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1

Introduction

The majority of decisions that individuals make throughout their lives directly or
indirectly concern tradeoffs over time. In our childhood going to school prevents
us from immediately earning money by having a job, in return for an investment
in our skills that will enable us to earn a higher income in the future. Many people
save money or invest their money in stocks, which gives them fewer possibilities to
spend money today in return for more possibilities to spend money in the future.
Environmental issues mostly concern a tradeoff between beneficial consumption
today and environmental damage in the future.

With the current ageing of the population, increasing attention is paid to our
pensionsystem. The costs to society caused by the ageing of the population are
huge (Feldstein, 2005). For governments it is an increasingly important issue how
to design an optimal pension and social security system. Thus, it is important to
understand the intertemporal tradeoffs a society and its members are willing to
make. This thesis studies such intertemporal tradeoffs.

In economic and psychological models it is commonly assumed that individuals
weigh immediate rewards and costs more than future ones. Thus, individuals dis-
count future rewards and costs. Since Samuelson’s (1937) introduction of constant
discounted utility, this model has been a common assumption in economic analy-
ses. Constant discounting, also known as exponential discounting, implies, under
the additional assumption that preferences over costs and rewards do not change,
that preferences over intertemporal tradeoffs do not change over time either. Un-
der constant discounting, a decision made today will not have to be reconsidered
in the future as long as there are no unforeseen events. Thus, constant discounting
implies time-consistent preferences.

Strotz (1956) was the first to discuss an economic model with time-inconsistent
preferences. Since the publication of his paper, many psychological and economic
studies have found that individuals do not discount constantly (Frederick, Loewen-
stein, and O’Donoghue, 2002). Instead, hyperbolic discounting seems to be more
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Introduction

accurate in describing the intertemporal tradeoffs that individuals make. When
discounting is not constant, but, for instance, hyperbolic, preferences typically
do change over time, i.e. preferences are time-inconsistent. Thus, the extensive
findings of non-constant discounting require the dismissal of the assumption of
time-consistent preferences in economic models if we want these models to cap-
ture reality. Today, much research is being done on this topic. The introduction
of hyperbolic discounting in economic models has enabled economists to explain
phenomena that could not be explained before, such as, for instance, a sharp drop
in consumption at retirement and consumers reporting to save too little.

The introduction of time-inconsistent preferences in economic models not only
implies that we have to redo the analyses done before. It also requires a reconsi-
deration of the concepts that constitute economic models. It is, for instance, not
obvious how traditional welfare concepts should be extended in the case of time-
inconsistent preferences, as will be discussed later. In order to design and evaluate
governmental policies and economic systems, welfare criteria are essential. Until
now, only very little research has been done on defining appropriate welfare crite-
ria when preferences change over time. In the second part of this thesis, welfare
criteria are introduced and economic systems are analyzed under the assumption
of time-inconsistent preferences. The development of more welfare criteria and
further analysis of economic systems under the assumption of time-inconsistent
preferences, should eventually enable governments and policy makers to, for in-
stance, design appropriate pension systems that can deal with the ageing of the
population.

The first part of this thesis deals with intertemporal preferences at an indi-
vidual level. The second part deals with dynamic general equilibrium models and
associated welfare criteria. The next three sections give an introduction to the
first part, the link between the two parts, and an introduction to the second part.

1.1 Intertemporal Choice

The first part of this thesis considers intertemporal preferences of individuals. We
consider the discounted utility model throughout this part. Under discounted
utility, decision makers evaluate a stream of outcomes by first calculating the in-
stant utility of every outcome if that outcome would be received immediately,
then discounting that instant utility according to the timepoint when the out-
come is received and, finally, summing all these discounted instant utilities. Thus,
under discounted utility individuals can neglect timepoints where outcomes are
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1.1. Intertemporal Choice

unaffected when making a choice.
Discounted utility is commonly assumed in economics. The focus of much

research in psychology and economics is on the type of discounting. Samuelson
(1937) considered constant discounting, also known as exponential discounting.
With constant discounting a preference between two streams of outcomes does
not change if all outcomes in both streams are delayed by an equal period of time.
Individuals exhibiting constant discounting are said to have constant impatience.
From the perspective of today, their impatience, or discounting, between today
and tomorrow is not different from the impatience between March 4, 2030 and
March 5, 2030.

Much empirical evidence has demonstrated that humans and animals do not
satisfy constant discounting (Frederick, Loewenstein, and O’Donoghue, 2002).
Many studies have found that individuals are less impatient for the far future than
for the near future, i.e. that they satisfy decreasing impatience. (Quasi-)hyperbolic
discounting can capture decreasing impatience. Currently, quasi-hyperbolic dis-
counting is becoming increasingly popular in applications. Hyperbolic and quasi-
hyperbolic discounting are only two alternatives to constant discounting. Other
alternatives could be thought of as well, but have not been considered in the
literature. The main task in intertemporal choice today is to obtain a deeper un-
derstanding of the deviation from constant discounting and to develop appropriate
alternatives. The first part of this thesis contributes to this task.

In order to obtain a good understanding of the deviation from constant dis-
counting and to develop alternatives, it is important to first understand fully what
constant discounting is. Koopmans (1960, 1972) gave a preference foundation of
constant discounting that is very popular. A preference foundation is a set of con-
ditions that fully characterize a preference model and that are easy to interpret
and empirically verifiable. Thus, a preference foundation of constant discounting
gives us a good insight into what constant discounting exactly implies and what
it means empirically. Unfortunately, Koopmans’ analysis contains some inaccura-
cies. Also, he does not allow for infinite economic growth in the infinite future,
which is unnecessarily restrictive. Chapter 2 resolves these problems and provides,
to the best of my knowledge, the first correct presentation of Koopmans’ classical
result.

Chapter 3 introduces a measure for the deviation from constant discounting.
This measure, the hyperbolic factor, quantifies the degree of decreasing impatience
and proneness to choice anomalies. The hyperbolic factor is easily measurable.
Thus, it gives an easy tool to identify (groups of) individuals that are prone to
choice anomalies. Moreover, the hyperbolic factor provides a simple test of hyper-
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bolic discounting: the hyperbolic factor is constant only in the case of hyperbolic
discounting.

Chapter 4 introduces time-tradeoff (TTO) sequences to measure the discount
function and the degree of decreasing or increasing impatience. These sequences
are very easily obtained from individuals and can readily be analyzed using only
paper and pencil. From TTO-sequences the degree of decreasing impatience and
proneness to choice anomalies can immediately be inferred through simple graphs.
By the nature of TTO-sequences, throughout the analysis, no assumptions or
estimations of utility are needed. Almost all measurements of discounting in the
literature did need to make assumptions about utilities. From TTO sequences,
hyperbolic factors can readily be obtained. We also introduce other, heuristic,
measures of decreasing impatience.

In an experiment TTO sequences are obtained from subjects. The results
show that subjects indeed violate constant discounting. We find evidence in favor
of increasing impatience, contrary to most of the literature, but in agreement with
some other recent studies. Hyperbolic factors also provide evidence against the
hyperbolic discount models popular in the literature. The findings suggest some
new directions for theories of intertemporal choice.

1.2 Intertemporal Behavior

As argued before, and shown in the first part of this thesis, there is significant
empirical evidence that intertemporal preferences of individuals do not satisfy
constant discounting. If discounted utility holds and preferences over outcomes
are constant over time, then a violation of constant discounting implies that in-
dividuals have time-inconsistent or dynamically inconsistent preferences. There
is also other evidence that individuals have time-inconsistent preferences. Indivi-
duals with time-inconsistent preferences typically want to reconsider choices they
made in the past, even if nothing unforeseen has happened. Therefore, individuals
who realize that their preferences are time-inconsistent want to make costly pre-
commitments in order to avoid a future reconsideration of plans. There is indeed
evidence for individuals engaging in costly pre-commitment (Schelling, 1984).

A classical example of an individual engaging in pre-commitment is Odysseus
(also called Ulysses) from The Odyssey written by Homer. On his ship, Odysseus
had to pass the island with the Sirens who could sing so beautifully that every-
body’s attention would be drawn to them, so that he would risk shipwreck against
the rocks. Odysseus, who foresaw this risk, had his sailors put wax in their ears
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and had them tie him to the mast, so that he could still hear the sirens without
causing any damage.

For individuals with time-inconsistent preferences, the preferences concerning
future periods basically change over time. Individuals with changing preferences
can behave in several ways, depending on their self-knowledge. Näıve individuals
do not realize that their preferences will change over time and will be surprised by
their unanticipated preferences every period and want to reconsider their choices
and update their plans (Pollak, 1968). Sophisticated individuals, like Odysseus,
correctly predict their future preferences and either want to pre-commit themselves
or only make plans that they expect to stick to. Partly sophisticated individuals
do anticipate that their preferences will change over time, but predict their future
preferences incorrectly. Thus, they behave similarly as sophisticated households
by pre-committing and by making consistent plans, but are nevertheless surprised
by their preferences every period.

1.3 General Equilibrium

The second part of this thesis analyzes the behavior of näıve and (partly) so-
phisticated individuals at an aggregate level in general equilibrium models. A
general equilibrium model consists of consumers and producers who trade goods
and services, called commodities. Consumers initially own a certain amount, or
endowment, of commodities. Producers have a technology that can use some com-
modities as inputs to produce other or the same commodities as output. The
producers or firms are owned by consumers, who own a given amount of shares
of the firms. Consumers have preferences over consumption. Their objective is to
satisfy their preferences as much as possible by trading commodities. Prices deter-
mine the ratios in which commodities can be exchanged between consumers and
producers. The endowments and the shares in the profits that producers make de-
termine the wealth of consumers. Consumers will typically want to increase their
wealth in order to be able to buy more commodities. Thus, they will typically
force producers to act in such a way that the wealth of consumers is maximized.
Consumption, production and prices then constitute an equilibrium if there is no
excess demand or excess supply of commodities. Markets are perfectly competi-
tive if there are so many producers and consumers that one consumer or producer
on his own cannot influence prices. Then consumers and producers take prices as
given and the equilibrium is called a competitive equilibrium.

The most common welfare criterion used in general equilibrium theory, is
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Pareto efficiency. An allocation of commodities is said to be Pareto efficient if
no consumer can be made better off without making another consumer worse off.

Traditional general equilibrium models assume that preferences of individuals
do not change over time. It can then be shown that when markets are complete,
i.e. when individuals can trade all possible future commodities already today by
making contracts, a competitive equilibrium always exists under rather weak as-
sumptions. The First Fundamental Theorem of Welfare Economics holds that
every competitive equilibrium allocation in complete markets is Pareto efficient.
The Second Fundamental Theorem of Welfare Economics shows that every Pareto
efficient allocation can be attained as a competitive equilibrium in complete mar-
kets by appropriate redistributions of endowments. Thus, these theorems show
that, apart from redistributions of endowments, government intervention may be
welfare improving only in the case of externalities, market power, asymmetric
information or restrictions on trading future commodities.

In the derivation of these results it has always been assumed that preferences do
not change over time. When preferences do change over time it is not clear whether
these theorems still hold. It could very well be that when preferences change over
time, the role of the government might be more active also when markets are
complete. Actually, it is even no longer clear how a competitive equilibrium and
efficiency should be defined. For efficiency, for instance, the question arises which
preferences should be considered in the efficiency concepts, the current preferences,
the future preferences, or both. The second part of this thesis introduces changing
preferences in general equilibrium models. Preferences are very general and do
not need to satisfy discounted utility. Since the modelling is quite complicated, we
only study exchange economies, i.e. economies without production. We will refer
to consumers as households.

Chapter 5 introduces equilibrium- and welfare- concepts in general equilibrium
models where households cannot trade future commodities already today. We
are the first to introduce general changing preferences in a full-fledged general
equilibrium model. We introduce new equilibrium concepts, show which issues
arise in defining welfare criteria, and show how these issues can be solved. We
further establish the existence of equilibria and show that some efficiency concepts
are satisfied in equilibrium, and others are not.

Chapter 6 analyzes the notion of completeness of markets. Markets are com-
plete when all possible contingent commodities can be traded. A contingent com-
modity is a commodity for which one pays today and which is delivered in a future
period, contingent on the realization of a particular event. Markets are sequen-
tially complete when in every period all one-period ahead contingent commodities
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1.3. General Equilibrium

and commodities on spot markets can be traded. The First and Second Theorems
of Welfare Economics used to hold under the assumption of complete markets
and sequentially complete markets. Actually, the two market structures used to
yield the same consumption in equilibrium. When preferences change over time
it is no longer the case that the two markets structures yield the same allocations
when individuals are not fully sophisticated, which is shown in Chapter 6. Thus,
as soon as individuals are not fully sophisticated the degree of completeness of
markets matters.

Chapter 7 shows by means of an example that, in equilibrium, there can exist
assets that cost nothing today and that yield a positive income in future peri-
ods. This example gives some feeling for the consequences of the introduction of
changing preferences in economic models. Most economists would think that all
individuals want to increase their future income as much as possible. The exam-
ple shows that sophisticated individuals might not want to increase future income.
Such a sophisticated individual knows that tomorrow he will spend his income in
a way that he does not like today. As a result, arbitrage opportunities might not
be taken away by the individuals.
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2

Koopmans’ Constant Discounting: A

Simplification and an Extension to

Incorporate Economic Growth

Koopmans provided a well-known preference foundation for constant discounted
utility, the most widely used model for intertemporal optimization. There were,
however, some technical problems in his analysis; in particular, there was an un-
foreseen implication of bounded utility. Some partial resolutions have been sug-
gested in the literature. This chapter1 completely resolves the problems men-
tioned, with complete flexibility regarding the utility functions that can be used
and the conceivable economic growth. It, thus, provides a complete and accessible
preference foundation of constant discounted utility, and clarifies the appeal of
Koopmans’ intuitive axioms.

2.1 Introduction

Preference foundations give conditions for preferences that are necessary and suf-
ficient for the applicability of some theoretical choice model, such as the constant
discounted utility model for intertemporal consumption programs, the topic of this
chapter. Preference foundations, thus, express the empirical content of a model
directly in terms of observables. One of the most appealing and well-known prefe-
rence foundations is Koopmans’ (1960, 1972) foundation for constant discounted
utility. This model, originally introduced by Samuelson (1937), is often considered
normatively warranted. It is the almost exclusively used model in prescriptive
applications of intertemporal optimization and in policy recommendations. For
such applications, preference foundations serve to justify (or criticize) the appro-
priateness of the model used.

