APPENDICES

Summary
The obese insulin resistant state is characterized by an impaired regulation of substrate metabolism, which seems to be associated with adipose tissue dysfunction, an impaired skeletal muscle fat oxidation, ectopic lipid accumulation and systemic low-grade inflammation (Chapter 1). These disturbances contribute to the increased risk of developing type 2 diabetes mellitus, cardiovascular diseases, and certain types of cancers and mental diseases.

Since about 30% of the subjects that participate in lifestyle interventions are not successful in achieving the intervention goals, additional strategies are required to reduce the growing prevalence of obesity and its associated cardiometabolic complications. There is increasing evidence that polyphenols such as epigallocatechin-3-gallate, resveratrol and soy isoflavones, which are well known for their anti-oxidant action, may also exert beneficial effects on energy and substrate metabolism.

Short-term polyphenol supplementation

In the first randomized, double-blind placebo-controlled cross-over study (Chapter 2), we showed that 282 mg/d epigallocatechin-3-gallate (EGCG) supplementation for 3 days had no effect on fat oxidation or energy expenditure in 24 overweight men and women (9M/15F). Despite no effects on fat oxidation, EGCG reduced fasting and postprandial skeletal muscle lactate concentrations despite comparable muscle blood flow as compared to placebo, which may indicate a switch towards a more oxidative phenotype of skeletal muscle.

We postulated the hypothesis that a combination of polyphenols with distinct mechanisms of action might induce additive and/or synergistic effects on fat oxidation, thereby reducing ectopic lipid accumulation. To investigate this hypothesis, in Chapter 3, the effects of the combinations of EGCG and resveratrol (E+R, 282 and 200 mg/d) and E+R plus soy isoflavones (E+R+S, 282, 200 and 80 mg/d) on fasting and postprandial fat oxidation were examined in 18 overweight subjects (9M/9F) in a randomized, double-blind placebo-controlled cross-over study. On day 3 of supplementation, energy expenditure, substrate oxidation and plasma metabolite concentrations were measured before and after consumption of a high-fat mixed meal (2.6 MJ, 61 energy% fat). We demonstrated that E+R increased resting and postprandial energy expenditure. Interestingly, metabolic flexibility, defined as the shift from fat to carbohydrate oxidation after consumption of a
high-fat mixed meal, was improved by E+R in men but not in women. Addition of soy isoflavones (E+R+S) abrogated the latter effects, but increased fasting free fatty acid concentrations, indicating a stimulation of lipolysis by soy isoflavones.

Long-term polyphenol supplementation

Next, we questioned whether the short-term effects of the most promising combination of polyphenols, E+R, would translate into long-term benefits on tissue-specific insulin sensitivity (**Chapter 4**). We performed a randomized, placebo-controlled double-blind study to assess the effects of 12 weeks combined E+R supplementation on peripheral, hepatic and adipose tissue insulin sensitivity, skeletal muscle oxidative capacity, fat oxidation, lipolysis and circulating metabolites in 42 overweight and obese, non-diabetic subjects (21M/21).

Fat oxidation, mitochondrial capacity and insulin sensitivity

E+R supplementation increased skeletal muscle oxidative capacity, as evidenced by *ex vivo* respiration measurements using isolated permeabilized skeletal muscle fibers and increased *in vivo* whole-body fat oxidation during fasting and postprandial conditions. These findings were supported by an increased expression of genes and proteins involved in mitochondrial respiration. Energy expenditure, however, was not significantly altered by 12 weeks E+R supplementation. Furthermore, E+R supplementation prevented an increase in plasma triacylglycerol concentration during fasting conditions and after intake of a high-fat mixed meal as compared to the placebo group. Moreover, visceral adipose tissue mass tended to be reduced after E+R supplementation versus placebo. Nevertheless, these beneficial metabolic effects did not translate into improved peripheral, hepatic or adipose tissue insulin sensitivity assessed during a hyperinsulinemic-euglycemic clamp with [6,6-²H₂]-glucose infusion.

Adipose tissue morphology and gene expression

Adipose tissue biopsies were collected to determine adipose cell morphology and gene expression profiles, as described in **chapter 5**. Interestingly, microarray analyses of adipose tissue revealed that gene expression related to adipose tissue cell turnover was reduced by E+R supplementation compared to placebo. No significant effects of E+R supplementation
were found on adipocyte morphology and local adipose tissue lipolysis that was assessed *in vivo* before and after a high-fat mixed meal and during the hyperinsulinemic-euglycemic clamp. The long-term effect of the E+R-induced downregulation of pathways related to adipose tissue cell turnover requires further investigation, since low adipocyte turnover has been associated with adipose tissue hypertrophy, dyslipidemia and insulin resistance. On the other hand, gene expression of pathways related to oxidative stress, inflammation and the immune response were downregulated, which may be indicative of reduced adipose tissue inflammation.

