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Abstract

We study the suitability of lasso-type penalized regression techniques when ap-
plied to macroeconomic forecasting with high-dimensional datasets. We consider
performance of the lasso-type methods when the true DGP is a factor model, con-
tradicting the sparsity assumption underlying penalized regression methods. We
also investigate how the methods handle unit roots and cointegration in the data.
In an extensive simulation study we find that penalized regression methods are more
robust to mis-specification than factor models estimated by principal components,
even if the underlying DGP is a factor model. Furthermore, the penalized regres-
sion methods are demonstrated to deliver forecast improvements over traditional
approaches when applied to non-stationary data containing cointegrated variables,
despite a deterioration of the selective capabilities. Finally, we also consider an
empirical application to a large macroeconomic U.S. dataset and demonstrate that,
in line with our simulations, penalized regression methods attain the best forecast
accuracy most frequently.

Keywords: Forecasting, Lasso, Factor Models, High-Dimensional Data, Cointe-
gration.

JEL-Codes: C22, C53, E17

1 Introduction

In this paper we provide a thorough analysis of the forecasting capabilities of penalized
regression in macroeconomic conditions. We study the performance of these methods
in a simulation study when the true DGP is a factor model and when the data contain
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stochastic trends and may be cointegrated. We also provide a systematic comparison
with factor models estimated by principal components, the mainstream technique used
in macroeconomic forecasting, using both Monte Carlo simulations and an empirical
application to macroeconomic data.

Despite the vast size of the forecasting literature, comprehensive comparisons be-
tween PC-type estimators and penalized regression remain scarce. Traditionally, the
majority of the forecasting literature seems to have implicitly assumed the prevalence
of a latent factor structure in economic datasets and therefore has mainly considered
the performance of methods based on factor estimation. While very popular in statis-
tics, only recently `1-penalized regression techniques, such as the lasso from Tibshirani
(1996), are being explored as a viable alternative in macroeconometrics. Applications in
forecasting in particular show that the use of penalized regression, potentially in combi-
nation with traditional techniques such as principal components (PC), delivers promising
performance (e.g Kim and Swanson, 2014), though it is not yet really understood why.
By providing a comprehensive study of penalized regression in “adverse” macroeconomic
conditions, we complement the existing literature with a fresh perspective on these meth-
ods and a direct link to factor models.

Specifically, we address the apparent contradiction between the premise of forecast-
ing with shrinkage estimators to identify a small subset of variables responsible for the
variation in the dependent variable and the assumption that the variation in the depen-
dent variable is best explained through aggregates of all available time series. The good
empirical performance of penalized regression methods despite this contradiction gives
rise to a number of practically relevant questions; (1) Is the common factor assumption
really valid in practice? (2) Are the results due to sample-dependent data idiosyncrasies?
(3) Are other mechanisms at play such as an inherent robustness of shrinkage estimators
to alternative DGP specifications?

We aim to shed light on these previously unexplored questions by conducting a
detailed simulation study in which we compare the performance of a selection of the most
popular and well understood variants of `1-shrinkage estimators and PC-type estimators.
The novelty in these simulations comes from the wide range of DGPs considered, chosen
such that no method is consistently favoured over another based on a priori expectations
and to closely resemble the types of data that occur in empirical applications. The
former goal is maintained through varying both the presence of common factors in the
data as well as the degree of sparsity in the parameter space, while the latter goal
is maintained through introducing levels of non-sphericity frequently encountered in
empirical work. In addition, we explore the potential of penalized regression in the non-
stationary setting by generating a number of time series containing unit roots, some of
which are cointegrated, and employ penalized regression directly on these series without
any form of preprocessing. We complement the simulations with a comparison of the
pseudo out-of-sample forecasting performance on a recently updated U.S. macroeconomic
dataset available through the Fred-MD database (McCracken and Ng, 2015).

The results show that penalized regression performs remarkably well when there is at
least some degree of sparsity in the parameter space and is relatively robust against al-
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ternative DGP specifications. PC-type estimators perform slightly better than penalized
regression when the predictors possess an approximate factor structure with low depen-
dence in the errors, but their performance deteriorates substantially when increasing the
level of non-sphericity in the idiosyncratic component. Penalized regression naturally
does better than PC-type estimators on DGPs without factors, but more surprisingly
also provides forecast improvements on DGPs with serially and cross-sectionally corre-
lated factors. In addition, penalized regression shows promising results on cointegrated
data, producing substantially lower forecasting errors compared to standard OLS despite
failing to identify the exact cointegrating vector at relatively high frequencies. Finally,
the empirical application is consistent with our findings on the simulated data, showing
favourable performance of the shrinkage estimators across a variety of macroeconomic
time series and forecast horizons.

Our contribution compliments the vast existing macroeconomic forecasting literature
that is dominated by methods that exploit a latent factor structure, such as dynamic
factor models (e.g. Stock and Watson, 2002a,b; Bai and Ng, 2008; Eickmeier and Ziegler,
2008), weighted principal components (Boivin and Ng, 2006), sparse principal compo-
nents (Kristensen, 2015) or factor augmented vector autoregressions (Bernanke et al.,
2005; Pesaran et al., 2011; Bai et al., 2015). The conjecture that a small set of factors
drives the variation in economic time series finds strong support through impressive fore-
casting performance of factor models on macroeconomic datasets from the U.S. (Stock
and Watson, 2002a, 2012), the U.K. (Artis et al., 2005) and the Euro area (Marcellino
et al., 2003). Spurred by theoretical developments such as the extension of the adaptive
Lasso to general time series frameworks by Medeiros and Mendes (2016), `1-penalized
regression has gained more appeal and the body of applied literature taking into account
these shrinkage estimators has grown considerably, with recent work covering penalized
regression (Gelper and Croux, 2008; De Mol et al., 2008; Kim and Swanson, 2014; Li
and Chen, 2014), reduced-rank vector autoregressions (Bernardini and Cubadda, 2015),
bayesian vector autoregressions (Bańbura et al., 2010) and penalized vector autoregres-
sions (Hsu et al., 2008; Callot and Kock, 2014; Kascha and Trenkler, 2015). While some
include a direct comparison between at least some form of factor models and penal-
ized regression and demonstrate predictive capabilities of `1-penalized regression that is
comparable or superior to traditional factor models, the analysis is typically based on
empirical data or simulations that do not provide detailed insights into the sensitivity
of each method to its underlying assumptions.

The remainder of this paper is organized as follows. Section 2 describes the notation
and reviews the methods considered. In section 3 we perform the simulation based
analysis of the forecasting performance, followed by the empirical application in section
4. In section 5 we conclude and suggest a number of interesting avenues for future
research.

3



2 Methods

Suppose a researcher is interested in predicting an economic time series h-steps ahead
with information available through time t = 1, . . . , T . The researcher desires to include a
pre-determined set of variables such as lags of the dependent series or variables motivated
through economic theory. In addition, she faces a large set of candidate variables that
are potentially relevant to the dependent variable. This results in the following generic
model:

yt+h = w′tβw + x′tβx + εt+h (1)

where yt+h is the scalar valued dependent variable to forecast and h is the forecast
horizon. wt is the (P×1) predetermined vector of variables which the researcher requires
to be in the model, xt is the (N × 1) vector containing candidate variables that are
potentially related to yt+h, and εt+h is a disturbance term. The forecast of the response
at time T is defined as ŷT+h|T = w′T β̂w + x′T β̂x. Letting y = (y1+h, . . . , yT+h)′, W =
(w1, . . . ,wT )′, X = (x1, . . . ,xT )′ and ε = (ε1+h, . . . , εT+h) the model can be rewritten
as

y = Wβw +Xβx + ε. (2)

When the number of variables in the candidate set X is large relative to the number
of available observations, modelling the dependent variable as a linear combination of all
candidate variables will amount to the estimation of a large number of parameters and
is likely to result in a large forecasting variance. For example, assuming the explanatory
variables follow a Gaussian distribution, Stock and Watson (2006) show that the OLS
forecast is normally distributed with a variance proportional to the number of variables
included in the model divided by the total number of available observations. In the more
extreme case where the cross-section dimension exceeds the time series dimension invert-
ing the matrix of second moments becomes infeasible and as a result the OLS estimator
does not have a (unique) solution. Accordingly, methods that perform regularization
are required in order to obtain accurate forecasts and reliable model estimates in the
high-dimensional setting.