1This chapter is based on Bleichrodt, Rohde, and Wakker (2005)
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Koopmans’ Constant Discounting

In descriptive applications, preference foundations serve to demonstrate how
a model can be falsified or corroborated through observed choices. Indeed, many
recent empirical studies have examined, and mostly falsified, the preference con-
ditions of constant discounted utility. Constant discounting is then commonly
taken as an initial benchmark, the proper variation of which is to be developed
(Frederick, Loewenstein, and O’Donoghue, 2002; Laibson, 1997).

As we will explain later, the intuitive part of Koopmans’ preference foundation
is exceptionally appealing and efficient. While his chapter has been widely cited,
the appeal and efficiency of his intuitive axioms have not always been fully un-
derstood. These axioms are, unfortunately, obscured by technical digressions and
some inaccuracies in the analysis. It cannot always be decided with certainty what
technical conditions Koopmans assumed; see the appendix. Koopmans derived his
result only for bounded consumption programs (Koopmans, 1960, Postulate P5;
Koopmans, 1972, Postulate P5’), but speculated on extensions to other programs
if his axiom P5/P5’ is dropped (Koopmans, 1960, Section 10*; Koopmans, 1972,
Section 6*). However, even if Koopmans’ P5/P5’ is dropped, then his remaining
conditions still imply that utility must be bounded (see Example 2.4 in the ap-
pendix). Most utility functions considered in the literature, such as CRRA and
CARA utilities (Merton, 1971), are unbounded from at least one side if no restric-
tions are imposed on their domain. Koopmans’ utility bounds, therefore, impose
undesirable restrictions on the outcomes for such cases. Especially for unbounded
time horizons it is undesirable to exclude continuing economic growth. It is pes-
simistic to a priori impose upper bounds on the utility levels attainable for all the
future (see Koopmans, 1972, following Postulate P5’).

Several alternative axiomatizations of constant discounted utility have been
given in the literature. Authors usually axiomatized generalizations of constant
discounted utility, and derived axiomatizations of constant discounted utility as
a corollary and a by-product. Also Koopmans (1960) himself obtained constant
discounted utility only as a by-product. His main interest concerned more complex
models of general recursive intertemporal aggregations that need not be additively
separable over time, and his primary purpose was to derive impatience from con-
tinuity conditions. This chapter restricts attention to constant discounted utility,
and presents preference axioms that are more general and accessible than preceding
ones for this model.

We relax Koopmans’ topological assumptions so as to avoid the undesirable
implication of bounded utility, and completely solve the problems of unbounded
utility. That is, first, we allow for every utility function, and, second, our domain
has maximal flexibility concerning the programs considered. For every utility
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2.2. The Result

function, also if unbounded, we are free to incorporate (or exclude) every program
that generates unbounded utility in the future as long as its discounted utility is
defined and finite.

Koopmans’ characterization of constant discounted utility is one of the most
appealing and important preference foundations known today. By resolving his
technical problems and simplifying the presentation, we hope to make the appeal
and efficiency of Koopmans’ intuitive axioms more accessible.

2.2 The Result

A (consumption) program x = (x1, x2, . . .) yields consumption xt in period t∈IN ,
where X = Rm

+ is the set of all conceivable consumptions.2 Preferences over con-
sumption programs are denoted by <, with Â,∼, 4, and ≺ as usual. Our main
result will allow for great flexibility regarding the domain of the programs consi-
dered, denoted F hereafter. We will characterize the conditions required for this
F later on. The main reason for the complications in Koopmans’ analysis is that
he did not allow for a restricted domain of programs on which the preference rela-
tion is defined and should satisfy completeness and various other conditions. With
unbounded utility, there can be programs with infinite or undefined discounted uti-
lity, and imposing completeness in combination with other preference conditions
on such programs is problematic.

A classical illustration of the above problems is Savage (1954), who similarly
imposed completeness and other axioms on all programs (“acts” in his model).
An unforeseen implication, discovered by Fishburn, is that Savage’s axioms im-
ply that utility must be bounded (Savage, 1972, 2nd edition, footnote on p. 80).
Koopmans’ axioms similarly have this unforeseen implication (see Example 2.4).
Koopmans, Diamond, and Williamson (1964, Section 8*) speculated on such prob-
lems and explicitly restricted their analysis to bounded utility. Koopmans (1972),
however, defined a preference relation and its conditions on the full domain again
and without boundedness restriction, adding the latter only for particular results,
and speculating on dropping it.

Our way to handle unbounded utility builds on Harvey (1986) and Wakker
(1993a). As these authors did, we avoid the problems mentioned above by imposing
preferences and their conditions only on restricted domains of programs, entirely
defined in terms of observables. Constant discounted utility holds on a domain

2All results of this chapter remain valid if X is a topologically separable arc-connected topo-

logical space; see the appendix. It can, for instance, be any convex subset of Rm, or a set of

nonquantified health states.
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of programs if there exist a utility function u : X → R and a discount factor
0 < ρ < 1 such that every consumption program x in the domain is evaluated
through the well-defined finite

∞∑
t=1

ρt−1u(xt). (2.1)

This summation is called the discounted utility of x. A program is preferred if
and only if it is evaluated higher. The evaluation implies the common assumption
of weak ordering of <, meaning that < is complete (x < y or y < x for all x, y,
possibly both) and transitive. Note that many papers that do not assume additive
separability over time do not have a concept such as u above, and often use the
term utility for what we call discounted utility. In our set-up it is most convenient
to let utility designate the “instant” utility u.

Before defining the axioms, we introduce some preparatory notation. For a pro-
gram x = (x1, x2, . . .) and a consumption α, αx denotes the program (α, x1, x2, . . .)
where the first consumption is α and then the consumptions of x follow, all delayed
by one period. The procedure can be repeated, as in αβx = (α, β, x1, x2, . . .), etc.

Preferences over consumptions agree with preferences over constant programs
in the sense that α < β if and only if (α, α, . . .) < (β, β, . . .). Koopmans (1972, p.
84) discussed (a small variation of) the following condition. Monotonicity holds if
x < y whenever xt < yt for all t, with strict preference x Â y whenever xt Â yt

for some t. In our result this condition need not be imposed because it is implied
by the other conditions, mainly stationarity. To avoid triviality, we will, like
Koopmans (1960, Postulate 2), assume that period 1 is sensitive, i.e. αx Â βx for
some α, β, x.

The most interesting axioms in preference foundations are the intuitive axi-
oms characteristic of the model considered. Koopmans assumed, essentially, the
following two intuitive axioms. Initial-tradeoff independence holds if

αβx < γδx if and only if αβy < γδy (2.2)

for all programs x, y and all consumptions α, β, γ, δ. That is, the tradeoffs be-
tween today and tomorrow are not affected by future consumption. The condition
amounts to separability of the first two periods. A set of periods is separable if
preferences over consumptions in these periods, while keeping consumptions in
other periods fixed, are independent of the level at which the other consumptions
are kept fixed.

Stationarity holds if

αx < αy if and only if x < y (2.3)

14
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for all programs x, y and all consumptions α. That is, a preference is not affected
if a common first consumption is dropped, and the timing of all other consump-
tions is advanced by one period. By repeated application, it implies that for a
preference between two programs all initial periods with common consumption
can be dropped, and the first period of different consumption can be taken as the
initial period. It is amazing that the two simple conditions just defined, in the pre-
sence of some other common assumptions, suffice to imply the whole time-additive
constant discounted utility model, as Theorem 2.1 will demonstrate.

Koopmans formulated his intuitive axioms equivalently but slightly differently,
with for instance stationarity imposed only for one initial consumption α and then
separability of {2, 3, . . .} added, which is equivalent to our stationarity imposed
for all initial consumptions α. The difficulties in his analysis are due to the tech-
nical conditions. In his model as well as in ours, programs are infinite-dimensional
objects, and then topological considerations can be complex. We avoid such com-
plexities by imposing topological conditions (continuity) only on finite-dimensional
subspaces. For two further implications of infinite-dimensional continuity that are
used in proofs of other papers, constant-equivalence and tail-robustness (defined
later), it will be both more appealing and more general to state these as explicit
axioms, rather than to derive them from stronger infinite-dimensional continuities.

An ultimately constant program x is such that α = xt = xt+1 = · · · for all
t > T , for some consumption α and some period T . By xT α, for some general
program x, period T , and consumption α, we denote the ultimately constant
program (x1, . . . , xT , α, α, . . .). For each period T , XT is the set of ultimately
constant programs of the form xT α, i.e., all ultimately constant programs that
are constant over all t > T . XT can be considered a T + 1 dimensional product
space, specified by T + 1 tuples (x1, . . . , xT , α). Ultimate-continuity holds if < is
continuous on each set XT .

To extend the discounted-utility evaluation to unbounded programs, we, con-
trary to Koopmans, do not impose a preference relation on all programs, but only
on those that will have finite discounted utility. To identify those programs, we
have to solve a mathematical problem that has hampered many papers dealing with
infinite-dimensional evaluations. A typical example of the problem mentioned is
the derivation of subjective expected utility in DeGroot (1970, Chapter 7). Having
derived the evaluation on bounded programs (“acts”), he explicitly used utility and
the expected utility functional to define the domain of all programs with finite ex-
pected utility (denoted PE in his Section 7.10), and then went on to establish the
preference axiomatization of expected utility in terms of preference conditions on
this extended domain. This procedure is undesirable because utility and expected
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utility are theoretical constructs and are related to observables only in complex
ways. Hence, they should not be used explicitly in preference foundations. In
fact, if expected utility can be used explicitly in the definition of the domain and
in preference conditions, then its preference axiomatization becomes a tautology
because we can simply state expected utility maximization directly as a prefe-
rence axiom. A similar problem as in DeGroot’s analysis arose in Hübner and
Suck’s (1993) extension of Koopmans’ constant discounted utility to unbounded
programs. They used a condition about the interior of circles of convergence that
explicitly uses both the discount factor and the utility function.

The problem to be solved is that we should find preference conditions that
identify the programs with bounded discounted utility, but that are stated en-
tirely in terms of observables (preferences) without any explicit use of utility or
discounted utility. Two studies partially resolved this problem, by defining a par-
ticular subset of programs that have finite discounted utility in terms of preference
conditions. First, Dolmas (1995) took a fixed program ω ∈ Rm

++, and considered
all programs x for which there exists λ > 0 such that |xt| ≤ |λωt| for all t. Thus he
partially relaxed the boundedness restriction. He imposed continuity with respect
to a modified supnorm that made his space of programs homeomorphic (equivalent
in a topological sense) to the set of all bounded programs, and derived discounted
utility on this extended domain from a strengthening of Koopmans’ axioms. Se-
cond, Streufert (1990) considered only the programs that can be generated by a
particular production function, which can again relax the boundedness restriction
partially. He introduced a bi-convergence continuity condition in terms of the pro-
duction function, and derived discounted utility on this extended domain from a
strengthening of Koopmans’ axioms. Neither of these works specified the exact
restrictive nature of their preference conditions through necessity results. Both al-
lowed for some unbounded programs and utility functions but not all, and it is not
clear what exactly the restrictions on u are in terms of ω or Streufert’s production
function. An advantage of these approaches is that the domain of preference can
be defined prior to any consideration of the preference relation, whereas in our
approach it will refer to the preference relation.

Conditions that can identify all programs with finite discounted utility, what-
ever the (unbounded) utility function, were used by Harvey (1986) for the present
context of summation over discrete periods, and by Wakker (1993a) for integrals
over general spaces for the context of decision under uncertainty. The approach of
this chapter will be a mix of these two approaches, using two preference conditions
introduced next.

A program x satisfies constant-equivalence on a domain if there exists an equi-
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valent constant program in that domain. This condition was derived from topo-
logical conditions in Diamond (1965, Lemma on p. 172), Harvey (1986, p. 1136
second para) and in Koopmans (1960, Eq. 17 and Section 10). Second, a program
x is tail robust if, for all outcomes β: if x Â β (x ≺ β) then there exists a t such
that xT β Â β (xT β ≺ β) for all T ≥ t. In words, a sufficiently remote future does
not affect preference much. The two conditions just defined deliver, in terms of
preference conditions, the domain of programs searched for. A program will turn
out to have well-defined finite discounted utility if and only if it satisfies constant-
equivalence and tail robustness. These definitions modify the C∗ definition of
Harvey (1986) and truncation-robustness of Wakker (1993a).

In the characterizing Statement (ii) in the following theorem, (a) states usual
preference conditions, with continuity only in a simple finite-dimensional version,
(b) defines the domain of programs with finite discounted utility, and (c) gives
Koopmans’ intuitive conditions. The uniqueness up to unit and level in the fol-
lowing theorem means that any constant can be added to utility, and it can be
multiplied by any positive number.

Theorem 2.1 Let < be defined on a domain F of programs that contains all
ultimately constant programs. Then the following two statements are equivalent.

(i) Constant discounted utility holds on F , where the utility function is continu-
ous and not constant, and all programs have finite discounted utility.

(ii) < satisfies
(a) weak ordering, sensitivity of the first period, and ultimate-continuity;
(b) constant-equivalence and tail robustness for each program in F ;
(c) initial-tradeoff independence and stationarity.

Furthermore, the discount factor in Statement (i) is unique, and utility is unique
up to unit and level.

Some of the above conditions can be relaxed on particular domains. A program
x is bounded if there exist consumptions µ, ν such that µ < xt < ν for all t.

Observation 2.2 In Theorem 2.1, monotonicity is implied by the other condi-
tions. If F contains only ultimately constant programs, then constant-equivalence
can be dropped and tail robustness can be replaced by monotonicity. Tail robustness
can also be replaced by monotonicity if F contains only bounded programs.
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2.3 Related Literature

The efficiency of Koopmans’ intuitive axioms, in particular stationarity, is excep-
tional. To illustrate it, we sketch the proof of Theorem 2.1. First, by repeated
application, stationarity implies independence of preference from every common
first part of programs, not just if related to the first period. Then, because of sta-
tionarity, separability of the first two periods implies separability of every pair of
consecutive periods. Stationarity also implies separability of the “tail of periods”
{2, 3, . . .}, and then of every tail of periods {t, t + 1, . . .}. These separabilities to-
gether imply complete separability of all periods (Gorman, 1968; Streufert, 1995)
and, hence, an additively separable evaluation

x 7→ V1(x1) + V2(x2) + · · · , (2.4)

given appropriate continuity. Other papers in the literature used stronger separa-
bility than of merely {1, 2}, as we did; see Table 2.1.