Gut microbiota, gender and insulin sensitivity

Accumulating evidence suggests that the gut microbiota may contribute to impairments in metabolic health. Therefore, we determined the microbiota composition in feces samples that were collected from subjects participating in the long-term E+R supplementation study. First, we found significant differences in the microbiota composition between men and women, with a higher abundance of Bacteroidetes and \(\gamma\)-Proteobacteria in men than women (*Chapter 6 and 7*).

Microbiota composition and insulin sensitivity

Next, the relationship between gut microbiota composition and insulin sensitivity was assessed. We demonstrated a strong inverse correlation between peripheral insulin sensitivity and the ratio of the two dominant phyla in the gut microbiota, Bacteroidetes and Firmicutes in men but not in women. Strikingly, this relation in men remained significant after correction for food intake (saturated fat and dietary fiber), body composition (% body fat), fat oxidation and markers of inflammation.

Microbiota composition and polyphenol-induced metabolic effects

Finally, we investigated whether E+R-induced alterations in the gut microbiota composition may have contributed to the improvement in skeletal muscle oxidative capacity after E+R supplementation. E+R-supplementation reduced the abundance of the Bacteroidetes-phyla and tended to reduce *Faecalibacteria prausnitzii* in men but not in women. The abundance of the phylum Bacteroidetes at baseline was a significant predictor for the E+R-induced increase in postprandial fat oxidation in men (*Chapter 7*), suggesting
that the gut microbiota composition may at least partly determine the effects of E+R supplementation on fat oxidation.

Conclusion

The studies described in this thesis have shown that short-term supplementation of epigallocatechin-3-gallate and resveratrol (E+R) increased fasting and postprandial energy expenditure. Long-term supplementation (12 weeks) of E+R in overweight and obese men and women increased skeletal muscle oxidative capacity as compared to placebo, but did not translate into significant effects on tissue-specific insulin sensitivity. Furthermore, the intestinal microbiota composition is different between men and women, and is related to peripheral insulin sensitivity in men, but not in women. Interestingly, the abundance of the phylum Bacteroidetes appears to modulate the effect of E+R supplementation on postprandial fat oxidation. Although 12 weeks E+R supplementation did not significantly alter peripheral, hepatic and adipose tissue insulin sensitivity and body composition, the increase in skeletal muscle oxidative capacity and whole-body fat oxidation may prevent the progression of insulin resistance and contribute to a reduced risk of developing obesity-related cardiovascular disease and type 2 diabetes mellitus in the long term.
Samenvatting
Samenvatting

Obese personen die insulineresistent zijn worden vaak gekenmerkt door een verstoorde regulatie van het substraatgebruik, een minder goede werking van het vetweefsel, een verlaagde vetverbranding in de spieren, vetopslag in organen zoals de spieren en de lever en een verhoogde hoeveelheid ontstekingsfactoren in het bloed (Hoofdstuk 1). Deze verstoringen kunnen bijdragen aan een verhoogd risico op het ontwikkelen van type 2 diabetes mellitus, hart- en vaatziekten en verschillende vormen van kanker en psychische aandoeningen.

Aangezien 30 % van de mensen die proberen hun leefstijl te veranderen de gestelde doelen niet bereiken zijn alternatieve strategieën essentieel. Wetenschappelijke studies hebben aangetoond dat polyfenolen, zoals epigallocatechin-3-gallate, resveratrol en soja isoflavonen, naast hun bekende werking als antioxidant ook positieve effecten op de energie- en substraathuishouding kunnen hebben.

Korte-termijn polyphenol supplementatie

In de eerste gerandomiseerde, dubbel-blinde, placebo-gecontroleerde cross-over studie (Hoofdstuk 2) hebben wij laten zien dat supplementatie van 282 mg/d epigallocatechin-3-gallate (EGCG) gedurende 3 dagen geen effect op de vetverbranding of het energieverbruik had in een groep van 24 mannen en vrouwen (9 mannen, 15 vrouwen) met overgewicht. Echter, EGCG verlaagde wel de lactaatconcentratie in de spieren voor en na inname van een maaltijd vergeleken met placebo, wat kan duiden op een verhoogde oxidatieve stofwisseling.