The methods we consider can broadly be categorized as shrinkage estimators and
factor models. Shrinkage estimators aim to reduce the forecast variance by shrinking the
parameter estimates in the traditional linear model, possibly up to a point where some
parameters are exactly equal to zero and, thus, removing the corresponding variables
from the candidate set. Factor models, on the other hand, do not remove variables
from the candidate set, but rather aim to reduce the dimensionality of the data by
summarizing the data in relatively few factors with the hope of capturing the bulk of
the variation in the candidate set. In the following section we formally introduce these
methods and describe the mechanisms by which they estimate our generic model (1).
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Shrinkage estimators

The shrinkage estimators employed in this paper estimate the parameters according to
the following objective function:

(β̂w, β̂x) = arg min
(βw,βx)

T∑
t=1

(yt+h−w′tβw−x′tβx)2+λ

α N∑
j=1

|βx,j |
ωj

+ (1− α)
N∑
j=1

|βx,j |2

ωj

 , (3)

with different settings of (λ, α, ωj) leading to various well-established methods. We
consider:

1. Ridge regression (ridge: λ > 0, α = 0, ωj = 1)

2. Lasso (las: λ > 0, α = 1, ωj = 1),

3. Adaptive Lasso (adalas: λ > 0, α = 1, ωj = β̂Init),

4. Elastic Net (en: λ > 0, 0 < α < 1, ωj = 1), and

5. Adaptive Elastic Net (adaen: λ > 0, 0 < α < 1, ωj = β̂Init).

Given a α ∈ (0, 1] and a large enough value for λ these estimators, from heron referred
to as lasso-type estimators, perform subset selection by shrinking coefficient estimates
to zero and, hence, are potentially able to improve forecasting performance by reduc-
ing the added variance from irrelevant variables with small but non-zero coefficients.
Additionally, these methods allow for model estimation in situations where the number
of potentially relevant variables exceeds the number of observations, i.e. N > T . The
weights ωj , j = 1, . . . , N , allow for differential shrinkage on the parameters. Zou (2006)
demonstrates that the use of cleverly chosen initial estimators as weights improves the
selection performance by penalizing irrelevant variables to a higher degree than relevant
variables. Common choices for initial estimators are the absolute values of OLS or Ridge
coefficients from a preceding estimation. Furthermore, it can be directly observed from
(3) that the pre-determined set of relevant variables wt is free of regularization and is
therefore ensured to be included in the final model. Following Friedman et al. (2010)
the solution to (3) can be efficiently obtained using a coordinate descent algorithm.

Whereas the earlier theory for the lasso has been developed in rather restrictive
frameworks such as fixed designs (e.g. Knight and Fu, 2000; Zou, 2006), the properties
of the lasso and its variants are becoming increasingly well understood in time series
settings. One strand of time series related literature focusses on a framework with
a fixed number of independent variables. This includes, among others, the work of
Wang et al. (2007) who apply the (adaptive) lasso to models with autoregressive errors
and derive estimation and selection consistency, and Yoon et al. (2013) who build on
the results of Wang et al. by estimating the autoregressive order directly from the
data and by considering additional penalization methods. Hsu et al. (2008) derive the
asymptotic theory for the lasso estimator under vector autoregressive (VAR) processes,
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and Kock (2016) considers application of the lasso to both stationary and nonstationary
autoregressive processes.

Others have explored the realm of double-asymptotics, allowing the number of can-
didate variables to grow along with the sample size. Nardi and Rinaldo (2011) consider
the estimation of autoregressive (AR) models where the number of lags increase with
the sample size. Song and Bickel (2011) consider the (group-)-asso to estimate VAR
models where the number of candidate variables is allowed to increase, but the number
of relevant variables is kept fixed. Kock and Callot (2015) also use the lasso for VAR
estimation, while allowing the number of relevant variables to increase. They provide
non-asymptotic bounds and sufficient conditions for asymptotic consistency of the pre-
dictions, parameter estimates and variable selection. Unfortunately the generality of
their results comes at the cost of imposing independence and normality on the errors.
Medeiros and Mendes (2016) show that the adaptive lasso estimator maintains its consis-
tency under substantially weaker assumptions and that the estimates are asymptotically
normal even under weakly dependent residuals. These results hold for (conditionally)
heteroskedastic processes as well, although efficiency gains can be made through the use
of alternative weighting (e.g. Wagener and Dette, 2013; Ziel, 2016). Thus, research has
progressed to a point where lasso-type estimators are theoretically justifiable in a time
series context and the applied econometrician is now required to choose between two
appealing, though rather contrasting, approaches to modelling high-dimensional data.

Factor models

The method of principal components has among others been popularized due to the
work of Stock and Watson (2002a,b) and Bai and Ng (2006), and its use is motivated
through the conceptualization of factors as unobserved processes related to the state
of the economy that drive a large set of observed economic time series. Factor models
attempt to summarize the candidate set X with a smaller number of factors:

xit = λi(L)′ft + eit (4)

for i = 1, . . . , N where xit is the time series i observed at time t normalized to have unit
variance and zero mean, ft is an (s× 1) vector containing common factors and eit is an
idiosyncratic disturbance. Furthermore, λi(L) is a lag polynomial of finite order q such
that the model can be rewritten in static form as

xt = ΛFt + et. (5)

where Ft = (f ′t , . . . ,f
′
t−q)

′ is a vector of size r with r ≤ (q+ 1)s and et = (e1t, . . . , eNt)
′.

Hence, factor models estimate the generic model (1) by fitting

yt+h = w′tβw + x′tβx + εt+h

= w′tβw + (ΛFt)
′ βx + e′tβx + εt+h

= w′tβw + F ′tβF + ut+h,
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with βF = Λ′βx and ut+h being the composite error that includes the idiosyncratic
error εt+h and the loss of information from summarizing the data e′tβx. The reduction
in dimension from N to r allows this model to be estimated with OLS and the dependent
variable to be forecast as ŷT+h|T = w′T β̂w + F̂ ′T β̂F̂ .

The static representation of the approximate factor model (5) allows for estimation
of the factors with a wide variety of principal component type estimators. For any given
k, which need not be equal to the true number of factors r, the standard method of
principal components (PC) obtains a (T × k) matrix of factor estimates and a (N × k)
matrix of estimated loadings by solving the objective function(

Λ̂k, F̂ k
)

= arg min
Λk,F k

∑
t

(xt −ΛkF kt )′Ω−1(xt −ΛkF kt ) (6)

with Ω = IN and subject to the normalization Λk′Λ/N = Ik and F k′F being diagonal.
A drawback of forecasting with standard PC is that the quality of the estimated

components that serve as inputs for the forecasting equation strongly depends on the
structure inherent to the original data. For example, Boivin and Ng (2006) demonstrate
that non-sphericity of the error terms in (5) is highly detrimental to the quality of the
component estimates. In search for a more robust form of component estimation, they
propose the use of weighted principal components (WPC) by replacing the unobserved
inverted population covariance matrix Ω−1 in (6) with a feasible estimate Ω̂−1. Boivin
and Ng (2006, p. 185) propose several weighting rules to obtain such feasible estimates
and throughout this paper we will report results based on their weighting “rule SWa”,

where Ω̂−1 is diagonal with the ith diagonal element equal to
(

1
NT

∑T
t=1 êtê

′
t

)−1
ii

. We

explore the five additional rules proposed in their original paper as well, but for the sake
of brevity only report those results for which a noteworthy difference in performance is
observed.

Another disadvantage of principal component analysis is that every component is a
linear combination of all variables in the original dataset, thereby significantly impeding
interpretability of the components. In empirical applications it is commonly observed
that in every component large groups of variables carry small, non-zero loadings and con-
sequently have a negligible effect (e.g. Stock and Watson, 2002b; Croux and Exterkate,
2011; Kristensen, 2015). In an attempt to reduce the forecasting variance by removing
the noise of irrelevant variables, and improve interpretability of the components as a
consequence, one can introduce sparsity in the loadings when estimating the principal
components. The first to propose the method of sparse principal components (SPC) are
Zou et al. (2006), who reformulate the PC estimation as a regression-type problem and
impose the `1-penalty on the regression coefficients. Shen and Huang (2008) derive a
computationally more beneficial method to obtain SPC by phrasing the problem as find-
ing a low-rank approximation to the original data matrix or residual matrix for k > 1.
We adopt the approach of Shen and Huang and refer the reader to their original paper
for details.

Finally, Bai and Ng (2008) propose a further refinement to the method of forecasting
with factor-augmented regressions by applying principal components to a subset of the

7



predictors selected with the use of shrinkage estimators such as the lasso. Given the
intuitive appeal of this approach and the documented improvement in performance by
Bai and Ng, we include their LA(PC)-approach by applying the lasso for the purpose of
subset selection in the first stage and extracting factors from that subset using standard
PC in the second stage.1 Having reviewed all methods considered in this paper, we now
proceed to our simulation study.

3 Simulation study

Our simulation study can broadly be categorized into three main sections, namely simu-
lations on a DGP with (1) stationary observable variables with a sparse coefficient vector,
(2) stationary common factors driving a large set of time series, and (3) non-stationary
and cointegrated variables. In every category, we vary additional DGP characteristics
such as the level of non-sphericity in the error, the number of common factors and the
strength of the cointegration relationship.

Stationary observable variables

We generate the first set of DGPs as stationary processes where the dependent variable
depends on five observable explanatory variables and a possibly autoregressive error
term:

yt+1 = x′tβx +
√
θεt+h

(1− αL)εt+1 = vt+1

(7)

with xt ∼ N(0,ΣN ) and vt+1 ∼ N(0, 1). Let ι5 be a (5× 1) vector of ones and 0N−5
an ((N−5)×1) vector of zeros, then βx = (ι′5,0

′
N−5). The population covariance matrix

is generated as

ΣN =

 1 · · · ρ|j−i|

...
. . .

