis in epidermis and basal cell carcinoma

Apoptosis, a form of programmed cell death, is characterized

by cell shrinkage and fragmentation.222 Apoptosis is one pro-

cess among others that is necessary for the correct develop-

ment of an embryo,223 and to eliminate autoreactive

lymphocytes.224 Abnormal, unwanted or damaged cells are

removed by apoptosis without the involvement of the

immune system, but through rapid phagocytosis of apoptotic

cells before lysis, which prevents inflammation.225 In this
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respect the process of programmed cell death can be clearly

distinguished form accidental cell death, i.e. necrosis.

During the different phases of apoptosis various sets of mol-

ecules act in an orchestrated fashion. These include:

1 Death ligands and death receptors. The family of death

receptors is characterized by two to five copies of cysteine-rich

extracellular repeats and a death domain within the intracel-

lular carboxy-terminus of the receptor (the death domain).226

When these death receptors are bound by ligands, apoptosis

can be induced. Fas is an example of a type I transmembrane

receptor which mediates apoptosis upon binding of the oligo-

merizing Fas ligand (FasL).227 Fas is expressed on several

different cell types, while expression of FasL is restricted to

immune cells, including T and B lymphocytes, macrophages

and natural killer cells.228,229 Ligation of FasL to Fas causes

rapid death-inducing signalling complex formation, which

recruits and activates pro-caspase-8, thus triggering the apop-

totic caspase cascade (see below).

2 Bcl-2 protein family. Many studies concentrate on the

Bcl-2 family of apoptosis-regulating proteins.230,231 Bcl-2 was

first discovered in B-cell lymphomas showing a t(14:18)

translocation,232 resulting in a Bcl-2-immunoglobulin-heavy

chain fusion gene.233 This leads to overexpression of the

antiapoptotic Bcl-2 protein. The protein has been shown to

suppress apoptosis induced by various stimuli, such as deple-

tion of interleukin (IL)-3 and IL-4234,235 p53-induced apop-

tosis,236 glucocorticoid treatment,237 and c-myc induced

apoptosis.238 Bcl-2 expression has been localized to long-lived

(stem) cells in self-renewing human tissues.191 The protein

is associated with the membranes of mitochondria, endo-

plasmatic reticulum and nucleus,239 and bears seven

phosphorylation sites of which ser70 is critical for the apop-

tosis-suppressing function of Bcl-2.240 A large number of

Bcl-2-related proteins230,231,241,242 have been isolated, which

can act either as apoptosis-inducing (e.g. Bax, Bcl-xs) or

apoptosis-suppressing agents (Bcl-xl). Heterodimerization

between these family members determines whether a cell will

die or not.243,244

3 Caspases. The aspartate-specific cysteine protease (caspase)

cascade appears to be the main pathway for clearance of cellu-

lar constituents during the execution phase of apoptosis.245

Several human caspases have been identified that share similar-

ities in amino acid sequence, structure and substrate specif-

icity.246,247 Caspases show a high specificity for the conserved

QACXG sequence, resulting in the cleavage after aspartic acid

(Asp) residues.248 The caspase family comprises apoptotic ini-

tiators (e.g. caspase-2, -8, -9 and -10) and apoptotic execu-

tioners (e.g. caspase-3, -6 and -7).246 Caspase-3 seems to be

responsible for the majority of apoptotic effects, and is sup-

ported by caspase-6 and -7. These three executioner caspases

are important in the cleavage and degradation of several sub-

strates, target proteins that are involved in RNA splicing, DNA

repair, and scaffolding of the cytosol and the nucleus. Upon

induction of apoptosis, caspase-3 cleaves the inhibitor of the

caspase-activated DNAse, resulting in degradation of DNA into

oligonucleosomal fragments.249,250 Lamin A is cleaved by

caspase-6251,252 while in addition, cytoskeletal filaments such

as cytokeratins are cleaved by caspase-6.253 The externalization

of phosphatidyl-serine at the cell membrane during apoptosis

is also caspase-dependent.254 The nuclear matrix protein

poly(ADP-ribose) polymerase is also proteolysed by caspases

during apoptosis.255

Inhibitors of apoptosis proteins, which are constitutively

present in cells,256,257 for example, bind to and inhibit

caspase-3 and -7 as well as pro-caspase-9, but not capase-1,

-6, -8 or -10.

When apoptosis occurs inappropriately it may cause degen-

eration of normal tissue architecture or function. On the other

hand, when apoptosis fails to occur this can give rise to

dysregulation of tissue homeostasis, as a result of which

neoplasms can arise.

Apoptosis in the epidermis is a common phenomenon. In

the morphogenesis of human fetal skin and maintenance of

adult epidermis apoptosis plays a pivotal role.258 For example,

the apoptosis machinery is activated during the normal ter-

minal differentiation process in keratinocytes.259 In fetal skin,

cells undergoing apoptosis are present in several epidermal cell

layers, whereas in neonatal epidermis these are found in the

terminally differentiating granular cell layer, and in adult skin

the spinous cells also show occasional apoptosis.258 Further-

more, apoptosis occurs upon excessive UV light exposure,

resulting in irreparable DNA damage (see also Fig. 2).260 A

significant negative correlation between the expression of

either p53 or bcl-2 with the development of BCC has been

described previously.261 Mutation of p53 or overexpression of

bcl-2 is sufficient to enhance the formation of BCC by suppres-

sing apoptosis.262,263

Altered expression of Bcl-2 family member proteins in non-

melanoma skin cancer has been reported extensively before,264

suggesting that dysregulation of expression of these proteins

may be a possible explanation of the indolent growth beha-

viour of BCC.206,265 Bcl-2 is in general homogeneously

expressed in BCC,206,266–268 while the apoptosis-inducing Bax

protein is also expressed at high levels.206,264 These data

clearly show that a considerable proportion of cells in BCC are

in principle capable of undergoing apoptosis, corroborating

the earlier findings of Mooney et al. 221

Another apoptosis-inhibitor protein called survivin is

expressed in 81% of BCCs, whereas it is not detected in nor-

mal skin, suggesting a contribution to the progression of

BCC.269

Also, Fas-mediated apoptosis may be important for skin

homeostasis. Hill et al.270 suggested that dysregulation of

Fas–FasL interactions may be central to the development of

skin cancer. In normal skin, Fas is expressed in cytoplasmic

membranes of the basal cell layer, while after sun exposure

the expression of Fas is up-regulated in the entire epidermis.

After further UV exposure, Fas expression is again down-regu-

lated, resulting in negative staining in BCC.271 BCCs express

FasL, however, strongly and diffusely, providing evidence for

an escape from local immunesurveillance by the induction of

apoptosis in the peripheral T lymphocytes.272
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Current and future therapeutic
modalities – from surgical to biological

Various surgical and non-surgical therapies are available for

the treatment of BCC.273 Medical history of the patient,

age, tumour localization and size, physical condition, histo-

logical outcomes and cosmetic aspects will eventually deter-

mine the choice of therapy. Furthermore, Telfer et al.274

published guidelines for the management of BCC, presenting

evidence-based guidance for treatment. In spite of the fact

that surgical excision is still the most prominent therapy

used, non-invasive therapies such as photodynamic therapy

(PDT)275 or topical application of 5-fluorouracil (5-FU)276

are currently becoming more and more interesting in select-

ive cases, especially because of the improved cosmetic

outcome.

Surgery

Throughout this review we have used the term ‘basal cell car-

cinoma’ instead of ‘basalioma’, in keeping with current prac-

tice in the Netherlands. ‘Carcinoma’ suggests malignancy as

well as full metastatic potential. Dermatological surgeons treat

BCC as such and justify mutilating procedures by referring to

the presumed malignant nature of the lesion, dreading recur-

rence as if it were melanoma. While definitely capable of

causing local tissue destruction if left untreated, BCCs rarely, if

ever, metastasize. Hence one may wonder whether it is really

necessary to eradicate every last trace of tumour surgically. A

recurrence often can be quite easily treated and will follow

only about 1Æ6–5% of conventional excisions aimed at free

margins (a procedure that can leave undetected residual cells,

particularly in the morpheaform growth type).277,278 As dis-

cussed below, biological therapies offer great promise and

may be used as adjuvants to conventional excision, allowing

for more conservative surgery in the future.

Induction of apoptosis

Many currently used antineoplastic agents exert their therapeu-

tic effects through the induction of apoptosis. Different cell

types vary profoundly in their susceptibility, suggesting the

existence of distinct cellular thresholds for apoptosis induc-

tion.279 For example, BCC cells overexpressing IL-6 are resist-

ant to UV irradiation and PDT-induced apoptosis.280

Furthermore, it was shown that de novo p53 synthesis or stabil-

ization of p53 is essential to induce apoptosis in BCC.281

Overexpression of the antiapoptotic Bcl-2 has also been linked

to resistance of cancers to various chemotherapeutic drugs.282

In BCC, interferon (IFN)-a induces apoptosis and is thus

effective in the treatment.283 Untreated BCC cells express FasL

but not the receptor, but in IFN-a-treated BCC patients the

tumour cells express both FasL and receptor, whereas the

peritumoral infiltrate mainly consists of Fas-receptor-positive

cells.284 Therefore, with IFN-a treatment, BCC most likely

regresses through apoptosis.