Onze hypothese was dat combinaties van polyfenolen met verschillende werkingsmechanisme aanvullende en/of synergistische effecten op de vetverbranding zouden hebben, en daardoor ectopische vetstapeling zouden verlagen. Om deze hypothese te onderzoeken hebben wij het effect van combinaties van EGCG en resveratrol (E+R, 282 en 200 mg/d) en E+R met daarnaast soja isoflavonen (E+R+S, 282, 200 en 80 mg/d) op de nuchtere en postprandiale vetverbranding bij 18 proefpersonen met overgewicht (9 mannen, 9 vrouwen) onderzocht in een gerandomiseerde, dubbel-blinde, placebo-gecontroleerde cross-over studie (Hoofdstuk 3). Op dag 3 van de supplementatie werden het energiegebruik, vetverbranding en plasma metabolieten voor en na inname van een maaltijd met een hoge hoeveelheid vet (2.6 MJ, 61 energie% vet) gemeten. De combinatie van E+R verhoogde het nuchtere en postprandiale energiegebruik ten opzichte van placebo. De
flexibiliteit van het metabolisme, gedefinieerd als het omschakelen van vet- naar koolhydraatverbranding na inname van een maaltijd, verbeterde door E+R supplementatie bij mannen, terwijl dit bij vrouwen niet het geval was. Het toevoegen van soja isoflavonen aan deze combinatie (E+R+S) deed dit effect verdwijnen. Echter, E+R+S resulteerde in hogere concentraties van vrije vetzuren en glycerol tijdens gevaste omstandigheden, wat duidt op een hogere vetafbraak (lipolyse).

Lange-termijn polyphenol supplementatie

Gebaseerd op bovenstaande bevindingen hebben wij onderzocht of het positieve korte termijn effect van de meest belovende combinatie, E+R, zich vertaalde in lange-termijn verbeteringen van de insulinegevoeligheid. Hiervoor hebben wij een gerandomiseerd, placebo-gecontroleerd, dubbel-blind onderzoek uitgevoerd, waarin de effecten van E+R supplementatie gedurende 12 weken op perifere-, hepatische- en vetweefsel-insulinegevoeligheid, de oxidatieve capaciteit van de spier, de vetverbranding, de lipolyse en plasma metabolieten werden bekeken bij 42 mannen en vrouwen (21 mannen, 21 vrouwen) met overgewicht.

Vetverbranding, mitochondriële capaciteit en insulinegevoeligheid

E+R supplementatie verbeterde de oxidatieve capaciteit van de spier en verhoogde de vetverbranding tijdens gevaste (nuchtere) omstandigheden en na inname van een hoog-vet maaltijd (2.6 MJ, 61 energy% vet) in vergelijking met de placebo-groep. Dit ging gepaard met een verhoogde expressie van genen en eiwitten die een belangrijk rol spelen in het oxidatieve metabolisme in de mitochondriën en de vetverbranding. Terwijl in de placebo-groep de concentratie triacylglycerol na inname van de hoog-vet maaltijd hoger waren na 12 weken supplementatie, was deze toename niet aanwezig in de E+R groep. De hoeveelheid visceraal vet nam af na E+R supplementatie versus placebo. Deze positieve metabole effecten hebben niet geleid tot veranderingen in de perifere-, hepatische- of vetweefsel-insulinegevoeligheid.

Vetcelgrootte en genexpressie in het vetweefsel

Biopten van het onderhuids buikvet werden voor en na de 12 weken supplementatie afgenomen om de vetcelgrootte en genexpressie te bepalen (*Hoofdstuk 5*). Genen, die een
rol spelen bij de adipogenese kwamen na E+R supplementatie minder sterk tot expressie in vergelijking met de placebo groep. De morfologie en de vetafbraak (in vivo lipolyse) van het vetweefsel waren na E+R supplementatie onveranderd. De langere-termijn effect van de E+R-geïnduceerde verlaging van de expressie van genen betrokken bij de adipogenese dient nader onderzocht te worden, omdat dit in eerder onderzoek in verband is gebracht met vergroting van vetcellen (hypertrofie), verstoringen in het lipidenprofiel in het bloed (dyslipidemie) en insulineresistentie. Een andere interessant bevinding is dat E+R de expressie van genen die betrokken zijn bij oxidatieve stress en het immuun systeem verlaagde, hetgeen kan duiden op minder ontsteking van het vetweefsel.