...

ρ|i−j| · · · 1


which allows for regulation of the degree of pairwise correlation by varying the single

parameter ρ. In addition, we randomize the order of the newly generated variables prior
to the construction of y in order to avoid a clustering of correlation in neighbouring vari-
ables. Furthermore, the signal-to-noise ratio is controlled by setting θ = 1−α2

10 β′xΣNβx,
which keeps the population signal-to-noise ratio constant for changes in dimensionality
of the model, as well as changes in the degree of serial correlation.

1Others have also considered the reverse order, i.e. first extracting principal components from the data
and then performing shrinkage on those components (e.g. Stock and Watson, 2012; Kim and Swanson,
2014). This approach is not pursued in the current paper.
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At every trial we generate T = 100 observations to which we apply all of the methods
covered in section 2. For the shrinkage estimators we generate the 1-step ahead forecast
as ŷT+1|T = x′T β̂x. The tuning parameters are determined by obtaining the solution to
(3) on a (100 × 1) grid of λ-values for the methods with a pre-determined α value or a
(100× 6) dimensional grid with (λ, α)-tuples for the (adaptive) elastic-net. We then use
an information criterion, BIC or AIC, or time series cross-validation to select the optimal
value(s). Time series cross-validation is performed by reserving the first part of the
sample to estimate the model under various settings of the tuning parameters after which
the resulting models’ fit are compared in a pseudo out-of-sample evaluation (Hyndman,
2016). To illustrate, define the threshold cT = d23 × T e and let ZcT = (WcT ,XcT ),
where WcT = (w1, . . . ,wcT )′ and XcT = (x1, . . . ,xcT )′. For a given value of the tuning
parameter, say λj for j ∈ J = {1, . . . , 100}, the model is estimated on ZcT to obtain the

coefficient vector β̂(λj). Following, a pseudo out-of-sample mean squared forecast error is

calculated as MSFE(λj) = 1
T−cT

∑T
t=cT+1(yt−z′tβ̂(λj))

2. This procedure is followed for
all values of the tuning parameter in the predefined grid and the final tuning parameter
is chosen as

λ̂ = arg min
λj

MSFE(λj).

This method is preferred over traditional k-fold cross-validation, because the time struc-
ture of the data is kept intact which is relevant when observations are dependent over
time as is obviously the case in our simulations for any α > 0.

For the principal component type methods we use the information criteria in Bai and
Ng (2002) to select the number of common components to be included in the forecasting
regression, with a pre-specified maximum of 10. Although we obtain results for all six
information criteria, for the sake of brevity we tabulate the results for their IC1 and
PC1 criteria only and restrict the discussion of the results on the remaining information
criteria to a qualitative nature.

We generate J = 1, 000 one-step ahead forecasts and evaluate the forecast perfor-
mance of model i with the mean squared forecast error (MSFE)

MSFEi =
1

J

J∑
j=1

(yj,T+1 − ŷi,j,T+1|T )2. (8)

The MSFE is reported relative to the MSFE of the optimal, though infeasible, OLS
oracle method which forecasts the dependent variable by applying OLS to the five rel-
evant variables only. As a measure of the estimation accuracy we calculate the mean
squared error of the coefficient vectors as

MSEi =
1

J

J∑
j=1

∥∥∥β − β̂i,j∥∥∥2
2
, (9)
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Table 1 Stationary observed variables: the effect of dimensionality

ols Ridge Las AdaLas EN AdaEN
BIC CV BIC CV BIC CV BIC CV BIC CV

Panel A: N = 10
RMSFE 1.08 1.09 1.11 1.07 1.08 1.01 1.04 1.07 1.09 1.01 1.05
RMSE 2.13 2.46 2.97 2.06 2.41 1.22 1.87 2.06 2.54 1.22 2.04
consistent 0% 0% 0% 27% 14% 84% 52% 27% 11% 84% 36%
conservative 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
#variables 10.00 10.00 10.00 6.38 7.79 5.20 6.04 6.38 8.01 5.20 6.87
Panel B: N = 50
RMSFE 1.98 1.80 1.87 1.19 1.20 1.03 1.11 1.19 1.20 1.03 1.15
RMSE 18.77 15.58 17.33 4.79 4.58 1.60 3.33 4.79 4.66 1.60 3.86
consistent 0% 0% 0% 12% 4% 64% 22% 12% 4% 64% 15%
conservative 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
#variables 50.00 50.00 50.00 8.29 15.30 5.82 12.15 8.33 15.53 5.82 16.98
Panel C: N = 100
RMSFE - - 7.97 1.34 1.27 1.08 1.10 1.34 1.28 1.08 1.12
RMSE - - 138.02 6.53 5.85 2.57 2.98 6.57 5.89 2.63 3.23
consistent - - 0% 7% 2% 38% 15% 7% 2% 37% 12%
conservative - - 100% 100% 100% 100% 100% 100% 100% 100% 100%
#variables - - 100.00 9.42 19.55 6.42 10.61 9.50 19.73 6.51 11.06

Notes: Numerical entries in this table are averages obtained over 1,000 simulations relative to
the OLS oracle method for all evaluation metrics described in section 3. Results are given for
the low, mid and high-dimensional case in panel A,B and C respectively.

and, again, report the MSE relative to the OLS oracle procedure. Given the mis-
specified nature of the principal component estimators on the set of DGPs under con-
sideration, this metric is reported for the shrinkage estimators only.

The selection performance is evaluated according to two standard metrics; the metric
consistent depicts the fraction of trials in which the shrinkage estimators exactly identify
the sparsity pattern by selecting the five relevant variables only, whereas conservative
depicts the fraction of trials in which at least all five relevant variables are included.
Finally, we also report the average number of variables included by each method as
#variables. Detailed results regarding the shrinkage estimators are gathered in table 1
- 2. The performance of the factor models is tabulated in table 3.

The results in table 1 emphasize the effect of changes in dimensionality by leaving
out any cross-sectional and serial correlation (ρ = α = 0). Panel A reports results for the
low-dimensional case (N = 10). In terms of the mean squared forecast error penalized
regression performs at least as well as OLS, with the exception of ridge regression. The
latter is unsurprising given that ridge regression does not impose sparsity and is a biased
estimator that aims to improve the MSE through a favourable bias-variance trade-off.
The ability to do so, however, hinges on the presence of multi-collinearity, which is not
an issue in the current set-up. Focussing on the lasso-type methods, we observe that the
forecast performance of the adaptively weighted variants is superior to their non-weighted
counterparts and, with RMSFEs of 1.01, is comparable to the infeasible oracle estimator.
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Table 2 Stationary observed variables: the effect of correlation

ols Ridge Las AdaLas EN AdaEN
ρ α BIC CV BIC CV BIC CV BIC CV BIC CV
Panel A: RMSFE
0.0 0.0 1.98 1.80 1.87 1.19 1.20 1.03 1.11 1.19 1.20 1.03 1.15
0.6 0.0 1.96 1.57 1.61 1.16 1.19 1.07 1.13 1.16 1.20 1.07 1.15
0.6 0.6 1.77 1.48 1.60 1.17 1.18 1.08 1.11 1.17 1.19 1.08 1.13
Panel B: Consistent
0.0 0.0 0% 0% 0% 12% 4% 64% 22% 12% 4% 64% 15%
0.6 0.0 0% 0% 0% 5% 2% 42% 16% 5% 1% 42% 10%
0.6 0.6 0% 0% 0% 4% 2% 43% 14% 4% 2% 43% 10%
Panel C: #variables
0.0 0.0 50.00 50.00 50.00 8.29 15.30 5.82 12.15 8.33 15.53 5.82 16.98
0.6 0.0 50.00 50.00 50.00 9.18 15.11 6.26 11.23 9.19 15.89 6.27 16.12
0.6 0.6 50.00 50.00 50.00 9.31 15.48 6.29 11.75 9.31 16.12 6.29 16.34

Notes: see notes in 1. The metrics considered are: (A) the RMSFE , (B) Consistent, and (C)
the number of variables. Within each panel the different rows correspond to different settings
of the degree of cross-sectional correlation (ρ) and serial correlation (α).

Concerning the selection performance, three results stand out. First, selection of the
tuning parameter(s) by the BIC seems to lead more frequently to exact identification of
the five relevant explanatory variables compared to cross-validation. Second, an adaptive
weighting of the tuning parameter substantially improves the consistent selection scores
and results in smaller models on average. Third, all methods considered are able to
include the five relevant variables in all trials.

While promising, the results so far are derived in a low-dimensional setting where the
gain relative to traditional OLS is small and the often cited ”curse of dimensionality”
is far from an issue. Accordingly, panel B-C display the performance for N = 50 and
N = 100. The relative forecasting performance of OLS and ridge regression deteriorates
and the difference in RMSFE with the sparsity inducing methods becomes more pro-
nounced, despite the unreported MSFEs of the latter methods increasing along with the
dimensionality as well. The detrimental effects of an increase in dimensionality are per-
haps most apparent in the selection performance, with exact identification of the sparsity
pattern occurring at substantially lower frequencies. Given that the conservative selec-
tion remains 100%, the drop in consistent selection necessarily stems from the inclusion
of additional irrelevant variables, most likely due to randomly induced collinearity. In-
deed, the increase in the number of variables selected in the higher dimensional settings
supports this conjecture.

