Summary
Summary

The research presented within this thesis aimed to investigate the functional involvement of early visual cortex (EVC) in a variety of visual processes.

Humans rely heavily on their sense of sight. Knowledge about the way visual information is processed could be beneficial to those who suffer from perceptual disorders. Psychophysics, the study of the relation between physical stimulus properties and perception or behavior, has revealed that visual perception can be subdivided in a number of processes. The different visual processes investigated within this thesis are visual awareness, visual discrimination, behavioral priming (based on visual input) and visual short-term memory. Psychophysical studies have shown that these visual processes are dissociable, which suggests that there are differential neural processes at play as well.

For a number of decades, neuroscience has tried to map the human brain system responsible for the processing of visual information: the visual (neo)cortex. This has led to the discovery that the human visual cortex is organized hierarchically, with increasingly more specialized units processing the visual input in a segmented fashion. Focus has recently shifted from the classical hierarchical view of visual information processing towards the idea that backprojections running from higher-level visual cortex back to the early visual areas have important contributions to visual perception as well. By means of these feedforward-feedback loops of information processing EVC might prove to be more than a simple relay station that passes its input to more sophisticated processing units.

Transcranial magnetic stimulation (TMS) is a brain research method that allows for the temporally and spatially specific manipulation of cortical brain activity through electromagnetic pulses, and it is thus a very suitable method to investigate when activity in EVC is necessary for the execution of a given task or the generation of a given percept. The studies described within this thesis have all employed chronometric single-pulse TMS to examine the functional relevance of EVC for visual awareness, visual discrimination, behavioral priming and visual short-term memory.

The first study (Chapter 2) focused on the role EVC plays in visual awareness and visual discrimination. TMS was applied over EVC at multiple time points relative to the onset of a briefly presented horizontal arrow stimulus. Placebo TMS and TMS over a non-relevant control site were incorporated in the design to control for non-neural side effects of TMS caused by the auditory and somatosensory sensations associated with TMS. In addition, electrooculography (EOG) was recorded to track vertical eye movements. In this way, trials could be sorted post hoc based on the occurrence of eye blinks around the time of stimulus presentation. The study revealed 1) that visual awareness and visual discrimination rely on an intact EVC at overlapping time points and, 2) that EVC is functionally relevant both before and after the presentation of the visual stimulus. The absence of a second post-stimulus TMS effect selective for
visual awareness does not speak in favor of theories that assign an essential role in visual awareness to feedback loops. The finding of a pre-stimulus TMS effect for both visual awareness and discrimination was present even after the removal of trials containing eye blinks. Moreover, it was absent in the control TMS conditions and it thus appears to be of neural origin. TMS-evoked cortical alpha wave (~10Hz) activity might be the neural mechanism underlying this pre-stimulus TMS effect on visual perception.

In Chapter 3, these findings were compared to results acquired with a behavioral priming paradigm. Stimulus and TMS parameters were kept completely identical. However, task instructions changed and participants were now requested to identify the direction of a second arrow stimulus (target) on each trial. The influence of the direction of the first arrow stimulus (prime) on participants' response speed, i.e. the priming effect, was taken as a measure of the behavioral impact of the prime. A post-stimulus TMS pulse time-locked to prime-onset reduced the behavioral impact of the visual stimulus. The time window of this TMS effect overlapped with the post-stimulus effective time windows reported in Chapter 2. In other words, EVC was proven to be functionally relevant to three basic visual processes: visual awareness, discrimination and priming. After correcting for non-neural TMS effects through comparison with the control site TMS data, this appeared also to be the case for the pre-stimulus domain. The placebo TMS data showed a different pattern of results than the control site data. Moreover, the non-neural effects on performance also differed per task, raising the methodological issue about which control for non-neural TMS effects is preferred in which context.