Stationarity further implies that preferences over consumptions are the same
in each period, so that the component-functions are ordinally the same:

Vt = ft(V1) for a strictly increasing ft. (2.5)

Several papers in the literature used conditions other than stationarity to ob-
tain Eq. 2.5; see Table 2.1. Stationarity further implies that all functions evalu-
ating consumption in different periods order differences in the same way, so that
they can be taken proportional, leading to the general period-dependent discoun-
ting

Vt = ρtVt−1 for ρt > 0. (2.6)

Table 2.1 indicates that several papers used conditions other than stationarity
to obtain this implication. Stationarity implies, furthermore, constant discoun-
ting with ρt = ρ independent of t. Several papers first derived general, period-
dependent, discounting as in Eq. 2.6 from separate preference conditions, and then
could use weaker versions of stationarity to obtain constant discounting. See Har-
vey (1986, 1995, (partial) absolute timing preference), Bleichrodt and Gafni (1996,
p. 53), Meyer (1976, p. 480), and Wakker (1989, the $α condition in Statement
(ii), p. 88). The partial results in the last column of Table 2.1, on the possibility
of unbounded utility, have been discussed in Section 2.2.

The consumption sets X in the literature were mostly less general than in this
chapter. They were: Rm

+ in Dolmas (1995); an open interval in Meyer (1976) and
Harvey (1986, 1995); a connected subset of Rm in Koopmans (1960, 1972). For
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üb
ne

r
&

Su
ck

’9
3,

al
l
fin

it
e

T
hm

.
3

an
d

co
fin

it
e

se
ts

m
on

ot
on

ic
it
y

pa
rt

ly
K

oo
pm

an
s

’6
0,

E
q.

47
{1
},
{1

,3
,4

,.
..
}

ye
s

K
oo

pm
an

s
’7

2,
P

ro
p.

3
{1
},
{2
}

ye
s

St
re

uf
er

t
’9

0,
T

hm
.

G
as

su
m

ed
as

su
m

ed
as

su
m

ed
pa

rt
ly

T
hi

s
ch

ap
te

r,
T

hm
.

2.
1

F
in

it
el

y
m

an
y

pe
ri

od
s

B
le

ic
hr

od
t

&
G

af
ni

’9
6,

T
hm

.
2.

1
al

l
(d

er
iv

ed
fr

om
C

C
I)

C
C

I-
co

nd
it

io
n

C
C

I-
co

nd
it

io
n

F
is

hb
ur

n
’7

0,
T

hm
.

7.
5

al
l

F
is

hb
ur

n
&

E
dw

ar
ds

’9
7,

T
hm

.
3

al
l

K
ra

nt
z

et
al

.
’7

1,
T

hm
6.

15
.ii

al
l

M
ey

er
’7

6,
T

hm
.

9.
1

al
l
{t

,t
+

1}
do

m
in

an
ce

lin
ea

ri
ty

W
ak

ke
r

’8
9,

al
l
(d

er
iv

ed
fr

om
C

C
I)

C
C

I-
co

nd
it

io
n

C
C

I-
co

nd
it

io
n

T
hm

.
IV

.4
.4

+
E

q.
IV

.3
.1

Table 2.1: Extra nontechnical conditions besides those in Theorem 2.1 (stationa-
rity and separability of {1, 2}) assumed in the literature for constant discounted
utility.
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finitely many periods, some papers considered more general consumption sets, but
then could not use Gorman’s (1968) theorem and had to assume full-force separa-
bility. Thus, the consumption set was connected in Fishburn and Edwards (1997),
Bleichrodt and Gafni (1996), and Wakker (1989). The consumption set only had
to satisfy a solvability condition, which is more general than any of the restrictions
mentioned so far, in Krantz et al. (1971) for finitely many periods and in Hübner
and Suck (1993) for infinitely many periods. Some further restrictions are linear
utility in Harvey (1995, Theorem 3.2) and Meyer (1976). Fishburn and Edwards
(1997) did allow for infinitely many periods, but only compared programs that
differ in at most finitely many periods so that, essentially, only finite-dimensional
considerations arise. Also the well-known Fishburn and Rubinstein (1982) con-
sidered an infinite set of conceivable periods, but restricted attention to single
consumption. Then no issues of intertemporal separability or diverging sums of
utility will arise, and this study is not easily compared to the other models consi-
dered here.

The above papers, scattered in journals in economics, management science,
and psychology, and written when internet was not yet available, obtained their
extensions of Koopmans’ theorem independently. With the exception of Fisburn
and Edwards (1997) referring to Harvey (1995) and Streufert (1990), none of
the above papers referred to any of the other contributions for infinitely many
periods other than Koopmans’. It is remarkable that mere separability of {1, 2}
plus stationarity imply all the conditions of the works listed in Table 2.1. In
this comparison we should emphasize that the other papers were not designed
to optimally characterize discounted utility. They usually sought to generalize
Koopmans’ model, and constant discounted utility was then obtained as a by-
product.

Theorem 2.1 allows for great flexibility regarding the domain F . The only
restriction is that F should contain all ultimately constant programs. It can, for
instance, contain all programs with finite discounted utility, as in Harvey (1986),
but it can also contain any arbitrary subset of the latter given the restriction
mentioned. For each program x that is not ultimately constant, we can check
if it can be added to the preference domain by verifying Statement (ii.b), i.e.
constant-equivalence and tail robustness. These conditions involve, besides x,
only ultimately constant programs. No restriction is imposed on the utility
function u.
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2.4 Conclusion

Many generalizations of Koopmans’ constant discounted utility have been deve-
loped, and preference foundations have been given. Koopmans’ model was then
sometimes obtained as a corollary of the generalization. No paper has, however,
focused on the constant discounted utility model itself. Consequently, for this
model, the by far most used model in applications, and a common benchmark for
alternative models, no clean and efficient preference foundation exists today. This
chapter has provided such.

We are not aware of any preference condition in the literature that is so ap-
pealing and simple to comprehend, and at the same time so powerful in its impli-
cations, as Koopmans’ stationarity. We hope that this chapter can help to clarify
and popularize Koopmans’ intuitive axioms.

2.5 Appendix A. Proofs

The following example prepares for the proof. It shows that tail robustness cannot
be omitted in Theorem 2.1. It may clarify Koopmans’ (1972) discussion of his
monotonicity postulates P5 and P5’.

Example 2.3 F consists of all ultimately constant programs. Evaluations are
through

(x1, . . . , xT , α, α, . . .) 7→
T∑

i=1

ρi−1u(xi) + ρT u(α)/(1− ρ) (2.7)

with u continuous and not constant, and ρ > 1. The evaluation is well-defined,
because, if xT+1 = α, then

T∑

i=1

ρi−1u(xi) + ρT u(α)/(1− ρ) =
T+1∑

i=1

ρi−1u(xi) + ρT+1u(α)/(1− ρ),

etc. All conditions of Statement (ii) in Theorem 2.1, except tail robustness, are
satisfied. Besides tail robustness, also monotonicity and impatience (preference
for early receipt of outcomes with higher u value) are violated. We obtain an
evaluation of α equal to u(α) + ρu(α) + ρ2u(α)/(1 − ρ) = u(α)/(1 − ρ). It is
not increasing, but decreasing, in u(α) for ρ > 1. Preferences satisfy a weaker
monotonicity condition, i.e. finite monotonicity , which means that replacing any
finite number of consumptions xt by other consumptions with higher u value always
improves the program. By sensitivity of period 1, u is not constant; and there are
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u(γ) > u(β). Then γ ≺ β. This preference and γx Â βx violate monotonicity. It
is like preferring cake to bread for any finite number of days, but preferring bread
to cake for an infinite lifetime. Tail robustness would require that γT β ≺ β should
hold for all T sufficiently large. However, by finite monotonicity, γT β Â β for all
T .

Even if utility of consumption is bounded, the evaluation of programs is not
(cf. γT β for T increasing). There still does not exist a best program, so that
Koopmans’ (1972) Postulate P5’ is still violated.

This example is an alternative to the example of Burness (1976, p. 505),
who showed that the very existence of a utility indicator need not imply impa-
tience. Our example revealed a more fundamental problem, i.e. a violation of
monotonicity. By imposing the supremum norm, all conditions of Burness (1976)
are satisfied.

Proof of Theorem 2.1. The following proof and, consequently, Theorem
2.1, are valid for every topologically separable3 and arc-connected consumption
space X. For each x, DU(x) =

∑∞
t=1 ρt−1u(xt) whenever defined. First assume

that Statement (i) holds. Tail robustness follows because of convergence of the
summations in DU(x). There exists a constant-equivalent for each x, with utility
strictly between limsup(u(xt)) and liminf(u(xt)) if these two are different, mainly
because of connectedness of u(X). All other conditions in Statement (ii) follow
easily.

For the reversed implication, we assume henceforth that Statement (ii) holds.
We fix an arbitrary outcome θ throughout, at which many functions below will be
normalized to be 0. Initial-tradeoff independence amounts to separability of the set
of periods {1, 2}, with a preference αβx < γδx independent of x. By stationarity,
it implies that a preference µαβx < µγδx is independent of µ and x, i.e. {2, 3} is
separable. Similarly, by repeated application of stationarity, separability of all sets
{i, i + 1} follows. Stationarity implies that a preference αx < αy is the same as
between x and y and, hence, is independent of α, so that separability of {2, 3, . . .}
follows. Similarly as above, stationarity then implies separability of {3, 4, . . .},
and then of all “tail” sets {i, i + 1, . . .}. Similarly, sensitivity of period 1 and
stationarity imply sensitivity of all periods t.

Consider a period T > 1. By the separabilities just established, and the other
conditions such as sensitivity of at least three periods (in fact all) and continuity,
Gorman (1968) implies that we have complete separability (i.e., separability of all

3We add the adjective “topological” throughout to distinguish this condition, not defined

here, from the separability preference condition.
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subsets of components) over every T + 1 dimensional space XT , and an additive
evaluation

(x1, . . . , xT , α, α, . . .) 7→ V1,T (x1) + · · ·+ VT,T (xT ) + RT (α) (2.8)

on each such set. We may set Vj,T (θ) = 0 = RT (θ) for all j. The function

(x1, . . . , xT , α, α, . . .) 7→ V1,T+1(x1) + · · ·+ VT,T+1(xT ) + VT+1,T+1(α) + RT+1(α),

obtained from XT+1, is an alternative additive evaluation over XT . By the usual
uniqueness results of additive evaluations, we may, inductively with respect to T ,
set

for all T, and all j ≤ T, Vj,T+1 = Vj,T and VT+1,T+1(α) + RT+1(α) = RT (α).
(2.9)

From the first equality it follows that Vj,T is independent of T for j ≤ T , and we
can drop the subscript T .

By stationarity and consideration of programs γx for a fixed γ, V2(x1) + . . . +
VT+1(xT ) + RT+1(α) evaluates the same preferences over XT as does V1(x1) +
. . .+VT (xT )+RT (α). By the usual uniqueness results, there exists a ρT > 0 such
that Vj+1 = ρT Vj for all j ≤ T and

RT+1 = ρT RT . (2.10)

ρT = V2/V1 is independent of T because V1 and V2 are, and we drop the subscript
T . Writing u = V1 and R = R2/ρ2, we have obtained an evaluation

(x1, . . . , xT , α, α, . . .) 7→
T∑

i=1

ρi−1u(xi) + ρT R(α). (2.11)

Note that consumptions are ordered the same for every period, which comprises
most of monotonicity. The last equality in Eq. 2.9 implies that ρT R(α) = ρT u(α)+
ρT+1R(α), or

R(α) = u(α) + ρR(α). (2.12)

ρ = 1 cannot be: By Eq. 2.12, then u(α) = 0 for all α. Constantness of u

violates sensitivity of period 1, and ρ = 1 cannot be indeed. Hence,

R = u/(1− ρ). (2.13)

ρ > 1 cannot be either because it violates tail robustness (and monotonicity);
see Example 2.3. We conclude that, besides 0 < ρ, also ρ < 1. Eq. 2.13 implies
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R(α) =
∑∞

i=1 ρi−1u(α). Substituting this in Eq. 2.11 yields discounted utility for
the ultimately constant programs.

To extend the evaluation to general, possibly unbounded, programs, consider
a general program x and its constant-equivalent α. If there exists a consumption
β with x ∼ α Â β then, by tail robustness, xT β Â β for all T sufficiently large.
By the evaluation for ultimately constant programs, DU(xT β) > DU(β) for all
T sufficiently large. Hence, liminfT (

∑T
t=1 ρt−1u(xt)) ≥ DU(β). Because this

holds for all β ≺ α, the liminf also is not less than DU(α). If there exists no
β as above, then α is the worst consumption, and by the DU representation and
its implication of monotonicity on the ultimately constant programs, the above
liminf again is not less than DU(α). Similarly, limsupT

∑T
t=1(ρ

t−1u(xt)) is not
more than DU(α). It follows that DU(x) = DU(α) and, hence, DU(x) evaluates
x.

Note that we nowhere made any assumption about which of the not ultimately
constant programs are contained in F , and complete flexibility of domain has been
maintained. By standard uniqueness results for additive evaluations (Gorman,
1968), the additive evaluations such as in Eq. 2.8 have the functions Vj,T = ρj−1u

unique up to level and common unit. This implies the uniquess result regarding u

and ρ = (V2(.)−V2(θ))/(V1(.)−V1(θ)). Our result is a special case of an additively
decomposable representation on an infinite product space. General results on this
topic are in Streufert (1995) and Wakker and Zank (1999). 2

Proof of Observation 2.2. Monotonicity follows from the DU representation.
For ultimately constant programs, constant-equivalence was not used in the proof
of Theorem 2.1, and tail-robustness was used only to show that ρ > 1 cannot be.
The latter is also excluded by monotonicity, as indicated in the proof of Theorem
2.1. To show that tail robustness can be replaced by monotonicity for bounded
programs, assume that µ < xt < ν for all t, and that α is the constant-equivalent
of x. Then, by monotonicity, xT µ < x ∼ α < xT ν for all T . By DU for ultimately
constant programs, DU(xT µ) ≥ DU(α) ≥ DU(xT ν) for all T . Because DU(xT µ)
and DU(xT ν) converge to each other, they converge to DU(α). They also converge
to DU(x), which, hence, is equal to DU(α) and evaluates x. 2
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2.6 Appendix B. Example

For general domains with all programs incorporated, it is not very clear how
preference relations can be constructed that satisfy all the axioms of Koopmans
(1960). The following example illustrates for a natural case that the axioms of
Koopmans, also without his axioms P5 or P5’, imply that utility must be bounded.

