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Abstract

We consider a situation in which agents have mutual claims on each other, sum-

marized in a liability matrix. Agents’ assets might be insufficient to satisfy their

liabilities leading to defaults. In case of default, bankruptcy rules are used to specify

the way agents are going to be rationed. A clearing payment matrix is a payment

matrix consistent with the prevailing bankruptcy rules that satisfies limited liability

and priority of creditors. Since clearing payment matrices and the corresponding

values of equity are not uniquely determined, we provide bounds on the possible lev-

els equity can take. Unlike the existing literature, which studies centralized clearing

procedures, we introduce a large class of decentralized clearing processes. We show

the convergence of any such process in finitely many iterations to the least clearing

payment matrix. When the unit of account is sufficiently small, all decentralized

clearing processes lead essentially to the same value of equity as a centralized clear-

ing procedure. As a policy implication, it is not necessary to collect and process

all the sensitive data of all the agents simultaneously and run a centralized clearing

procedure.
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1 Introduction

The treatment of bankruptcy of countries, banks, firms, organizations, and individuals will

always be a challenge for society. In the original bankruptcy problem, starting with the

seminal paper of O’Neill (1982), there is a single bankrupt agent and the other agents

have claims on the estate of the bankrupt agent. In this paper, we analyze networks of

agents, where agents have mutual claims on each other. An agent is characterized by his

endowments and his liabilities towards the other agents. The assets of an agent consist of

the sum of his endowments and the payments received from other agents having liabilities

to him.

If the assets of an agent are not sufficient to satisfy his own liabilities, then the agent

has to default. In a network setting, a default can also result from contagion, where an

agent defaults only because other agents are not fully paying their liabilities to him. The

default of a single agent can therefore result in domino effect that potentially leads to an

all encompassing cascade of defaults. We are interested in the final resulting outcome in

terms of payments and equity and in particular in the question whether one needs to use

centralized clearing procedures as is assumed in the systemic risk literature, or whether

one can rely on decentralized clearing processes as introduced in this paper instead.

An important application of our model concerns financial networks, where Eisenberg

and Noe (2001) is the seminal paper. Recent crisis on financial markets triggered by the

Lehman bankruptcy as well as sovereign debt problems of European countries provide

prime examples of why the network perspective is important. Part of the literature on

financial networks concerns the appropriate measurement of systemic risk, see Chen et al.

(2013) for an axiomatic approach as well as Demange (2015). There is also a substantial

literature that relates the number and magnitude of defaults to the network topology and

that characterizes those structures that tend to propagate default, see Gai and Kapadia

(2010), Elliott et al. (2014), Acemoglu et al. (2015), Capponi et al. (2015), and Glasserman

and Young (2015). The basic setup of Eisenberg and Noe (2001) has also been extended in

various directions, for instance in Cifuentes et al. (2005) and Shin (2008) by allowing for

liquidity considerations and in Rogers and Veraart (2013) by allowing for costs of default.

Given the prominence of the financial applications, we use the terminology of that

framework, but want to emphasize that our model is relevant outside that specific setup.

Indeed, network effects of defaults occur also outside financial settings. Brown (1979)

presents an application of a supply chain network consisting of coal mines and power

companies, where due to a strike only the non-union mines produce and the other mines

default on their deliveries of coal. Another example is related to international student

exchange problems, as well as the closely related problem of tuition exchange studied in

Dur and Ünver (2015), where the agents correspond to colleges. The endowments of a
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college equal the maximum net inflow of students it can handle, its liabilities correspond

to commitments made to receive incoming students, and claims are the agreements with

other colleges to send outgoing students. As another example, the agents can be servers

that process jobs for a set of users. The endowments of a server correspond to its capacity

for processing jobs, its liabilities to jobs that it has to process for other servers, and its

claims to jobs that are outsourced to other servers. An example similar to the one with

servers concerns time banks, where the agents are workers instead of servers.

A clearing payment matrix describes how much the agents pay to each other. The lit-

erature on financial networks has presented a number of algorithms to compute a clearing

payment matrix and emphasize the computation of the greatest clearing payment ma-

trix. Examples of such algorithms are presented in Eisenberg and Noe (2001), Rogers and

Veraart (2013), and Elliott et al. (2014). These algorithms correspond to centralized pro-

cedures for finding a clearing payment matrix. The required levels of payments during the

execution of the algorithm are typically not implementable and are computed by solving

a joint optimization program or a simultaneous system of equations.

As noted in Elsinger et al. (2006) and Gai and Kapadia (2010), the complexity of

the financial system means that policymakers have only partial information about the true

linkages between financial intermediaries. It is therefore not realistic to assume that a single

decision maker has all the information that is needed for the execution of the algorithms.

On top of that, it is not realistic to assume that all assets of defaulting agents can be

liquidated instantaneously.

Whereas the entire literature on systemic risk has considered centralized procedures to

compute a clearing payment matrix, we introduce a large class of decentralized clearing

processes in this paper. At each point in time, an agent is selected by means of a process

that is potentially history-dependent and stochastic. This agent would typically be an

agent that has filed for bankruptcy. Next, the selected agent makes any amount of feasible

payments to the other agents. The amount that is paid depends only on local information

and is determined by a process that again is potentially history-dependent and stochastic.

The only requirement that we make is that the selected agent be eligible, that is can make

a positive incremental payment without ending up with negative equity.

To define the class of decentralized clearing processes, it is mathematically convenient to

express all quantities in some smallest unit of account (dollars, number of students, number

of jobs, etc.) and work in a discrete setup. We also show that our main result, on finite

convergence of any decentralized clearing process in our class, is not true in the perfectly

divisible case. The discrete setup has also been analyzed in the bankruptcy literature with

multiple claimants on a single estate, see Young (1994) Moulin (2000), Moulin and Stong

(2002), Herrero and Mart́ınez (2008), and Chen (2015), but so far not in a network setting
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and the emphasis in that literature is on the axiomatic foundation of allocation rules. All

papers in the systemic risk literature stick to the perfectly divisible approach.

We think of the discrete model as being more general than the perfectly divisible model.

On the one hand, using integers, we can study all the financial applications, where the unit

of account can be taken to be one cent or one dollar and it is really a matter of mathematical

convenience whether one uses a model with integers or reals. At the same time, we can

study all the applications where indivisibilities matter like the mentioned applications of

international student exchange or job processing by a network of servers, where realism

dictates the use of integers rather than reals.

If an agent is bankrupt, then a bankruptcy rule specifies how the liabilities of vari-

ous creditors are going to be settled. Following the seminal paper by Eisenberg and Noe

(2001), the literature on systemic risk in financial networks has adopted proportional rules

specifying payment ratios less than one in case of default. In reality, not all the liabilities

are of the same seniority and some of the liabilities are more senior than others. American

bankruptcy law, for instance, is a mixed lexicographic-proportional system, see Kaminski

(2000). We therefore allow for general bankruptcy rules and present a convenient repre-

sentation for them.

A clearing payment matrix is characterized by the properties of feasibility, limited

liability, and priority of creditors. Feasibility of a payment matrix means that payments

are made in accordance with bankruptcy rules. Limited liability means the payment matrix

should result in non-negative equity levels for all agents. Priority of creditors requires that

if an agent is not paying all of its liabilities, then a higher payment should lead to a negative

equity level.

We characterize all clearing payment matrices as a fixed point of an appropriately de-

fined function. We show that there exist a least and a greatest clearing payment matrix.

Unlike the perfectly divisible case, different clearing payment matrices may result in dif-

ferent amounts of equity. We provide lower and upper bounds on the maximum difference

in equity value that results from two different clearing payment matrices.

We show that any decentralized process in a large class converges in finitely many

iterations to the least clearing payment matrix. In this sense, the cost of decentralization

is therefore to go from the greatest to the least clearing payment matrix. The bounds

we derive on the final levels of equity show that this cost is typically small in financial

applications. Thus as a policy implication for financial applications, instead of working

on collecting and processing data centrally, we suggest that it is sufficient to have local

liquidators enforcing bankruptcy rules.

This paper is organized as follows. Section 2 presents the model of financial networks,

the representation of bankruptcy rules, and some examples. Section 3 defines clearing
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payment matrices. In Section 4 we analyze clearing payment matrices as fixed points and

derive the bounds for the difference in equity value that results from two different clearing

payment matrices. Section 5 introduces a large class of decentralized clearing processes

and shows how any process in this class converges to the least clearing payment matrix in

a finite number of iterations. Section 6 deals with the relationship between the discrete

and the perfectly divisible case. Section 7 concludes.

2 Financial Networks

In the bankruptcy literature, there is typically a single bankrupt agent and the estate is

an exogenously given amount.1 The emphasis of the analysis is on the study of normative

properties of different bankruptcy rules. The systemic risk literature invariably uses the

proportional bankruptcy rule. In that literature there are multiple defaulting agents and

the estates are endogenously determined. In this section, we develop our model of financial

networks that combines insights from both literatures.

The primitives of a financial network are given by the tuple (z, L, b).

Let N0 denote the natural numbers including 0. The vector z ∈ NI
0 represents the

endowments of the agents in the finite set of agents I with cardinality n. The endowment

of an agent includes all his tangible and intangible assets, but excludes the claims and

liabilities such an agent has towards the other agents. We work in the space of natural

numbers, so implicitly it is assumed that everything is expressed in a smallest unit of

account, which could be one dollar or one cent in the financial applications.