Topical treatment of BCC with 5-FU has also been pro-

ven to be very successful. Up to 90% of treated BCCs show

regression when 5-FU is applied in a phosphatidyl choline-

based cream285 or when it is locally injected in an epineph-

rine-containing gel.276 The regression of tumours treated

with 5-FU is probably caused by enhancing apoptosis in

the tumour cells.286 Recently, Nakaseko et al. 287 reported

that apoptosis is involved in regression of the lesion after

PDT in actinic keratosis. This therapy is also used for treat-

ment of BCC,288 where tumour cells may also undergo

apoptosis.

Phytochemicals known to induce apoptosis are also being

applied in cancer prevention and therapy.289 Recently, Levin

and Maibach290 published an overview of plant-derived

drugs and treatments in dermatology. It was shown that

application of green tea polyphenolic fractions reduced UV-

induced erythema, gave rise to a decrease in sunburns and

could also reduce the number of UV-induced mutations in

DNA.291 Oral and topical application of black tea extracts

also decreased photochemical damage to the skin.292 Fur-

thermore, in mice bearing skin tumours, tumour growth

was inhibited by 70% after treatment with black tea, which

was established by inhibition of proliferation and enhanced

apoptosis.293 Ajoene, an organosulphur compound of gar-

lic,294 has been shown to induce apoptosis in human

promyeloleukaemic cells.295 Recently, it was shown that

ajoene can induce apoptosis in the human keratinocyte cell

line HaCat and has a diminishing effect on BCC in vivo by

down-regulating the expression of the apoptosis-suppressing

protein Bcl-2.296 Apart from the induction of apoptosis by

directly targeting its mediators, the obvious role of the SHH

pathway in BCC growth suggests that interference with this

pathway may also be used to treat BCC. Indeed, it was

recently shown that a SHH antagonist, the Veratrum alkaloid

cyclopamine (11-deoxojervine) can be used to treat BCC.297

Cyclopamine binds directly to Smoothened, which explains

its activity in tumours characterized by activated SHH path-

ways.298 Interestingly, its application to the surface of the

tumour resulted not only in the rapid induction of apopto-

sis but also influenced the differentiation status in seven of

seven tumours.299

Modulation of differentiation

Retinoids (vitamin A metabolites and analogues) have also

been shown to have suppressive effects on tumour promotion

when administered in high doses, and the mechanism appears

to be associated with modulation of growth, differentiation

and apoptosis.300 However, clinical experience suggests that

the antitumour activity of retinoids when administered in tol-

erable doses is limited as a result of adaptation of the

tumour’s retinoid metabolism.301 Retinoic acid metabolism

blocking agents (RAMBAs) such as liarozole, possibly com-

bined with retinoids in a relatively low dose, may offer a

more tolerable and effective means of slowing tumour pro-

gression.301,302
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Immunomodulation

Because BCCs often elicit a strong inflammatory response,

recent studies have sought to evaluate the effect of immuno-

modulatory compounds. One of the most promising is imiq-

uimod, a Toll-like receptor 7 ⁄8 agonist that enhances the

endogenous cytokine response (among others, INF-a, IL-10),
stimulating the T-helper 1-mediated inflammatory responses.

Several recent studies suggest that imiquimod can be used as a

monotherapy, with excellent complete response rates (80%

and more).303–306 The tumours are infiltrated by macrophages

and show an extensive apoptotic response.

Conclusion

In order to develop better pharmacological treatments for BCC,

we need to understand its biological nature. As long as it is con-

sidered a malignancy, radical surgery seems to be justified, in

particular for tumours with a morpheaform growth pattern.

Hence the crucial question is whether BCC is truly cancer. If we

are defining cancer as a clonal expansion of cells that are no lon-

ger under host control, and are not subject to replicative senes-

cence and apoptosis, BCC is true cancer. On the other hand, the

lack of defects in the control of genomic integrity and the appar-

ent inability to metastasize seem to suggest that there are funda-

mental differences between BCC and other malignancies. For

example, there seems to be an important difference between

frank malignancies and BCC with regard to the timing of the

activation of the SHH pathway in the process of tumorigenesis.

In many tumour types, such as those of the lung or the pancre-

atic duct, the SHH route has to be reactivated since it is not nor-

mally active in those tissues during adult life but only during

embryogenesis. In the normal adult hair follicle on the other

hand, the SHH pathway is subject to cyclic activation.307 Hence,

aberrations in this constitutional activity of the SHH pathway in

the hair follicle may be initiating events in BCC tumorigen-

esis.308 In other tumours, on the other hand, SHH activation

seems to contribute to tumour progression rather than to initi-

ation. In view of the foregoing, it is our opinion that the desig-

nation ‘basalioma’ is most appropriate, because it emphasizes

the proliferative nature of the disorder, and at the same time

indicates the limited malignant potential.

The availability of proapoptotic and immunomodulatory

compounds for the treatment of BCC may change therapy in the

near future. For the majority of patients, surgery may no longer

be the first treatment option. Tumours that are currently resect-

ed with a wide margin, a procedure that can result in mutilating

defects, might be treated by limited primary excision followed

by adjuvant therapy using an immunomodulator, a proapoptotic

agent and ⁄or a cell-signalling modulator.

References

1 Jacob A. Observations respecting an ulcer of peculiar character,
which attacks the eyelids and other parts of the face. Dublin Hospi-

tal Rep 1824; 4:232–9.

2 Marks R. An overview of skin cancers: incidence and causation.
Cancer 1995; 75:607–12.

3 Gloster HM, Brodland DG. The epidemiology of skin cancer. Der-
matol Surg 1996; 22:217–26.

4 Leffell DJ, Headington JT, Wong DS et al. Aggressive growth basal
cell carcinoma in young adults. Arch Dermatol 1991; 127:1663–7.

5 von Domarus HV, Stevens PJ. Metastatic basal cell carcinoma:
report of five cases and review of 170 cases in the literature. J Am

Acad Dermatol 1984; 10:1043–60.
6 Lo JS, Snow SN, Reizner GT. Metastatic basal cell carcinoma:

report of twelve cases with a review of the literature. J Am Acad

Dermatol 1991; 24:715–9.
7 Tavin E, Persky MS, Jacobs J. Metastatic basal cell carcinoma of

the head and neck. Laryngoscope 1995; 105:814–17.
8 Wade TR, Ackerman AB. The many faces of basal cell carcinoma.

J Dermatol Surg Oncol 1978; 4:778–80.
9 Rippey JJ. Why classify basal cell carcinomas? Histopathology 1998;

32:393–8.
10 Sexton M, Jones DB, Maloney ME. Histologic pattern analysis of

basal cell carcinoma. J Am Acad Dermatol 1990; 23:1118–26.
11 Miller SJ. Biology of basal cell carcinoma (Part 1). J Am Acad Der-

matol 1991; 24:1–13.
12 Jacobs GH, Rippey JJ, Altini M. Prediction of aggressive beha-

viour in basal cell carcinoma. Cancer 1982; 49:533–7.
13 Silverstone H, Gordon D. Regional studies in skin cancer. 2. Wet

tropical and subtropical coasts of Queensland. Med J Aust 1996;
2:733–40.

14 Gallagher RP, Hill GB, Bajdik CD et al. Sunlight exposure, pig-
mentary factors, and risk of nonmelanocytic skin cancer. I. Basal

cell carcinoma. Arch Dermatol 1995; 131:157–63.
15 Mithoefer AB, Supran S, Freeman RB. Risk factors associated with

the development of skin cancer after liver transplantation. Liver
Transpl 2002; 8:939–44.

16 Corona R, Dogliotti E, D’Errico M et al. Risk factors for basal cell
carcinoma in a Mediterranean population: role of recreational

sun exposure early in life. Arch Dermatol 2001; 137:1162–8.
17 Lear JT, Smith AG, Strange RD, Fryer AA. Patients with truncal

basal cell carcinoma represent a high-risk group. Arch Dermatol
1998; 134:373.

18 Grossman D, Leffell DJ. The molecular basis of nonmelanoma skin
cancer: new understanding. Arch Dermatol 1997; 133:1263–70.

19 Gallagher RP, Bajdik CD, Fincham S et al. Chemical exposures,
medical history, and risk of squamous and basal cell carcinoma

of the skin. Cancer Epidemiol Biomarkers Prev 1996; 5:419–24.

20 Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Der-
matol 2002; 146 (Suppl. 61): 1–6.

21 de Hertog SA, Wensveen CA, Bastiaens MT et al. Relation between
smoking and skin cancer. J Clin Oncol 2001; 19:231–8.