A well-known problem for the lasso is the presence of multi-collinearity in the data,
especially between relevant and irrelevant variables, which can lead to inconsistencies in
the selection of the correct variables (e.g. Zhao and Yu, 2006; Zou, 2006). As such, we ex-
amine the forecasting and selection performance under varying degrees of cross-sectional
and serial correlation in table 2, whilst keeping the dimension fixed at N = 50. Notewor-
thy is that while the MSFE increases for all methods when introducing a higher degree of
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Table 3 Stationary observed variables: factor models

PC WPC - SWa SPC LA(PC)-B LA(PC)-A
N ρ IC1 PC1 IC1 PC1 IC1 PC1 IC1 PC1 IC1 PC1
Panel A: RMSFE
10 0.0 8.99 1.08 9.33 1.08 9.25 1.08 8.56 3.61 9.21 1.98
10 0.6 2.43 1.07 4.38 1.07 2.55 1.07 1.95 1.10 1.95 1.08
50 0.0 9.49 9.49 9.37 9.37 9.50 9.50 7.92 7.92 9.33 9.33
50 0.6 4.78 2.74 4.98 2.80 4.77 2.75 3.66 3.05 4.08 2.67
100 0.0 9.86 9.86 10.18 10.18 9.97 9.97 8.41 8.41 10.13 10.13
100 0.6 5.09 4.07 5.16 4.11 5.05 4.19 3.90 3.90 4.63 3.87
Panel B: #Variables
10 0.0 1.00 10.00 1.00 10.00 1.00 10.00 1.00 4.73 1.00 7.00
10 0.6 1.16 10.00 1.34 10.00 1.17 10.00 1.06 4.76 1.09 6.21
50 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 0.6 1.00 8.86 1.01 8.13 1.00 8.81 1.00 1.61 1.00 4.98
100 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.6 1.00 5.92 1.00 5.62 1.00 5.02 1.00 1.03 1.00 4.84

Notes: see notes in 1. The metrics considered are the RMSFE (panel A) and the number of
components (panel B). Within each panel the different rows correspond to different settings of
dimension of the candidate set (N) and serial correlation (ρ).

cross-sectional correlation (unreported), the relative MSFE decreases for ridge regression
and varies only marginally for the lasso-based regressions. The former finding is in line
with the proclaimed benefits of `2-penalization under multi-collinearity, whereas the lat-
ter finding hints that the presence of cross-sectional correlation does not seem to affect
the forecasting performance of lasso-type estimators more than OLS. Panel B clearly
depicts the deterioration in selection performance after the introduction of correlation.
While the unreported metric for conservative selection remains 100% for all methods, the
consistent selection is strongly affected by the presence of cross-sectional correlation. In
line with the aforementioned reasoning on the selection performance in high-dimensional
settings, this implies that high levels of collinearity lead to larger models with irrelevant
variables being erroneously included at higher frequencies. Finally, the method by which
we scale the idiosyncratic noise term controls for the increased variance induced by serial
correlation and, consequently, the introduction of serial correlation has little effect on
the relative forecasting or selection performance.

Finally, in table 3 we examine the predictive capabilities of factor models in the
current framework. The LA(PC)-B estimator first proposes a subset of variables by
applying the lasso estimator with the tuning parameter optimized by BIC to the can-
didate set. Alternatively, the LA(PC)-A estimator optimizes by the AIC-criterion and
is accordingly expected to propose larger subsets. Unsurprisingly, on a DGP absent of
common components the PC-type estimators display inferior performance compared to
the shrinkage estimators (panel A). While the forecast accuracy worsens less when the
variables in the dataset are correlated and when the information criterion selects a higher
number of components, failure to include as many components as there are variables in
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the original dataset leads to a loss of information that negatively affects the forecasting
performance. In line with Bai and Ng (2002), the PC1 criterion selects more components
on average (panel B), thus resulting in better forecasting performance on DGPs absent
of common components.

Stationary common factors

We next turn to the case where a small number of common factors drive a larger set
of time series. The data-generating process contains an approximate factor structure
and is a simplified version of the Stock and Watson (2002a) set-up recently employed by
Kristensen (2015):

xit = λ′ift + eit

(1− αL)eit = (1 + θ2)vit + θvi+1,t + θvi−1,t
(10)

with λi, ft
iid∼ N (0, Ir). The random variable vi,t drives the error term and is

generated from a standard normal distribution. We impose sparsity in the component
loadings by setting a fraction τ of them equal to zero. The variable to forecast is
generated as

yt = f ′tβf + εt (11)

where β is an (r × 1) vector of ones and εt is a standard normal error term. Recall
that the shrinkage estimators attempt to forecast yT+1 as ŷT+1|T = x′tβ̂x, whereas

the PC-type estimators use the extracted components as ŷT+1|T = f̂ ′tβ̂f . Forecasting
performance is measured on the basis of the MSFE relative to the factor-augmented
regressions with the true number of components, calculated by standard PC. The two-
step procedure calls for an additional metric measuring the estimation precision of the
factor estimates in the first step. Following Doz et al. (2012) and Kristensen (2015), we
report the trace R2 as a measure to determine how well the estimated factors span the
space of the true factors, calculated as

R2 =
Tr
(
F ′F̂ (F̂ ′F̂ )−1F̂ ′F

)
Tr (F ′F )

, (12)

where F̂ = (f̂1, . . . , f̂T )′. The results for the set of DGPs with a single factor driving
the time series are reported in table 4 and for the case of four common factors in table
5.

Table 4 - panel A highlights that the forecasting performance of the principal com-
ponent type estimators is superior to OLS or shrinkage estimation on a DGP where the
population covariance matrix of the disturbance terms is diagonal, i.e. α = 0 and θ = 0.
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Table 4 DGP with one common factor

PC WPC - SWa SPC LA(PC)-B ols Ridge Las AdaLasEN Adaen
α θ τ IC1 PC1 IC1 PC1 IC1 PC1 IC1 PC1 BIC BIC BIC BIC BIC

RMSFE 0 0 0 1.00 1.01 0.98 0.98 1.00 1.00 1.10 1.10 1.90 1.40 1.23 1.33 1.23 1.32
nvar 0 0 0 1.00 2.05 1.00 1.00 1.00 1.24 1.00 1.00 50.00 50.00 14.22 9.45 14.23 9.51
RSQ 0 0 0 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.96 - - - - - -
RMSFE 0 0 0.4 1.00 1.00 0.98 0.98 0.98 0.98 1.10 1.10 1.81 1.37 1.17 1.23 1.17 1.23
nvar 0 0 0.4 1.00 1.37 1.00 1.00 1.00 1.05 1.00 1.00 50.00 50.00 11.48 8.11 11.50 8.13
RSQ 0 0 0.4 0.94 0.94 0.95 0.95 0.95 0.95 0.94 0.94 - - - - - -
RMSFE 0.5 1 0.4 1.00 0.68 1.05 0.69 1.00 0.72 0.87 0.62 0.32 0.28 0.28 0.28 0.28 0.28
nvar 0.5 1 0.4 1.00 9.91 1.00 8.69 1.00 9.51 1.00 5.70 50.00 50.00 24.98 18.85 25.05 18.84
RSQ 0.5 1 0.4 0.41 0.72 0.42 0.71 0.42 0.70 0.52 0.72 - - - - - -

Notes: Numerical entries in this table are averages obtained over 1,000 simulations relative to the PC estimator that uses a single
components in the forecasting equation. The metrics considered are listed in the first column, whereas the following three columns
describe the settings for the degree of serial correlation (α), cross-sectional correlation (θ) and sparsity in the loadings (τ).

Table 5 DGP with four common factors

PC WPC - SWa SPC LA(PC)-B ols Ridge Las AdaLasEN Adaen
α θ τ IC1 PC1 IC1 PC1 IC1 PC1 IC1 PC1 BIC BIC BIC BIC BIC

RMSFE 0 0 0 1.19 1.01 1.19 0.98 1.19 0.99 1.21 1.17 1.74 1.15 1.25 1.28 1.25 1.28
nvar 0 0 0 3.87 5.75 3.90 4.23 3.87 4.96 3.64 4.14 50.00 50.00 13.27 10.83 13.27 10.84
RSQ 0 0 0 0.94 0.96 0.94 0.97 0.94 0.96 0.80 0.85 - - - - - -
RMSFE 0 0 0.4 2.06 1.03 1.69 0.90 2.03 1.01 1.24 1.11 1.76 1.23 1.18 1.26 1.18 1.26
nvar 0 0 0.4 3.27 5.78 3.38 4.00 3.28 4.78 3.14 4.01 50.00 50.00 15.00 11.76 15.03 11.75
RSQ 0 0 0.4 0.80 0.94 0.83 0.95 0.80 0.94 0.71 0.84 - - - - - -
RMSFE 0.5 1 0.4 1.46 0.79 1.46 0.82 1.46 0.86 1.43 0.84 0.35 0.32 0.33 0.34 0.33 0.34
nvar 0.5 1 0.4 1.01 9.80 1.01 8.22 1.01 9.41 1.01 7.00 50.00 50.00 31.34 24.05 31.35 24.09
RSQ 0.5 1 0.4 0.20 0.69 0.19 0.66 0.20 0.67 0.18 0.58 - - - - - -

Notes: Numerical entries in this table are averages obtained over 1,000 simulations relative to the PC estimator that uses four
components in the forecasting equation. The metrics considered are listed in the first column, whereas the following three columns
describe the settings for the degree of serial correlation (α), cross-sectional correlation (θ) and sparsity in the loadings (τ).