The n×n liability matrix L ∈ NI×I
0 describes the mutual claims of the agents. Its entry

Lij is the liability of agent i towards agent j or, equivalently, the claim of agent j on agent

i. We make the normalizing assumption that Lii = 0 for all i ∈ I. In general, it can occur

that agent i has a liability towards agent j and agent j has a liability towards agent i, so

both Lij > 0 and Lji > 0 can occur simultaneously.

The payments to be made by agent i ∈ I to the other agents are determined by the

bankruptcy rule bi : N0 → NI
0 of agent i. Given a value Ei ∈ N0 of the estate of agent i, the

1For surveys of the literature on bankruptcy problems, we refer the reader to Thomson (2003), Thom-

son (2013), and Thomson (2015). There is also an emerging literature on the extension of the bankruptcy

literature to network settings. The emphasis in these papers is on the axiomatic foundation of allocation

rules. Bjørndal and Jörnsten (2010) analyze generalized bankruptcy problems with multiple estates as

flow sharing problems and define the nucleolus and the constrained egalitarian solution for such problems.

Moulin and Sethuraman (2013) consider bipartite rationing problems, where agents can have claims on

a subset of unrelated estates. They consider whether rules for single resource problems can be consis-

tently extended to their framework. Groote Schaarsberg et al. (2013) axiomatize the Aumann-Maschler

bankruptcy rule in financial networks with general division rules.
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monetary amount bij(Ei) ∈ N0 specifies how much agent i has to pay to agent j ∈ I. The

tuple (bi)i∈I of bankruptcy rules is denoted by b.

Contrary to the bankruptcy literature, the value of the estate Ei of agent i ∈ I is

endogenously determined in a financial network, since it depends not only on the initial

endowments of agent i, but also on the claims i has on other agents, part of which may

not be received by agent i. Exactly how the value of the estate is endogenously determined

is one of the important aspects studied in this paper and is addressed in the subsequent

sections.

We make the following assumption on bankruptcy rules.

Assumption 1. Let (z, L, b) be a financial network. For every i ∈ I, the bankruptcy rule

bi is a monotonic function bi : N0 → NI
0 such that:

1. For every Ei ∈ N0,
∑

j∈I bij(Ei) ≤ min{
∑

j∈I Lij, Ei} with equality if
∑

j∈I Lij ≤ Ei.

2. For every Ei ∈ N0, for every j ∈ I, bij(Ei) ≤ Lij.

3. For every Ei, E
′
i ∈ N0 such that Ei ≤ E ′i,

∑
j∈I bij(E

′
i) ≤ Ei implies bi(Ei) = bi(E

′
i).

Assumption 1 requires the bankruptcy rule bi to be monotonic: For every Ei, E
′
i ∈ N0

such that Ei ≤ E ′i it holds for every j ∈ I that bij(Ei) ≤ bij(E
′
i) or, equivalently, bi(Ei) ≤

bi(E
′
i). A weakly higher value of the estate leads to weakly higher payments to all agents.

This property is called resource monotonicity in the bankruptcy literature, see Thomson

(2003), or endowment monotonicity, see Thomson (2015).

Assumption 1.1 allows for the possibility that
∑

j∈I bij(Ei) < Ei if Ei <
∑

j∈I Lij. Some

of the estate may not be distributed among the agents in case the estate falls below the total

value of the liabilities. We will illustrate how fairness considerations, like the fairness norm

that equal claimants should receive an equal payment, can be at odds with the requirement

that
∑

j∈I bij(Ei) = Ei whenever Ei <
∑

j∈I Lij. At the same time, we present several rules

that do satisfy the requirement that
∑

j∈I bij(Ei) = Ei whenever Ei <
∑

j∈I Lij, so such

rules are by no means excluded.

Assumption 1.2 specifies that a claimant never receives more than the value of his claim.

Assumption 1.3 puts limits on the extent to which paying less than the estate is possible.

If total payments made at the higher estate E ′i do not exceed the value of the lower estate

Ei, than those are also the payments made at Ei.

We continue by presenting a convenient representation for bankruptcy rules. The image

Fi of a bankruptcy rule bi determines the set of feasible payments. More formally, we have

Fi = bi(N0) = ∪{Ei∈N0|Ei≤
∑
j∈I Lij}{bi(Ei)},

where the second equality follows from the observation that by Assumptions 1.1 and 1.2

it holds that bi(Ei) = Li whenever Ei ≥
∑

j∈I Lij. The set of feasible payments Fi can
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be found by considering the value of the bankruptcy rule for integer values of the estate

between zero and the total amount of claims.

Assumption 1.3 corresponds to the requirement that bankruptcy rules impose maximal

feasible payments. Indeed, bi(Ei) is the maximal vector in Fi for which the sum of the

components is less than or equal to Ei. Notice that the monotonicity of bi implies that

≤ is a total order on the set Fi, i.e. the order ≤ on Fi is antisymmetric, transitive, and

complete. A maximal vector in Fi for which the sum of the components is less than or

equal to Ei is therefore uniquely determined.

Vice versa, any set Ti ⊂ NI
0, which is totally ordered by ≤, contains 0I , and has Li as a

maximum, pins down a bankruptcy rule bTii with set of feasible payments equal to Ti. For

Ei ∈ N0, let

bTii (Ei) = max{fi ∈ Ti |
∑

j∈Ifij ≤ Ei}, (1)

where the maximum in (1) is unique since Ti is a finite set, Ti contains 0I , and ≤ is a total

order on Ti. The following proposition states that bTii indeed satisfies Assumption 1.

Proposition 1. For every i ∈ I, let Ti be a subset of NI
0, which is totally ordered by ≤,

contains 0I , and with maxTi = Li. Then the tuple of induced bankruptcy rules (bTii )i∈I

satisfies Assumption 1.

Proof. Let some i ∈ I be given. Clearly, it holds that bTii is a monotonic function from

N0 into NI
0.

If
∑

j∈I Lij ≤ Ei, then

bTii (Ei) = max{fi ∈ Ti |
∑

j∈Ifij ≤ Ei} = Li,

where the second equality follows since
∑

j∈I Lij ≤ Ei. In this case, we therefore have that∑
j∈Ib

Ti
ij (Ei) = min{

∑
j∈ILij, Ei}.

If
∑

j∈I Lij > Ei, then∑
j∈Ib

Ti
ij (Ei) ≤ Ei = min{

∑
j∈ILij, Ei},

where the inequality follows immediately from the definition of bTii (Ei). Assumption 1.1 is

therefore satisfied.

Since Ti is totally ordered by ≤, we have, for every fi ∈ Ti, fi ≤ maxTi = Li. It

now follows that, for every Ei ∈ N0, for every j ∈ I, bTiij (E) ≤ Lij. This shows that

Assumption 1.2 holds.

Let Ei, E
′
i ∈ N0 be such that Ei ≤ E ′i and

∑
j∈I b

Ti
ij (E ′i) ≤ Ei. Since

bTii (E ′i) = max{fi ∈ Ti |
∑

j∈Ifij ≤ E ′i}
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and
∑

j∈I b
Ti
ij (E ′i) ≤ Ei, it follows that

bTii (Ei) = max{fi ∈ Ti |
∑

j∈Ifij ≤ Ei} = bTii (E ′i).

We have shown that Assumption 1.3 holds. 2

An important class of bankruptcy rules consists of the priority bankruptcy rules. They

depend on a permutation π : I → {1, . . . , n}, which indicates the rank of the various

liabilities. For j ∈ I, we define

πj = {i ∈ I | π(i) < π(j)}

as the set of agents ranked before agent j according to π.

Definition 1. Given a vector of liabilities Li ∈ NI
0 of agent i ∈ I and a permutation

π : I → {1, . . . , n}, the priority bankruptcy rule bπi : N0 → NI
0 is defined by

bπij(Ei) = max{0,min{Lij, Ei −
∑
k∈πj

Lik}}, j ∈ I, Ei ∈ N0.

Under the bankruptcy rule bπi , the estate of agent i has a priority list of creditors as

determined by the permutation π. The claims of agents π−1(1), π−1(2), . . . are paid for

sequentially as long as the estate of agent i permits this.

A priority bankruptcy rule clearly satisfies Assumption 1. It also has the property

that
∑

j∈I bij(Ei) = min{Ei,
∑

j∈I Lij} for every Ei ∈ N0, so the equality also holds in

case
∑

j∈I Lij > Ei. Priority bankruptcy rules have nice axiomatic foundations. As has

been demonstrated in Moulin (2000) these are the only rules satisfying consistency, upper

composition, and lower composition.2

Another frequently used bankruptcy rule is the proportional bankruptcy rule. It is

easily defined when the estate and the payments are treated as real numbers. Given a

vector of liabilities Li ∈ RI
0, the function dpropi : R+ → RI

+ is defined by

dpropij (Ei) = min{Lij, Lij∑
k∈I Lik

Ei}, j ∈ I, Ei ∈ R+.