22 Boyd AS, Shyr Y, King LE Jr. Basal cell carcinoma in young
women: an evaluation of the association of tanning bed use and

smoking. J Am Acad Dermatol 2001; 46:706–9.
23 Stern RS. Carcinogenic risk of psoralen plus ultraviolet radiation

therapy: evidence in humans. Natl Cancer Inst Monogr 1984;
66:211–6.

24 Katz KA, Marcil I, Stern RS. Incidence and risk factors associated
with a second squamous cell carcinoma or basal cell carcinoma

in psoralen + ultraviolet a light-treated psoriasis patients. J Invest
Dermatol 2002; 118:1038–43.

25 Lindelof B, Sigurgeirsson B, Tegner E et al. PUVA and cancer: a
large-scale epidemiological study. Lancet 1991; 338:91–3.

26 Stern RS, Laird N. The carcinogenic risk of treatments for severe
psoriasis. Photochemotherapy Follow-Up Study. Cancer 1994;

73:2759–64.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al. 1117



27 Stern RS. PUVA Follow-up Study. The risk of melanoma in
association with long-term exposure to PUVA. J Am Acad Dermatol

2001; 44:755–61.
28 Barr BBB, McLaren K, Smith IW et al. Human papilloma virus

infection and skin cancer in renal allograft recipients. Lancet 1989;
1:124–9.

29 Pfister H, Ter Schegget J. Role of HPV in cutaneous premalignant
and malignant tumors. Clin Dermatol 1997; 15:335–47.

30 Weinstock MA, Coulter S, Bates J et al. Human papillomavirus
and widespread cutaneous carcinoma after PUVA photochemo-

therapy. Arch Dermatol 1995; 131:701–4.

31 Harwood CA, Proby CM. Human papillomaviruses and non-mel-
anoma skin cancer. Curr Opin Infect Dis 2002; 15:101–14.

32 Lear JT, Smith AG, Heagerty AHM et al. Truncal site and detoxify-
ing enzyme polymorphisms significantly reduce time to presenta-

tion of further primary cutaneous basal cell carcinoma.
Carcinogenesis 1997; 18:1499–503.

33 Strange RC, Spiteri MA, Ramachandran S et al. Glutathione
S-transferase family of enzymes. Mutat Res 2001; 482:21–6.

34 Griffiths HR, Mistry P, Herbert KE et al. Molecular and cellular
effect of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci

1998; 35:189–237.
35 Ketterer B, Meyer DJ. Glutathione S-transferases: a possible role

in the detoxification and repair of DNA and lipid hydroperoxides.
Mutat Res 1989; 214:33–40.

36 Hayes JD, Pulford DJ. The glutathione S-transferase supergene
family: regulation of GST and the contribution of the enzyme to

cancer chemoprotection and drug resistance. Crit Rev Biochem Mol
Biol 1995; 30:445–600.

37 Raza H, Awasthi YC, Zaim MT et al. Glutathione S-transferases in
human and rodent skin: multiple forms and species-specific

expression. J Invest Dermatol 1991; 96:463–7.
38 Moscow JA, Townsend AJ, Goldsmith ME et al. Isolation of the

human anionic glutathione S-transferase cDNA and the relation
of its gene expression to estrogen-receptor content in primary

breast cancer. Proc Natl Acad Sci USA 1998; 85:6518–22.
39 Henderson CJ, Smith AG, Ure J et al. Increased skin tumorigenesis

in mice lacking pi class glutathione S-transferases. Proc Natl Acad
Sci USA 1998; 95:5275–80.

40 Schadendorf D, Jurgovsky K, Kohlmus CM, Czarnetzki BM. Gluta-
thione and related enzymes in tumor progression and metastases

of human melanoma. J Invest Dermatol 1995; 105:109–12.
41 Hanada K, Ishikawa H, Tamai K et al. Expression of glutathione

S-transferase-pi in malignant skin tumors. J Dermatol Sci 1991;

2:18–23.
42 Pemble S, Schroeder KR, Spencer SR et al. Human glutathione

S-transferase theta (GSTT1): cDNA cloning and the characteriza-
tion of a genetic polymorphism. Biochem J 1994; 300:271–6.

43 Heagerty AHM, Fitzgerald D, Smith A et al. Glutathione S-transf-
erase GSTM1 phenotypes and protection against cutaneous malig-

nancy. Lancet 1994; 343:266–8.
44 Heagerty A, Smith A, English J et al. Susceptibility to multiple

cutaneous basal cell carcinomas: significant interaction between
glutathione S-transferase GSTM1 genotypes, skin type and male

gender. Br J Cancer 1996; 73:44–8.
45 Kerb R, Brockmoller J, Reum T, Roots I. Deficiency of gluta-

thione S-transferases T1 and M1 as heritable factors of
increased cutaneous UV sensitivity. J Invest Dermatol 1997;

108:229–32.
46 Lear JT, Heagerty AHM, Smith A et al. Multiple cutaneous basal

cell carcinomas: glutathione S-transferase (GSTM1, GSTT1) and
cytochrome P450 (CYP2D6, CYP1A1) polymorphisms influence

tumour numbers and accrual. Carcinogenesis 1996; 17:1891–6.

47 Yengi L, Inskip A, Gilford J et al. Polymorphism at the glutathione
S-transferase locus GSTM3: interactions with cytochrome P450

and glutathione S-transferase genotypes as risk factors for mul-
tiple cutaneous basal cell carcinoma. Canc Res 1996; 56:1974– 7.

48 Ramachandran S, Fryer AA, Smith AG et al. Basal cell carcinomas:
association of allelic variants with a high-risk subgroup of

patients with the multiple presentation phenotype. Pharmacogenetics
2001; 11:247–54.

49 Ramachandran S, Lear JT, Ramsay H et al. Presentation with mul-
tiple cutaneous basal cell carcinomas: association of glutathione

S-transferase and cytochrome P450 genotypes with clinical phe-

notype. Cancer Epidemiol Biomarkers Prev 1999; 8:61–7.
50 Ramachandran S, Hoban PR, Ichii-Jones F et al. Glutathione

S-transferase GSTP1 and cyclin D1 genotypes: association with
numbers of basal cell carcinomas in a patient subgroup at high-

risk of multiple tumors. Pharmacogenetics 2000; 10:545–56.
51 Milstone EB, Helwig EB. Basal cell carcinoma in children. Arch

Dermatol 1973; 108:523–7.
52 Cleaver JE. Defective repair replication of DNA in xeroderma pig-

mentosum. Nature 1968; 218:652–6.
53 Sarasin A. The molecular pathways of ultraviolet-induced carcino-

genesis. Mutat Res 1999; 428:5–10.
54 Cleaver JE. Ultraviolet photobiology: its early roots and insights

into DNA repair. DNA Repair (Amst) 2002; 1:977–9.
55 Hoeijmakers JH. Genome maintenance mechanisms for prevent-

ing cancer. Nature 2001; 411:366–74.
56 Yu CE, Oshima J, Fu YH et al. Positional cloning of the Werner’s

syndrome gene. Science 1996; 272:193–4.
57 Ellis NA, Groden J, Ye TZ et al. The Bloom’s syndrome gene

product is homologous to RecQ helicases. Cell 1995; 83:655–66.
58 Kitao S, Shimamoto A, Goto M et al. Mutations in RECQL4 cause

a subset of cases of Rothmund–Thomson syndrome. Nat Genet
1999; 22:82–4.

59 Wang LL, Levy ML, Lewis RA et al. Clinical manifestations in a
cohort of 41 Rothmund–Thomson syndrome patients. Am J Med

Genet 2001; 102:11–17.
60 Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a

familial syndrome of breast cancer, sarcomas, and other neo-
plasms. Science 1990; 250:1233–8.

61 Knight SW, Heiss NS, Vulliamy TJ et al. X-linked dyskeratosis
congenita is predominantly caused by missense mutations in the

DKC1 gene. Am J Hum Genet 1999; 65:50–8.
62 Vulliamy T, Marrone A, Goldman F et al. The RNA component of

telomerase is mutated in autosomal dominant dyskeratosis con-

genita. Nature 2001; 413:432–5.
63 Katayama H, Brinkley WR, Sen S. The Aurora kinases: role in cell

transformation and tumorigenesis. Cancer Metastasis Rev 2003;
22:451–64.

64 Gorlin RJ. Nevoid basal cell carcinoma syndrome. Dermatol Clin
1995; 13:113–25.

65 Harris CC. Molecular epidemiology of basal cell carcinoma. J Natl
Cancer Inst 1996; 88:315–17.

66 Hahn H, Wicking C, Zaphiropoulous PG et al. Mutation of the
human homolog of Drosophila patched in the nevoid basal cell car-

cinoma syndrome. Cell 1996; 85:841–51.
67 Johnson RL, Rothman AL, Xie J et al. Human homolog of

patched, a candidate gene for the basal cell nevus syndrome.
Science 1996; 272:1668–71.