Example 2.4 Assume that X = R+, the set of nonnegative monetary outcomes.
Assume, as in Koopmans (1960), that < is defined on the whole set of programs
Π∞i=1X, and that there exists a function U : Π∞i=1X → R that evalutes <, i.e. a
consumption program is preferred if and only if it has the higher U value, where
further U satisfies uniform continuity on equivalence classes with respect to the
supnorm. That is, for each program x and each ε > 0 there exists δ > 0 such that
|U(y)−U(x)| < ε as soon as the supnorm distance of y to the equivalence-class of x

is less than δ (his Postulate 1). Koopmans also assumed that the range of U is an
interval IU (3* in Section 3), using this assumption heavily throughout his analysis.
We further assume that discounted utility applies to the set F of all programs for
which discounted utility is finite, with u continuous and strictly increasing. F c, the
complement of F , contains all programs with infinite discounted utility. Because
for every program z∈F c and x∈F we can make a program y∈F with z dominating
y in every period and y ∼ x, by monotonicity and transitivity every program in
F c must be strictly preferred to every one in F . Hence, U(F c) exceeds U(F ). We
conclude that U(F ) and U(F c) partition the interval IU where U(F ) comprises
the lower part and U(F c) the upper part.

Take x ∈ F . Then we can strictly improve x1, leading to a strictly better
program. Apparently U(F ) does not contain its upper bound. Next take x∈F c.
There must be a t with xt > 0. Then we can strictly lower xt some, leading to a
strictly worse program. Apparently U(F c) does not contain its lower bound. By
connectedness, either U(F ) or U(F c) is empty, so that either F or F c is empty.
F contains all constant programs and, therefore, F c is empty. This implies that u

must be bounded. If u were unbounded, we could construct x with u(xt) > 1/ρt−1

in F c so that x has infinite discounted utility, contradicting emptiness of F c.

Section 8* of Koopmans, Diamond, and Williamson (1964) suggested that arc-
connectedness together with a “finite interior diameter” of X implies boundedness
of utility. The above example suggests that connectedness alone already is irre-
concilable with unbounded utility.

The status of Koopmans’ boundedness condition (Koopmans, 1960, Postulate
P5; Koopmans, 1972, Postulate P5’) is not clear. Possibly he had in mind that all
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programs preferred more than a prespecified best program, and programs preferred
less than a prespecified worst program, be dropped from the domain, and that all
other programs be retained. Such an approach does not work well because then
additive representation theorems of Debreu (1960) or Gorman (1968), used in the
proofs, can no longer be applied. About the latter point there have been many
misunderstandings in the literature (Wakker, 1993b). The only way to have a
best and worst program, and at the same time have the full product structures
required for the theorems of Debreu (1960) and Gorman (1968), is to have a best
and worst consumption, and let the best and worst programs correspond with these
consumptions in all periods. Then all pograms can be included, and the domain
contains enough subspaces isomorphic to full product spaces to apply known proof
techniques. Utility then has to be bounded automatically, which explains claims
about Koopmans’ analysis with P5/P5’ assumed in the main text.

Koopmans (1972, Section 6*) briefly discussed the extension of his results to
unbounded progams with finite discounted utility. There are however, apparently,
typos in his text, to the extent that we are unable to guess what he may have had
in mind.
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The Hyperbolic Factor:

a Measure of Decreasing Impatience

Many studies have found that discounting is hyperbolic rather than constant.
Hyperbolic discounting is becoming increasingly popular in economic applications.
Most studies that provide evidence in favor of hyperbolic discounting either are
merely qualitative or they depend on assumptions about, or parametric fittings
of, utility functions. This chapter1 provides a quantitative measure for the degree
of deviation from stationarity that can overcome the problems mentioned. This
measure, the hyperbolic factor, can easily be calculated from data and does not
require knowledge of the utility function. Moreover, it provides simple preference
foundations of the most popular discount functions. Thus, the hyperbolic factor
provides an easy tool for theoretical preference foundations, critical empirical tests,
and quantitative measurements of hyperbolic discounting.

3.1 Introduction

Since Samuelson’s (1937) introduction of constant discounted utility, this model
has been widely accepted as a normative and descriptive model of intertemporal
choice. According to general, possibly non-constant, discounted utility, a stream
of outcomes is evaluated by first determining the utility of every outcome, i.e. the
value of the outcome would it have been received immediately, and then multiply-
ing each utility by a discount factor that corresponds to the time-point of receipt.
Constant discounting implies that a preference between two streams of outcomes is
not affected if all outcomes in both streams are delayed by the same time interval.

Recently, there has been an increasing number of empirical studies suggesting
that discounting is not constant, including Benzion, Rapoport, and Yagil (1989),
Bleichrodt and Johannesson (2001), Cairns and van der Pol (2000), Green, Fristoe,

1This chapter is based on Rohde (2005).
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and Myerson (1994), Kirby and Maraković (1995), Mazur (1987, 2001), Read
and Read (2004), Rodriguez and Logue (1988), and Thaler (1981). If an early
reward and another, later and larger reward are perceived as being equivalent,
then delaying both rewards equally will, for most people and animals, result in a
strict preference for the later and larger reward, revealing decreasing impatience.

As a consequence of decreasing impatience, individuals’ preferences can be
dynamically inconsistent. Consider a person who prefers to receive two apples in
one year plus one day rather than one apple in one year, but prefers to receive
one apple today rather than two apples tomorrow (Thaler, 1981). This person is
decreasingly impatient. If his preferences between ‘today’ and ‘tomorrow’ remain
the same for one year, then in one year from now, he will prefer to receive one
apple on that day rather than two apples one day later. Thus, his preferences
between the two options will have changed over time. In this sense decreasing
impatience may be viewed as reflecting an irrationality.

An increasingly popular model that captures decreasing impatience is hyper-
bolic discounting (Loewenstein and Prelec, 1992; Harvey, 1986, 1995; Mazur,
1987). This model has been used in many fields (Akerlof, 2002; Harris and Laib-
son, 2001; Krusell and Smith, 2003; Laibson, 1997; Luttmer and Mariotti, 2003;
O’Donoghue and Rabin, 1999; Thaler and Benartzi, 2004). Most studies that
provide empirical evidence in favor of hyperbolic discounting assume a particular,
often linear, utility function or first need to parametrically fit utility. Thus, the
quantitative evidence in favor of hyperbolic discounting is confounded by assump-
tions about and parametric fittings of utility. Most qualitative studies in favor of
hyperbolic discounting only reject constant discounting and provide evidence in
favor of general decreasing impatience, not of hyperbolic discounting in particular.

This chapter proposes a simple method to quantify the degree of deviation
from stationarity that does not need assumptions about or estimations of utility.
That is, a measure of decreasing impatience is introduced, the hyperbolic factor ,
which can easily be calculated from data without knowledge of utility.

One approach to construct a measure of decreasing impatience would be to
find out how impatience changes over time. This would require knowledge of
impatience at each time-point, i.e. knowledge of the discount function. Then, to
determine this discount function, we would also need to know the utility function.
It is, indeed, commonly believed in the field that such a procedure should be
followed. Surprisingly, as this paper shows, we do not need to go through all these
steps. In fact, measuring the degree of decreasing impatience is even easier than
measuring the discount function.

Our method of measurement is similar to the utility measurement method of
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Wakker and Deneffe (1996). There, choices between gambles under uncertainty
are constructed in such a manner that subjective probabilities or decision weights
cancel from the equations, so that utilities can be measured without the need
to measure subjective or weighted probabilities. Similarly, this paper constructs
choices between delayed outcomes in such a manner that the absolute level of
discounting and the utilities of outcomes cancel from the equations, so that we
can measure variations in impatience and, thus, degrees of irrationality, without
knowledge of utility or the absolute level of discounting.

As will be shown, the hyperbolic factor is a useful tool in the axiomatization
of the various discount functions that exist today. A constant positive hyperbolic
factor corresponds to generalized hyperbolic discounting (Loewenstein and Prelec,
1992). Quasi-hyperbolic discounting holds if and only if the hyperbolic factor is
equal to zero for all points in time except the present (Phelps and Pollak, 1968). If,
in addition, the hyperbolic factor is zero in the present, then constant discounting
holds. Thus, estimating the hyperbolic factor and testing whether it is constant
will be useful in testing which of the currently used models fit empirical data best
and in testing whether these existing models are appropriate at all or whether
different models need to be developed.

Prelec (2004) introduced another measure of decreasing impatience. Relative to
the hyperbolic factor, his measure is more complicated: it uses the second deriva-
tive of the logarithm of the discount function, which can only be obtained after
complex measurements of discounting and utility. Moreover, his measure is not
constant under hyperbolic discounting. The difference between Prelec’s measure
and the hyperbolic factor is analogous to the difference between the measure of ab-
solute and that of relative risk aversion (Mas-Colell, Whinston, and Green, 1995).
While the former is most useful for CARA-utility (constant absolute risk aversion),
the latter is most useful for CRRA-utility (constant relative risk aversion). Simi-
larly, while the hyperbolic factor is most useful for hyperbolic discounting, Prelec’s
measure will be more useful for other types of discount functions. Finally, the hy-
perbolic factor is model-free, i.e. it can also be used as a measure of decreasing
impatience when preferences cannot be represented by discounted utility. This is
not the case for Prelec’s measure, which essentially needs a discount function.

Section 3.2 defines the hyperbolic factor. This factor is applied to discounted
utility in Section 3.3. All proofs are in the Appendix.
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3.2 The Hyperbolic Factor Defined

Let X = Rm be a set of outcomes2 and T = R+ a set of time-points. A timed
outcome (t, µ) yields outcome µ at time t and nothing (= 0) at all other points in
time, where t = 0 corresponds to ‘today’. We examine preferences < over timed
outcomes. The relations 4,Â,≺,∼ are as usual. Preferences over outcomes are
derived from preferences over timed outcomes consumed today, i.e. χ < µ if and
only if (0, χ) < (0, µ).

We assume that < is a weak order , i.e < is complete ((s, µ) < (t, χ) or
(t, χ) < (s, µ) for all µ, χ ∈ X and s, t ∈ T , possibly both) and transitive. Pre-
ferences are monotonic if χ < µ implies (t, χ) < (t, µ) for every t ∈ T , and
χ Â µ implies (t, χ) Â (t, µ) for every t ∈ T . Preferences are impatient if for every
s < t, χ Â 0 implies (s, χ) Â (t, χ) and χ ≺ 0 implies (s, χ) ≺ (t, χ). Preferen-
ces are continuous if for every (t, χ) the sets {(s, µ) ∈ T × X | (s, µ) < (t, χ)} and
{(s, µ) ∈ T × X | (s, µ) 4 (t, χ)} are closed. Throughout this paper we assume
that preferences constitute a continuous, monotonic, and impatient weak order.

Consider two equivalent timed outcomes (s, µ) ∼ (t, χ), with s < t and µ � χ.

Then we have either χ Â µ Â 0 or χ ≺ µ ≺ 0 (µ is ‘moderate’ and χ is ‘extreme’).
If the outcome µ is delayed by an interval τ, then stationarity implies that the
outcome χ should also be delayed by τ in order to maintain indifference. Thus,
under stationarity (s, µ) ∼ (t, χ) implies (s+τ, µ) ∼ (t+τ, χ). Stationarity reflects
constant impatience.

The preference relation < exhibits decreasing impatience if for all s < t, τ ∈ T ,

(i) χ Â µ Â 0 and (s, µ) ∼ (t, χ) imply (t+τ, χ) < (s+τ, µ), and (ii) χ ≺ µ ≺ 0 and
(s, µ) ∼ (t, χ) imply (t+τ, χ) 4 (s+τ, µ); increasing impatience holds if the implied
preferences are always the reverse. Thus, with decreasing impatience, when we
consider two equivalent timed outcomes, then delaying both outcomes equally will
result in less distinction between the time-points, and, thus, more preference for the
timed outcome with the preferred outcome. In this sense, decreasing impatience
reflects that a time difference becomes decreasingly important as it lies farther in
the future.

Assume another preference relation <∗, which also is a continuous, monotonic,
and impatient weak order. Preferences <∗ exhibit more decreasing impatience
than < if for all s < t, τ, σ ∈ T and µ � χ, (i) χ∗ Â∗ µ∗ Â∗ 0, (s, µ) ∼ (t, χ),
(s + σ, µ) ∼ (t + τ, χ), and (s, µ∗) ∼∗ (t, χ∗) imply (t + τ, χ∗) <∗ (s + σ, µ∗), and

2All results in this paper remain valid if X is a connected topological space containing a

reference outcome ‘nothing.’ X can, for instance, be any convex subset of Rm containing zero,

or a set of non-quantified health states.
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(ii) χ∗ ≺∗ µ∗ ≺∗ 0, (s, µ) ∼ (t, χ), (s + σ, µ) ∼ (t + τ, χ), and (s, µ∗) ∼∗ (t, χ∗)
imply (t + τ, χ∗) 4∗ (s + σ, µ∗) (Prelec, 2004).

Consider again two equivalent timed outcomes (s, µ) ∼ (t, χ) with s < t and
µ � χ. Assume that (s + σ, µ) ∼ (t + τ, χ). Decreasing (increasing) impatience
implies that τ − σ > 0 (τ − σ < 0). An obvious measure of decreasing impatience
is, therefore, τ − σ. This measure τ − σ, however, will depend on s, t, σ, µ, and
χ, and will be hard to compare across different outcomes and time-points. The
main purpose of this paper is to propose a transformation of this measure that is
better suited as a measure of impatience, and that can be compared more easily
across different outcomes and time-points. This proposed measure, the hyperbolic
factor, is defined next. It is just as easily observable from preferences as τ − σ

itself. Unlike τ − σ, however, it will be constant, i.e. independent of s, t, σ, µ and
χ, for all hyperbolic discounting models currently used in the literature, as we will
see in Section 3.3. Outcomes µ, χ ∈ X and time-points s, t, σ, τ ∈ T , with s < t,

τ > 0, form an indifference pair if

(s, µ) ∼ (t, χ) and (s + σ, µ) ∼ (t + τ, χ). (3.1)

Definition 3.1
For every indifference pair as in eq. 3.1 the hyperbolic factor is defined as

τ − σ

tσ − sτ
.

For general preferences, a hyperbolic factor may not always be defined for every
outcome χ and all s < t and τ > 0. For instance, there may be no µ and σ that
satisfy eq. 3.1. Our assumptions about preferences imply that such a case can
never arise, so that a µ and σ as described can always be found. This claim is
formalized in the next theorem.

Theorem 3.2 For every χ � 0, s < t, and τ > 0, there are a unique σ and a µ,

such that an indifference pair as in eq. 3.1 results.