2Consistency imposes that in case an agent leaves with the payment as described by the bankruptcy rule,

then applying the bankruptcy rule to the smaller problem does not change the payments of the remaining

agents. Upper composition requires that first applying the bankruptcy rule using a too optimistic value

of the estate and using the resulting payments as the liabilities for the correct value of the estate leads

to the same payments as directly applying the bankruptcy rule to the correct value of the estate. Lower

composition is the dual of upper composition. It requires that first applying the bankruptcy rule using

a too pessimistic value of the estate, revising the liabilities accordingly, and then dividing the remainder

of the estate leads to the same result as directly applying the bankruptcy rule to the correct value of the

estate.
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Under the function dpropij , the estate is divided in proportion to the liabilities. If the estate

exceeds the sum of the liabilities, then every claimant receives his claim.3

The function dpropij may not lead to integers, even if the estate is an integer. It is for

this reason that Moulin (2000) describes the priority rules as the most natural rationing

methods in the discrete model.

There are many ways to define a proportional rule while taking the integer require-

ments into account. We present two such constructions here leading to the fair propor-

tional bankruptcy rule and the quota bankruptcy rule, respectively. The fair proportional

bankruptcy rule is based on the fairness principle that agents with equal claims should

receive equal payments.

Given a set X ⊂ RI
+, we define

bXc = {f ∈ NI
0 | ∃x ∈ X such that f = bxc},

where bxc denotes the vector obtained by taking for every i ∈ I the floor of xi, the largest

integer which is less than or equal to xi.

Definition 2. Given a vector of liabilities Li ∈ NI
0 of agent i ∈ I, the fair proportional

bankruptcy rule bpropi : N0 → NI
0 is defined by

bpropi = b
bdpropi (R+)c
i .

Under the fair proportional bankruptcy rule, all possible real-valued payment vectors

dpropi (R+) are first rounded down to obtain the set of feasible payments Ti = bdpropi (R+)c.
Next, the fair proportional bankruptcy rule bpropi is defined by setting it equal to the

bankruptcy rule bTii induced by Ti. Clearly, bpropi satisfies the fairness criterion that equal

claimants receive an equal payment.

It is easily verified that bdpropi (R+)c satisfies the conditions of Proposition 1, so bpropi

satisfies Assumption 1.

We illustrate the definitions of bankruptcy rule and set of feasible payments in the

following example.

Example 1. We have three agents I = {1, 2, 3}. Agent 1 has an initial endowment z1 = 1

and his liabilities are L1 = (0, 2, 2) as presented in Table 1. We assume that agents 2 and 3

have no liabilities, so the estate of agent 1 is equal to his initial endowment, E1 = z1 = 1.

The network aspect is not relevant for this example and the only problem is therefore to

divide the estate of agent 1.

First, let us consider priority bankruptcy rules, where priorities are described by the

identity, π(1) = 1, π(2) = 2, and π(3) = 3, so first payments to agent 1 should be made, a

3The perfectly divisible case is treated in detail in Section 6.
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E1 L1

1 0 2 2

Table 1: The estate and claims on the estate of agent 1 in Example 1.

possible remainder of the estate to agent 2, and if there is still part of the estate remaining,

payments can be made to agent 3. Since agent 1 has no liability towards himself, it is easily

verified that the set of feasible payments is given by

F1 = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (0, 2, 2)}.

It therefore holds that bπ1 (1) = (0, 1, 0), so the entire estate goes to agent 2.

Second, let us consider the fair proportional bankruptcy rule. In this case we have

F1 = bdprop1 (R+)c = {(0, 0, 0), (0, 1, 1), (0, 2, 2)}.

It follows that bprop1 (1) = (0, 0, 0), so no payments are made to any agent in this case.

Another possibility in defining the proportional rule is to emphasize efficiency rather

than fairness and require that the entire estate be divided. In a different guise, that prob-

lem has been extensively studied in the rich political science literature on apportionment.

Apportionment addresses how to allocate a fixed number of seats among regions according

to their respective numbers of inhabitants as well as the related problem of how to allocate

a fixed number of seats among political parties according to their respective votes. In

bankruptcy problems, the estate Ei plays the role of the fixed number of seats, the agents

in the set I correspond to either regions or the political parties, and the liability Lij to

either the number of inhabitants of region j or the number of votes of political party j.

Balinski and Young (1975) give an overview of many methods for apportionment that

are used in practise, like the Jefferson method (known in the United states as the method of

greatest divisors and in Europe as the method of d’Hondt), the Hamilton method (generally

known as the Vinton method), the Webster method (known as the method of major frac-

tions), and the Huntington method (known as the method of equal proportions). Balinski

and Young (1975) make a new proposal themselves, called the quota method. Not all these

methods qualify as bankruptcy rules. For instance, the Alabama paradox refers to the fact

that the Hamilton method violates monotonicity, a property called house monotonicity in

the apportionment literature.

The quota method of Balinski and Young (1975) is actually not a single solution but

rather a set of solutions. One solution in the set is defined next and we call it the quota

bankruptcy rule. To define it, we need some additional notation. Given a permutation

π : I → {1, . . . , n}, the unique argument that has the highest priority according to π

9



among the arguments that maximize a function g defined on a subset K of I is denoted

by arg maxπk∈K g(k), so if j ∈ arg maxk∈K g(k) and for every i ∈ arg maxk∈K g(k) it holds

that π(j) ≤ π(i), then arg maxπk∈K g(k) = j.

Let some agent i ∈ I with liabilities Li and estate Ei <
∑

j∈I Lij be given and sup-

pose agent i makes a payment Pi ∈ NI
0. The set of agents whose payment is below their

proportional share is defined as

Bi(Pi, Ei) = {j ∈ I | Pij < Lij∑
k∈I Lik

Ei}.

Definition 3. Given a vector of liabilities Li ∈ NI
0 of agent i ∈ I and a permutation

π : I → {1, . . . , n}, the quota bankruptcy rule qπi : N0 → NI
0 is recursively defined as

follows.

qπi (0) = 0I .

If 0 < Ei <
∑

j∈I Lij, then

qπij(Ei) =

{
qπij(Ei − 1) + 1, if j = arg maxπk∈Bi(qπi (Ei−1),Ei)

Lik
qπik(Ei−1)+1

,

qπij(Ei − 1), otherwise.

If Ei ≥
∑

j∈I Lij, then

qπi (Ei) = Li.

The quota bankruptcy rule is defined recursively for increasing values of the estate.

Given some value of the estate Ei, it considers the agents j′ in the set Bi(q
π
i (Ei − 1), Ei)

whose payment qπij′(Ei−1) at estate Ei−1 is strictly below their quota (Lij′/(
∑

k∈I Lik))Ei

at estate Ei. Among those agents, it considers the agents k with the highest ratio of liability

to payment when the payment would be increased by one, Lik/(q
π
ik(Ei−1)+1), and selects

the agent with the highest priority according to π to receive the additional unit. It follows

from the results in Balinski and Young (1975) that the quota bankruptcy rule is monotonic.

It is clear that the quota bankruptcy rule always divides the entire estate when the total

liabilities exceed the estate. It is now easily verified that quota bankruptcy rules satisfy

Assumption 1. An interesting property of the quota bankruptcy rule is that it satisfies

b Lij∑
k∈I Lik

Eic ≤ qπij(Ei) ≤ d
Lij∑
k∈I Lik

Eie,

so the payment received by every agent is always in between his quota when rounded down

and his quota when rounded up.

Example 2. We consider again the primitives of Example 1, now assuming that the estate

of agent 1 is subject to the quota bankruptcy rule. As before, priorities are described by

the identity, π(1) = 1, π(2) = 2, and π(3) = 3. It is easily derived that

F1 = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), (0, 2, 2)}.
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It therefore holds that qπ1 (1) = (0, 1, 0), so the entire estate goes to agent 2. While efficient,

the quota bankruptcy rule is not fair. Agents 2 and 3 have identical claims on the estate

of agent 1, but receive different payments.

Example 3. As a final example, consider the all-or-nothing bankruptcy rule, in which

either all or none of the claims are being paid. An example of such a rule can be found

in Acemoglu et al. (2015) who study banking networks and assume that banks are forced

to liquidate their projects in full, e.g. because it is difficult to liquidate a fraction of

an ongoing real project. Other examples would arise in applications with supply chain

networks, where either a complete or no delivery takes place.

In Example 1, the set of feasible payments corresponding to the all-or-nothing bankruptcy

rule is given by

F1 = {(0, 0, 0), (0, 2, 2)}.

Using Proposition 1, it is easily shown that all-or-nothing bankruptcy rules satisfy As-

sumption 1.

3 Clearing Payment Matrices

Let some financial network (z, L, b) be given. An n× n payment matrix P ∈ NI×I
0 collects

the mutual payments of the agents, that is, Pij is the amount paid by agent i to agent j.

We make the normalizing assumption that Pii = 0 for all i ∈ I. The set of all payment

matrices with this property is denoted by M. The partial order ≤ on M is defined in the

usual way: For P, P ′ ∈M, it holds that P ≤ P ′ if and only if Pij ≤ P ′ij for all (i, j) ∈ I×I.
A payment matrix P ∈ M is feasible if for every i ∈ I it holds that Pi ∈ Fi, so

a payment matrix is feasible if every row i of the matrix belongs to the set of feasible

payments of agent i, that is payments are made in accordance with bankruptcy rules.

The set of all feasible payment matrices is denoted by P , so

P = {P ∈M | ∀i ∈ I, Pi ∈ Fi}.

The sum of the initial endowments of an agent and the payments received from the other

agents determines an agent’s asset value, more formally defined as follows.

Definition 4. Given a financial network (z, L, b) and a payment matrix P ∈M, the asset

value ai(P ) of agent i ∈ I is given by

ai(P ) = zi +
∑
j∈I

Pji.