68 Wicking C, McGlinn E. The role of hedgehog signalling in
tumorigenesis. Cancer Lett 2001; 173:1–7.

69 Kim M-Y, Park HJ, Baek S-C et al. Mutations of the p53 and
PTCH gene in basal cell carcinomas: UV mutation signature and

strand bias. J Dermatol Sci 2002; 29:1–9.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

1118 Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al.



70 Bodak N, Queille S, Avril MF et al. High levels of patched gene
mutations in basal cell carcinomas from patients with xeroderma

pigmentosum. Proc Natl Acad Sci USA 1999; 96:5117–22.
71 Bale AE, Yu K-P. The hedgehog pathway and basal cell carcino-

mas. Hum Mol Genet 2001; 10:757–62.
72 Wicking C, Smyth I, Bale A. The hedgehog signalling pathway in

tumorigenesis and development. Oncogene 1999; 18:7844–51.
73 Echelard Y, Epstein DJ, St-Jacques B et al. Sonic hedgehog, a

member of a family of putative signaling molecules, is implicated
in the regulation of CNS polarity. Cell 1993; 75:1417–30.

74 Johnson RL, Laufer E, Riddle RD et al. Ectopic expression of Sonic

hedgehog alters dorsal–ventral patterning of somites. Cell 1994;
79:1165–73.

75 Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates
the polarizing activity of the ZPA. Cell 1993; 75:1401–16.

76 Stone DM, Hynes M, Armanini M et al. The tumour-suppressor
gene patched encodes a candidate receptor for Sonic hedgehog.

Nature 1996; 384:129–34.
77 Taipale J, Cooper MK, Maiti T et al. Patched acts catalytically to

suppress the activity of Smoothened. Nature 2002; 418:892–7.
78 Sprong H. van der Sluijs P, van Meer G. How proteins move

lipids and lipids move proteins. Nat Rev Mol Cell Biol 2001; 2:504–
13.

79 Stone DM, Murone M, Luoh S et al. Characterization of the
human suppressor of fused, a negative regulator of the zinc-fin-

ger transcription factor Gli. J Cell Sci 1999; 112:4437–48.
80 Cohen MM Jr, The hedgehog signaling network. Am J Med Genet

2003; 123A:5–28.
81 Jamora C, DasGupta R, Kocieniewski P et al. Links between signal

transduction, transcription and adhesion in epithelial bud devel-
opment. Nature 2003; 422:317–22.

82 Chan EF, Gat U, McNiff JM et al. A common human skin tumour
is caused by activating mutations in beta-catenin. Nat Genet 1999;

21:410–13.
83 Chan EF. Pilomatricomas contain activating mutations in beta-

catenin. J Am Acad Dermatol 2000; 43:701–2.
84 Lam CW, Xie J, To KF et al. A frequent activated smoothened

mutation in sporadic basal cell carcinomas. Oncogene 1999;
18:833–6.

85 Aszterbaum M, Epstein J, Oro A et al. Ultraviolet and ionizing
radiation enhance the growth of BCCs and trichoblastomas in

patched heterozygous knockout mice. Nat Med 1999; 5:1285–91.
86 Xie J, Murone M, Luoh SM et al. Activating Smoothened muta-

tions in sporadic basal cell carcinomas. Nature 1998; 391:90–2.

87 Daya-Grosjean L, Sarasin A. UV-specific mutations of the human
patched gene in basal cell carcinomas from normal individuals

and xeroderma pigmentosum patients. Mut Res 2000; 450:193–9.
88 Gailani MR, Stahle-Backdahl M, Leffell DJ et al. The role of the

human homologue of Drosophila patched in sporadic basal cell car-
cinoma. Nat Genet 1996; 14:78–81.

89 Zaphiropoulos PG, Unden AB, Rahnama F et al. PTCH2, a novel
human patched gene, undergoing alternative splicing and up-

regulate in basal cell carcinoma. Cancer Res 1999; 59:787–92.
90 Smyth I, Narang MA, Evans T et al. Isolation and characterization

of human patched 2 (PTCH2), a putative tumour suppressor
gene in basal cell carcinoma and medulloblatoma on chromo-

some 1p32. Hum Mol Genet 1999; 8:291–7.
91 Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour

suppressor CYLD negatively regulates NF-kappaB signalling by
deubiquitination. Nature 2003; 424:801–5.

92 Brummelkamp TR, Nijman SM, Dirac AM et al. Loss of the cylin-
dromatosis tumour suppressor inhibits apoptosis by activating

NF-kappaB. Nature 2003; 424:797–801.

93 Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deu-
biquitinating enzyme that negatively regulates NF-kappaB activa-

tion by TNFR family members. Nature 2003; 424:793–6.
94 Yan M, Wang LC, Hymowitz SG et al. Two-amino acid molecular

switch in an epithelial morphogen that regulates binding to two
distinct receptors. Science 2000; 290:523–7.

95 Sinha SK, Zachariah S, Quinones HI et al. Role of TRAF3 and -6
in the activation of the NF-kappa B and JNK pathways by

X-linked ectodermal dysplasia receptor. J Biol Chem 2002;
277:44953–61.

96 Yan M, Zhang Z, Brady JR et al. Identification of a novel death

domain-containing adaptor molecule for ectodysplasin-A receptor
that is mutated in crinkled mice. Curr Biol 2002; 12:409–13.

97 Kumar A, Eby MT, Sinha S et al. The ectodermal dysplasia receptor
activates the nuclear factor-kappaB, JNK, and cell death pathways

and binds to ectodysplasin A. J Biol Chem 2001; 276:2668–77.
98 Kere J, Srivastava AK, Montonen O et al. X-linked anhidrotic

(hypohidrotic) ectodermal dysplasia is caused by mutation in a
novel transmembrane protein. Nat Genet 1996; 13:409–16.

99 Headon DJ, Emmal SA, Ferguson BM et al. Gene defect in ecto-
dermal dysplasia implicates a death domain adapter in develop-

ment. Nature 2001; 414:913–6.
100 Naito A, Yoshida H, Nishioka E et al. TRAF6-deficient mice dis-

play hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA
2002; 99:8766–71.

101 Shindo M, Chaudhary PM. The ectodermal dysplasia receptor
represses the Lef-1 ⁄beta-catenin-dependent transcription inde-

pendent of NF-kappaB activation. Biochem Biophys Res Commun 2004;
315:73–8.

102 Novak U, Cocks BG, Hamilton JA. A labile repressor acts through
the NFkB-like binding sites of the human urokinase gene. Nucl

Acids Res 1991; 19:3389–93.
103 Bettencourt MS, Prieto VG, Shea CR. Trichoepithelioma a 19-year

clinicopathologic re-evaluation. J Cutan Pathol 1999; 26:398–404.
104 Michaelsson G, Olsson E, Westermark P. The Rombo syndrome:

a familial disorder with vermiculate atrophoderma, milia, hypo-
trichosis, trichoepitheliomas, basal cell carcinomas and peripheral

vasodilation with cyanosis. Acta Derm Venereol (Stockh) 1981;
61:497–503.

105 van Steensel MA, Jaspers NG, Steijlen PM. A case of Rombo syn-
drome. Br J Dermatol 2001; 144:1215–8.

106 Vabres P, Lacombe D, Rabinowitz LG et al. The gene for Bazex–
Dupre–Christol syndrome maps to chromosome Xq. J Invest Derma-

tol 1995; 105:87–91.

107 Kastan MB, Onkyekwere O, Sidransky D et al. Participation of p53
protein in the cellular response to DNA damage. Cancer Res 1991;

51:6304–11.
108 Katayama H, Sasai K, Kawai H et al. Phosphorylation by aurora

kinase A induces Mdm2-mediated destabilization and inhibition
of p53. Nat Genet 2004; 36:55–62.

109 Hollstein M, Sidransky D, Vogelstein B et al. p53 mutations in
human cancers. Science 1991; 253:49–53.

110 Siliciano JD, Canman CE, Taya Y et al. DNA damage induces
phosphorylation of the amino terminus of p53. Genes Dev 1997;

11:3471–81.
111 Caspari T. How to activate p53. Curr Biol 2000; 10:315–7.

112 Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stabil-
ity by Mdm2. Nature 1997; 387:299–303.

113 Haupt Y, Maya R, Kazaz AN et al. Mdm2 promotes the rapid deg-
radation of p53. Nature 1997; 387:296–9.

114 Unger T, Juven-Gershon T, Moallem E et al. Critical role for
Ser20 of human p53 in the negative regulation of p53 by

Mdm2. EMBO J 1999; 18:1805–14.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al. 1119



115 Vogt Sionov RV, Haupt Y. The cellular response to p53: the
decision between life and death. Oncogene 1999; 18:6145–57.

116 Ronen D, Schwartz D, Teitz Y et al. Induction of HL-60 cells to
undergo apoptosis is determined by high levels of wild-type p53

protein whereas differentiation of the cells is mediated by lower
p53 levels. Cell Growth Different 1996; 7:21–30.