Now we can define the function H for every χ � 0, s < t, and τ > 0, as

H(s, t, χ, τ) =
τ − σ

tσ − sτ
,

where σ is such that together with a µ and the arguments of H, it yields an
indifference pair as in eq. 3.1. The function H gives the hyperbolic factors. In
general, H need not always be regular, i.e. H is infinite if tσ = sτ, and negative in
spite of strongly decreasing impatience if tσ < sτ. Yet, as we will see later, for all
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discounted utility models popular in the literature, regularity holds, i.e. for every
indifference pair as in eq. 3.1 we have tσ > sτ .

Note that for every indifference pair, a hyperbolic factor can be calculated.
From n indifferences as in eq. 3.1 with varying time-points,

(
n
2

)
/2 hyperbolic fac-

tors can be calculated. Non-negative hyperbolic factors correspond to decreasing
impatience. We will see in Section 3.3 that hyperbolic discounting induces non-
negative hyperbolic factors, and, thus, decreasing impatience.

Theorem 3.3 Let regularity hold. Preferences < exhibit decreasing impatience
if and only if H ≥ 0. Preferences < exhibit increasing impatience if and only if
H ≤ 0.

The hyperbolic factor also serves as a measure of decreasing impatience, as shown
in the next theorem. Thus, it properly captures Prelec’s (2004) relative decreasing
impatience. When we consider another preference relation <∗, then it is assumed
that <∗ is a continuous, monotonic and impatient weak order, and that the cor-
responding hyperbolic factors are given by H∗(s, t, χ, τ).

Theorem 3.4 Let regularity hold. Preferences <∗ exhibit more decreasing impa-
tience than < if and only if H∗(s, t, χ∗, τ) ≥ H(s, t, χ, τ) for all s, t, τ, χ, χ∗.

Thus, we have shown that the hyperbolic factor is an appropriate model-free
measure of decreasing impatience that can easily be obtained from an indifference
pair.

3.3 The Hyperbolic Factor and Discounted Uti-

lity

Discounted utility holds if there exist a discount function φ and a utility function
u such that preferences < can be represented by

DU(t, µ) = φ(t)u(µ),

where φ is continuous and strictly decreasing, φ(0) = 1, φ(t) > 0 for every t,

and u is continuous, u(0) = 0, and there is an outcome χ ∈ X with u(χ) 6= 0.

Fishburn and Rubinstein (1982) characterized discounted utility. In this section
we will assume that discounted utility holds. Thus, preferences still constitute a
continuous, monotonic and impatient weak order as in Section 3.2. We will not
assume regularity, but instead derive it later from other assumptions.
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Under discounted utility, the hyperbolic factor is independent of the outcomes,
as the following theorem shows.

Theorem 3.5 Let discounted utility hold. Then H(s, t, χ, τ) is independent of χ.

Two decision-makers with different discount functions φ and φ∗ that are related
by a power transformation φ∗(t) = [φ(t)]c have equal hyperbolic factors, as stated
in Observation 3.6. Thus, in order to measure deviations from stationarity, we
do not even need to know how much people discount in an absolute sense. This
observation underlies the possibility to analyze decreasing impatience without a
need to measure the discount function or utility.

Observation 3.6 Let discounted utility hold. Consider two discount functions φ

and φ∗ with corresponding H and H∗. If there is a c ∈ R such that φ∗(t) = [φ(t)]c

then H∗(s, t, χ∗, τ) = H(s, t, χ, τ) for every s, t, τ, χ, χ∗.

3.3.1 Constant Discounting

Constant discounting has been a traditional assumption in economics. Preferences
satisfy constant discounting if there is a constant discount factor δ such that
φ(t) = δt for every t. Constant discounting is equivalent to the hyperbolic factor
always being zero.

Theorem 3.7 The following two statements are equivalent under discounted uti-
lity.

(i) Preferences < satisfy constant discounting.

(ii) H(s, t, χ, τ) = 0 for all s, t, χ, τ.

3.3.2 Generalized Hyperbolic Discounting

Following up on the empirical studies that found violations of stationarity, Loewen-
stein and Prelec (1992) introduced the generalized hyperbolic discount function,
which is defined by

φ(t) = (1 + ht)−r/h,

with h > 0, r > 0. Generalized hyperbolic discounting is equivalent to the hyper-
bolic factor being a positive constant.

Theorem 3.8 The following two statements are equivalent under discounted uti-
lity.
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(i) Preferences < satisfy generalized hyperbolic discounting φ(t) = (1 + ht)−r/h

with parameter h > 0.

(ii) There is a constant h > 0 such that H(s, t, χ, τ) = h for all s, t, χ, τ.

Mazur (1987) tested a necessary condition for hyperbolic discounting that also
did not require knowledge of utility. We provide a testable condition that is
not only necessary, but also sufficient for hyperbolic discounting, as Theorem 3.8
shows.

3.3.3 Harvey Discounting

Harvey (1986) proposed a discount function given by

φ(t) = (1 + t)−r.

This Harvey discounting is equivalent to generalized hyperbolic discounting with
a hyperbolic factor that equals one.

Theorem 3.9 The following two statements are equivalent under discounted uti-
lity.

(i) Preferences < satisfy Harvey discounting.

(ii) H(s, t, χ, τ) = 1 for all s, t, χ, τ.

3.3.4 Proportional Discounting

Mazur (1987) and Harvey (1995) proposed a discount function given by

φ(t) = (1 + ht)−1.

This proportional discounting is equivalent to generalized hyperbolic discounting
with r = h.

It follows that the hyperbolic factor does not distinguish between the generali-
zed hyperbolic discounting of Loewenstein and Prelec (1992) and the proportional
discounting of Mazur (1987) and Harvey (1995). This is because the hyperbolic
factor only restricts the parameter h and not the parameter r as we saw in Ob-
servation 3.6. Indeed, on our domain of timed outcomes the two models cannot
be distinguished, because they differ only regarding the absolute level of discoun-
ting and not regarding the degree of decreasing impatience. This finding reflects
once more that changes in impatience and the corresponding irrationalities can be
investigated independently of the absolute level of discounting.
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3.3.5 Quasi-hyperbolic Discounting

Phelps and Pollak (1968) introduced quasi-hyperbolic discounting, as used by Laib-
son (1997) and many others. The quasi-hyperbolic discount function is given by

φ(t) =

{
1 if t = 0
βδt if t > 0.

for some β ≤ 1, and some δ > 0.

Quasi-hyperbolic discounting is equivalent to stationarity for all of the future
except the present.

Theorem 3.10 The following two statements are equivalent under discounted uti-
lity.

(i) Preferences < satisfy quasi-hyperbolic discounting.

(ii) H(s, t, χ, τ) = 0 for all s > 0, t, χ, τ.

Thus, when combined with Fishburn and Rubinstein’s (1982) preference foun-
dation of discounted utility, this section provided preference foundations for all
currently popular discount models.

3.4 Conclusion

This paper has introduced the hyperbolic factor, a quantitative measure of de-
creasing impatience, which can easily be obtained from an indifference pair. In
addition to being a simple measure, the hyperbolic factor is useful in characte-
rizing all popular discount models. Hyperbolic discounting holds if and only if
the hyperbolic factor is constant and positive. The discount function of Harvey
(not proportional discounting) applies if and only if the hyperbolic factor is always
equal to one. Quasi-hyperbolic discounting holds if and only if the hyperbolic fac-
tor is equal to zero for all future points in time except the present. If, in addition,
the hyperbolic factor is equal to zero today, then constant discounting holds.

A direction for future research is to calculate hyperbolic factors from data,
which will illustrate how strong the evidence in favor of hyperbolic discounting
is. A major advantage of such future studies, in comparison to earlier ones, is
that they will not be confounded by assumptions about or estimations of instant
utility functions. Testing whether hyperbolic factors are constant and positive will
indicate whether hyperbolic discounting is the appropriate alternative to constant
discounting.
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3.5 Appendix

Proof of Theorem 3.2

Consider s, t, χ, τ with 0 ≤ s < t, χ � 0, and τ > 0. Assume that χ Â 0. By
monotonicity and impatience we know that3

(s, 0) ∼ (t, 0) ≺ (t, χ) ≺ (s, χ).

By continuity of preferences and connectedness of Rm there must then be a µ with
(s, µ) ∼ (t, χ) and χ Â µ Â 0. Thus,

(s, µ) ∼ (t, χ) Â (t + τ, χ) Â (t + τ, µ).

By continuity there must then be a σ with (s + σ, µ) ∼ (t + τ, χ). By replacing
all ‘Â’ by ‘≺’ and all ‘≺’ by ‘Â’, this reasoning shows that similar things hold for
χ ≺ 0.

By monotonicity and impatience, µ is unique up to indifference and σ is unique.
2

Proof of Theorem 3.3

By regularity, we have H ≥ 0 if and only if τ −σ ≥ 0 for all indifference pairs as in
eq. 3.1. Thus, by Theorem 3.2, we have H ≥ 0 if and only if decreasing impatience
holds. 2

Proof of Theorem 3.4

By regularity, we have H∗(s, t, χ∗, τ) ≥ H(s, t, χ, τ) for every s, t, τ, χ, χ∗ if and
only if σ∗ ≤ σ for all s < t, χ � 0, τ > 0 with (s, µ) ∼ (t, χ), (s + σ, µ) ∼ (t + τ, χ)
and (s, µ∗) ∼∗ (t, χ∗), (s + σ∗, µ∗) ∼∗ (t + τ, χ∗), which, by impatience, holds if
and only if <∗ exhibits more decreasing impatience than < . 2

Proof of Theorem 3.5

Let H(s, t, χ, τ) = h and H(s, t, χ∗, τ) = h∗. Then there are µ, σ, µ∗, σ∗, with
(s, µ) ∼ (t, χ), (s+σ, µ) ∼ (t+ τ, χ), (s, µ∗) ∼ (t, χ∗) and (s+σ∗, µ∗) ∼ (t+ τ, χ∗).
By discounted utility it follows that

φ(s)u(µ) = φ(t)u(χ)
3By the definition of a timed outcome it follows that (s, 0) ∼ (t, 0) for every s, t.
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and
φ(s + σ)u(µ) = φ(t + τ)u(χ).

Therefore,
u(µ)
u(χ)

=
φ(t)
φ(s)

=
φ(t + τ)
φ(s + σ)

.

Similarly,
u(µ∗)
u(χ∗)

=
φ(t)
φ(s)

=
φ(t + τ)
φ(s + σ∗)

.

By impatience it then follows that σ∗ = σ and h = h∗. This proves our result.
A similar reasoning proves Observation 3.6. 2

Proof of Theorem 3.7

Let H(s, t, χ, τ) = 0 for all s, t, χ, τ. Then

(s, µ) ∼ (t, χ)

if and only if
(s + τ, µ) ∼ (t + τ, χ),

i.e. stationarity holds. Thus, for every s, t, σ ∈ T ,

φ(s)
φ(t)

=
φ(s + τ)
φ(t + τ)

.

Therefore, by setting s = 0, for every t, τ ∈ T ,

φ(t)φ(τ) = φ(t + τ).

By Cauchy’s functional equation it follows that there must be a c ∈ R such that
φ(t) = ect for every t ∈ T . Now let δ = ec. Then, φ(t) = δt. The converse follows
easily. 2

Proof of Theorem 3.8

Let there be a constant h > 0 such that H(s, t, χ, τ) = h for all s, t, χ, τ. Assume
that

u(µ) = φ(t)u(χ) and φ(σ)u(µ) = φ(t + τ)u(χ),

with t > 0. Then we must have

τ − σ

tσ
= h.
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Let k = 1 + ht. It follows that t + τ = t + kσ. Moreover, k is a constant that
depends only on t. Loewenstein and Prelec (1992) showed that this implies that
the discount function is of the generalized hyperbolic form. Thus, there must be
parameters h̃, r such that φ(t) = (1 + h̃t)−r/h̃. It follows that h̃ = h. From the
assumption that φ(·) is strictly decreasing it follows that r > 0. This proves one
direction of our result. The proof of the other direction is straightforward. 2

Proof of Theorem 3.9

Harvey discounting is equivalent to generalized hyperbolic discounting with h = 1.

2

Proof of Theorem 3.10

Let H(s, t, χ, τ) = 0 for all s > 0, t, χ, τ. Then for every s, t, σ ∈ T , with s, t > 0

φ(s)
φ(t)

=
φ(s + σ)
φ(t + σ)

.

Let s0 > 0. Define the function φ0 on T by φ0(t) = φ(t+s0)/φ(s0). Then for every
s, t, σ ∈ T ,

φ0(s)
φ0(t)

=
φ(s + s0)
φ(t + s0)

=
φ(s + s0 + σ)
φ(t + s0 + σ)

=
φ0(s + σ)
φ0(t + σ)

.

Moreover, φ0(0) = 1. By Cauchy’s functional equation it follows that there must
be a c0 ∈ R such that φ0(t) = ec0t for every t ∈ T . Therefore, φ(t+s0) = ec0tφ(s0)
for every t ∈ T . Thus, φ(t) = ec0(t−s0)φ(s0) for all t ≥ s0. Define δ0 = ec0 and
β0 = e−c0s0φ(s0). Then φ(t) = β0δ

t
0 for all t ≥ s0. Similarly, consider an s1 with

0 < s1 < s0 and with corresponding β1 and φ1. It follows that for all t ≥ s0,

φ(t) = β1δ
t
1 = β0δ

t
0, so β0 = β1 and δ0 = δ1. We can continue this argument

repeatedly.
Thus, letting β = β0 and δ = δ0 we obtain φ(t) = βδt for all t > 0. By definition

we have φ(0) = 1. 2
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4

Time-Tradeoff Sequences for

Quantifying and Visualising the

Degree of Time Inconsistency, Using

only Pencil and Paper

This chapter1 introduces time-tradeoff (TTO) sequences as a new tool for ana-
lyzing intertemporal preferences. TTO sequences yield a new way to measure
temporal discounting, while minimizing distortions due to violations of intertem-
poral separability. They make it particularly easy to observe and exactly quantify
deviations from stationarity and the implied proneness to choice anomalies. TTO
sequences can easily be administered and analyzed, using only pencil and paper,
and do not need any assumption about utility, or estimation thereof. They allow
for the empirical discrimination between several hyperbolic discounting models
that have been proposed in the literature as alternatives to constant discounting,
such as quasi-hyperbolic, proportional, and generalized hyperbolic discounting.
We tested the feasibility of TTO sequences in an experiment. Our findings sug-
gest some new directions for theories of intertemporal choice.