11



The asset value of an agent will play the role of the estate Ei.

Subtracting the payments as made by an agent from his asset value yields an agent’s

equity. More formally, we have the following definition.

Definition 5. Given a financial network (z, L, b) and a payment matrix P ∈M, the equity

ei(P ) of agent i ∈ I is given by

ei(P ) = ai(P )−
∑
j∈I

Pij = zi +
∑
j∈I

(Pji − Pij) . (2)

If agent i ∈ I has negative equity even when all agents pay all their liabilities, so if

ei(L) = zi +
∑
j∈I

(Lji − Lij) < 0,

then agent i has so-called fundamental default. When an agent defaults only because other

agents are not fully paying their liabilities to him, then the agent is said to have contagion

default.

It holds that∑
i∈I

ei(P ) =
∑
i∈I

zi +
∑
i∈I

∑
j∈I

(Pji − Pij) =
∑
i∈I

zi. (3)

Payment matrices only lead to a redistribution of initial endowments.

Example 4. Consider a financial network (z, L, b) with three agents I = {1, 2, 3} and

endowments and liabilities as presented in Table 2. For every i ∈ I, the bankruptcy rule bi

equals the priority bankruptcy rule bπ where π is the identity, so agent 1 has priority over

agent 2, who in turn has priority over agent 3.

z L

1 0 2 2

1 2 0 2

1 0 0 0

Table 2: The endowments and liabilities of the agents in Example 4.

The payment matrix P in Table 3 is feasible since each row i is selected from the set

of feasible payments Fi. Agent 1 has equity e1(P ) = 2, but still has unpaid liabilities to

both agents 2 and 3. Agent 2 has negative equity, e2(P ) = −2. The payment matrix P

suffers from two undesirable features. Agent 1 has a positive equity value and outstanding

liabilities. Agent 2 has a negative equity value.
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z L P a(P ) e(P )

1 0 2 2 0 1 0 3 2

1 2 0 2 2 0 2 2 -2

1 0 0 0 0 0 0 3 3

Table 3: An undesirable payment matrix in Example 4.

To overcome this situation, we extend the notions of priority of creditors and limited

liability defined in the perfectly divisible case for proportional rules by Eisenberg and Noe

(2001) to our discrete setup with general bankruptcy rules.4

Definition 6. Given a financial network (z, L, b), P ∈ M is a clearing payment matrix if

it satisfies the following three properties:

1. Feasibility : P ∈ P .

2. Limited liability : For every i ∈ I, ei(P ) ≥ 0.

3. Priority of creditors : For every i ∈ I, for every P ′i ∈ Fi such that P ′i > Pi it holds

that ai(P )−
∑

j∈I P
′
ij < 0.

A clearing payment matrix is feasible, leads to non-negative equity values, and satisfies

priority of creditors. Notice that priority of creditors is satisfied whenever Pi = Li since

there is no P ′i ∈ Fi with P ′i > Pi in that case.5

The following proposition shows that in case the asset value of an agent is sufficient to

pay all his liabilities, then the agent will do so in a clearing payment matrix.

Proposition 2. Let P be a clearing payment matrix for the financial network (z, L, b). For

every i ∈ I, if ai(P ) ≥
∑

j∈I Lij, then Pi = Li.

Proof. Suppose not. Let i ∈ I be such that ai(P ) ≥
∑

j∈I Lij and Pi < Li. We define

P ′i = Li, which is an element of Fi by Assumption 1. It holds that

ai(P )−
∑
j∈I

P ′ij = ai(P )−
∑
j∈I

Lij ≥ 0,

4Eisenberg and Noe (2001) refers to ‘priority of creditors’ as ‘priority of debt claims’ or ‘absolute

priority’ and to ‘limited liability’ as ‘limited liability (of equity)’.
5In the perfectly divisible setup, priority of creditors is defined as follows by Eisenberg and Noe (2001):

For every i ∈ I, if Pi < Li, then ei(P ) = 0. In the presence of integer payments, this condition is too

strong. We therefore use the requirement in Condition 3 of Definition 6 that agent i ends up with negative

equity if he chooses a feasible payment that is strictly higher, whereas all other agents remain paying the

same.
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so P violates priority of creditors and is therefore not a clearing payment matrix, a con-

tradiction. 2

For the perfectly divisible setup with proportional rules, Eisenberg and Noe (2001) show

that when all endowments are positive, then there is a unique clearing payment matrix.

Although in general multiple clearing payment matrices can co-exist, Eisenberg and Noe

(2001) show that the final value of equity is the same irrespective of the clearing matrix

that is being used. Glasserman and Young (2015) present other conditions to get a unique

clearing payment matrix. For the perfectly divisible setup with general bankruptcy rules,

though not allowing for agent specific bankruptcy rules, uniqueness of final equity values

is shown in Groote Schaarsberg et al. (2013).

The next example shows that in the case with indivisibilities, the clearing payment

matrix with fair proportional bankruptcy rules may not be unique even when all initial en-

dowments are positive. More importantly, the resulting values of equity might be different

as well.

Example 5. As in Example 4, we consider a financial network (z, L, b) with three agents

I = {1, 2, 3} and endowments and liabilities as presented in Table 2, but replace the priority

bankruptcy rules of that example by fair proportional bankruptcy rules.

Table 4 presents the clearing payment matrix P and Table 5 the clearing payment

matrix P . There are no other clearing payment matrices. The matrices P and P induce

different equity values, e(P ) = (1, 1, 1) and e(P ) = (0, 0, 3).

z L P a(P ) e(P )

1 0 2 2 0 0 0 1 1

1 2 0 2 0 0 0 1 1

1 0 0 0 0 0 0 1 1

Table 4: The clearing payment matrix P in Example 5, fair proportional bankruptcy rules.

z L P a(P ) e(P )

1 0 2 2 0 1 1 2 0

1 2 0 2 1 0 1 2 0

1 0 0 0 0 0 0 3 3

Table 5: The clearing payment matrix P in Example 5, fair proportional bankruptcy rules.

It holds that e1(P ) = e2(P ) = 1, so there is some equity left for both agents 1 and 2

when the payment matrix P is used. Nevertheless, Condition 3 of Definition 6, priority of
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creditors, holds since there is no higher feasible payment compatible with the asset values

of agents 1 and 2.

Although Example 5 shows the possibility of multiple values of equity, the next section

puts bounds on the maximum differences that are possible. For financial applications it

will turn out that the consequences of having multiple equity values are not very serious.

On the other hand, if the application concerns a student exchange network, then some

college not accepting a couple of students may trigger many other colleges doing the same,

and in this case there could be significant effects.

4 Clearing Payment Matrices as Fixed Points

In this section, we characterize a clearing payment matrix as a fixed point of an appropri-

ately defined function and derive the bounds for the difference between the values of equity

for a given agent in any two clearing payment matrices.

Given a financial network (z, L, b), let ϕ : P → P be defined by

ϕij(P ) = bij(ai(P )), P ∈ P , i, j ∈ I.

Proposition 3. Let a financial network (z, L, b) be given. The matrix P ∈ P is a clearing

payment matrix if and only if P = ϕ(P ).

Proof.

(⇒)

Consider some i ∈ I. We define P ′i = ϕi(P ). Since Pi ∈ Fi and bi is monotonic, it holds

that either (a) Pi < P ′i , or (b) Pi = P ′i , or (c) Pi > P ′i .

Case (a). Pi < P ′i .

We have that

ai(P )−
∑
j∈I

P ′ij = ai(P )−
∑
j∈I

ϕij(P ) = ai(P )−
∑
j∈I

bij(ai(P )) ≥ 0.

This contradicts the fact that P satisfies priority of creditors. We conclude that Case (a)

cannot occur.

Case (c). Pi > P ′i .

Since P satisfies limited liability, it holds that ei(P ) ≥ 0. Let Ei ∈ N0 be such that

Pi = bi(Ei). From bi(Ei) = Pi > P ′i = bi(ai(P )), it follows that ai(P ) < Ei. Together with

the fact that∑
j∈I

bij(Ei) =
∑
j∈I

Pij = ai(P )− ei(P ) ≤ ai(P ),
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this implies by Assumption 1 that bi(ai(P )) = bi(Ei) and therefore that P ′i = Pi, a contra-

diction to Pi > P ′i . We conclude that Case (c) cannot occur.

It now follows that Case (b) holds, so Pi = P ′i = ϕi(P ).

(⇐)

1. Feasibility. It holds that P ∈ P by the definition of ϕ.

2. Limited liability. For every i ∈ I, we have that

Pi = ϕi(P ) = bi(ai(P )),

so

ei(P ) = ai(P )−
∑
j∈I

Pij = ai(P )−
∑
j∈I

bij(ai(P )) ≥ ai(P )− ai(P ) = 0.

3. Priority of creditors. Let i ∈ I and P ′i ∈ Fi be such that P ′i > Pi. Let E ′i ∈ N0 be

such that bi(E
′
i) = P ′i . Since bi(ai(P )) = Pi < P ′i = bi(E

′
i), monotonicity of bi implies that

E ′i > ai(P ).

Suppose, by contradiction, that ai(P )−
∑

j∈I P
′
ij ≥ 0. Then it holds that∑

j∈I

bij(E
′
i) =

∑
j∈I

P ′ij ≤ ai(P ).