117 Miyashita T, Reed JC. Tumour suppressor p53 is a direct tran-
scriptional activator of the human bax gene. Cell 1995; 80:293–

9.
118 Merchant AK, Loney TL, Maybaum J. Expression of wild-type

p53 stimulates an increase in both bax and bcl-xl protein content

in HT-29 cells. Oncogene 1996; 13:2631–7.
119 Hall PA, McKee PH, Dover R et al. High levels of p53 protein in

UV-irradiated normal human skin. Oncogene 1993; 8:203–7.
120 Auepemkiate S, Boonyaphiphat P, Thongsuksai P. P53 expression

related to the aggressive infiltrative histopathological feature of
basal cell carcinoma. Histopathology 2002; 40:568–73.

121 Demirkan NC, Colakoglu N, Duzcan E. Value of p53 protein in
biological behavior of basal cell carcinoma and in normal epithe-

lia adjacent to carcinomas. Pathol Oncol Res 2000; 6:272–4.
122 Fukasawa K, Choi T, Kuriyama R et al. Abnormal centrosome

amplification in the absence of p53. Science 1996; 271:1744– 7.
123 Pritchard BN, Youngberg GA. Atypical mitotic figures in basal cell

carcinoma. A review of 208 cases. Am J Dermatopathol 1993;
15:549–52.

124 Rosenstein BS, Phelps RG, Weinstock MA et al. p53 mutations in
basal cell carcinomas arising in routine users of sunscreen. Photo-

chem Photobiol 1999; 70:798–806.
125 Ziegler A, Leffell DJ, Kunala S et al. Mutation hotspots due to sun-

light in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad
Sci USA 1993; 90:4216–20.

126 Knudson AGJ. Hereditary cancer, oncogenes and antioncogenes.
Cancer Res 1985; 45:1437–43.

127 Wikonkal NM, Brash DE. Ultraviolet radiation induced signature
mutations in photocarcinogenesis. J Invest Dermatol Symp Proc 1999;

4:6–10.
128 Parsa R, Yang A, McKeon F et al. Association of p63 with prolif-

erative potential in normal and neoplastic human keratinocytes. J
Invest Dermatol 1999; 113:1099–105.

129 Wang TY, Chen BF, Yang YC et al. Histologic and immunopheno-
typic classification of cervical carcinomas by expression of the

p53 homologue p63: a study of 250 cases. Hum Pathol 2001;
32:479–86.

130 Quade BJ, Yang A, Wang Y et al. Expression of the p53 homo-

logue p63 in early cervical neoplasia. Gynecol Oncol 2001; 80:
24–9.

131 Di Como CJ, Urist MJ, Babayan I et al. p63 expression profiles in
human normal and tumor tissues. Clin Cancer Res 2002; 8:494–

501.
132 Mills AA, Zheng B, Wang XJ et al. P63 is a p53 homologue

required for limb and epidermal morphogenesis. Nature 1999;
398:708–13.

133 Osada M, Ohba C, Kawahara C et al. Cloning and functional ana-
lysis of human p51, which structurally and functionally resem-

bles p53. Nat Med 1998; 4:839–43.
134 Little NA, Jochemsen AG. Molecules in focus: p63. Int J Biochem

Cell Biol 2002; 34:6–9.
135 Pellegrini G, Dellambra E, Golisano O et al. P63 identifies kera-

tinocyte stem cells. Proc Natl Acad Sci USA 2001; 98:3156–61.
136 Koster MI, Huntzinger KA, Roop DR. Epidermal differentiation:

transgenic ⁄knockout mouse models reveal genes involved in stem
cell fate decisions and commitment to differentiation. J Invest Der-

matol Symp Proc 2002; 7:41–5.

137 Dellavalle RP, Walsh P, Marchbank A et al. CUSP ⁄p63 expression
in basal cell carcinoma. Exp Dermatol 2002; 11:203–8.

138 Liefer KM, Koster MI, Wang XJ et al. Down-regulation of p63 is
required for epidermal UV-B-induced apoptosis. Cancer Res 2000;

60:4016–20.
139 Penn I. Effect of immunosuppression on pre-existing cancers.

Transplantation 1993; 55:742–7.
140 Espana A, Redondo P, Fernandez AL et al. Skin cancer in heart

transplant recipients. J Am Acad Dermatol 1995; 32:458–65.
141 Ferrandiz C, Fuente MJ, Ribera M et al. Epidermal dysplasia and

neoplasia in kidney transplant recipients. J Am Acad Dermatol 1995;

33:590–6.
142 Otley CC, Pittelkow MR. Skin cancer in liver transplant recipients.

Liver Transpl 2000; 6:253–62.
143 Ondrus D, Pribylincova V, Breza J et al. The incidence of tumors

in renal transplant recipients with long-term immunosuppressive
therapy. Int Urol Nephrol 1999; 31:417–22.

144 Barrett WI, First MR, Aron BS, Penn I. Clinical course of malig-
nancies in renal transplant recipients. Cancer 1993; 72:2186–9.

145 Ong CS, Keogh AM, Kossard S et al. Skin cancer in Australian
heart transplant recipients. J Am Acad Dermatol 1999; 40:27–34.

146 Hartevelt MM, Bouwes Bavinck JN, Kootte AMM et al. Incidence
of skin cancer after renal transplantation in The Netherlands.

Transplantation 1990; 49:506–9.
147 Euvrard S, Kanitakis J, Pouteil-Noble C et al. Comparative epi-

demiologic study of premalignant and malignant epithelial cuta-
neous lesions developing after kidney and heart transplantation.

J Am Acad Dermatol 1995; 33:222–9.
148 de Berker D, Ibbotson S, Simpson NB et al. Reduced experimental

contact sensitivity in squamous cell but not basal cell carcinomas
of skin. Lancet 1995; 345:425–6.

149 Franceschi S, Dal Maso L, Arniani S et al. Risk of cancer other
than Kaposi’s sarcoma and non-Hodgkin’s lymphoma in persons

with AIDS in Italy. Cancer AIDS Registry Linkage Study. Br J Cancer
1998; 78:966–70.

150 Ragni MV, Belle SH, Jaffe RA et al. Acquired immunodeficiency
syndrome-associated non-Hodgkin’s lymphomas and other malig-

nancies in patients with hemophilia. Blood 1993; 81:1889–97.
151 Lobo DV, Chu P, Grekin RC et al. Nonmelanoma skin cancers and

infection with the human immunodeficiency virus. Arch Dermatol
1992; 128:623–7.

152 Steigleder GK. [Metastasizing basalioma in AIDS]. Z Hautkr 1987;
62:661 (German).

153 Sitz KV, Keppen M, Johnson DF. Metastatic basal cell carcinoma

in acquired immunodeficiency syndrome-related complex. Jama
1987; 257:340–3.

154 Benacerraf B. Role of MHC gene products in immune regulation.
Science 1981; 212:1229–38.

155 Dausset J, Colombani J, Hors J. Major histocompatibility complex
and cancer, with special reference to human familiar tumors

(Hodgkin’s disease and other malignancies). Cancer Surv 1982;
1:119–47.

156 Ruiter DJ, Bergman W, Welvaart K et al. Immunohistochemical
analysis of malignant melanomas and nevocellular nevi with

monoclonal antibodies to distinct monomorphic determinants of
HLA-antigens. Cancer Res 1984; 44:3930–4.

157 Myskowsky PL, Safai B, Good RA. Decreased lymphocyte blasto-
genic response in patients with multiple basal cell carcinomas.

J Am Acad Dermatol 1981; 4:711–4.
158 Cabrera T, Garrido V, Concha A et al. HLA molecules in basal cell

carcinoma of the skin. Immunobiol 1992; 185:440–52.
159 Garcia-Plata D, Mozos E, Sierra MA et al. HLA expression in basal

cell carcinomas. Inv Met 1991; 11:166–73.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

1120 Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al.



160 Bouwes Bavinck JN, Bastiaens MT, Marugg ME et al. Further evi-
dence for an association of HLA-DR7 with basal cell carcinoma

on the tropical island of Saba. Arch Dermatol 2000; 136:1019–22.
161 Rompel R, Petres J, Kaupert K et al. HLA phenotype and multiple

basal cell carcinomas. Dermatology 1994; 189:222–4.
162 Rompel R, Petres J, Kaupert K et al. Human leukocyte antigens

and multiple basal cell carinomas. Rec Res Canc Res 1995; 139:297–
302.

163 Czarnecki D, Lewis A, Nicholson I et al. HLA-DR1 is not a sign of
poor prognosis for the development of multiple basal cell carci-

nomas. J Am Acad Dermatol 1992; 26:717–9.

164 Bavinck JN, Kootte AMM, Van der Woude FJ et al. HLA-A11-asso-
ciated resistance to skin cancer in renal transplant recipients. N

Engl J Med 1990; 323:1350.
165 Bouwes Bavinck JN, Claas FHJ, Hardie DR et al. Relation between

HLA antigens and skin cancer in renal transplant recipients in
Queensland. Australia J Invest Dermatol 1997; 108:708–11.