4.1 Introduction

Many decisions involve tradeoffs over time. The most popular model for evaluating
streams of outcomes over time, also assumed in this paper, is (general) discounted
utility. In this model, streams of outcomes are evaluated by summing the dis-
counted utilities of the outcomes received at various timepoints. In traditional
approaches, the measurement of the discount function is difficult because both
this function and the utility function are unknown parameters that have to be

1This chapter is based on Attema, Bleichrodt, Rohde, and Wakker (2006).
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measured simultaneously (Coller, Harrison, and Rutström, 2005). The difficulty
is aggravated because separability of preferences over disjoint time periods, an as-
sumption of the model, is extensively violated empirically, distorting assessments
of discounting. We introduce time-tradeoff (TTO) sequences as a new and simple
tool for measuring discount functions. It turns out that we need no measurement
of utility, or assumption about utility, to obtain the discount function. Distortions
due to violations of time separability are minimized.

Samuelson (1937) introduced constant discounting, where a preference between
two outcome streams does not change if all outcomes are delayed by an equal time
period, reflecting constant impatience, a property also known as stationarity. Con-
stant discounting has long been the standard for intertemporal choice in economics.
An attractive feature is that, under some extra assumptions, constant discounting
implies dynamically consistent behavior: plans for future decisions will be adhered
to, and no arbitrage is possible.

Empirical evidence has revealed many violations of stationarity. Mostly, impa-
tience is decreasing rather than constant (Frederick, Loewenstein, and O’Donoghue,
2002). People who at present are not willing to wait for an improved but delayed
outcome due to impatience, become willing to wait if all outcomes are delayed
by the same amount of time. These people, thus, become less impatient as time
proceeds. Under common assumptions, decreasing impatience implies dynamic
inconsistency, which is usually considered irrational. All kinds of choice anomalies
result, such as proneness to arbitrage.

Hyperbolic discounting models have been developed so as to model decreasing
impatience. For example, quasi-hyperbolic discounting (Phelps and Pollak, 1968)
assumes constant impatience for all future timepoints, but decreasing impatience
at present. Then time inconsistency arises only if immediate consumption is in-
volved. Generalized hyperbolic discounting (Loewenstein and Prelec, 1992) allows
decreasing impatience at all timepoints. Analyses of traditional economic models
change because of these new ways of discounting, and many previously unexplained
phenomena can now be accommodated (Laibson, 1997). Hence, hyperbolic dis-
counting is popular today.

Prelec (2004) introduced a theoretical measure of decreasing impatience, be-
ing the convexity index − ln(ϕ)′′

ln(ϕ)′ of the logarithm of the discount function ϕ.2 He
demonstrated that this measure identifies different degrees of proneness to incon-
sistencies and arbitrage when impatience is decreasing. He wrote: “Decreasing
impatience provides a natural criterion for assessing whether a set of time pre-

2The index measures concavity for increasing functions, and convexity for decreasing functions

such as ϕ.
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ferences represents a more or less severe departure from the stationarity axiom.
The criterion is associated with a simple normative diagnostic–the selection of
inefficient (dominated) outcomes in two-stage decision problems” (p. 526).

At this stage, it may seem to be difficult to elicit or implement Prelec’s measure
in practice. It, apparently, first requires the measurement of the discount function
and, next, taking the logarithm and determining its second derivative over its first.
To measure the discount function, we, apparently, have to measure utility, or at
least make assumptions about utility, because the discount function determines
behavior only in combination with utility. Some analyses in the literature para-
metrically estimated utility and, subsequently, used these estimates to measure
the discount function (Chapman, 1996). Most analyses simply equated outcomes
with utility, which amounts to the assumption of linear utility. Such assumptions
can confound findings about discounting.

TTO sequences provide a new way of directly measuring the degree of devia-
tion from stationarity and the degree of time-inconsistent behavior. Surprisingly,
we can immediately estimate Prelec’s index − ln(ϕ)′′

ln(ϕ)′ of time inconsistency and
graphically depict it, using only pencil and paper, without need to carry out the
measurements and calculations mentioned above. In particular, we need not deter-
mine the utility function. Through TTO sequences we can immediately tell who
of two persons satisfies more decreasing impatience, and we can identify groups
of people who are especially prone to losses and arbitrage because of time incon-
sistency, as we show in a representation theorem. TTO sequences are easy to
comprehend for subjects, leading to reliable data.

TTO sequences, together with one simple choice between outcome streams with
two nonzero outcomes, completely identify the time discount function. Again, for
this measurement no assumption about utility is needed. Our method is there-
fore, obviously, robust against distortions and nonlinearities in utility, and can be
applied to general outcome sets, such as finite sets of qualitative health states.

We show how TTO sequences can test which of several hyperbolic models con-
sidered in the literature can be applied, and of those that can be, which best fit the
choices of individuals. Until now, most studies only rejected constant discounting,
but did not test which alternative was better. In an experiment, we demonstrate
the feasibility of our method by measuring TTO sequences of 55 subjects.

Our experimental findings lead to a number of suggestions for new models of
intertemporal choice. Several recent studies, discussed in Section 4.9, have found
increasing impatience, which casts doubt on the universal decreasing impatience
commonly assumed in time-preference theories. Our study also finds a majority
of increasing, rather than decreasing, impatience for the present and near future.
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After the present and near future, impatience becomes constant.
Most analyses of intertemporal discounting considered in the literature so far

have focused entirely on decreasing impatience. The data of our study and some
other recent studies suggest that the development of new tools for analyzing in-
creasing impatience will be worthwhile. This point can be compared to the risk
field, where tools for analyzing risk seeking are needed also if the majority of sub-
jects exhibit risk aversion. Without such flexibility of modeling, data fitting is not
possible at the individual level.

We also find some fundamental violations of the general discounted utility
model. This suggests that generalizations, primarily relaxing temporal separabi-
lity, are desirable.

The outline of this chapter is as follows. Section 4.2 describes discounted uti-
lity and the various families of discount functions considered in this chapter. TTO
sequences and curves are presented in Section 4.3. Section 4.4 demonstrates theo-
retically that TTO sequences capture the degree of deviation from stationarity, and
the proneness to choice anomalies. Section 4.5 illustrates some applications, and
Section 4.6 shows how discount functions can be measured using TTO sequences.
Experimental details are in Section 4.7, and results in Section 4.8. Section 4.9
contains a discussion.

4.2 Discounted Utility

We consider preferences between outcome streams. An outcome stream (t1 :
x1, . . . , tm : xm) yields outcome xi at timepoint ti for i = 1, . . . , m and nothing
at other timepoints. For simplicity of presentation we assume that outcomes are
monetary and nonnegative, with “nothing” equated with the 0 outcome. Our
measurement method can equally well be applied to other outcomes, with the out-
come set for instance a finite set of qualitative health states, but we will not pursue
this point. Timepoint t = 0 corresponds with the present. Under discounted uti-
lity (which in this chapter refers to general, possibly nonconstant, discounting),
outcome streams are evaluated through

DU(t1 : x1, . . . , tm : xm) =
m∑

i=1

ϕ(ti)U(xi), (4.1)

where ϕ is the discount function and U the (instant) utility function, with ϕ(t) > 0
for all t, ϕ strictly decreasing (impatience) and continuous, U(0) = 0, and U

continuous and strictly increasing. ϕ and U are ratio scales, meaning that each
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is unique up to a positive scale factor. Throughout this chapter we assume that
discounted utility holds. In the literature, a normalization ϕ(0) = 1 is sometimes
assumed, but it is more convenient for us not to commit to a scaling.

Constant discounting holds if ϕ(t) = δt for a discount factor δ with 0 < δ ≤ 1.

Constant discounting has been the traditional assumption. Then a preference be-
tween two outcome streams does not change if all outcomes are delayed by an equal
amount of time ε, a preference condition known as stationarity or constant impa-
tience. Under such a delay, the discounted utility of both sequences is multiplied
by the same constant δε, so that their ordering is not affected. It is well-known that
the reversed implication also holds under common assumptions, that is, constant
impatience implies constant discounting (Koopmans, 1960).

In psychological studies it has often been found that people have decreasing
impatience, i.e. their willingness to wait increases as outcomes are delayed. A
popular model that captures decreasing impatience is the quasi-hyperbolic discount
model (Phelps and Pollak, 1968), where the discount function is given by

ϕ(t) =

{
1 if t = 0
βδt if t > 0,

for a constant β ≤ 1 with, again, 0 < δ ≤ 1. Under quasi-hyperbolic discoun-
ting we have decreasing impatience only at timepoint 0, and constant impatience
thereafter.

A model that captures decreasing impatience not only for the present, but
also for future timepoints, is generalized hyperbolic discounting (Loewenstein and
Prelec, 1992), defined by

ϕ(t) = (1 + ht)−r/h,

with h > 0 and r > 0. Harvey (1986, Eq. 7) considered the special case h = 1.

Mazur (1987) and Harvey (1995, “proportional discounting”) considered the case
h = r.

In general, violations of stationarity need not imply time inconsistency, con-
trary to claims sometimes made in the literature, but in agreement with some
careful discussions (Dasgupta and Maskin, 2005, section I; Harvey, 1995, p. 389;
Thaler, 1981). For example, you may have a special preference for apples on Tues-
day, and prefer two apples on Tuesday to one apple on Monday, but not prefer two
apples on Wednesday to one apple on Tuesday. This entails a violation of statio-
narity, but no inconsistency. All the time you consistently have and predict your
preferences, and you never change plans. Such discrepancies between stationarity
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and time inconsistency are caused by nonhomogeneity of time. As is common in
the literature, we assume homogeneous time henceforth, so that at every timepoint
your decisions can be based on stopwatch time, and nonconstant impatience can
be equated with time inconsistency. Then nonconstant impatience entails a vul-
nerability to arbitrage, where a person first pays to obtain an exchange one way
and later pays again to reverse the exchange, ending up in the original position
less some money. We will come back to this point in Section 4.4.

4.3 Deriving the Degree of Time Inconsistency

from TTO-Sequences

A time-tradeoff (TTO) sequence is a sequence t0, . . . , tn of timepoints such that
there exist two outcomes β < γ with

(t0 : β) ∼ (t1 : γ)

(t1 : β) ∼ (t2 : γ)

·
·
·

(tn−1 : β) ∼ (tn : γ). (4.2)

That is, each delay between two consecutive timepoints exactly offsets the same
improvement of outcome. This delay between two consecutive timepoints, di =
ti − ti−1, is called the willingness to wait (WTW). Stationarity means that the
WTW is constant. Under decreasing impatience the WTW increases as time
proceeds, and under increasing impatience it decreases. Thus, a TTO sequence
readily identifies constant, increasing, or decreasing impatience.

TTO sequences are equally spaced in terms of the logarithm of the discount
function. Because the derivation of this result may be clarifying, we give it in the
main text.

Observation 4.1 For a TTO sequence t0, . . . , tn :

ln(ϕ(t0))− ln(ϕ(t1)) = ln(ϕ(t1))− ln(ϕ(t2)) = . . . = ln(ϕ(tn−1))− ln(ϕ(tn)).

Proof
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For a TTO sequence we have

ϕ(t0)U(β) = ϕ(t1)U(γ), and

ϕ(t1)U(β) = ϕ(t2)U(γ),

implying
ϕ(t0)
ϕ(t1)

=
U(γ)
U(β)

=
ϕ(t1)
ϕ(t2)

= . . . =
ϕ(tn−1)
ϕ(tn)

. (4.3)

Here the third and following equalities result from analogous algebraic manipula-
tions. Taking logarithms gives the observation. 2

The points t0, . . . , tn are, obviously, also equally spaced in terms of normaliza-
tions of ln(ϕ(t)), such as at t0 and tn. The latter normalization is denoted τ, and
is called the time-tradeoff (TTO) curve. It is given by

τ(t) =
ln(ϕ(t))− ln(ϕ(tn))
ln(ϕ(t0))− ln(ϕ(tn))

(4.4)

Because it is 1 at t0 and 0 at tn, with n equally big steps of size 1/n in between,
we get

τ(tj) = 1− j

n
for all j. (4.5)

From TTO sequences we can, thus, immediately obtain the graph of the nor-
malized logarithmic discount function. See Figure 4.1, with points (tj , 1 − j

n )
depicted, and linear interpolation. The figure concerns the experiment reported
later, and is derived from subject 7’s indifferences

(5 months : AC 700) ∼ (7 months : AC 900)

(7 months : AC 700) ∼ (9 months : AC 900)

(9 months : AC 700) ∼ (12 months : AC 900)

(12 months : AC 700) ∼ (18 months : AC 900)

(18 months : AC 700) ∼ (24 months : AC 900)

so that n = 5, t0 = 5, t1 = 7, t2 = 9, t3 = 12, t4 = 18, and t5 = 24.

The degree of convexity of a function is not affected by normalizations and,
hence, the convexity of τ equals the convexity of ln(ϕ). As we saw, stationarity,
decreasing impatience, and increasing impatience correspond with constant, in-
creasing, and decreasing WTW. Hence, we obtain the following result.
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Figure 4.1: The TTO curve τ of subject 7

Observation 4.2 Stationarity corresponds with linearity of the TTO curve and
of ln(ϕ). Decreasing impatience corresponds with convexity of the TTO curve and
of ln(ϕ). Increasing impatience corresponds with concavity of the TTO curve and
of ln(ϕ). The TTO curve τ and the logarithm of discounting ln(ϕ) have the same
degree of convexity, i.e.,

−τ ′′

τ ′
= − ln(ϕ)′′

ln(ϕ)′
.

4.4 TTO-Sequences to Measure Proneness to Ar-

bitrage

In this section, we restrict our attention to simple outcome streams. The following
analysis will, contrary to the rest of this chapter, essentially use continuity of
utility. A simple outcome stream has at most one nonzero outcome, and can be
written as (s : α). Consider the following two indifferences, similar to Eq. 4.2:

(s : β) ∼ (t : γ) and (s + σ : β) ∼ (t + σ + ρ : γ)

for s < t (s for “short”), β < γ, and σ > 0. (4.6)
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We have ρ > 0 under decreasing impatience, ρ = 0 under constant impatience,
and ρ < 0 under increasing impatience. ρ can be taken as an index of deviation
from stationarity. Indeed, for ρ > 0, we have the typical nonstationarity

(s : β) < (t′ : γ) and (s + σ : β) 4 (t′ + σ : γ) with one preference strict (4.7)

for all t ≤ t′ ≤ t + ρ and for no other t′. The interval [t, t + ρ], thus, indicates a
space for arbitrage.