The IC1 does a good job in identifying the presence of a single common factor, whereas
the PC1 criterion has a tendency to overestimate the number of factors. The trace R2s
are close to unity, implying accurate recovery of a rotation of the unobserved factor
by the PC-type estimators. The OLS estimator obtains the lowest forecast accuracy of
all methods, while the shrinkage estimators perform better than OLS, but substantially
worse than the PC-type estimators.

The result that standard principal components is optimal on a DGP with com-
mon factors absent of non-sphericity is not surprising given the asymptotic equivalence
of maximum likelihood estimation and the method of principal components under the
assumption of normality (e.g. Chamberlain and Rothschild, 1983). Perhaps more in-
teresting is the finding that the shrinkage estimators seem to forecast more accurately
than the traditional OLS estimator, implying some sort of favourable subset selection
that reduces the forecast error. To the best of our knowledge, theoretical results for this
phenomenon are not available in the current literature, although the recent contribution
by De Mol et al. (2008) offers an intuitive conjecture. First of all, ridge regression can
be viewed as a smoothed version of principal components and De Mol et al. (2008);
Carrasco and Rossi (2016) show prediction consistency of the ridge estimator on DGPs
with an approximate factor structure under the assumption of a bounded growth rate of
the maximum eigenvalue of the population covariance matrix of the idiosyncratic com-
ponent in (5). However, these results do not extend to lasso-type estimators. In this
case, De Mol et al. postulate that collinearity in the candidate set favourably contributes
to the forecasting performance; under collinearity a few appropriately selected variables
could capture the majority of the covariance in the data and span approximately the
same space as the common factors.

The subset of the data proposed by methods employing an `1-penalty offers merely
an approximation to the factor space and, since the selection performance of these esti-
mators worsens under high degrees of collinearity, a consequence of the proposition by
De Mol et al. (2008) is that forecasts from lasso-type estimators should not be expected
to outperform correctly specified factor-augmented regressions. Indeed, panel A-B of
table 4 show that the shrinkage estimators underperform the PC-type estimators, re-
gardless of whether the component loadings are sparse. However, in panel C we observe
that, after the introduction of non-sphericity in the factor DGP, the forecasting perfor-
mance is tilted in favour of the shrinkage estimators. Under high levels of non-sphericity
the PC-type estimators have difficulty in accurately estimating the unobserved factors,
as indicated by the decrease in trace R2s, thereby resulting in inferior forecasting per-
formance. This same pattern is observed in the DGP with four factors, the results of
which are displayed in table 5. Upon further analysis, the introduction of cross-sectional
correlation in the error term in (10) appears to be the main culprit for the deterioration
in factor quality estimates. In the DGP with four factors, the percentage of the variance
in the candidate set X explained by the first four standard estimated principal com-
ponents is 72.3% before the introduction of cross-sectional correlation (α = 0.5, θ = 0)
and 41.1% afterwards (α = 0.5, θ = 1). This is visualized in figure 1, where we display
the ten largest eigenvalues of the sample correlation matrix corresponding to the first
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Figure 1: Visualization of the explanatory power of the first ten common components.

ten principal components. We conjecture that the correlation between the series in the
candidate set that is induced by the idiosyncratic component obscures the factor-induced
variation, thereby reducing the precision by which the factors are estimated, although
we postpone a theoretical investigation on this phenomenon to future research.

The unreported MSFE of the shrinkage estimators remains relatively stable under
varying levels of non-sphericity in (10), resulting in a strong comparative advantage over
the PC-type estimators. Most remarkable is the similarity in forecasting performance be-
tween Ridge and the lasso-type methods, despite the latter removing approximately half
of all variables from the candidate set on average. In the conducted simulations Ridge
regression tends to give equal weight to each variable in the candidate set on average,
in line with the random generation of the component loadings that do not consistently
overweight the effect of specific factors on a specific subset of the data. The lasso-type
regressions, however, show a more variable spread in the weights given to each variables,
resulting from the positive probability mass these methods put at zero coefficient values.
Indeed, we observe that when Ridge estimates a coefficient that is small in magnitude,
the corresponding lasso-type estimate tends to be exactly zero. The latter finding is
additionally reflected in the relatively low correlations between the coefficient estimates
of Ridge and the lasso-type methods, which for most coefficients lies in a neighbourhood
of 0.5.

Non-stationary and cointegrated variables

The presence and consequences of non-stationary predictors in regression frameworks
are well-understood and numerous tests and solutions have been been proposed to cor-
rect for non-stationarity. Accordingly, in the majority of simulations and empirical work
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the implicit assumption is maintained that the researcher is able to successfully iden-
tify non-stationarity and all variables found to be integrated of order one or higher are
transformed to stationarity by taking appropriate differences. However, situations are
frequently encountered where the order of integration remains ambiguous (e.g. frac-
tionally integrated variables or weakly cointegrated variables). In addition, the act of
”correcting” for non-stationarity by differencing the variables comes at the cost of losing
information captured in the levels of the variables. The literature on cointegration shows
that long-run relationship between non-stationary variables can exist, relationships that
are impossible to recover when using differenced variables. Here we examine the poten-
tial of lasso-type estimators in identifying and utilizing cointegrating relationships for
forecasting in high-dimensional systems.

The potential for penalized regression in recognizing cointegrating relationships has
recently been explored by Wilms and Croux (2016), Liao and Phillips (2015) and Liang
and Schienle (2015) who all consider the use of penalized regression in automated vector
error correction model estimation. These novel and insightful contributions, however,
require the implementation of a non-standard and fairly technical model. In an attempt
to avoid placing this burden on the researcher, we focus on the use of an intuitive single
equation model rather than a multivariate model. We generate the data as an error
correction model:

∆yt = α

(
yt−1 −

3∑
i=1

βixi,t−1

)
+ εj,t

xi,t = xi,t−1 + εj+1,t i = 1, 2, 3, j = 1, 2, 3

(13)

where the stationarity condition is given by −2 < α < 0 and εt ∼ N(0, I4). In addition
to the three cointegrated variables xi,t for i = 1, . . . , 3, we fill the candidate set X with
a number of irrelevant variables. The high sample correlations induced by variables that
are integrated of order one, i.e. I(1), may have adverse consequences on the prediction
and selection performance of the shrinkage estimators. Accordingly, we perform two
sets of simulations; one in which the irrelevant variables are generated according to (7)
with ρ = 0.5, α = 0, and one in which half of the irrelevant variables are generated
similarly, but the other half are generated as random walks, i.e. ∆xk,t = εk,t with
εk,t ∼ N(0, 1). The two sets of simulations are simply referred to as ”Stationary” and
”Non-Stationary”. As an example, for a candidate setX of size N = 50 that is generated
in the Non-stationary set, the first three variables will be I(1) but cointegrated with
the dependent variable. In the set of irrelevant variables, dN−32 e = 24 are I(0) and
bN−32 c = 23 are I(1). In congruence with the preceding simulations, we generate 1,000
one-step ahead forecasts and report the metrics RMSFE and RMSE relative to the oracle
OLS procedure as measures of prediction and selection performance respectively. The
selection performance is, again, measured with the metrics consistent, conservative and
#variables. The use of principal component estimators is excluded from this section
on the grounds that every extracted component will contain a linear combination of all
variables and, hence, will be integrated of order one. The presence of stochastic trends
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in the factors necessitates the use of alternative methods, such as the factor-augmented
error correction model by Banerjee and Marcellino (2009), the forecasting performance
of which is considered in Banerjee et al. (2014), or estimation of the factors in a VECM
framework in the spirit of Barigozzi et al. (2016a,b). A preliminary analysis confirms
that the regular factor methods considered in this paper all display sub-par performance
and are therefore omitted from the current analysis, while we postpone a comparative
analysis including factor-augmented error correction models to future research. We
present the main results for the remaining estimators in table 6, where the adjustment
rate is fixed at α = −1 and all tuning parameters are optimized based on the BIC. The
effect of changes in the adjustment rate are further explored in table 7.