Darmflora, geslacht en insulinegevoeligheid

Er komt steeds meer bewijs dat de darmbacterieën (microbiota) een belangrijke rol spelen bij verstoringen in de stofwisseling en de algehele gezondheid. Daarom hebben wij de microbiota in de ontlasting van de deelnemers aan de lange-termijn E+R supplementatie studie bepaald. Ten eerste vonden wij significante hogere hoeveelheden van het fylum (stam) Bacteroidetes en van de klasse γ-Proteobacteriën in mannen ten opzichte van vrouwen (Hoofdstukken 6 en 7).

Samenstelling van de microbiota en insulinegevoeligheid

Vervolgens werd de relatie tussen de microbiota en de insulinegevoeligheid bekeken. Er was een negatieve relatie tussen de perifere insulinegevoeligheid en de verhouding tussen de twee meest voorkomende fyla (stammen) in de darm - Bacteroidetes en Firmicutes - in mannen, maar niet in vrouwen (Hoofdstuk 6). Opmerkelijk was dat deze associatie niet beïnvloedt werd door voedingsinname (verzadigd vet en voedingsvezels), lichaamssamenstelling (% lichaamsvet), vetverbranding en systemische ontstekingsfactoren, zo bleek uit een regressie-analyse.

Microbiota en polyfenol-geïnduceerde metabole effecten

Tenslotte hebben wij onderzocht of de veranderingen in de microbiota samenstelling na 12 weken E+R supplementatie aan de verbeteringen van oxidatieve capaciteit van de spier hebben bijgedragen. E+R supplementatie reduceerde de hoeveelheid van het Bacteroidetes-fylum bij mannen, maar niet bij vrouwen. Verder liet E+R supplementatie een tendens tot
reductie van het fylum *Faecalibacteria prausnitzii* zien. Opvallend was dat de hoeveelheid van het fylum Bacteroidetes voor de start van E+R supplementatie significant gerelateerd was aan de toename van de postprandiale vetverbranding na E+R supplementatie in vergelijking met placebo-supplementatie (Hoofdstuk 7). Dit suggereert dat de microbiota samenstelling bij kan dragen aan het effect van E+R supplementatie op de vetverbranding.

Conclusie

De onderzoeken die beschreven zijn in dit proefschrift hebben aangetoond dat korte-termijn supplementatie met epigallocatechin-3-gallate en resveratrol (E+R) het gevaste (nuchtere) en postprandiale energiegebruik significant verhoogt. Lange-termijn supplementatie (12 weken) van E+R verbeterde de oxidatieve capaciteit van de spier en verhoogde de vetverbranding tijdens gevaste (nuchtere) omstandigheden en na inname van een hoog-vet maaltijd in vergelijking met de placebo-groep in mannen en vrouwen, maar had geen effect op de insulinegevoeligheid.

Verder is er een duidelijk verschil in de samenstelling van de darmflora (microbiota) tussen mannen en vrouwen. Deze samenstelling was gerelateerd aan de perifere insulinegevoeligheid in mannen, maar niet in vrouwen. Bovendien bleek dat de microbiota samenstelling bij kan dragen aan het effect van E+R supplementatie op de vetverbranding. Hoewel E+R supplementatie gedurende 12 weken geen significant effect had op de insulinegevoeligheid en de lichaamssamenstelling, zouden de verhoogde mitochondriële capaciteit van de spier en de toegenomen vetverbranding het ontstaan van insulineresistentie kunnen voorkomen. Toekomstig onderzoek zal uit moeten wijzen of E+R supplementatie gedurende een langere periode dan 12 weken, of supplementatie bij mensen met een duidelijke verstoring in het substraat- en/of energiegebruik en de insulinegevoeligheid, het risico op het ontwikkelen van overgewicht en gerelateerde aandoeningen zoals type 2 diabetes mellitus en hart- en vaatziektes kan verlagen.
Zusammenfassung
Zusammenfassung

Weil etwa 30 % der Probanden die Teilnahme an Lebensstil-Interventionen die gesteckten Ziele nicht erreichen, sind alternative Maßnahmen daher zwingend notwendig um die stetig steigende Prävalenz von Übergewicht und den damit verbundenen Krankheiten zu reduzieren. Wissenschaftliche Studien haben gezeigt, dass Polyphenole wie Epigallocatechin-3-gallat, Resveratrol und Soja Isoflavone über die bekannte antioxidative Wirkung hinaus auch positive Effekte auf Stoffwechselabläufe des Energie- und Substrathaushaltes ausüben können.