166 Galloway DA, McDougall JK. Human papillomaviruses and carci-
nomas. Adv Virus Res 1989; 37:125–71.

167 Shamanin V, Zur Hausen H, Lavergne D et al. Human papilloma-
virus infections in nonmelanoma skin cancers from renal trans-

plant recipients and nonimmunosuppressed patients. J Natl Cancer
Inst 1996; 88:802–11.

168 Zackheim HS. Origin of the human basal cell epithelioma. J Invest
Dermatol 1963; 40:283–97.

169 Krueger K, Blume-Peytavi U, Orfanos CE. Basal cell carcinoma
possibly originates from the outer root sheath and ⁄or the bulge

region of the vellus hair follicle. Arch Dermatol Res 1999; 291:253–
9.

170 Lacour JP. Carcinogens of basal cell carcinomas. genetics and
molecular mechanisms. Br J Dermatol 2002; 146:17–9.

171 Owens DM, Watt FM. Contribution of stem cells and differenti-
ated cells to epidermal tumours. Nat Rev Cancer 2003; 3:444–51.

172 Potten CS, Morris RJ. Epithelial stem cells in vivo. J Cell Sci Suppl
1988; 10:45–62.

173 Reya T, Morrison SJ, Clarke MF et al. Stem cells, cancer, and can-
cer stem cells. Nature 2001; 414:105–11.

174 Miller SJ, Sun TT, Lavker RM. Hair follicles, stem cells and skin
cancer. J Invest Dermatol 1993; 100:288S–94S.

175 Brash DE, Rudolph JA, Simon JA et al. A role for sunlight in skin
cancer: UV-induced p53 mutations in squamous cell carcinoma.

Proc Natl Acad Sci USA 1991; 88:10124–8.
176 Taylor G, Lehrer MS, Jensen PJ et al. Involvement of follicular

stem cells in forming not only the follicle but also the epidermis.

Cell 2000; 102:451–61.
177 Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in

the bulge of the pilosebaceous unit: implications for follicular
stem cells, hair cycle and skin carcinogenesis. Cell 1990;

61:1329–37.
178 Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad

Sci USA 2003; 100 (Suppl. 1): 11830–5.
179 Tumbar T, Guasch G, Greco V et al. Defining the epithelial stem

cell niche in skin. Science 2004; 303:359–63.
180 Zackheim HS. Comparative cutaneous carcinogenesis in the rat.

Differential response to the application of anthracene, methyl-
cholanthrene and dimethylbenzanthracene. Oncology 1964;

17:236.
181 Kore-eda S, Horiguchi Y, Ueda M et al. Basal cell carcinoma cells

resemble follicular matrix cells rather than follicular bulge cells:
immunohistochemical and ultrastructural comparative studies. Am

J Dermatopathol 1998; 20:362–9.
182 Walsh N, Ackerman AB. Infundibulocystic basal cell carcinoma: a

newly described variant. Modern Pathol 1990; 3:599–608.

183 Asada M, Schaart F-M, De Almeida HL et al. Solid basal cell epi-
thelioma (BCE) possibly originates from the outer root sheath of

the hair follicle. Acta Derm Venereol (Stockh) 1993; 73:286–92.
184 Gho CG, Braun JE, Tilli CM et al. Human follicular stem cells:

their presence in plucked hair and follicular cell culture. Br J Der-
matol 2004; 150:860–8.

185 Miller SJ, Wei ZG, Wilson C et al. Mouse skin is particularly sus-
ceptible to tumor initiation during early anagen of the hair cycle:

possible involvement of hair follicle stem cells. J Invest Dermatol
1993; 101:591–4.

186 Bernemann T-M, Podda M, Wolter M et al. Expression of the

basal cell adhesion molecule (B-CAM) in normal and diseased
human skin. J Cutan Pathol 2000; 27:108–11.

187 Kanitakis J, Bourchany D, Faure M et al. Expression of the hair
stem cell-specific keratin 15 in pilar tumors of the skin. Eur J Der-

matol 1999; 9:363–5.
188 Howell JB, Mehregan AH. Pursuit of the pits in the nevoid basal

cell carcinoma syndrome. Arch Dermatol 1970; 102:586–97.
189 Baserga R. The biology of cell reproduction. Cambridge, MA:

Harvard University Press, 1985.
190 Tsao H. Genetics of nonmelanoma skin cancer. Arch Dermatol

2001; 137:1486–92.
191 Hockenbery D, Nunez G, Milliman C et al. Bcl-2 is an inner mit-

ochondrial membrane protein that blocks programmed cell death.
Nature 1990; 348:334–6.

192 Hunter T. Cooperation between oncogenes. Cell 1991; 64:249–
70.

193 Anderson E, Howell T. Breast cancer: oncogenes and suppressor
genes. Ann Oncol 1990; 1:242–3.

194 Varmus HE. The molecular genetics of cellular oncogenes. Annu
Rev Genet 1984; 18:553–612.

195 Suarez HG. Activated oncogenes in human tumors. Anticancer Res
1989; 9:1331–43.

196 Chen YC, Chen PJ, Yeh SH et al. Deletion of the human retinobla-
stoma gene in primary leukemias. Blood 1990; 76:2060–4.

197 Klein G. Genes that can antagonize tumor development. Faseb J
1993; 7:821–5.

198 Marshall CJ. Tumor suppressor genes. Cell 1991; 64:313–26.
199 Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends

Genet 1993; 9:138–41.
200 Rees JL, Healy E. Molecular genetic approaches to non-melanoma

and melanoma skin cancer. Clin Exp Dermatol 1996; 21:253–62.
201 Abdelsayed RA, Guijarro-Rojas M, Ibrahim NA et al. Immunohist-

ochemical evaluation of basal cell carcinoma and trichepithelioma

using Bcl-2, Ki67, PCNA and p53. J Cutan Pathol 2000; 27:169–75.
202 Baum H-P, Meurer I, Unteregger G. Ki-67 antigen expression

and growth pattern of basal cell carcinomas. Arch Dermatol Res
1993; 285:291–5.

203 Horlock NM, Wilson GD, Daley FM et al. Cellular proliferation
characteristics of basal cell carcinoma: relationship to clinical sub-

type and histopathology. Eur J Surg Oncol 1997; 23:247–52.
204 Naeyaert JM, Pauwels C, Geerts ML et al. CD-34 and Ki-67 stain-

ing patterns of basaloid follicular hamartoma are different from
those in fibroepithelioma of Pinkus and other variants of basal

cell carcinoma. J Cutan Pathol 2001; 28:538–41.
205 Chang CH, Tsai RK, Chen GS et al. Expression of bcl-2, p53 and

Ki)67 in arsenical skin cancers. J Cutan Pathol 1998; 25:457–62.
206 Tilli CMLJ, Stavast-Kooy AJW, Ramaekers FCS et al. Bax expression

and growth behavior of basal cell carcinomas. J Cutan Pathol 2002;
29:79–87.

207 Kazantseva IA, Khlebnikova AN, Babaev VR. Immunohistochemi-
cal study of primary and recurrent basal cell and metatypical car-

cinomas of the skin. Am J Dermatopathol 1996; 18:35–42.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al. 1121



208 Toth DP, Guenther LC, Shum DT. Proliferating cell nuclear anti-
gen (PCNA); prognostic value in the clinical recurrence of pri-

mary basal cell carcinoma. J Dermatol Sci 1996; 11:36–40.
209 Grimwood RE, Ferris CF, Mercill DB et al. Proliferating cells of

human basal cell carcinoma are located on the periphery of
tumor nodules. J Invest Dermatol 1986; 86:191–4.

210 Coates PJ, Hobbs RC, Crocker J et al. Identification of the antigen
recognized by the monoclonal antibody BU31 as lamins A and C.

J Pathol 1996; 178:21–9.
211 Lin F, Worman HJ. Structural organization of the human gene

encoding nuclear lamin A and nuclear lamin C. J Biol Chem 1993;

268:16321–6.
212 Machiels BM, Zorenc AHG, Endert JM et al. An alternative splicing

product of the lamin A ⁄C gene lacks exon 10. J Biol Chem 1996;
271:9249–53.

213 Replogle-Schwab R, Pienta KJ, Getzenberg RH. The utilization of
nuclear matrix proteins for cancer diagnosis. Crit Rev Eukaryot Gene

Expr 1996; 6:103–13.
214 Roeber RA, Weber K, Osborn M. Differential timing of nuclear

lamin A ⁄C expression in the various organs of the mouse embryo
and the young animal: a developmental study. Development 1989;

105:365–78.
215 Venables RS, McLean S, Luny D et al. Expression of individual

lamins in basal cell carcinomas of the skin. Br J Cancer 2001;
84:512–9.