Focussing on the predictive capabilities first, the RMSFEs in panel A of table 6
demonstrate a superior performance of the `1 methods. The minimum RMSFE, denoted
in bold, is always obtained by an adaptively weighted lasso-type estimator. Notwith-
standing an overall decrease in forecasting performance relative to the OLS oracle proce-
dure, the comparative advantage of lasso-type methods relative to OLS or Ridge becomes
more pronounced for higher dimensions. The advantage of adaptive weighting over non-
weighted estimation is substantial for the dimensions N = 10 and N = 50, but seems
to diminish at N = 100. This most likely results from a deterioration in quality of the
initial estimator, thereby highlighting the importance of finding good initial estimators
in the high-dimensional setting. The estimation accuracy of the cointegrating vector, as
measured by the RMSE, follows the same pattern as the prediction performance, with
adaptively weighted estimation providing the highest accuracy and outperforming OLS
even in the low-dimensional setting.

The selection performance is depicted in the remaining three panels of table 6. Panel
C depicts the fraction of trials in which the lasso-type methods exactly identify the
sparse cointegrating relationship. Again, the adaptively weighted variants show superior
performance. Exact identification, however, occurs at considerably lower rates in higher
dimensional settings, with the decline in selection performance being most notable for
the adaptively weighted estimators. A direct comparison between the scores for the
consistent metric obtained on the stationary and non-stationary sets reveals that the
presence of irrelevant I(1) variables negatively affects the selection performance. We
conjecture that the inevitable high correlation between the non-stationary variables in
levels, regardless of their relevance to the dependent variable, increases the difficulty in
identifying the correct subset. Given that exact identification seems to be overly am-
bitious in this framework, we turn our attention to conservative selection. Absent of
irrelevant non-stationary variables in the candidate set, the lasso-type methods almost
always include at least all relevant variables. With the inclusion of additional I(1) vari-
ables, we observe a worsening of the conservative selection, especially at higher dimen-
sions, albeit not to levels as inadequate as observed for the consistent selection. Finally,
the reason for conservative selection staying at reasonable levels can at least partly be
attributed to the growing model size along increases in dimensionality. More irrelevant
variables tend to be included when estimating on a larger candidate set and this effect
is particularly apparent when non-stationary variables are present. Despite the faulty
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Table 6 Cointegrated variables

Stationary Non-Stationary
N=10 N=50 N=100 N=10 N=50 N=100

Panel A: RMSFE
OLS 1.10 1.83 - 1.11 2.20 -
Ridge 1.37 2.10 18.84 1.40 1.74 6.88
Lasso 1.17 1.51 1.74 1.17 1.58 1.82
Ada-Lasso 1.03 1.09 1.45 1.05 1.34 1.60
EN 1.17 1.51 1.74 1.18 1.58 1.81
Ada-EN 1.03 1.09 1.43 1.05 1.34 1.63
Panel B: RMSE
OLS 9.38 106.70 - 7.48 89.98 -
Ridge 9.89 64.72 46.26 11.61 51.82 46.61
Lasso 4.22 8.21 10.64 5.31 18.88 26.90
Ada-Lasso 2.16 3.25 8.37 2.51 16.39 24.86
EN 4.22 8.20 10.78 5.33 18.98 27.10
Ada-EN 2.16 3.24 8.08 2.52 16.46 25.14
Panel C: Consistent
Lasso 29.9% 20.1% 18.2% 9.8% 0.2% 0.0%
Ada-Lasso 81.6% 62.4% 33.8% 63.8% 4.4% 0.2%
EN 29.9% 20.0% 18.1% 9.9% 0.2% 0.0%
Ada-EN 81.2% 62.2% 33.5% 63.6% 4.1% 0.2%
Panel D: Conservative
Lasso 99.5% 93.1% 88.5% 99.6% 82.5% 64.1%
Ada-Lasso 99.8% 99.6% 91.2% 99.9% 79.3% 58.8%
EN 99.5% 93.2% 88.5% 99.6% 82.3% 63.8%
Ada-EN 99.8% 99.6% 91.6% 99.9% 79.3% 58.2%
Panel E: #Variables
Lasso 4.53 6.29 6.65 5.35 9.97 12.17
Ada-Lasso 3.24 3.75 5.71 3.49 7.59 10.17
EN 4.53 6.30 6.72 5.35 9.97 12.23
Ada-EN 3.24 3.75 5.66 3.49 7.61 10.13

Notes: Numerical entries in this table are averages obtained over 1,000 simulations relative to
the OLS oracle estimator that estimates the cointegrating vector with the cointegrated
variables only. The methods considered are listed in the first column, whereas the evaluation
metrics are divided across panels A-E. The results under ”Stationary” are derived on a DGP
absent of irrelevant I(1) variables, whereas those listed under ”Non-Stationary” are derived on
DGPs that do contain irrelevant I(1) variables.
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Table 7 Cointegrated variables: the effect of α.

Stationary Non-stationary
α = −1.9 α = −1.0 α = −0.1 α = −1.9 α = −1.0 α = −0.1

Panel A: Levels
RMSFE 1.21 1.13 1.09 1.34 1.25 0.38
MSFE 25.77 4.68 16.33 30.15 5.53 5.58
Consistent 31.7% 57.3% 14.5% 16.8% 7.9% 0.0%
Conservative 79.1% 97.0% 32.3% 59.8% 89.0% 12.8%
Variables 4.00 3.95 3.00 4.42 6.86 12.66
Panel B: ADF Differences
RMSFE 3.54 2.14 0.14 3.48 1.73 0.14
MSFE 75.34 8.85 2.06 78.52 7.67 2.08
Consistent 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conservative 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%
Variables 0.43 0.42 0.36 0.46 0.50 0.48
Panel C: Oracle Differences
RMSFE 3.64 1.21 0.08 3.58 1.17 0.08
MSFE 77.48 5.03 1.16 80.74 5.18 1.23
Consistent 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conservative 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Variables 1.95 0.57 0.38 0.41 0.38 0.43

Notes: see notes in table 6. The evaluation metrics considered are listed in the first column.
The models are either estimated with all variables in levels (A), transformed variables based on
the results of an ADF-test for stationarity (B) or infeasibly transformed variables based on
knowledge of the true DGP (C).

model selection characteristics in this non-stationary framework, the reduction in vari-
ance by excluding at least part of the irrelevant variables contributes enough to obtain a
superior forecasting performance. Hence, for the applied researcher whose main interest
lies in forecasting rather than model interpretation this somewhat naive application of
lasso-type methods to cointegrated data in levels delivers substantial benefit.

The results so far are based on the somewhat idealized adjustment rate of α =
−1. If the adjustment rate would be closer to the lower boundary of the stationarity
condition the dependent variable would show signs of negative autocorrelation that often
characterizes an over-differenced time series, whereas a value close to the upper boundary
would induce stronger dependence due to a slower adjustment rate. In both cases, the
strength of the cointegrating relationship diminishes and a natural question that arises is
how the lasso-type methods handle such situations. Furthermore, when the adjustment
rate is slow, e.g. α = −0.1, the long run dependence may be so high that for the purpose
of forecasting it is best to model the data in differences regardless. In the following
analysis we focus on the use of the adaptive lasso on a candidate set consisting of 50
variables and examine the effect of changes in the adjustment rate on both the prediction
and selection performance. For every adjustment rate, we examine the performance of
the model estimated in three specifications; (1) all variables in the candidate set enter
in levels, (2) some of the variables enter in differenced form based on the outcome of an
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Augmented Dickey-Fuller (ADF) test for stationarity of size 0.05, and (3) all variables
that are simulated as I(1) variables enter the model in differenced form. These models
are listed in panel A, B and C of table 7, respectively. The lowest RMSFE for a given
adjustment rate across the three specification is denoted with bold font.

Models estimated in levels (panel A) only attain reasonable selection for an ad-
justment rate of α = −1. Moving the adjustment rate towards the boundaries of the
stationarity condition generally results in an increase in MSFE. However, different from
the previous experiments, the strength of the adjustment rate also affects the OLS oracle
estimator which serves as benchmark. A surprising finding is that the adaptive lasso
does substantially better than the OLS oracle estimator when the adjustment rate is
slow (α = −0.1) and the candidate set contains irrelevant I(1) variables. We expect that
the inclusion of a large number of unrelated random walks allows for a better in-sample
fit resulting in a lower forecast error; since the reported forecasts are single step fore-
cast, the improved in-sample fit may favour the predictive performance of the resulting
spurious models, because the combined effect of the corresponding random coefficients
is unlikely to push the prediction of the dependent variable far from its realized value.
However, this statistical artefact cannot be expected to carry through to forecasts over
longer horizons as the the trending behaviour of the I(1) variables will cause the predic-
tions to drift away from the realisations. Indeed, in unreported analyses we find that
the predictive superiority of the adaptive lasso on weakly cointegrated variables relative
to the OLS oracle procedure vanishes at a forecast horizon of 10 steps and keeps deterio-
rating for longer horizons, as one would expect to be the case for forecasts with spurious
regressions.