Since E ′i > ai(P ), it follows from Assumption 1 that

Pi = bi(ai(P )) = bi(E
′
i).

We conclude that Pi = P ′i , a contradiction to the assumption that P ′i > Pi. 2

A lattice is a partially ordered set in which every pair of elements has a supremum

and an infimum. A complete lattice is a lattice in which every non-empty subset has a

supremum and an infimum. Any finite lattice can be shown to be complete. The infimum

of a two-point set {x, x′} is denoted by x ∧ x′ and its supremum by x ∨ x′.
The matrices in P are partially ordered by ≤, since ≤ is a reflexive, transitive, and

antisymmetric order on P .
Consider two matrices P, P ′ ∈ P . We define the matrices P , P ∈ P by

P i = Pi ∧ P ′i , i ∈ I,
P i = Pi ∨ P ′i , i ∈ I.

Since Fi is totally ordered by ≤, it holds that P i is either equal to Pi or to P ′i . Similarly,

it holds that P i is either equal to Pi or to P ′i . It is now immediate that P , P ∈ P and that

P ∧ P ′ = P and P ∨ P ′ = P . Every pair of matrices in P therefore has a supremum and

an infimum in P . We conclude that the set P is a complete lattice.
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Proposition 4. Consider a financial network (z, L, b). The set of clearing payment ma-

trices is a complete lattice. In particular, there exists a least clearing payment matrix P−

and a greatest clearing payment matrix P+.

Proof. We show that ϕ is monotone. Let P, P ′ ∈ P be such that P ≤ P ′. For every

i ∈ I, it holds that

ϕi(P ) = bi(ai(P )) = bi(zi +
∑
j∈I

Pji) ≤ bi(zi +
∑
j∈I

P ′ji) = bi(ai(P
′)) = ϕi(P

′),

where the inequality follows from the monotonicity of bi.

By Tarski’s fixed point theorem (Tarski, 1955), the set of fixed points of ϕ is a complete

lattice with respect to ≤ . It follows that the set of fixed points has a least and a greatest

element. By Proposition 3, the set of fixed points of ϕ is equal to the set of clearing pay-

ment matrices. 2

Example 5 shows that two clearing payment matrices may lead to different values of

equity. To analyze the size of the possible differences, we introduce the following notation.

For every i ∈ I, for every Pi ∈ Fi \ {Li}, we define Si(Pi) as the unique successor of Pi, i.e.

the lowest feasible payment vector that is strictly greater than Pi. Note that Si(Pi) is not

defined if Pi = Li.

For every i ∈ I, the number κi equals the maximal difference between total payments

in two consecutive feasible payment vectors for agent i. If Fi consists of a single element,

so Fi = {Li} = {0I}, then we define κi = 1. Otherwise, Fi has at least two elements and

we define

κi = max
Pi∈Fi\{Li}

∑
j∈I

(Sij(Pi)− Pij).

The bankruptcy rules discussed in Section 2 give three typical numbers for κi. If bi is a pri-

ority bankruptcy rule or a quota bankruptcy rule, then κi = 1. If bi is the fair proportional

bankruptcy rule and Li > 0, then κi is at most as large as the number of non-zero liabilities

λi = #{j ∈ I | Lij > 0} of agent i, which in turn is less than the number of agents n. If bi

corresponds to the all-or-nothing bankruptcy rule and Li > 0, then κi =
∑

j∈I Lij equals

the sum of the liabilities of agent i.

The numbers κi for i ∈ I can be used to provide lower and upper bounds on the maxi-

mum difference in equity value that results from two different clearing payment matrices.

Proposition 5. Consider a financial network (z, L, b) and two clearing payment matrices

P and P ′ with P ≤ P ′. For every i ∈ I, the difference between the value of equity at P and

P ′ satisfies −(κi − 1) ≤ ei(P
′)− ei(P ) ≤

∑
j∈I\{i}(κj − 1).
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Proof. We argue first that, for every i ∈ I,

max{0, ai(P )−
∑

j∈ILij} = ai(P )−
∑

j∈IPij − εi(P ) = ei(P )− εi(P ), (4)

where

εi(P ) ∈

{0}, if ai(P ) ≥
∑

j∈I Lij,

{0, . . . , κi − 1}, if ai(P ) <
∑

j∈I Lij.

We distinguish two cases: (a) ai(P ) ≥
∑

j∈I Lij and (b) ai(P ) <
∑

j∈I Lij.

Case (a). ai(P ) ≥
∑

j∈I Lij.

It holds that

max{0, ai(P )−
∑

j∈ILij} = ai(P )−
∑

j∈ILij = ai(P )−
∑

j∈IPij = ei(P ),

where the second equality follows from Proposition 2. It follows that εi(P ) = 0.

Case (b). ai(P ) <
∑

j∈I Lij.

It holds that

εi(P ) = ei(P )−max{0, ai(P )−
∑

j∈ILij} = ei(P ). (5)

Since P is a clearing payment matrix, it follows that εi(P ) ∈ N0. Moreover, we have by

Proposition 3 that∑
j∈IPij =

∑
j∈Ibij(ai(P )) ≤ min{

∑
j∈ILij, ai(P )} = ai(P ) <

∑
j∈NLij.

Since P satisfies priority of creditors, we have that

ai(P )−
∑
j∈I

Sij(Pi) < 0.

Finally, using Equation (5), it follows that

εi(P ) = ei(P ) = ai(P )−
∑
j∈I

Pij ≤ ai(P )−
∑
j∈I

Sij(Pi) + κi ≤ κi − 1.

This completes the proof that Equation (4) holds.

Let some i ∈ I be given. Since P ≤ P ′, we have that

max{0, ai(P )−
∑

j∈ILij} ≤ max{0, ai(P ′)−
∑

j∈ILij},

so it follows from Equation (4) that

ei(P )− εi(P ) ≤ ei(P
′)− εi(P ′).
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Rewriting this inequality, we obtain

ei(P
′)− ei(P ) ≥ εi(P

′)− εi(P ) ≥ −(κi − 1).

Using Equation (3), we find that

ei(P
′)− ei(P ) =

∑
j∈I\{i}

(ej(P )− ej(P ′)) ≤
∑

j∈I\{i}

(κj − 1),

which completes the proof. 2

By Proposition 4, it holds for any clearing payment matrix P that P− ≤ P ≤ P+.

Natural choices in Proposition 5 are therefore P = P− and P ′ = P+.

In Example 5 it holds that κ1 = κ2 = 2 and κ3 = 1. There are only two possible

clearing payment matrices, P and P . It holds that e1(P )− e1(P ) = e2(P )− e2(P ) = −1 =

−(κ1−1) = −(κ2−1), so the lower bound of Proposition 5 is tight. Since e3(P )− e3(P ) =

2 = (κ1 − 1) + (κ2 − 1), the upper bound of Proposition 5 is tight as well.

In a financial network with priority or quota bankruptcy rules, or more generally, in a

financial network where κi = 1 for every i ∈ I, Proposition 5 implies that the difference

between the value of equity for a given agent at the least clearing payment matrix P− and

any clearing payment matrix P is zero. The value of equity is uniquely determined in this

case.

In a financial network with fair proportional bankruptcy rules, the difference between

the value of equity of agent i at the greatest clearing payment matrix P+ and any clearing

payment matrix P is bounded between −λi ≥ −(n − 1) and
∑

j∈I\{i}(λj − 1) ≤ (n −
1)(n− 1− 1) = (n− 1)(n− 2) by Proposition 5. If all bankruptcy rules are all-or-nothing,

then this difference is bounded between −(κi − 1) ≥ −
∑

j∈I Lij and
∑

j∈I\{i}(κj − 1) ≤∑
j∈I\{i}

∑
k∈I Ljk.

5 Decentralized Clearing

The literature on default in financial networks has so far always considered centralized

clearing procedures. In this section, we introduce a large class of decentralized clearing

processes. We show that any process in this class converges to the least clearing payment

matrix. Bounds on equity differences with the greatest clearing payment matrix are given

by Proposition 5.

In a centralized clearing procedure, implicitly all agents are filing for bankruptcy si-

multaneously and a clearing payment matrix is centrally computed. One possibility to do

so is by formulating an integer programming problem where the objective is to maximize
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the total payments that are made subject to feasibility constraints, see also Eisenberg and

Noe (2001) for a similar formulation in the perfectly divisible case with proportional rules.

maxP∈P
∑

i∈I
∑

j∈J Pij,

subject to
∑

j∈I(Pij − Pji) ≤ zi, i ∈ I. (6)

Proposition 6. Consider a financial network (z, L, b). The payment matrix P+ is the

unique solution to the maximization problem in (6).

Proof. Assume the payment matrix P ′ is a solution to the maximization problem

in (6). We show next that P ′ satisfies the conditions of Definition 6, so P ′ is a clearing

payment matrix.

1. Feasibility. Since P ′ ∈ P , feasibility is satisfied, that is payments are made in

accordance with bankruptcy rules.

2. Limited liability. For every i ∈ I, since
∑

j∈I(P
′
ij − P ′ji) ≤ zi, we have

ei(P
′) = zi +

∑
j∈I

(P ′ji − P ′ij) ≥ 0,

so P ′ satisfies limited liability.