216 Broers JLV, Machiels BM, Kuijpers HJH et al. A- and B-type lamins
are differentially expressed in normal human tissues. Histochem Cell

Biol 1997; 107:505–17.
217 Oguchi M, Sagara J, Matsumoto K et al. Expression of lamins

depends on epidermal differentiation and transformation. Br J
Dermatol 2002; 147:853–8.

218 Tilli CM, Ramaekers FC, Broers JL et al. Lamin expression in nor-
mal human skin, actinic keratosis, squamous cell carcinoma and

basal cell carcinoma. Br J Dermatol 2003; 148:102–9.
219 Heenen M, Achten G, Galand P. Autoradiographic analysis of cell

kinetics in human normal epidermis and basal cell carcinoma.
Cancer Res 1973; 33:123–7.

220 Kerr JF, Wyllie AH, Currie AR. Apoptosis a basic biological phe-
nomenon with wide-ranging implications in tissue kinetics. Br J

Cancer 1972; 26:239–57.
221 Mooney EE, Ruis Peris JM, O’Neill A, Sweeney EC. Apoptotic and

mitotic indices in malignant melanoma and basal cell carcinoma.
J Clin Pathol 1995; 48:242–4.

222 Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of

apoptosis. Int Rev Cytol 1980; 68:251–306.
223 Raff MC, Durand B, Gao FB. Cell number control and timing in

animal development: the oligodendrocyte cell lineage. Int J Dev
Biol 1998; 42:263–7.

224 McDonnell TJ, Marin MC, Hsu B et al. The bcl-2 oncogene: apop-
tosis and neoplasia. Radiat Res 1993; 136:307–12.

225 Majno G, Joris I. Apoptosis oncosis and necrosis. An overview of
cell death. Am J Pathol 1995; 146:3–15.

226 Zimmermann KC, Bonzon C, Green DR. The machinery of pro-
grammed cell death. Pharmacol Ther 2001; 92:57–70.

227 Peter ME, Krammer PH. Mechanism of CD95 (APO-1 ⁄Fas) -
mediated apoptosis. Curr Opin Immunol 1998; 10:545–51.

228 Suda T, Takahashi T, Golstein P et al. Molecular cloning and
expression of the Fas ligand, a novel member of the tumor nec-

rosis factor family. Cell 1993; 75:1169–78.
229 Nagata S, Golstein P. The Fas death factor. Science 1995;

267:1449–56.
230 Cory S. Regulation of lymphocyte survival by the bcl-2 gene fam-

ily. Annu Rev Immunol 1995; 13:513–43.

231 Gross A, McDonnell TJ, Korsmeyer SJ. Bcl-2 family members and
the mitochondria in apoptosis. Genes Dev 1999; 13:1899–911.

232 Tsujimoto Y, Finger LR, Yunis J et al. Cloning of the chromosome
breakpoint of neoplastic B cells with the t (14: 18) chromosome

translocation. Science 1984 226:1097–9.
233 Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of

cDNAs for Bcl-2 and a hybrid bcl-2 ⁄ immunoglobulin transcript
resulting from the t(14:18) translocation. Cell 1986 47:19–28.

234 Boise LH, Gonzalez-Garcia M, Postema CE et al. Bcl-x, a bcl-
2-related gene that functions as a dominant regulator of apoptot-

ic cell death. Cell 1993; 74:597–608.

235 Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regu-
lators of cell death. Blood 1992; 80:879–86.

236 Chiou SK, Rao L, White E. Bcl-2 blocks p53-dependent apoptosis.
Mol Cell Biol 1994; 14:2556–63.

237 Alnemri ES, Fernandes TF, Haldar S et al. Involvement of BCL-2
in glucocorticoid-induced apoptosis of human pre-B-leukemias.

Cancer Res 1992; 52:491–5.
238 Bissonnette RP, Echeverri F, Mahboubi A et al. Apoptotic cell

death induced by c-myc is inhibited by bcl-2. Nature 1992;
359:552–4.

239 Krajewski S, Tanaka S, Takayama S et al. Investigation of the sub-
cellular distribution of the bcl-2 oncoprotein: residence in the

nuclear envelope, endoplasmic reticulum, and outer mitochond-
rial membranes. Cancer Res 1993; 53:4701–14.

240 Ito T, Deng X, Carr B. Bcl-2 phosphorylation required for anti-
apoptosis function. J Biol Chem 1997; 272:11671–3.

241 Adams JA, Cory S. The Bcl-2 protein family: arbiters of cell survi-
val. Science 1998; 281:1322–5.

242 Reed JC, Zha H, Aime-Sempe C et al. Structure–function analysis
of Bcl-2 family proteins. Regulators of programmed cell death.

Adv Exp Med Biol 1996; 406:99–112.
243 Sato T, Hanada M, Bodrug S et al. Interactions among members

of the Bcl-2 protein family analyzed with a yeast two-hybrid sys-
tem. Proc Natl Acad Sci USA 1994; 91:9238–42.

244 Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes
in vivo with a conserved homolog, Bax, that accelerates pro-

grammed cell death. Cell 1993; 74:609–19.
245 Alnemri ES, Livingston DJ, Nicholson DW et al. Human ICE ⁄CED-

3 protease nomenclature. Cell 1996; 87:171.
246 Nicholson DW, Thornberry NA. Caspases killer proteases. Trends

Biochem Sci 1997; 22:299–306.
247 Van de Craen M, Van Loo G, Pype S et al. Identification of a new

caspase homologue: caspase-14. Cell Death Differ 1998; 5:838–46.

248 Stennicke HR, Salvesen GS. Properties of the caspases. Biochim Bio-
phys Acta 1998; 1387:17–31.

249 Enari M, Sakahira H, Yokomaya H et al. A caspase-activated
DNAse that degrades DNA during apoptosis, and its inhibitor

CAD. Nature 1998; 391:43–50.
250 Liu X, Zou H, Slaughter C et al. DFF, a heterodimeric protein that

functions downstream of caspase-3 to trigger DNA fragmentation
during apoptosis. Cell 1997; 89:175–84.

251 Takahashi A, Alnemri ES, Lazebnik YA et al. Cleavage of lamin A
by Mch2alpha but not CPP32: multiple interleukin 1beta-convert-

ing enzyme-related proteases with distinct substrate recognition
properties are active in apoptosis. Proc Natl Acad Sci USA 1996;

93:8395–400.
252 Orth K, Chinnaiyan AM, Garg M et al. The CED-3 ⁄ ICE-like prote-

ase Mch2 is activated during apoptosis and and cleaves the death
substrate lamin A. J Biol Chem 1996; 271:16443–6.

253 Ku NO, Omary MB. Effect of mutation and phosphorylation of
type I keratins on their caspase-mediated degradation. J Biol Chem

2001; 276:26792–8.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

1122 Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al.



254 Martin SJ, Finucane DM, Amarante-Mendes GP et al. Phosphatidyl-
serine externalization during CD-95-induced apoptosis of cells

and cytoplasts requires ICE ⁄CED-3 protease activity. J Biol Chem
1996; 271:28753–6.

255 Casiano CA, Martin SJ, Green DR, Tan EM. Selective cleavage of
nuclear autoantigens during CD95 (Fas ⁄APO-1)-mediated T cell

apoptosis. J Exp Med 1996; 184:765–70.
256 Deveraux QL, Takahashi R, Salvesen GS et al. X-linked IAP is a

direct inhibitor of cell-death proteases. Nature 1997; 388:300–4.
257 Roy N, Deveraux QL, Takahashi R et al. The c-IAP-1 and c-IAP-2

proteins are direct inhibitors of specific caspases. EMBO J 1997;

16:6914–25.
258 Polakowska RR, Piacentini M, Bartlett R et al. Apoptosis in human

skin development: morphogenesis, periderm, and stem cells. Dev
Dyn 1994; 199:176–88.

259 Weil M, Raff MC, Braga VM. Caspase activation in the terminal
differentiation of human epidermal keratinocytes. Curr Biol 1999;

9:361–4.
260 Tyrrell RMUV activation of mammalian stress proteins. EXS 1996;

77:255–71.
261 Wikonkal NM, Berg RJW, van Haselen CW et al. Bcl-2 versus p53

protein expression and apoptotic rate in human nonmelanoma
skin cancers. Arch Dermatol 1997; 133:599–602.

262 Bolshakov S, Walker CM, Strom SS et al. p53 mutations in human
aggressive and nonaggressive basal and squamous cell carcino-

mas. Clin Cancer Res 2003; 9:228–34.
263 Staibano S, Lo Muzio L, Pannone G et al. Interaction between bcl-

2 and P53 in neoplastic progression of basal cell carcinoma of
the head and neck. Anticancer Res 2001; 21:3757–64.

264 Delehedde M, Cho SH, Sarkiss M et al. Altered expression of bcl-2
family member proteins in nonmelanoma skin cancer. Cancer

1999; 85:1514–22.
265 Cerroni L, Kerl H. Aberrant bcl-2 protein expression provides a

possible mechanism of neoplastic cell growth in cutaneous basal
cell carcinoma. J Cutan Pathol 1994; 21:398–403.