Preference reversals as in Eq. 4.7 are prone to arbitrage. At time 0 the person,
when endowed with (s + σ : β), is willing to exchange it for (t′ + σ : γ). When
asked to reconsider at timepoint σ, the person now perceives of the options as
(s : β) and (t′ : γ), and is willing to go back to the β-option3. The person is
willing to pay a small amount for at least one of the two exchanges (take it small
enough not to affect preference otherwise). Then the person has ended up at the
original endowment less some money, which entails arbitrage. Bénabou and Ti-
role (2002), Gruber and Kőszegi (2001), Laibson (1997), O’Donoghue and Rabin
(1999), Prelec (2004), Strotz (1956), Thaler and Benartzi (2004), and numerous
others derived various choice anomalies from Eq. 4.7, and gave formalizations for
these phenomena. For example, a sophisticated person who is informed about the
above procedure beforehand may avoid it but then becomes vulnerable to commit-
ments to dominated options, due to lack of future self-control. Other anomalies
that can result entail time inconsistency, addiction, and procrastination.

For ρ < 0 in Eq. 4.6, as typical of increasing impatience, we have

(s : β) 4 (t′ : γ) and (s + σ : β) < (t′ + σ : γ) with one preference strict (4.8)

for all t+ρ ≤ t′ ≤ t and for no other t′, and [t+ρ, t] indicates a space for arbitrage.
Consider now another preference relation <∗, satisfying the assumptions of

preceding sections as does <, with corresponding ϕ∗, U∗, τ∗.

Definition 4.3 <∗ exhibits more decreasing impatience than < if the equivalences
in Eq. 4.6 plus (s : β∗) ∼∗ (t : γ∗) imply (s + σ : β∗) 4∗ (t + σ + ρ : γ∗).

Prelec (2004) gave an equivalent definition. Under decreasing impatience for <
and <∗, the above condition implies, for

(s : β∗) ∼∗ (t : γ∗) and (s + σ : β∗) ∼∗ (t + σ + ρ∗ : γ∗), (4.9)

that either this ρ∗ exceeds ρ, or that such a ρ∗ does not exist. In the first case
the space [t, t + ρ∗] for arbitrage for <∗ exceeds the corresponding space [t, t + ρ]

3In the latter step we use homogeneity of time, i.e. the possibility to use stopwatch time, as

assumed throughout this chapter.
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for < . In the second case the space for arbitrage for <∗ is in fact [t, t +∞), as is
readily verified.

There is also interest in increasing impatience, because of which we extend the
above definition.

Definition 4.4 <∗ exhibits more increasing impatience than < if the equivalences
in Eq. 4.6 plus (s : β∗) ∼∗ (t : γ∗) imply (s + σ : β∗) <∗ (t + σ + ρ : γ∗).

For preference relations with increasing impatience, the arbitrage space [t+ρ, t] is
bigger as increasing impatience is bigger.

The following theorem shows that TTO curves identify proneness to arbitrage
in the above sense. As usual, τ∗ is more concave than τ if there exists a concave
transformation f such that τ∗(t) = f(τ(t)) for all t, which holds if and only if
τ∗′′
τ∗′ ≥ τ ′′

τ ′ everywhere on their domain. Note here that τ and τ∗ are decreasing
functions, for which the Pratt-Arrow index of concavity drops the minus sign
relative to increasing functions. Similarly, τ∗ is more convex than τ if there exists
a convex transformation f such that τ∗(t) = f(τ(t)) for all t, which holds if and
only if − τ∗′′

τ∗′ ≥ − τ ′′
τ ′ everywhere on their domain. The following theorem adapts

Prelec’s (2004) Proposition 1 to TTO curves instead of ln(ϕ), and extends the
result to increasing impatience.

Theorem 4.5 Assume that < and <∗ satisfy the assumptions of discounted utility
of this chapter, with <’s TTO curve τ(t) a normalization ln ϕ(t)−ln ϕ(S)

ln ϕ(T )−ln ϕ(S) of ln(ϕ(t))

and <∗’s TTO curve τ∗(t) a normalization ln ϕ∗(t)−ln ϕ∗(S∗)
ln ϕ∗(T∗)−ln ϕ∗(S∗) of ln(ϕ∗(t)), for some

arbitrary S > T and S∗ > T ∗.

(i) <∗ exhibits more decreasing impatience than < if and only if <∗’s TTO curve
τ∗ is more convex than <’s TTO curve τ.

(ii) <∗ exhibits more increasing impatience than < if and only if <∗’s TTO curve
τ∗ is more concave than <’s TTO curve τ.

The above theorem holds irrespective of the normalization parameters S, T, S∗,
T ∗ chosen. The theorem demonstrates formally that the degree of convexity of a
TTO-curve determines the degree of decreasing impatience and, thus, the space for
arbitrage and the proneness to anomalies as discussed by Prelec (2004) and others.
From a mathematical perspective, our reformulation in terms of TTO-curves, i.e.
normalized ln(ϕ) curves, may seem to be only more complex than Prelec’s for-
mulations directly in terms of ln(ϕ) itself. This reformulation is, however, the
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essential step for obtaining the empirical status of the result. The normalized
curve is directly observable whereas the nonnormalized curve is not4.

4.5 Illustrations of TTO-Sequences

We can immediately infer proneness to time inconsistency from simply eyeballing
TTO curves, curves that were obtained using only pencil and paper. Figure 4.2 dis-
plays seven TTO curves, obtained from seven subjects in the experiment described
later, on normalized time intervals (t̃0 = 0, t̃n = 1). The curves immediately reveal
that the curve of subject 7 is more convex, implying more decreasing impatience,
than the curve of subject 38. Because both subjects exhibit decreasing impatience
by Theorem 4.5i, subject 7 is more prone to time inconsistency and arbitrage than
subject 38. Subject 24’s curve is also always below that of subject 38, sugges-
ting more decreasing impatience. Locally around 0.45, subject 38 exhibits more
convexity though, so that this ordering of convexity does not hold on the whole
interval [t0, t5]. The curves of subjects 7 and 24 intersect and there is no uniform
ordering regarding their degree of nonstationarity over the whole interval [t0, t5].

There are several concave curves suggesting increasing rather than decreasing
impatience. Theorem 4.5ii shows that subject 10 is more prone to time inconsis-
tency than subject 5; etc.

For sophisticated analyses, we can estimate ratios of second derivatives by first
derivatives, or find best-fitting parametric curves, and compare the corresponding
degrees of convexity. We can also develop global heuristic measures of convexity
that can be calculated using only pencil and paper. For example, the area be-
low the diagonal is a plausible index of convexity and of decreasing impatience.
This area is a monotonic transform of the decreasing-impatience index (DI-index),
defined by

DI-index =
n−1∑

i=1

(
i

n
− t̃i

)
, with t̃i the normalization of ti. (4.10)

These values are 0.63 (subject 7), 0.52 (subject 24), and 0.36 (subject 38). They
suggest that, overall, subject 7 exhibits more decreasing impatience than subject
24, and subject 24 more than subject 38. Notice that the DI-index bears some
resemblance with the Gini-index in inequality measurement.

Subjects 5, 10, and 49 exhibit increasing impatience. Accordingly, their DI-
indices will be negative, and they are -0.26 (subject 5), -0.60 (subject 10), and

4In terms of Eq. 4.15 hereafter, Theorem 4.5 shows that we need not measure r, a value needed

to obtain ln(ϕ) but not to obtain its normalizations.
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Figure 4.2: The TTO curve τ of several subjects

-0.45 (subject 49). Overall, subject 10 exhibits more increasing impatience than
subject 49, and subject 49 does so more than subject 5.

The DI-index of subject 13 is 0.08, and this subject virtually exhibits no overall
decreasing or increasing impatience in an overall sense. Yet, this subject does
deviate considerably from stationarity. For deviations from stationarity, absolute
values of deviations from linearity are more relevant, with any area between the
τ curve and the diagonal taken positively. We define the non-stationarity index
(NS-index) as

NS-index =
n−1∑

i=1

∣∣∣∣
i

n
− t̃i

∣∣∣∣ . (4.11)

It provides an overall index of deviation from stationarity and proneness to incon-
sistencies without concern of the direction of deviation. For subject 13, NS-index =
0.15. To the extent that stationarity is rational, the NS-index could be interpreted
as an index of irrationality.
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The DI-index and NS-index depend on the size of the interval [t0, t5] considered
in the sense that they will tend to zero if the interval [t0, t5] becomes small. The
desirability of such dependence depends on the application considered. Distortions
due to this effect can be avoided by comparing subjects only on same time intervals,
or taking subparts of the τ curve related to the same interval. In Figure 4.2, the
curves of subjects 13 and 49 concerned similar time intervals indeed (being [5, 17]
and [5, 16]).

Other measures of decreasing impatience or absolute deviation from statio-
narity can be devised, depending on the application and the time discounting
assumed. Let us consider generalized hyperbolic discounting, ϕ(t) = (1 + ht)−r/h

(Loewenstein and Prelec, 1992), with 0 ≤ h < ∞ an index of decreasing impa-
tience, and with stationarity and constant discounting e−rt the limiting case of
h → 0. This family incorporates most of the popular hyperbolic families other
than quasi-hyperbolic discounting, such as those of Mazur (1987) and Harvey
(1986, 1995). Rohde (2005) derived the most appropriate index of convexity for
this family, called the hyperbolic factor. For a TTO sequence t0, . . . , tn, hyperbolic
factors can be calculated as

hyperbolicfactor(i, j) =
(tj − ti)− (tj−1 − ti−1)

ti(tj−1 − ti−1)− ti−1(tj − ti)
(4.12)

for j > i. Hence, for one TTO sequence with n = 5, 10 (=4+3+2+1) hyper-
bolic factors can be calculated. As Rohde (2005) demonstrated, for generalized
hyperbolic discounting, ϕ(t) = (1 + ht)−r/h, the hyperbolic factor is constant, in-
dependent of i and j or the time-tradeoff sequence considered, and is always equal
to h. For constant discounting (stationarity), the hyperbolic factor will always be
zero, and for quasi-hyperbolic discounting the hyperbolic factor is positive at time-
point 0 and zero for all future timepoints. Thus, this statistic can readily serve to
test these models.

The relation between Prelec’s convexity index and the hyperbolic factor can
be compared with indices of risk aversion of utility functions U in expected utility.
The absolute Pratt-Arrow index −U ′′/U ′ is most appropriate for so-called CARA
utility, but the relative index x(−U ′′/U ′) is most appropriate for so-called CRRA
utility. Thus, what is the most useful index depends on the application mentioned.
Theorem 4.5 described cases where Prelec’s measure is most suited. If we restrict
our attention to generalized hyperbolic discounting, the hyperbolic factor is useful.

The hyperbolic factor can be directly calculated from TTO sequences, and
can be used to test whether generalized hyperbolic discounting holds and, if it
does, to distinguish between its various subfamilies. One necessary condition for
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generalized hyperbolic discounting to hold, and for h to be well behaved, is that
the denominator in Eq. 4.12 be positive, i.e.

ti(tj−1 − ti−1)− ti−1(tj − ti) > 0 for j > i. (4.13)

This inequality provides a test of generalized hyperbolic discounting, as does con-
stantness of the hyperbolic factor when defined.

4.6 Deriving the Discount Function from TTO-

Sequences

We saw in preceding sections that TTO sequences give the normalized logarithm
of the discount function, and they give the degree of change of impatience and
discounting through the degree of convexity of the function obtained. We did not
derive the complete discount function in the preceding section, because we did not
establish the rate of time preference in any absolute sense. Deriving the complete
discount function from TTO sequences is the purpose of this section. One way
to identify the discount function is to derive the utility function from some extra
information or from some extra assumption, such as linearity as is often done in
the literature. Then we can use Eq. 4.3 and we readily get ϕ.

An alternative route that does not need any assumption about utility is as
follows. We can take any indifference between outcome streams with two nonzero
outcomes:

(b : γ, c : γ) ∼ (a : γ, d : γ) for γ > 0 and a < b < c < d. (4.14)

We give the proof of the following observation in the main text because it
demonstrates how the discount function can be calculated from Eq. 4.14 together
with TTO sequences.

Observation 4.6 Given the TTO-curve τ, the discount function ϕ is uniquely
determined through one observed indifference 4.14.
Proof
Let tn > t0, and assume that

τ(t) =
ln(ϕ(t))− ln(ϕ(tn))
ln(ϕ(t0))− ln(ϕ(tn))

.

That is, τ is a normalization of ln(ϕ(t)). There exist, as yet unknown, parameters
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λ and r such that ln(ϕ(t)) = λ + rτ(t), i.e.5

ϕ(t) = eλ × (eτ(t))r. (4.15)

The parameter eλ is an arbitrary scaling constant without empirical implications.
We may as well assume that it is e−r. The power r determines the rate of time
preference and is empirically relevant. For example, if we let the irrelevant factor
eλ be e−r and rewrite ϕ(t) as e−r × (er)τ(t)

, then for the special case of constant
discounting and linear τ(t) = 1− t, e−r is the discount factor.

TTO sequences in isolation cannot identify the power r and, thus, cannot
identify the absolute rate of time preference. To see this point, note that TTO-
sequences concern simple outcome streams. If ϕ(t)U(x) represents preferences over
simple outcome streams (t : x), then so does ϕ(t)rU(x)r for every r > 0, because
ϕ(t)U(x) ≥ ϕ(s)U(y) if and only if ϕ(t)rU(x)r ≥ ϕ(s)rU(y)r. Hence, without
any assumption about utility, simple outcome streams and TTO-sequences cannot
identify the power of time discounting and the absolute degree of discounting,
indeed.

The indifference in Eq. 4.14 implies that ϕ(b)U(γ) + ϕ(c)U(γ) = ϕ(a)U(γ) +
ϕ(d)U(γ), or ϕ(b) + ϕ(c) = ϕ(a) + ϕ(d). Substituting Eq. 4.15 and dropping eλ

gives
(eτ(b))

r
+ (eτ(c))

r
= (eτ(a))

r
+ (eτ(d))

r
. (4.16)

It is well-known that for all quadruples a′ (eτ(a) above), b′ (eτ(b) above), c′ (eτ(c)

above), and d′ (eτ(d) above) with a′ > b′ > c′ > d′ (recall that τ is decreasing)
there exists a unique real number r such that exactly one of the following equations
holds:

b′r + c′r = a′r + d′r with r > 0 (4.17)

ln(b′) + ln(c′) = ln(a′) + ln(d′), corresponding to r = 0 (4.18)

b′r + c′r = a′r + d′r with r < 0 (4.19)

Such equations have, for instance, been studied in decision under risk with ex-
pected utility where (b′, c′) and (a′, d′) designate fifty-fifty lotteries for money, and
constant relative risk averse utility U(x) = xr/r (U(x) = ln(x) for r = 0) is used
to fit data. Unfortunately, there is no analytic expression for the solution r to the
best of our knowledge, but r can readily be determined numerically.