3. Priority of creditors. Suppose there is i′ ∈ I and P ∗i′ ∈ Fi′ such that P ∗i′ > P ′i′ and

ai′(P
′)−

∑
j∈I

P ∗i′j ≥ 0. (7)

Complete the definition of the matrix P ∗ by setting P ∗i = P ′i for i ∈ I \ {i′}. We have that∑
j∈I

(P ∗i′j − P ∗ji′) =
∑
j∈I

(P ∗i′j − P ′ji′) ≤ ai′(P
′)−

∑
j∈I

P ′ji′ = zi′ +
∑
j∈I

(P ′ji′ − P ′ji′) = zi′ ,

where the inequality follows from (7). For every i ∈ I \ {i′}, it holds that∑
j∈I

(P ∗ij − P ∗ji) =
∑
j∈I

(P ′ij − P ∗ji) ≤
∑
j∈I

(P ′ij − P ′ji) ≤ zi,

where the last inequality follows since P ′ is a solution to the maximization problem in (6).

We have shown that P ∗ satisfies all feasibility constraints of the maximization problem

in (6). Since P ∗ > P ′, we obtain a contradiction to P ′ being an optimal solution.

Consequently, for every i ∈ I, for every P ∗i ∈ Fi such that P ∗i > P ′i , it holds that

ai(P
′)−

∑
j∈I P

∗
ij < 0 and P ′ satisfies priority of creditors.

A solution to the maximization problem in (6) is therefore a clearing payment ma-

trix. We show next that the greatest clearing payment matrix P+, guaranteed to exist by

Proposition 4, satisfies the feasibility constraints of the maximization problem (6).
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It holds that P+ ∈ P . Since P+ satisfies limited liability, for every i ∈ I it holds that

ei(P
+) = zi +

∑
j∈I

(P+
ji − P+

ij ) ≥ 0.

The proposition now follows from the observation that P+ is the greatest clearing pay-

ment matrix and that the objective function in (6) is strictly monotonic in all entries of P. 2

The only feature of the objective function in maximization problem (6) that is used in

the proof of Proposition 9 is its strict monotonicity in each entry of P. If we replace the

objective function
∑

i∈I
∑

j∈I Pij in (6) by any objective function o : P → R that is strictly

monotonic on P , then we get P+ as the unique solution. So even if the objective function

is such that some agents are favored to others, i.e. carry a higher weight in the objective

function, or if smaller payments are relatively more important than bigger payments, i.e.

the marginal benefits from additional payments are decreasing and the objective function

is concave, it would still be the case that P+ emerges as the unique solution.

Eisenberg and Noe (2001) formulate the fictitious default algorithm to find a clearing

payment matrix for the perfectly divisible case with proportional rules. It starts by as-

suming that all agents pay their liabilities in full and then checks whether defaults occur.

If no first-order default arises, then the algorithm is terminated. Otherwise, it is assumed

that the agents involved in first-order defaults end up with zero equity, whereas the other

agents pay their liabilities in full, a problem that corresponds to solving a system of linear

equations. If no second-order defaults occur, then the algorithm is terminated. Otherwise

it proceeds by setting the equity of first-order and second-order defaulting agents to zero,

and so on. It is shown that this algorithm terminates in at most n steps to the greatest

clearing payment matrix. Variations on this algorithm have been presented in Rogers and

Veraart (2013) and Elliott et al. (2014).

The centralized approaches towards clearing have their limitations. In reality, agents

do not file for bankruptcy simultaneously and even for agents that are declared bankrupt,

the settlement of payments does not occur at the same time. Indeed, not all assets of

a bankrupt agent are equally liquid and the liquidation process may take considerable

time. Moreover, examples like the Lehman bankruptcy or the European sovereign debt

problems involve many different (international) institutions. As emphasized by Elsinger

et al. (2006) and Gai and Kapadia (2010), the complexity of the financial system means

that policymakers have only partial information about the true linkages between financial

intermediaries. The information that is required for a centralized approach is simply not

available.

In this section, we introduce a general class of decentralized clearing processes with the

following features. At each point in time, an agent is selected by means of a process that is
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potentially history-dependent and stochastic. This agent would typically be an agent that

has filed for bankruptcy. Next, the selected agent makes any amount of feasible payments

to the other agents. The amount that is paid depends only on local information and is

determined by a process that again is potentially history-dependent and stochastic. The

only requirement that we make is that the selected agent be eligible, that is can make a

positive incremental payment without ending up with negative equity.

Definition 7. Let (z, L, b) be a financial network. The set of eligible agents at P ∈ P is

equal to

G(P ) = {i ∈ I|∃P ′i ∈ Fi such that P ′i > Pi and ai(P )−
∑

j∈IP
′
ij ≥ 0}.

It is easily verified that a payment matrix P ∈ P violates priority of creditors if and

only if G(P ) 6= ∅.
The requirement of making a payment that does not violate limited liability addresses

another problematic aspect of the centralized approach, which is that the payment matrices

as derived in for instance the intermediate steps of the fictitious default algorithm lead to

negative equity values and are therefore not implementable.

Next, we define the general class of decentralized clearing processes described before.

Definition 8. Let some financial network (z, L, b) be given. A decentralized clearing process

operates as follows.

Step 1 We define k = 1 and P 1 = 0I×I . If G(P 1) = ∅, then stop. Otherwise, continue to

Step 2.

Step 2 Select any agent ik+1 ∈ G(P k) and any payment vector P k+1
ik+1
∈ Fik+1

such that

P k+1
ik+1

> P k
ik+1

and aik+1
(P k) −

∑
j∈I P

k+1
ik+1j

≥ 0. The matrix P k+1 is completed by

defining P k+1
j = P k

j for every j ∈ I \ {ik+1}.

Step 3 If G(P k+1) = ∅, then stop. Otherwise, increase the value of k by 1 and return to

Step 2.

We start from P 1 = 0I×I . This payment matrix satisfies feasibility and limited liability,

and violates priority of creditors if and only if G(P 1) 6= ∅. In Step 2 of the process, the

selected eligible agent ik+1 ∈ G(P k) is required to make a positive (not necessarily maximal)

additional payment P k+1
ik+1
− P k

ik+1
. The payment matrix P k+1 clearly satisfies feasibility. It

satisfies limited liability by construction for the selected agent. Since the payments for the

other agents only increase, it can be shown by induction that for them limited liability

is satisfied as well. The payment matrix P k+1 violates priority of creditors if and only if

G(P k+1) 6= ∅.
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There are many alternative ways in which agents can be selected in Step 2 of a decen-

tralized clearing process. Typically, the selection would be determined by the timing of

agents filing for bankruptcy and the timing of the liquidation of their assets. The payment

vector in Step 2 can be the greatest payment vector that satisfies limited liability, but it

is also possible that the assets of a defaulting agent are not all simultaneously liquidated

and therefore sequential payments to the agent’s creditors are made. In this way, a de-

centralized clearing process allows for selling the liquid assets first and the illiquid ones

later.

Although our clearing processes are decentralized, a substantial amount of information

gathering may still be required in order to carry them out. If, for instance, we consider

the big lawsuit resulting from the bankruptcy of a highly connected firm, then even in a

decentralized clearing process, all the legal entities that have a relationship to this highly

connected firm should be at the table, either directly or via representatives, in order to

select a feasible payment vector in Step 2 of Definition 8. For instance, in case the prevailing

bankruptcy rule is a mix of priority and proportional rules, then at the very least all the

liabilities having the highest priority should be determined in order to select a feasible

payment vector. In case all liabilities belong to the same priority class, then the claims

of all the claimants of the firm should be known in order to determine a feasible payment

vector.

We illustrate the decentralized clearing process by means of the following example.

Example 6. As in Examples 4 and 5, we consider the financial network (z, L, b) with three

agents I = {1, 2, 3} and endowments and liabilities as presented in Table 6.

z L

1 0 2 2

1 2 0 2

1 0 0 0

Table 6: The endowments and liabilities of the agents in Example 6.

We first consider the case where b only involves fair proportional bankruptcy rules. The

sets of feasible payments are given by

F1 = {(0, 0, 0), (0, 1, 1), (0, 2, 2)},
F2 = {(0, 0, 0), (1, 0, 1), (2, 0, 2)},
F3 = {(0, 0, 0)}.

We start from P 1 = 0I×I . Under P 1 it holds that G(P 1) = ∅, so no agent is eligible

to be selected. Indeed, agents 1 and 2 both have an asset value of 1 unit, but since
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∑
j∈I(S1j(P

1
1 )−P 1

1j) =
∑

j∈I(S2j(P
1
2 )−P 1

2j) = 2, their next higher payment vector requires

an asset value of 2 units. We stop at the least clearing payment matrix P− as derived in

Example 5.

Now let b only involve priority bankruptcy rules, where agent 1 has priority over agent 2

and agent 2 has priority over agent 3. The sets of feasible payments are given by

F1 = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (0, 2, 2)},
F2 = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (2, 0, 1), (2, 0, 2)},
F3 = {(0, 0, 0)}.

Let us start the process again with P 1 = 0I×I . Under P 1, both agents 1 and 2 are eligible to

be selected, G(P 1) = {1, 2}. Suppose agent 1 files for bankruptcy first. Since a1(P
1) = 1,

the only possible payment vector is (0, 1, 0), where agent 1 pays 1 unit to agent 2 and the

payment matrix is updated to P 2 as presented in Table 7.