The next project (Chapter 4), investigated the role of early visual areas in a higher-level cognitive task, namely short-term memory. Single pulses of TMS were delivered to EVC at different timings into the retention interval of a visual short-term memory task. In the high memory load condition, a decrease in task accuracy was observed when the TMS pulse followed the offset of the to-be-remembered visual display with 200ms. Furthermore, this ‘memory masking’ effect was selectively demonstrated for TMS pulses applied to the hemisphere contralateral to the visual field of stimulus presentation. Corresponding results were obtained in an additional experiment in which a visual distractor stimulus, rather than a TMS pulse, served as the memory mask. Together these findings indicate that an undisturbed EVC is required during short-term memory consolidation in a temporally and spatially specific manner. As the pulse arrives too late to interfere with feedforward processing, occipital TMS 200ms post-stimulus offset must interfere with a feedback loop from higher-level (visual) brain areas back to EVC. Recurrent processing possibly occurs as a way to enable the system to continuously compare the information processed in extrastriate cortex to the current visual representation in EVC.

The findings presented in Chapter 2 to 4 demonstrate that EVC is functionally relevant for multiple visual processes in a time-specific manner both in the pre- and post-stimulus domain. The expected neural mechanisms of action of pre- and post-stimulus TMS over EVC are different, and knowledge of these
mechanisms can be informative about the exact processes occurring in EVC during visual perception. To gain this knowledge TMS needs to be concurrently combined with neuroimaging methods. Because of the high temporal specificity of the TMS effects under investigation, the simultaneous acquisition of electroencephalography (EEG), a technique with a very high temporal resolution, appears most promising. However, the acquisition of EEG data during TMS proves technically challenging. As described in Chapter 5, after the selection of the most optimal TMS-EEG set-up that could be achieved in the Maastricht Brain Imaging Center, EEG data were collected in a TMS masking paradigm. Under conditions of pre-stimulus TMS, the Visual Evoked Potentials (VEPs) in response to the visual stimulus were completely hidden by the TMS-induced artifact. Nonetheless, after the subtraction of the averaged EEG response to a TMS pulse in isolation from the experimental data, VEPs within the normal VEP amplitude range and similar to those evoked on No TMS trials could be achieved. Future analyses will focus on the comparison of these VEPs to masked versus unmasked visual stimuli for both the pre- and post-stimulus effective TMS time windows.

Other suggestions for future research have been proposed in this thesis. The question whether or not recurrent connectivity is critical in the establishment of visual awareness remains unanswered, and thus requires further research. In addition, the neural signature underlying the behavioral influence of sensory stimuli, the Neural Correlate of Subliminal Priming (NCSP), deserves more scientific attention than it currently receives. Finally, from a TMS methodology perspective, it is essential that the highly relevant issue of what makes an optimal control for non-specific effects in TMS research becomes resolved.
Samenvatting
Samenvatting

Het onderzoek uit deze these had als doel om de functionele rol die de vroege visuele cortex (EVC) speelt bij verscheidene visuele processen te onderzoeken.

Voor de mens is het gezichtsvermogen van uitermate groot belang. Kennis over de manier waarop mensen visuele informatie verwerken, kan ten goede komen aan oplossingen voor mensen wier visuele waarneming beperkt is.

Psychofysica, de wetenschap die de relatie tussen fysieke stimuli en waarneming of gedrag onderzoekt, heeft aangetoond dat visuele perceptie onderverdeeld kan worden in een aantal processen. De verschillende visuele processen die in deze these aan bod komen zijn visueel bewustzijn, visuele discriminatie, gedragspriming (op basis van visuele informatie) en het visuele kortetermijngeheugen. Psychofysische studies hebben laten zien dat deze visuele processes onafhankelijk zijn, wat suggereert dat er ook verschillende neurale processes bij actief zijn.