The models estimated on transformed data based on and ADF-test in panel B all
obtain substantially higher RMSFEs, unless there exists strong forms of long run de-
pendence (α = −0.1). Upon closer inspection, however, it becomes apparent that for
these cases the adaptive lasso hardly incorporates any variables from the dataset, but
rather forecasts the dependent variable by its time series average. The low RMSFEs
obtained by this simple strategy imply that the use of cointegration with a slow adjust-
ment rate has limited relevance for short-term forecasting purposes. Furthermore, for
all adjustment rates the differenced models almost never contain all relevant variables.
This provides an argument in favour of the use of `1-penalized estimation in levels over
the traditional approach of pre-processing the data, especially on datasets characterized
by a ”strong” cointegrating relationship (α = 1). Finally, the infeasible models based
on an oracle differencing procedure in panel C perform similar to the ADF-differenced
data.

In conclusion, the use of lasso-type estimators on a high-dimensional non-stationary
dataset containing cointegrated variables provides forecast gains over the traditional
approaches of using OLS on pre-processed data. A caveat to these results is that we rely
on the underlying assumption of cointegration being present in the data. In practice,
the uncertainty surrounding the validity of this assumption possibly affects the relative
performance of the lasso-type methods. The interrelationship between verifying the
presence of cointegration and forecast performance is practically relevant and we aim to

21



pursue this topic in future research.

4 Empirical Application

Complementing the simulation based results, we perform an empirical application on a
popular U.S. macroeconomic dataset. The dataset consists of 133 time series observed
at a monthly frequency covering January 1959 to June 2015 and is obtained from the
Fred-MD website. 2 In consideration of potentially adverse consequences stemming from
uncertainty regarding the presence of cointegration in empirical datasets, we refrain from
estimation in levels and correct all series for non-stationarity, which for the majority of
series entails taking either log differences (e.g. real variables) or log second differences
(e.g. price indices). Eight series are forecast, four of which are measures of real economic
activity: real production income (RPI); total industrial production (IP); real manufac-
turing and trade sales (RMTS); and number of employees on non-agricultural payrolls
(EMP). The remaining four series are price indices: the producer index for finished goods
(PPI); the consumer price index (CPIA); the consumer price index less food (CPIUL);
and the personal consumption expenditure implicit price deflator (PCEPI). These series,
including their transformations, are similar to those frequently used in the seminal and
contemporaneous forecasting literature (e.g. Stock and Watson, 2002b; Ludvigson and
Ng, 2009; Kristensen, 2015).

The forecasts are generated as projections of an h-step-ahead variable yht+h onto a set
of variables observed up to time t that possibly includes lags of the dependent variable.
As a benchmark, we consider a simple univariate AR model that obtains its forecasts by
fitting the forecasting equation

yht+h = α+

p∑
i=1

βiyt−i+1 + εt+h, (14)

where yht+h is defined appropriately according to the order of integration, see Stock
and Watson (2002b) for details. The AR lag length p, for p ∈ {0, . . . , 6}, is determined
by the BIC criterion, as is the case for all following methods. The penalized regressions
obtain the forecasts by fitting

yht+h = α+ x′tβx +

p∑
i=1

βiyt−i+1 + εt+h, (15)

where the tuning parameters λ, α are selected using either the BIC, AIC or time
series cross-validation. The autoregressive lags enter the model unpenalized across all

2https://research.stlouisfed.org/econ/mccracken/sel/
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specifications, their selection thus being dependent on the use of the BIC criterion rather
than the penalty induced shrinkage. Finally, the principal component regressions fit

yht+h = α+ F̂ ′tβF +

p∑
i=1

βiyt−i+1 + εt+h, (16)

where the number of factors r is either kept fixed at five or determined by one of the
information criteria of Bai and Ng (2002).

We simulate real-time forecasting by calculating pseudo out-of-sample forecasts at
horizons h = 1, 6 and 12. An initial in-sample period covering 12 years of monthly
observation is used to estimate the models by which to obtain the first out-of-sample
prediction. For each new prediction, we either keep the length of the in-sample period
fixed, resulting in a rolling window approach, or we let the in-sample period expand
with each prediction under a recursive scheme. Regardless of the scheme employed, the
model is re-estimated prior to each prediction, including tuning parameter optimization,
lag length selection, shrinkage and factor estimation. The forecasting performance is
reported as the mean squared forecast error relative to the benchmark AR model.

Results for the rolling window forecasts are reported in table 8 and for the recursive
window forecasts in table 9. The first row in each panel depicts the actual MSFEs
obtained by the AR benchmark, whereas the remaining rows are MSFEs relative to
the benchmark. The tuning parameters for each method are selected by a variety of
methods: BIC, AIC and time series CV for penalized regression and all six Bai and Ng
(2002) information criteria for the PC-type methods and hybrid methods. We report
the lowest MSFE among all tuning parameter selection approaches and additionally
provide an overview of the performance of each approach in table 10. Finally, table
11 summarizes the overall forecasting results by tabulating the ”winning” methods per
forecast horizon.

A notable pattern in table 8 and 9 seems to be that the method of principal compo-
nents, either in combination with shrinkage or without, tends to display superior perfor-
mance on the real series, whereas pure penalized regression tends to perform better on
the price indices. Furthermore, with the exception of the recursive PPI 12-step-ahead
forecasts, the AR benchmark is never optimal. In the majority of cases, the forecast er-
rors are lower for the recursive estimates, thus demonstrating the added value of utilizing
more historical data despite the increased risk of estimating models on data containing
structural breaks. No clear differences are observed in the relative performance between
methods based on the choice of rolling or recursive estimation. To provide insights into
the performance of the tuning methods adopted, we report an overview of the fraction
of cases in which each method obtains the lowest MSFE in table 10. For each method, a
total of 64 series-horizon combinations are forecast. Focussing on the shrinkage methods
in panel A, we observe that the size of the `2-penalty in Ridge regression is best opti-
mized by time series cross-validation, which is unsurprising given that Ridge does not
perform subset selection and the information criteria are unstable in high-dimensional
settings. The methods incorporating an `1-penalty on the other hand do impose sparsity
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Table 8 Empirical application: rolling window

Method RPI IP RMTS EMP PPI CPIA CPIL PCEPI
Panel A: h = 1
AR 48.76 66.05 130.73 3.00 54.74 14.37 17.51 9.23
Ridge 1.00 0.93 1.02 0.85 0.96 0.76 0.77 0.74
Lasso 0.99 0.89 0.95 0.85 0.94 0.71 0.72 0.67
AdaLasso 0.97 0.87 0.93 0.87 0.97 0.70 0.70 0.66
EN 0.99 0.89 0.98 0.87 0.94 0.71 0.72 0.67
AdaEN 0.97 0.86 0.93 0.86 0.97 0.69 0.70 0.66
PC 0.97 0.88 0.86 0.85 0.91 0.75 0.76 0.73
WPC-SWa 0.98 0.90 0.86 0.86 0.91 0.75 0.77 0.73
WPC-SWb 0.97 0.88 0.86 0.82 0.90 0.70 0.71 0.67
WPC-1 0.97 0.89 0.87 0.80 0.92 0.76 0.78 0.73
WPC-2 0.97 0.87 0.86 0.83 0.93 0.79 0.81 0.81
SPC 0.97 0.89 0.86 0.85 0.92 0.75 0.76 0.74
LA(PC)-B 1.01 0.89 0.94 0.86 0.90 0.72 0.71 0.71
LA(PC)-A 1.00 0.89 0.88 0.84 0.92 0.75 0.76 0.72
Panel B: h = 6
AR 6.90 30.88 31.16 2.28 1.46 0.41 0.51 0.25
Ridge 0.78 0.81 0.74 0.83 1.02 1.05 1.09 0.98
Lasso 0.91 0.90 0.80 0.85 1.05 0.90 0.87 0.93
AdaLasso 0.94 0.90 0.82 0.82 1.08 0.91 0.90 0.99
EN 0.87 0.90 0.79 0.83 1.05 0.90 0.88 0.93
AdaEN 0.90 0.86 0.82 0.83 1.08 0.91 0.90 0.98
PC 0.78 0.78 0.68 0.80 1.06 1.02 1.01 1.02
WPC-SWa 0.82 0.91 0.69 0.84 1.03 0.97 0.97 0.98
WPC-SWb 0.79 0.84 0.68 0.82 1.03 0.96 0.96 0.96
WPC-1 0.77 0.82 0.71 0.81 1.07 1.00 1.01 0.98
WPC-2 0.78 0.85 0.73 0.85 1.03 1.02 1.02 1.00
SPC 0.78 0.79 0.68 0.81 1.06 1.03 1.01 1.02
LA(PC)-B 0.88 0.81 0.73 0.84 0.99 0.92 0.91 0.95
LA(PC)-A 0.86 0.78 0.67 0.80 1.07 1.01 1.01 1.00
Panel C: h = 12
AR 4.53 23.58 20.92 2.60 0.34 0.10 0.12 0.06
Ridge 0.75 0.81 0.82 0.85 1.11 1.02 1.04 1.00
Lasso 0.90 0.88 0.91 0.98 0.98 0.91 0.93 0.86
AdaLasso 0.95 0.90 0.93 1.07 1.02 0.90 0.94 0.89
EN 0.90 0.86 0.91 0.97 0.99 0.91 0.93 0.85
AdaEN 0.96 0.89 0.94 1.07 1.02 0.90 0.94 0.89
PC 0.80 0.73 0.70 0.73 1.02 1.02 1.03 1.00
WPC-SWa 0.86 0.95 0.78 0.79 1.03 0.98 1.01 1.00
WPC-SWb 0.78 0.83 0.71 0.76 1.00 0.97 0.98 0.95
WPC-1 0.82 0.83 0.75 0.78 1.04 1.01 1.05 0.96
WPC-2 0.80 0.82 0.76 0.79 1.03 1.01 0.99 0.99
SPC 0.82 0.71 0.71 0.70 1.01 0.98 1.02 0.98
LA(PC)-B 0.82 0.96 0.96 0.97 1.03 0.92 0.98 0.91
LA(PC)-A 0.80 0.73 0.69 0.74 1.03 1.02 1.03 1.03