Kurzzeit-Studien mit Polyfenol-Supplementierung

In der ersten randomisierten, doppel-blinden, Placebo-kontrollierten crossover Studie (Kapitel 2), zeigten wir, dass täglicher Konsum von 282 mg Epigallocatechin-3-gallat (EGCG) über eine Dauer von 3 Tagen keinen Effekt auf die Fettverbrennung oder den Energieverbrauch von 24 übergewichtigen Männern und Frauen (9M, 15F) hatte. Dennoch hat Epigallocatechin-3-gallate, verglichen mit dem Placebo, die Konzentration von Laktat im Muskel trotz unveränderter Durchblutung des Muskels sowohl vor als auch nach einer Mahlzeit verringert, was auf einen oxidativen Stoffwechsel deutet.

Wir haben die Hypothese aufgestellt, dass eine Kombination von Polyphenolen mit unterschiedlichen Wirkungsmechanismen additive und/oder synergistische Effekte auf die Fettverbrennung haben könnte und dadurch ektopische Fettablagerungen vermindern könnte. Um diese Hypothese zu untersuchen, wurden Kombinationen von Epigallocatechin-3-gallat und Resveratrol (E+R, 282 mg/d und 200 mg/d) oder E+R und Soja Isoflavonen (E+R+S, 282, 200 und 80 mg/d) auf ihren Effekt auf die Fettverbrennung in 18 übergewichtigen Probanden (9M, 9F) in einer randomisierten, doppel-blinden Placebo-kontrollierten Studie untersucht (Kapitel 3). Am 3. Tag der Supplementierung wurden Energieverbrauch, Fettverbrennung und das Plasma-Metabolit-Profil vor und nach

Langzeit-Studie mit Polyfenol-Supplementierung

Basierend auf diesen Ergebnissen haben wir als Nächstes untersucht, ob die nach 3 Tagen auftretenden Effekte der vielversprechendsten Kombination, E+R, sich auch in Langzeit-Verbesserungen der Insulinsensitivität widerspiegeln. Dafür haben wir eine randomisierte, Placebo-kontrollierte, doppel-blinde Interventionsstudie ausgeführt, in der wir die Effekte einer 12-wöchigen E+R-Supplementierung auf die gewebsspezifische Insulinsensitivität, die oxidative Kapazität des Musksels, die Fettverbrennung, die Lipolyse und auf das Blutbild von 42 übergewichtigen Männer und Frauen (21M, 21F) untersucht haben.

Fettverbrennung, mitochondrielle Kapazität und Insulinsensitivität

Fettzell-Größe und Genexpression im Fettgewebe

In Biopsien aus dem Fettgewebe unter dem Bauchfett haben wir die Fettzell-Größe und das Genexpressionsprofil vor und nach der Intervention analysiert (*Kapitel 5*). In den
Zusammenfassung

Darmbakterien (Mikrobiota), Geschlecht und Insulinsensitivität

Mikrobiota-Zusammensetzung und Insulinsensitivität
Als Nächstes haben wir die Beziehung zwischen der Mikrobiota im Darm und der Insulinsensitivität untersucht. Wir haben bei Männern, aber nicht bei Frauen, eine starke negative Assoziation zwischen der peripheren Insulinsensitivität und dem Verhältnis der beiden dominanten Phyla im menschlichen Darm - Bacteroidetes und Firmicutes - gefunden (Kapitel 6). Bemerkenswert war, dass diese Assoziation in einer Regressionsanalyse nicht durch Ernährung (gesättigte Fettsäuren und Ballaststoffe), Körperzusammensetzung (% Körperfett), Fettverbrennung und systemische Entzündungsfaktoren verändert wurde.

Mikrobiota und Polyphenol-induzierte metabole Effekte
Zuletzt haben wir untersucht, ob Veränderungen der Mikrobiota des Darms zu den Verbesserungen der oxidativen Kapazität des Muskels durch E+R-Supplementierung beigetragen haben. Polyphenol-Supplementierung reduzierte bei Männern, nicht bei Frauen, die Anzahl des Bacteroidetes-Phylums und zeigte einen Trend zu einer reduzierten Anzahl

Schlussfolgerung

Obwohl 12 Wochen E+R-Supplementierung die gewebsspezifische Insulinsensitivität und die Körperzusammensetzung nicht signifikant verändert hat, könnten die erhöhte mitochondrielle Kapazität und die stimulierte Fettverbrennung der Entwicklung von Insulinresistenz entgegenwirken. Über einen längeren Zeitraum oder bei Patienten, deren Stoffwechsel schon beeinträchtigt ist, könnte das Risiko für das Entwickeln von Übergewicht und assoziierten Krankheiten wie Typ 2 Diabetes Mellitus und Herz-Kreislauß-Beschwerden so verringert werden.