Sinds een aantal decennia probeert de neurowetenschap om het deel van het menselijke brein, dat verantwoordelijk is voor het verwerken van visuele informatie (ook wel visuele hersenschors of (neo)cortex genoemd), in kaart te brengen. Dit heeft geleid tot de ontdekking dat de menselijke visuele cortex hierarchisch georganiseerd is, waarbij steeds meer gespecialiseerde verwerkingsenheden de visuele input in toenemende mate gefragmenteerd verwerken. De laatste jaren heeft de focus zich verlegd van dit klassieke hiërarchische oogpunt naar ‘feedforward-feedback’ circuits. Dat zijn wederkerige projecties van hogere visuele hersengebieden terug naar de vroege visuele cortex. Mogelijk leveren deze een belangrijke bijdrage aan visuele waarneming. Dit kan betekenen dat de EVC meer is dan een simpel doorkeefstation dat binnenkomende informatie alleen maar verder stuurt naar geavanceerder verwerkingsunits.

Transcraunale Magnetische Stimulatie (TMS) is een onderzoeksmethode die het tijdelijk en plaatselijk manipuleren van corticale hersenactiviteit toestaat door middel van electromagnetische pulsen. Deze methode is hierdoor uitermate geschikt om te onderzoeken wanneer activiteit in de EVC noodzakelijk is voor het uitvoeren van een bepaalde taak of het tot stand komen van een bepaalde waarneming. In de hier beschreven studies is telkens chronometrische TMS toegepast om de functionele relevantie van de EVC voor visueel bewustzijn, visuele discriminatie, gedragspriming en het visuele kortetermijngeheugen te toetsen.

De eerste studie (Hoofdstuk 2) is gericht op de rol die de EVC speelt in visueel bewustzijn en discriminatie van visuele stimuli. TMS werd toegediend aan de EVC op verschillende tijdstippen ten opzichte van het moment waarop een kortdurende horizontale pijl aan proefpersonen getoond werd. Er werd gecontroleerd voor niet-neurale bijwerkingen van TMS, als gevolg van het geluid en onplezierige gevoel op de hoofdhuid, door de toevoeging van placebo TMS en TMS over een irrelevant (controle) hersengebied. Bovendien werd
Electrooculografie (EoG) gemeten om verticale oogbewegingen te kunnen traceren. Zo konden de trials na afloop van het experiment gesorteerd worden naar trials waarin de proefpersoon geknipperd had en trials zonder oogknippers. Het onderzoek liet zien 1) dat visueel bewustzijn en visuele discriminatie afhankelijk zijn van een intacte EVC op overlappende tijdstippen en 2) dat de EVC functioneel relevant is zowel voorafgaand aan, als na stimuluspresentatie. Het ontbreken van een tweede, later post-stimulus TMS effect, dat selectief het visuele bewustzijn verstoort, spreekt niet voor theorieën die feedbackprocessen een cruciale rol toedichten bij het ontstaan van visueel bewustzijn.

Het gevonden pre-stimulus TMS effect bleek nog steeds aanwezig te zijn nadat de trials met oogknippers uit de dataset verwijderd waren. Omdat het effect in geen van beide TMS controlecondities aanwezig was, lijkt het hier daadwerkelijk om een neurale effect te gaan. Mogelijk wekt de toegediende TMS-puls ritmische corticale activiteit in de alfafrequentie (~10Hz) op, waardoor de EVC niet langer ontvankelijk is voor nieuwe informatie behorende bij een later gepresenteerde visuele stimulus.