Notes: Numerical entries in this table are pseudo out-of-sample mean squared forecast errors
relative to a univariate AR benchmark. Forecasts are based on a rolling window etimation
scheme.
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Table 9 Empirical application: recursive window

Method RPI IP RMTS EMP PPI CPIA CPIL PCEPI
Panel A: h = 1
AR 48.61 64.78 130.11 2.88 53.38 16.10 18.91 10.65
Ridge 0.95 0.91 0.90 1.00 0.92 0.65 0.67 0.87
Lasso 0.98 0.88 0.88 0.91 0.90 0.56 0.61 0.53
AdaLasso 0.98 0.83 0.90 0.90 0.91 0.56 0.62 0.55
EN 0.95 0.88 0.83 0.91 0.89 0.56 0.63 0.53
AdaEN 0.95 0.84 0.95 0.96 0.91 0.56 0.61 0.53
PC 0.92 0.87 0.89 0.86 0.87 0.64 0.67 0.65
WPC-SWa 0.93 0.88 0.93 0.91 0.90 0.73 0.77 0.75
WPC-SWb 0.93 0.88 0.90 0.87 0.89 0.69 0.73 0.69
WPC-1 0.93 0.89 0.90 0.87 0.88 0.65 0.70 0.65
WPC-2 0.94 0.88 0.96 0.89 0.93 0.73 0.76 0.74
SPC 0.93 0.88 0.89 0.86 0.87 0.64 0.67 0.65
LA(PC) - B 0.97 0.85 0.93 0.96 0.86 0.61 0.62 0.56
LA(PC) - A 0.96 0.87 0.90 0.89 0.84 0.60 0.69 0.61
Panel B: h = 6
AR 6.86 30.10 28.08 2.27 1.43 0.45 0.55 0.29
Ridge 0.86 0.81 0.75 0.93 0.95 0.78 0.83 0.76
Lasso 0.95 0.80 0.83 0.88 1.06 0.81 0.81 0.79
AdaLasso 0.88 0.81 0.85 0.89 1.08 0.85 0.86 0.86
EN 0.88 0.78 0.78 0.88 1.06 0.80 0.81 0.79
AdaEN 0.86 0.78 0.81 0.89 1.08 0.83 0.84 0.86
PC 0.87 0.76 0.71 0.79 0.99 0.86 0.88 0.85
WPC-SWa 0.89 0.85 0.80 0.90 1.01 0.89 0.90 0.89
WPC-SWb 0.91 0.83 0.75 0.84 0.98 0.84 0.86 0.83
WPC-1 0.86 0.73 0.74 0.80 0.99 0.86 0.90 0.85
WPC-2 0.94 0.91 0.80 0.91 0.99 0.89 0.89 0.86
SPC 0.87 0.76 0.70 0.79 0.98 0.85 0.88 0.84
LA(PC) - B 0.95 0.79 0.79 0.81 1.02 0.86 0.87 0.84
LA(PC) - A 0.93 0.75 0.79 0.80 1.02 0.86 0.93 0.84
Panel C: h = 12
AR 4.48 23.10 19.51 2.72 0.33 0.11 0.13 0.07
Ridge 1.00 0.75 0.77 0.89 1.48 0.95 0.96 0.90
Lasso 0.91 0.78 0.76 0.87 1.04 0.88 0.90 0.78
AdaLasso 0.94 0.82 0.85 0.97 1.21 0.90 0.95 0.83
EN 0.88 0.76 0.77 0.87 1.04 0.88 0.90 0.78
AdaEN 0.96 0.79 0.79 0.94 1.22 0.90 0.96 0.83
PC 0.89 0.71 0.71 0.79 1.04 0.90 0.93 0.89
WPC-SWa 0.95 0.82 0.76 0.88 1.08 0.94 0.95 0.93
WPC-SWb 0.93 0.75 0.70 0.84 1.02 0.90 0.92 0.88
WPC-1 0.88 0.71 0.72 0.80 1.04 0.90 0.93 0.88
WPC-2 0.98 0.89 0.76 0.91 1.02 0.91 0.92 0.89
SPC 0.89 0.71 0.70 0.80 1.04 0.90 0.92 0.88
LA(PC) - B 0.89 0.77 0.78 0.87 1.12 0.96 0.96 0.87
LA(PC) - A 0.89 0.72 0.74 0.78 1.08 0.91 0.93 0.86

Notes: see notes in 8. Forecasts are based on a recursive window etimation scheme.
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Table 10 Empirical application: tuning methods

Tuning methods
Panel A: Shrinkage estimators
Tuning: BIC AIC CV
Ridge 4% 4% 91%
Lasso 73% 0% 27%
AdaLasso 55% 0% 45%
EN 67% 0% 33%
AdaEN 59% 0% 41%
Panel B: PC/Hybrid estimators
Tuning: Fixed

(5)
IC1 IC2 IC3 PC1 PC2 PC3

PC 23% 11% 33% 8% 13% 2% 11%
WPC-SWa 4% 24% 46% 4% 10% 4% 6%
WPC-SWb 17% 20% 42% 3% 2% 0% 16%
WPC-1 17% 19% 23% 19% 2% 3% 17%
WPC-2 6% 30% 45% 5% 6% 3% 5%
SPC 22% 17% 23% 11% 11% 5% 11%
LA(PC)-B 27% 20% 19% 13% 5% 5% 13%
LA(PC)-A 16% 9% 27% 14% 5% 6% 23%

Notes: Numerical entries in this table depict the relative frequencies with which a tuning
method delivered the best forecast performance in the empirical applications listed in table 8
and 9. The estimation methods are listed in the first column, whereas the respective tuning
methods are listed in the first row of each panel.

and in this case the BIC seems to be the preferred tuning method, closely followed by
time series cross-validation. For the PC-type estimators and hybrid estimators in panel
B we compare the performance of the six Bai and Ng criteria an ad-hoc method of choos-
ing five fixed factors. Surprisingly, it seems that the IC2-criterion obtains the lowest
averaged MSFE for all methods, with the exception of the hybrid method LA(PC)−B.

Finally, the overview of the winning methods in table 11 clearly highlights the strong
performance of shrinkage estimators. In over half of all cases considered, a shrinkage
estimator obtained the overall lowest MSFE, whereas in an additional 27 percent the
combination of shrinkage and dimension reduction delivered the best performance. These
results demonstrate that the dominance of factor models in economic forecasting may
not always be justified, with a clear viable alternative being the usage of shrinkage
estimators or, in particular, lasso-type estimators.

5 Conclusion

In this paper we examine the forecasting performance of factor, shrinkage and hybrid
models. Comprehensive simulations based on a wide variety of data generating pro-
cesses indicate that lasso-type estimators are relatively robust against alternative DGP
specifications; they naturally perform well on sparse and stationary models driven by
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Table 11 Empirical application: summary

Rolling Recursive Total
horizon h=1 h=6 h=12 h=1 h=6 h=12 # %
AR 0 0 0 0 0 1 1 2%
Shrinkage 4 3 5 5 5 3 25 52%
Factor 3 1 0 2 1 2 9 19%
Hybrid 1 4 3 1 2 2 13 27%

Notes: A summary table depicting the number of times a category of estimators delived the
best forecast performance. Results are tabulated for different estimation schemes (rolling vs.
recursive) and forecast horizons (h).

observed variables, but they also show strong forecasting performance on data driven
by approximate factor structures, even when the latter models contain a high degree
of non-sphericity in the idiosyncratic component. Furthermore, a direct application of
lasso-type estimators to a high-dimensional non-stationary dataset containing a small
number of cointegrated variables is demonstrated to deliver forecasting improvements
over traditional approaches. An empirical application on eight macroeconomic time
series confirms the simulation-based findings, with penalized regression obtaining the
lowest mean squared forecast error in 52% of all series-horizons forecast and hybrid
methods outperforming in 27%. We take this as further evidence that the assumption of
a common factors being persistent in macroeconomic data may not always be valid or,
at a minimum, may not always be relevant for forecasting purposes given the flexibility
with which lasso-type estimators can handle this type of data.
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