266 Verhaegh MEJM, Sanders CJG, Arends JW et al. Expression of the
apoptosis-suppressing protein bcl-2 in non-melanoma skin can-

cer. Br J Dermatol 1995; 132:740–4.
267 Rodriguez-Villanueva J, Colome MI, Brisbay S et al. The expres-

sion and localization of bcl-2 protein in normal skin and in non-
melanoma skin cancers. Path Res Pract 1995; 191:391–8.

268 Morales-Ducret JCR, Van de Rijn M, LeBrun DP et al. Bcl-2
expression in primary malignancies of the skin. Arch Dermatol

1995; 131:909–12.

269 Grossman D, McNiff JM, Li F et al. Expression of the apoptosis
inhibitor, survivin, in nonmelanoma skin cancer and gene target-

ing in a keratinocyte cell line. Lab Invest 1999; 79:1121–6.
270 Hill LL, Ouhtit A, Loughlin SM et al. Fas ligand: a sensor for DNA

damage critical in skin cancer etiology. Science 1999; 285:898–900.
271 Filipowicz E, Adegboyega P, Sanchez RL et al. Expression of CD95

(fas) in sun-exposed human skin and cutaneous carcinomas. Can-
cer 2002; 94:814–9.

272 Gutierrez-Steil C, Wrone-Smith T, Sun X et al. Sunlight-induced
basal cell carcinoma tumor cells and ultraviolet-B-irradiated psori-

atic plaques express Fas ligand (CD95L). J Clin Invest 1998;
101:33–9.

273 Albright SD 3rd. Treatment of skin cancer using multiple modali-
ties. J Am Acad Dermatol 1982; 7:143–71.

274 Telfer NR, Colver GB, Bowers PW, Guidelines for the manage-
ment of basal cell carcinomas. British Association of Dermatolo-

gists. Br J Dermatol 1999; 141:415–23.
275 Thissen MRTM, Schroeter CA, Neumann HAM. Effective photo-

dynamic therapy with 5-aminolevulinic acid for nodular basal

cell carcinomas using a preceding debulking technique. Br J Der-
matol 2000; 142:338–9.

276 Miller BH, Shavin JS, Cognetta A et al. Nonsurgical treatment of
basal cell carcinomas with intralesional 5-fluorouracil ⁄epineph-
rine injectable gel. J Am Acad Dermatol 1997; 36:72–7.

277 Park AJ, Strick M, Watson JD. Basal cell carcinomas: do they need

to be followed up? J R Coll Surg Edinb 1994; 39:109–11.
278 van der Meer GT, Willemse F, Marck KW. [Low 5-year recur-

rence rate after surgical excision of 126 basal cell carcinomas
with frozen section analysis upon indication]. Ned Tijdschr Geneeskd

2001; 145:1409–13. (Dutch).

279 Fisher DE. Apoptosis in cancer therapy: crossing the threshold.
Cell 1994; 78:539–42.

280 Jee SH, Shen SC, Chiu HC et al. Overexpression of interleukin-6
in human basal cell carcinoma cell lines increases anti-apoptotic-

activity and tumorigenic potency. Oncogene 2001; 20:198–208.
281 Jee SH, Shen SC, Tseng CR et al. Curcumin induces a p53-inde-

pendent apoptosis in human basal cell carcinoma cells. J Invest Der-
matol 1998; 111:656–61.

282 Huang Z. Bcl-2 family proteins as targets for anticancer drug
design. Oncogene 2000; 19:6627–31.

283 Rodriguez-Villanueva J, McDonnell TJ, Induction of apoptotic cell
death in non-melanoma skin cancer by interferon-alpha. Int J Can-

cer 1995; 61:110–4.
284 Buechner SA, Wernli M, Harr T et al. Regression of basal cell car-

cinoma by intralesional interferon-alpha treatment is mediated by
CD95 (APO-1 ⁄FAS)-CD95 ligand-induced suicide. J Clin Invest

1997; 100:2691–6.
285 Romagosa R, Saap L, Givens M et al. A pilot study to evaluate the

treatment of basal cell carcinoma with 5-fluorouracil using phos-
phatidyl choline as a transepidermal carrier. Dermatol Surg 2000;

26:338–40.
286 Brash DE, Ponten J. Skin precancer. Cancer Surveys 1998; 32:69–

113.
287 Nakaseko H, Kobayashi M, Akita Y et al. Histological changes and

involvement of apoptosis after photodynamic therapy for actinic
keratoses. Br J Dermatol 2003; 148:122–7.

288 Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatol-
ogy. J Am Acad Dermatol 2000; 42:389–413.

289 Hoffman EJ. Cancer and the Search for Selective Biochemical Inhibitors. Boca
Raton, FL. CRC Press. 1999.

290 Levin C, Maibach H. Exploration of ‘alternative’ and ‘natural’
drugs in dermatology. Arch Dermatol 2002; 138:207–11.

291 Elmets CA, Singh D, Tubesing K et al. Cutaneous photoprotection

from ultraviolet injury by green tea polyphenols. J Am Acad Derma-
tol 2001; 44:425–32.

292 Zhao J, Jin X, Yaping E et al. Photoprotective effects of black tea
extracts against UVB-induced phototoxicity in skin. Photochem Pho-

tobiol 1999; 70:637–44.
293 Lu YP, Lou YR, Xie JG et al. Inhibitory effect of black tea on the

growth of established skin tumors in mice: effects on tumor size,
apoptosis, mitosis and bromodeoxyuridine incorporation into

DNA. Carcinogenesis 1997; 18:2163–9.
294 Apitz-Castro R, Ledezma E, Escalante J et al. Reversible prevention

of platelet activation by (E,Z)-4,5,9-trithiadodeca-1,6,11-triene
9-oxide (ajoene) in dogs under extracorporeal circulation. Arznei-

mittelforschung 1988; 38:901–4.
295 Dirsch VM, Gerbes AL, Vollmar AM. Ajoene a compound of gar-

lic, induces apoptosis in human promyeloleukemic cells, accom-
panied by generation of reactive oxygen species and activation of

nuclear factor kappaB. Mol Pharmacol 1998; 53:402–7.
296 Tilli CM, Stavast-Kooy AJ, Vuerstaek JD et al. The garlic-derived

organosulfur component ajoene decreases basal cell carcinoma

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al. 1123



tumor size by inducing apoptosis. Arch Dermatol Res 2003;
295:117–23.

297 Taipale J, Chen JK, Cooper MK et al. Effects of oncogenic muta-
tions in Smoothened and Patched can be reversed by cyclopam-

ine. Nature 2000; 406:1005–9.
298 Chen JK, Taipale J, Young KE et al. Small molecule modulation of

Smoothened activity. Proc Natl Acad Sci USA 2002; 99:14071–6.
299 Tas S, Avci O. Induction of the differentiation and apoptosis of

tumor cells in vivo with efficiency and selectivity. Eur J Dermatol
2004; 14:96–102.

300 Lotan R. Retinoids in cancer prevention. Faseb J 1996; 10:1031–

9.
301 Van Heusden J, Van Ginckel R, Bruwiere H et al. Inhibition of

all-TRANS-retinoic acid metabolism by R116010 induces antitu-
mour activity. Br J Cancer 2002; 86:605–11.

302 Goss PE, Strasser K, Marques R et al. Liarozole fumarate
(R85246): in the treatment of ER negative, tamoxifen refractory

or chemotherapy resistant postmenopausal metastatic breast can-
cer. Breast Cancer Res Treat 2000; 64:177–88.

303 Cowen E, Mercurio MG, Gaspari AA. An open case series of
patients with basal cell carcinoma treated with topical 5% imiqui-

mod cream. J Am Acad Dermatol 2002; 47:S240–8.

304 Chen TM, Rosen T, Orengo I. Treatment of large superficial basal
cell carcinoma with 5% imiquimod: a case report and review of

the literature. Dermatol Surg 2002; 28:344–6.
305 Drehs MM, Cook-Bolden F, Tanzi EL et al. Successful treatment of

multiple superficial basal cell carcinomas with topical imiquimod:
case report and review of the literature. Dermatol Surg 2002;

28:427–9.
306 Geisse JK, Rich P, Pandya A et al. Imiquimod 5% cream for the

treatment of superficial basal cell carcinoma: a double-blind,
randomized, vehicle-controlled study. J Am Acad Dermatol 2002;

47:390–8.

307 Callahan CA, Oro AE. Monstrous attempts at adnexogenesis: regu-
lating hair follicle progenitors through Sonic hedgehog signaling.

Curr Opin Genet Dev 2001; 11:541–6.
308 Saldanha G, Fletcher A, Slater DN. Basal cell carcinoma: a derma-

topathological and molecular biological update. Br J Dermatol
2003; 148:195–202.

� 2005 British Association of Dermatologists • British Journal of Dermatology 2005 152, pp1108–1124

1124 Molecular aetiology and pathogenesis of BCC, C.M.L.J. Tilli et al.