Het volgende project (Hoofdstuk 4) onderzocht de rol van vroege visuele hersengebieden in een hogere cognitieve functie, te weten het kortetermijngeheugen. TMS-pulsen werden toegediend op een variabel tijdsinterval tijdens de retentieperiode van een geheugentaak, die het visuele kortetermijngeheugen (VSTM) aanwendt. Bij zware belasting van het kortetermijngeheugen, werden proefpersonen minder accuraat, als de TMS puls 200ms na afloop van de te onthouden plaatjes volgde. Dit 'memory-masking' effect trad alleen op wanneer de TMS werd toegediend aan de contralaterale hersenhelft ten opzichte van het visuele veld waarin de stimuli verschenen. Gelijkaardige resultaten werden behaald in een vervollexperiment waarin een visuele stimulus in plaats van
Samenvatting

een TMS-puls gebruikt werd om de geheugenrepresentatie te maskeren. Tezamen duiden deze bevindingen aan, dat een ongehinderde verwerking in de EVC vereist is voor het onthouden van visuele stimuli in het kortetermijn-geheugen, op een bepaald moment en alleen voor informatie gepresenteerd in het contralaterale gezichtsveld. Omdat de puls te laat komt om de ‘feed-forward’-verwerking te verstoren, betekent dit dat de occipitale TMS-puls ‘feedback’ van hogere (visuele) hersengebieden verstoort. Mogelijk treedt deze terugkeer van informatie op, zodat er voortdurend een vergelijking plaats kan vinden tussen de huidige input van de EVC en de informatie die op hetzelfde moment verwerkt wordt in visuele hersengebieden buiten de EVC.

De in Hoofdstuk 2 tot 4 gerapporteerde resultaten tonen aan dat de EVC functioneel relevant is voor verscheidene visuele processen op bepaalde momenten, zowel in het pre- als het post-stimulus domein. Het verwachte neurale mechanisme dat ten grondslag ligt aan het pre-stimulus TMS effect is waarschijnlijk anders dan dat van het post-stimulus TMS effect. Kennis over deze mechanismen kan meer inzicht geven in de exacte verwerkingsprocessen die in de EVC plaatsvinden tijdens visuele waarneming. Om hier meer over te weten te komen is het belangrijk om TMS te combineren met een andere onderzoeks methode die direct de hersenactiviteit meet. Aangezien de gevonden TMS effecten alleen op een specifieke tijd plaatsvinden, is de combinatie met elektroencefalografie (EEG), een methode met een zeer hoge temporele resolutie, het meest voor de hand liggend. Maar, het verkrijgen van EEG-data tijdens een TMS onderzoek blijkt technisch moeilijk realiseerbaar. Zoals in Hoofdstuk 5 beschreven, hebben we de meest optimale TMS-EEG set-up voor het Maastricht Brain Imaging Center geselecteerd en hiermee vervolgens EEG-data verzameld tijdens een TMS ‘masking’ experiment, waarin visuele perceptie onderdrukt werd door TMS-pulsen over de EVC. Tijdens de pre-stimulus trials, was het EEG-signal veroorzaakt door de visuele stimulus, het zogenoemde ‘Visual Evoked Potential’ (VEP), volledig onzichtbaar door het veel grotere TMS artefact. Desalniettemin, lukte het om VEPs met een normale amplitude en gelijkend op de VEPs tijdens trials zonder TMS te verkrijgen. Dit werd bereikt door de gemiddelde EEG respons na een TMS-puls te middelen en deze af te trekken van de experimentele data. Toekomstige analyses zullen zich richten op de vergelijking van VEPs tussen trials waarbij wel versus geen subjectieve waarneming van de stimulus door de proefpersoon gerapporteerd werd.

Er worden in dit proefschrift meerdere suggesties gedaan voor toekomstig onderzoek. Zo is de vraag of wederkerige circuits doorslaggevend zijn voor visueel bewustzijn nog niet definitief beantwoord en is verder onderzoek hiernaar vereist. Het neurale mechanisme dat de gedragsmatige invloed van sensorische stimuli reguleert, het neuraal correlaat van subliminale priming (NCSP) verdient ook verdere wetenschappelijke aandacht. Tot slot is het vanuit een methodologisch perspectief essentieel om nader te onderzoeken wat, gegeven de context van het onderzoek, een optimale controle voor de niet-neurale bijwerkingen van TMS zou kunnen zijn.