P 1

0 0 0

0 0 0

0 0 0

P 2

0 1 0

0 0 0

0 0 0

P 3

0 1 0

2 0 0

0 0 0

P 4

0 2 1

2 0 0

0 0 0

P 5

0 2 1

2 0 1

0 0 0

Table 7: The total payments in iterations 1, 2, 3, 4, and 5 in Example 6.

Under P 2 only agent 2 is eligible, G(P 2) = {2}. Since a2(P
2) = 2, there are now two

possible payment vectors for agent 2, (1, 0, 0) and (2, 0, 0). Suppose the liquidator always

selects the maximal payment compatible with limited liability, b2(a2(P
2)) = (2, 0, 0). Agent

2 pays 2 units to agent 1 and 0 units to agent 3. The payment matrix is now P 3 as presented

in Table 7.

Under P 3 only agent 1 is eligible, G(P 3) = {1}. Since a1(P
3) = 3, there are two

possible payment vectors for agent 1, (0, 2, 0) and (0, 2, 1). Under the maximal payment of

b1(a1(P
3)) = (0, 2, 1), agent 1 makes an additional transfer of 1 unit to agent 2 and makes

a transfer of 1 unit to agent 3, and the new payment matrix is equal to P 4. At P 4, it holds

that G(P 4) = {2}, the only possible payment vector is (2, 0, 1), so agent 2 makes a transfer

of 1 unit to agent 3. Since G(P 5) = ∅, there are no more eligible agents and the process is

over at the payment matrix P 5 of Table 7. In this example, the matrix P 5 is the unique

clearing payment matrix.

Proposition 7. Given a financial network (z, L, b), a decentralized clearing process termi-

nates in a finite number of iterations with the least clearing payment matrix P−.

Proof. Finite convergence is satisfied, since total payments made increase by at least

one unit in each iteration and total payments have to be bounded above by the amounts

involved in the liabilities, a finite number.
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Assume that (P 1, . . . , PK) corresponds to the realization of a decentralized process. We

show that PK is a clearing payment matrix by verifying the conditions of Definition 6.

1. Feasibility. In each iteration a feasible payment vector is selected, thus PK ∈ P .

2. Limited liability. It is immediate to verify that P 1 = 0I×I satisfies limited liability.

We proceed by induction. Assume, for some k < K, P k satisfies limited liability. For the

selected agent ik+1 it holds that∑
j∈I

P k+1
ik+1j

≤ aik+1
(P k) = aik+1

(P k+1).

For every agent i ∈ I \ {ik+1}, we have∑
j∈I

P k+1
ij =

∑
j∈I

P k
ij ≤ ai(P

k) ≤ ai(P
k+1),

where the first inequality follows from the induction hypothesis.

We conclude that P k satisfies limited liability for every k ∈ {1, . . . , K}.
3. Priority of creditors. Suppose PK does not satisfy priority of creditors. It follows

that G(PK) 6= ∅, which contradicts that the decentralized clearing process terminates at

PK .

We have shown that PK is clearing payment matrix. To show that it is the least clearing

payment matrix, let k be the last iteration in {1, . . . , K} such that P k ≤ P−. Notice that

such a k exists since P 1 ≤ P−.

Suppose k < K.We argue first that P k+1 ≤ ϕ(P k). By construction of P k+1
ik+1

it holds that∑
j∈I P

k+1
ik+1j

≤ aik+1
(P k), so clearly P k+1

ik+1
≤ bik+1

(aik+1
(P k)) = ϕik+1

(P k). For i ∈ I \ {ik+1},
it holds that

P k+1
i = P k

i ≤ bi(ai(P
k)) = ϕi(P

k),

where the inequality follows from the fact that P k satisfies limited liability.

Then we have that

P k+1 ≤ ϕ(P k) ≤ ϕ(P−) = P−,

where the second inequality follows from the monotonicity of ϕ as shown in the proof of

Proposition 4 and the equality from the fact that P− is a fixed point of ϕ by Proposition 3.

This contradicts the definition of k as the last iteration such that P k ≤ P−.

Consequently, we have that k = K. Since PK ≤ P− and PK is a clearing payment

matrix, it follows that PK = P−. 2

Whereas the centralized procedures yield the greatest payment matrix P+, a decentral-

ized process converges to the least payment matrix P−. Surprisingly, the convergence to
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P− is independent of the precise specification of the decentralized process in the following

sense. The process to select eligible agents is potentially history-dependent and stochastic.

The additional payments are only required to be positive and not necessarily maximal,

taking into account limited liability. They may be determined in a potentially history-

dependent and stochastic way too. What is important is that selected agents pay some

extra amount in accordance with the bankruptcy rules. If payments are not in accordance

with the bankruptcy rules, then one might end up with a different clearing payment matrix.

For instance, in case agents could decide themselves whom to pay, they have incentives to

pay those agents on which they have claims themselves. Obviously, without enforcement

of payments, agents would prefer not to pay at all.

Whether the difference between a centralized procedure and a decentralized process is

substantial or not depends on the values of κi, see Proposition 5. For almost any financial

application, κi is a very small number when compared to the size of the liabilities, and

so the difference between a centralized procedure and a decentralized process will not be

significant.

6 The Perfectly Divisible Case

In this section we analyze the perfectly divisible case and relate it to our integer approach.

A financial network (z, L, d) in the perfectly divisible case consists of endowments z ∈
RI

+, a liability matrix L ∈ RI×I
+ , and division rules d = (di)i∈I with di : R+ → RI

+. We use

the term division rule rather than bankruptcy rule to emphasize that we are operating in

the perfectly divisible setup.

Assumption 2. Let (z, L, d) be a financial network in the perfectly divisible case. For

every i ∈ I, the division rule di is a monotonic function di : R+ → RI
+ such that:

1. For every Ei ∈ R+,
∑

j∈I dij(Ei) = min{
∑

j∈I Lij, Ei}.

2. For every Ei ∈ R+, for every j ∈ I, dij(Ei) ≤ Lij.

It can be shown that any division rule satisfying Assumption 2 is continuous.

In Section 2 we defined the proportional division rule dprop, which is easily verified to

satisfy Assumption 2. When all division rules are proportional, we have exactly the setting

of Eisenberg and Noe (2001). The case with general division rules, though not allowing

for agent specific bankruptcy rules, corresponds to the framework of Groote Schaarsberg

et al. (2013).

In Section 2 we provided a construction to turn the proportional division rule into the

fair proportional bankruptcy rule. The next definition extends this construction to any

division rule.
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Definition 9. Given a vector of liabilities Li and a division rule di : R+ → RI
+ of agent

i ∈ I, the induced bankruptcy rule bi : N0 → NI
0 of agent i is defined by bi = b

bdi(R+)c
i .

The next result establishes that if di is a division rule satisfying Assumption 2, then

the induced bankruptcy rule bi satisfies Assumption 1.

Proposition 8. Given a vector of liabilities Li and a division rule di : R+ → RI
+ of agent

i ∈ I satisfying Assumption 2, the induced bankruptcy rule b
bdi(R+)c
i satisfies Assumption 1.

Proof. We show that bdi(R+)c being a subset of NI
0 is totally ordered by ≤, contains

0I , and its maximal element is Li. The result then follows from Proposition 1.

Monotonicity of di implies that bdi(R+)c is totally ordered by ≤ .

Since di maps into RI
+ and

∑
j∈I dij(0) = min{

∑
j∈I Lij, 0} = 0, it follows that di(0) =

0I , so 0I ∈ bdi(R+)c.
Since, for every Ei ∈ R+, for every j ∈ I, dij(Ei) ≤ Lij by Assumption 2.2, it follows

that bdi(R+)c is a subset of NI
0, and its maximal element is Li. 2

We have shown in Section 2 that if bi is the fair proportional bankruptcy rule and

Li > 0, then κi is at most as large as the number of non-zero liabilities λi of agent i, which

in turn is less than the number of agents n. The next result shows that the latter inequality

holds for any induced bankruptcy rule.

Proposition 9. Consider a financial network (z, L, b). Let i ∈ I be such that Li > 0 and

the bankruptcy rule bi is induced by a division rule di satisfying Assumption 2. It holds

that κi ≤ λi ≤ n− 1.

Proof. Take any Pi ∈ Fi \ {Li}. Suppose there is j ∈ I such that Sij(Pi) − Pij ≥ 2.

Let Ei, E
′′
i ∈ R+ be such that Pij = bdij(Ei)c and Sij(Pi) = bdij(E ′′i )c. By continuity and

monotonicity of di, there is E ′i ∈ R+ such that Ei < E ′i < E ′′i and

Pij = bdij(Ei)c < bdij(E ′i)c < bdij(E ′′i )c = Sij(Pi).

By monotonicity of di, we have that Pi < bdi(E ′i)c < Si(Pi). Since bdi(E ′i)c ∈ Fi, this

contradicts the definition of Si(Pi).

Consequently, it holds for every j ∈ I that Sij(Pi)− Pij ∈ {0, 1}, so∑
j∈I

(Sij(Pi)− Pij) =
∑

{j∈I|Lij>0}

(Sij(Pi)− Pij) ≤ #{j ∈ I | Lij > 0} = λi ≤ n− 1,

and therefore

κi = max
Pi∈Fi\{Li}

∑
j∈I

(Sij(Pi)− Pij) ≤ λi ≤ n− 1.
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2

The all-or-nothing bankruptcy rule is an example of a bankruptcy rule satisfying As-

sumption 1 that is not induced by any division rule satisfying Assumption 2. Indeed,

suppose i ∈ I is an agent having liabilities Li = (0, 2, 2). Let di be a division rule satisfying

Assumption 2. Since di is continuous, the set bdi(R+)c contains an element fi such that

fi2 = 1, as well as an element f ′i such that f ′i3 = 1. Recall from Example 3 that the set of

feasible payments corresponding to the all-or-nothing bankruptcy rule is given by

Fi = {(0, 0, 0), (0, 2, 2)},

so both fi and f ′i are not part of it.

As before, we use P for the set of feasible payment matrices, so

P = {P ∈ RI×I
+ | ∀i ∈ I, Pi ∈ di(R+)}.

A clearing payment matrix is now defined as follows.

Definition 10. Given a financial network (z, L, d) in the perfectly divisible case, P ∈ RI×I
+

is a clearing payment matrix if it satisfies the following three properties:

1. Feasibility : P ∈ P .

2. Limited liability : For every i ∈ I, ei(P ) ≥ 0.

3. Priority of creditors : For every i ∈ I, if Pi < Li, then ei(P ) = 0.

Using the approach of Groote Schaarsberg et al. (2013), it can be shown that a clearing

payment matrix exists in the perfectly divisible case and that each clearing payment matrix

leads to the same value of equity, thereby generalizing the same result for the case with

proportional division rules by Eisenberg and Noe (2001). We denote this value of equity

by e∗ ∈ RI
+.

The assumption of perfectly divisible payments is clearly an abstraction. We are inter-

ested in the question whether it serves as a good approximation for the case with a smallest

unit of account, when this smallest unit converges to zero.

For m ∈ N, let 1/m be the unit of account. To each financial network (z, L, d) in

the perfectly divisible case, we associate a financial network (z(m), L(m), bd(m)), where

z(m) = bm · zc, L(m) = bm · Lc, and, for every i ∈ I, bdi (m) = b
bm·di(R+)c
i . Amounts now

correspond to multiples of 1/m, so we have to divide z(m), L(m), and bd(m) by m to

compare them to z, L, and d, respectively.
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Asset and equity values resulting from a payment matrix P ∈ M in the model with

unit of account 1/m are denoted by am(P ) and em(P ), respectively. We have

ami (P ) = zi(m) +
∑

j∈I Pji, i ∈ I,
emi (P ) = ami (P )−

∑
j∈I Pij, i ∈ I.

The following proposition gives an affirmative answer to our question.

Proposition 10. Let (z, L, d) be a financial network in the perfectly divisible case. For ev-

ery m ∈ N, let Pm be a clearing payment matrix of the financial network (z(m), L(m), bd(m)).

Then limm→∞(1/m) · em(Pm) = e∗.

Proof. Since ((1/m) · Pm)m∈N is a bounded sequence, we can assume without loss of

generality that it converges to a matrix P .

We show that P is a clearing payment matrix for the financial network (z, L, d) in the

perfectly divisible case by verifying the three conditions of Definition 10.

1. Feasibility. Take some i ∈ I. It holds that Pm
i ∈ bm · di(R+)c, so (1/m) · Pm

i =

(1/m) · bm · di(Em
i )c for some Em

i ∈ R+. It follows that (1/m) · bm · di(Em
i )c = bdi(Em

i )cm,
where bxcm denotes the greatest multiple of 1/m that is less than or equal to x ∈ R+. The

Hausdorff distance of the point bdi(Em
i )cm to the compact set di(R+) is less than or equal

to 1/m under ‖ · ‖∞. It then follows that

P i = lim
m→∞

1
m
· Pm

i = lim
m→∞

bdi(Em
i )cm ∈ di(R+).

2. Limited liability. Take some i ∈ I. By limited liability in Definition 6, emi (Pm) ≥ 0,

so (1/m) · emi (Pm) ≥ 0, and

ei(P i) = lim
m→∞

(1/m) · emi (Pm) ≥ 0.

3. Priority of creditors. Assume i ∈ I is such that P i < Li. For m sufficiently large, it

holds that Pm
i < bm · Lic. By priority of creditors in Definition 6 it follows that

ami (Pm) <
∑
j∈I

Smij (Pm
i ) ≤

∑
j∈I

Pm
ij + n− 1,

where Smi (Pm
i ) denotes the unique successor of Pm

i . We find that

emi (Pm) = ami (Pm)−
∑
j∈I

Pm
ij < n− 1,

so

ei(P i) = lim
m→∞

(1/m)emi (Pm) ≤ 0.
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Since ei(P i) satisfies limited liability, it follows that ei(P i) = 0.

We conclude that the matrix P is a clearing payment matrix in the sense of Defini-

tion 10, so e(P ) = e∗, and therefore

lim
m→∞

1
m
· em(Pm) = e(P ) = e∗.

2

A decentralized clearing process in the spirit of Definition 8 can also be defined in

the perfectly divisible setup. We show by means of an example that in the perfectly

divisible setup, convergence of a decentralized clearing process might require infinitely

many iterations even if in every Step 2 of the process the highest payment vector consistent

with limited liability is selected.

Example 7. As in Example 5, we consider a financial network (z, L, d) with three agents

I = {1, 2, 3} and endowments and liabilities as presented in Table 8, but now do not assume

a smallest unit of account, so have proportional division rules instead of fair proportional

bankruptcy rules. The unique clearing payment matrix and the resulting asset and equity

values are presented in Table 8 as well.

z L P a(P ) e(P )

1 0 2 2 0 1 1 2 0

1 2 2 0 1 1 0 2 0

1 0 0 0 0 0 0 3 3

Table 8: The financial network and the unique clearing payment matrix in Example 7,

when using the proportional division rule.

We study a decentralized clearing process and start with the situation with agents

making no transfers, P 1 = 0I×I . Under P 1, both agents 1 and 2 are eligible to be selected,

since both of them have positive assets and positive liabilities. Assume the liquidator

starts with agent 1 and requires him to make the maximal payment vector satisfying

limited liability, d1(a1(P
1)) = (0, 1/2, 1/2). At P 2 only agent 2 is eligible and the maximal

payment vector satisfying limited liability is d2(a2(P
2)) = (3/4, 0, 3/4). Proceeding in this

way, we obtain the sequence of payment matrices as presented in Table 9. Agents 1 and 2

are selected in an alternating fashion with their maximal payment vector consistent with

limited liability. The process takes infinitely many iterations, so does never stop.
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P 1

0 0 0

0 0 0

0 0 0

P 2

0 1/2 1/2

0 0 0

0 0 0

P 3

0 1/2 1/2

3/4 0 3/4

0 0 0

P 4

0 7/8 7/8

3/4 0 3/4

0 0 0

P 5

0 7/8 7/8

15/16 0 15/16

0 0 0

. . .

Table 9: The total payments in iterations 1, 2, 3, 4, and 5 in Example 7.

7 Conclusion

Motivated by a large literature on contagion in financial networks, we study bankruptcy

problems in a network environment, thereby generalizing the literature on bankruptcy

problems that consider the division of a single estate among multiple claimants. An im-

portant difference with the case of a single estate is that in a network environment, the

value of the estate is endogenous as it depends on the extent to which other agents pay

their liabilities.

The systemic risk literature on financial networks has considered a number of centralized

procedures to find a clearing payment matrix and the emphasis has been on finding the

greatest clearing payment matrix. The centralized procedures assume a great amount of

coordination and information that is typically not available.

In this paper we introduce a large class of decentralized clearing processes to select

agents and force them to liquidate their assets. We require that each iteration in such

a process satisfies limited liability. The required payments can therefore be implemented

at every step. We find that for any decentralized clearing process in the class, there is

convergence to the least clearing payment matrix in a finite number of iterations.

To facilitate the definition of the class of decentralized clearing processes, it is convenient

to work in a discrete framework, unlike the entire literature on systemic risk. Also unlike

this literature, which invariably has focused on proportional bankruptcy rules, we allow

for general bankruptcy rules. Apart from the already mentioned financial applications,

other examples where our model applies are for instance international student exchange

networks and job processing by a network of servers.

We define the notion of a clearing payment matrix for our discrete setup as a payment

matrix that satisfies feasibility, limited liability, and priority of creditors. We show that

such payment matrices exist and that they constitute a complete lattice, so in particular

there is a least and a greatest clearing payment matrix. Contrary to the perfectly divisible
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setup, it is not the case that all payment matrices induce the same value of equity. It

therefore matters which payment matrix is being used. We derive tight bounds on the

maximal differences in equity values that can result from using different clearing payment

matrices.

We show that when the unit of account is sufficiently small, which would be the case in

most financial applications, the final values of equity as determined by any decentralized

process are essentially the same as the ones determined by a centralized procedure. As a

policy implication, it is not necessary to collect and process all the sensitive data of all the

agents simultaneously and run a centralized clearing procedure.

The results of our paper apply to a setting where the values of the liabilities are not

affected by the liquidation process itself. A number of authors, most notably Cifuentes

et al. (2005) and Shin (2008), have argued that when assets are illiquid, so have less than

perfectly elastic demand curves, then sales by distressed institutions depress the market

prices of such assets. In the setup of this paper, any decentralized clearing process leads

to the same clearing payment matrix. When the values of the endowments depend on

the clearing process itself, then such a result is likely to change. However, as we have

already noted, a decentralized clearing process allows for selling the liquid assets first and

the illiquid ones later, thereby mitigating such effects.
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