In our above analysis for time preference, only positive powers r (= ln(ϕ(t0))−
ln(ϕ(tn))) are possible. In the experiment we measured Eqs. 4.14 empirically, and

5We have λ = ln(ϕ(tn)) and r = ln(ϕ(t0))− ln(ϕ(tn)), with ϕ(t0) and ϕ(tn) unknown.
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then solved for r. If negative r resulted, it followed that the discounted utility
model was falsified. To clarify how such a violation can arise, assume a TTO
sequence t0, . . . , t5(n = 5). Assume that we take a = t1, b = t2, and c = t3, in
Eq. 4.14, and the subject chooses d < t4. Then ϕ(t2) + ϕ(t3) = ϕ(t1) + ϕ(d) >

ϕ(t1) + ϕ(t4), so that ϕ(t1)− ϕ(t2) < ϕ(t3)− ϕ(t4). This contradicts the equality
ϕ(t3) − ϕ(t4) = µ2(ϕ(t1) − ϕ(t2)) for 0 < µ = ϕ(t2)/ϕ(t0) < 1, and the general
discounted utility model has been falsified. 2

Figure 4.3 depicts a discount function that we obtained for subject 5. We used
his indifferences (0 : 700) ∼ (6 : 900), (6 : 700) ∼ (12 : 900), (12 : 700) ∼ (16 : 900),
(16 : 700) ∼ (20 : 900), (20 : 700) ∼ (24 : 900), which yields the TTO sequence
t0 = 0, t1 = 6, t2 = 12, t3 = 16, t4 = 20, and t5 = 24. Further we used his
indifference (12 : 700, 16 : 700) ∼ (6 : 700, 24 : 700) as a version of Eq. 4.14 to
estimate r in

(eτ(12))
r
+ (eτ(16))

r
= (eτ(6))

r
+ (eτ(24))

r
. (4.20)

Eq. 4.20 is equivalent to

(e3/5)r + (e2/5)r = (e4/5)r + (e0)r. (4.21)

We obtained an estimated power r = 1.41.

Figure 4.3: The discount function ϕ(t) of subject 5
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Table 4.1: Parameters for the four TTO sequences

sequences t0 β γ

I 0 months AC 700 AC 900
II 0 months AC 2800 AC 3300
III 5 months AC 700 AC 900
IV 0 months AC 1600 AC 1900

The outcomes β, γ, and the initial timepoints t0 are as in Eq. 4.2.

4.7 Method of Experiment

Participants. N=55 subjects took part. There were 31 students from Erasmus
University, of whom 21 were from finance or economics and the others were from
various other disciplines, and there were 24 students from Maastricht University,
with only 2 students from economics or finance and the rest from various disci-
plines.

Motivating subjects. Every subject received AC 10 for participating. All payoffs in
the stimuli were hypothetical. This point is discussed in Section 4.8.

Procedure. The experiment was run by computer, and subjects were interviewed
individually. On average, the task took 15 minutes per subject. We ran exten-
sive pilots with 53 subjects in order to determine the appropriate setup of the
experiment.

We took one month as unit of time. Subjects first went through a training
phase, where preferences (0 : 700) ≺ (1 : 900) and (0 : 700) Â (600 : 900)
were mostly observed (with sometimes one or both reversed). Then, in a training
matching task, we asked for the value t to give the indifference (0 : 700) ∼ (t : 900),
and then for the value t to give the indifference (0 : 2800) ∼ (t : 3300).

Stimuli. We elicited four TTO sequences for each subject (Table 4.1). Every
sequence consisted of 5 steps, i.e. n = 5. All tasks were matching tasks, similar to
the last task of the training phase.

The computer screen was as given in the Appendix. The pilots suggested that
a direct successive elicitation of the timepoints t1, . . . , t5 of one TTO sequence
could generate order effects. Hence, in the main experiment we first elicited t1 for
every TTO sequence, next t2 for every TTO sequence, etc.

We elicited two versions of Eq. 4.14. In both we took γ = AC 700. In the first
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we measured an indifference

(5 : 700, 11 : 700) ∼ (1 : 700, T : 700). (4.22)

where subjects were asked to provide their indifference value T through a matching
question. In the second we measured an indifference

(t2 : 700, t3 : 700) ∼ (t1 : 700, T : 700), (4.23)

where t1, t2, and t3 were from the elicited TTO sequence I.
Demographic variables. At the end of the experiment, subjects were asked to re-
port their gender, age, length, weight, field of studies, nationality, and also whether
or not they smoked. We also asked seven behavioral questions on a scale from 1 to
7, where 1 means totally disagree and 7 means totally agree. The questions con-
cerned behavioral aspects that we thought could have an influence on discounting
and are given in the Appendix.

Analysis. We did all tests both parametrically and non-parametrically. These
always gave similar results, and we only report the non-parametric tests.
Analysis of Group Averages. Changes in WTW indicate whether subjects satisfy
constant, decreasing or increasing impatience. We tested for constant WTW for
each TTO sequence separately using a Friedman test.

Next, for every two subsequent measurements of WTW (di and di−1) we tested
equality using Wilcoxon tests. We also tested equality of WTW between the first
questions of sequence I ((0 : 700) ∼ (t : 900)) and of sequence III ((5 : 700) ∼
(t : 900)). Because these concern the same outcomes, stationarity predicts the
same WTW here. We also checked whether the temporal attitude suggested by
this comparison is consistent with the temporal attitude suggested by comparisons
within sequence I. That is, we checked whether the change in WTW from the first
question of sequence I to the first question of sequence III has the same sign as
the first change in WTW within sequence I.
Analyses of Individual Data. A subject was classified as exhibiting increasing
(constant, decreasing) impatience if at least 50% of her changes in WTW suggested
so, where we considered all sequences together. A double classification as constant
and increasing (decreasing) was reclassified as increasing (decreasing), and a double
classification as increasing and decreasing was taken as unclassified, as were all
other cases. We used these conservative criteria to reduce the effects of response
error. Such a threshold of 50% has been used before in the literature (Abdellaoui,
2000). We tested whether significantly more subjects are classified as increasingly
or decreasingly impatient using Wilcoxon.
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Next, we tested whether quasi-hyperbolic discounting holds. For every subject
we split all changes in WTW of all TTO sequences into two groups: the group
containing all changes in WTW where the first timepoint was 0, and the group
containing the rest. For both groups, we chose the same 50% classification as
before. Under quasi-hyperbolic discounting, the WTW should increase in the
former group and be constant in the latter. We performed similar Wilcoxon tests
as before.

For every subject we calculated indices of decreasing impatience and of non-
stationarity, and also the hyperbolic factors as explained in Section 4.5. We com-
pared the indices of all subjects between sequences by means of Wilcoxon signed
rank tests. To test for a possible special effect of first questions, we also considered
sequences with the first step left out. We computed the DI-index for these reduced
sequences as follows: DI-index =

∑3
i=1

(
i
4 − t̃i+1

)
, with t̃i the normalization of ti

such that t̃1 = 0 and t̃5 = 1.

Next, we regressed the indices of decreasing impatience and non-stationarity
on the body-mass index. We estimated the correlation between each of the seven
behavioral questions and each DI-index and each NS-index. We also regressed the
mean of the DI-indices per subject and that of the NS-indices on gender, smoker,
age, length, weight, and all behavioral questions together. Finally, we estimated
the power of discounting r in Eq. 4.15 from the questions in Eqs. 4.22 and 4.23.

4.8 Results

Group Averages
Figure 4.4 gives the TTO curves constructed from the medians of the answers
of all subjects. The curves suggest that subjects are increasingly impatient in
the beginning and near future, and constantly impatient thereafter. Statistical
analyses confirm this pattern. The Friedman tests rejected constantness of the
WTW (p < 0.01) for all sequences. We repeated the test with the first WTW
excluded. As expected, then the null hypothesis of constant WTW is not rejected
(p > 0.20 for all tests). Thus, our findings suggest that people satisfy stationarity
for timepoints beyond a certain threshold. From the third sequence we can see
that this threshold exceeds 5 months.

Figure 4.5 shows median WTWs. The vertical axes all have the same scale
and give the WTW. We can clearly see that the WTW drops in the beginning and
remains more or less constant later on for every sequence. This is confirmed by
Wilcoxon tests. The results of the Wilcoxon test are summarized in Table 4.2. The
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Figure 4.4: The TTO curves τ for median answers of the four TTO sequences

WTW changed significantly in the first steps (d2 − d1) (α = 0.01). The WTW
decreases there, suggesting increasing impatience. The WTW increases in the
second step (d3− d2) for sequence III (α = 0.05). No other changes are significant
at α = 0.05.

A Wilcoxon test shows that the first WTW of the third sequence is significantly
lower (p < 0.01) than the first WTW of the first sequence. Thus, subjects are
consistent between sequences I and III.

Individual Data

The individual data confirm the preceding findings. Subjects are increasingly im-
patient for timepoints close to 0 and constantly impatient for later timepoints, as
follows. The classification of all subjects based on all sequences together yields
18 subjects exhibiting constant impatience, 3 exhibiting decreasing, 10 exhibiting
increasing impatience, and 24 not classified (Table 4.3). Thus, based on this clas-
sification we cannot say much about the behavior of individual subjects. The
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Figure 4.5: Median willingness to wait for each sequence

Table 4.2: Wilcoxon signed rank tests: Z (p-value, 2-tailed)

WTW
Seq. d2 − d1 d3 − d2 d4 − d3 d5 − d4

I -4.40 (0.000) -0.51 (0.612) -0.63 (0.531) -0.34 (0.732)
II -4.50 (0.000) 1.35 (0.176) -0.93 (0.352) -0.98 (0.329)
III -3.39 (0.001) 2.00 (0.046) -0.29 (0.769) -0.95 (0.341)
IV -3.19 (0.001) 1.03 (0.302) -0.41 (0.681) 1.05 (0.293)

Wilcoxon test shows that there is more tendency towards increasing than towards
decreasing impatience (p = 0.052). In the group of all questions with a first time-
point zero, 8 subjects exhibit constant impatience, 3 subjects exhibit decreasing
impatience, 36 subjects exhibit increasing impatience, and 8 subjects could not
be classified. This suggests that most subjects indeed are increasingly impatient
for timepoint zero, which is supported by the Wilcoxon test (p = 0.000). In the
other group (first timepoint positive), 21 subjects exhibit constant impatience, 5
subjects exhibit decreasing, 6 subjects exhibit increasing, and 23 subjects could
not be classified. Thus, it appears that most subjects indeed exhibit constant
impatience for timepoints not too close to 0.

Calculations of the hyperbolic factors revealed that Eq. 4.13 was widely vio-
lated, for virtually all subjects in many questions. This falsifies the generalized
hyperbolic discounting model, and Rohde’s hyperbolic factor cannot be calculated
in many situations.

In view of the problems of calculating the hyperbolic factors, we only use the
indices of decreasing impatience (DI-index) and of non-stationarity (NS-index)
to compare subjects. The medians of the indices of decreasing impatience over
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Table 4.3: Classification of individuals

Impatience
Questions Constant Decreasing Increasing unclassified
all 18 3 10 24
timepoint 0 8 3 36 8
timepoint > 0 21 5 6 23

the whole sequences are significantly negative (p < 0.01) so that subjects are
increasingly impatient overall. The medians of the DI-index were respectively
−0.33, −0.28, −0.092, and −0.19. We observe that the third sequence had both a
lower NS-index and a lower absolute value of the DI-index. This is probably caused
by the fact that the third sequence starts closer to the threshold from whereon
subjects satisfy constant impatience. The DI-indices of the reduced sequences, the
sequences without the first steps, did not deviate significantly from zero, indicating
that the increasing impatience found earlier is indeed due to the first step of every
sequence.

We proceed by considering only the DI-index and NS-index of the complete
sequences. Based on a Wilcoxon signed rank test, the DI-index and the NS-index
are significantly different for every sequence (p < 0.01), where the NS-index is
always larger than minus the DI-index. Since most indices of decreasing impatience
are negative, this finding implies that for most subjects the TTO curve τ intersects
the curve belonging to a linear TTO curve at least once. Thus, most subjects are
not clearly either increasingly or decreasingly impatient, but are a mix of both.

There was no significant difference in DI-index and NS-index between sequences
I and II and between sequences III and IV. For all other pairs of sequences, the
sequence with the higher sequence number provided significantly higher DI-indices
and significantly lower NS-indices than the ones before (p < 0.01 for all but one,
p < 0.05 for all). Thus, subjects became less non-stationary and more decreasingly
impatient or, equivalently, less increasingly impatient in later sequences.

On average, men had higher DI-indices and lower NS-indices, except for the
DI-index in sequence III, but the differences were usually not significant, with
marginal significance (p < 0.10) for the DI-index of sequence I and for the NS-
indices of sequences I and II, and significance (p < 0.05) only for the NS-index of
sequence IV.

We found no significant relations between our indices and demographic vari-
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ables otherwise. Also, the correlations between the behavioral questions and the
indices were mostly insignificant, so this gives no clear indication that the be-
havioral questions predict behavior. In the two regressions of the mean of the
DI-indices per subject and that of the NS-indices on gender, smoker, age, length,
weight, and all behavioral questions together, only the coefficient on the second
behavioral question with the mean of the NS-index as dependent variable, was
significantly positive (p = 0.045) and all other coefficients were insignificant.

In calculations of the power r in Eq. 4.15 for Eqs. 4.22 and 4.23, about 1/3 of
these were negative. It shows that there are many violations of the basic model of
general discounting.

4.9 Discussion

Our findings suggest that the subjects satisfy increasing impatience in the begin-
ning, and constant impatience thereafter. Thus, we find a kind of “reversed quasi-
hyperbolic” discounting, where impatience is constant after a certain threshold
and increasing as opposed to decreasing in the beginning. Impatience, however,
continues to increase up to 5 months and is not constant immediately after the
present. Informal discussions with subjects indicated that they understood the
questions and knew what they wanted to answer. For the major finding of this
study that deviates from common empirical findings in the literature, i.e. increa-
sing instead of decreasing impatience, there was clear support from the informal
discussions. Many students indicated that they did not mind a delay at first,
but after a long wait they extra disliked further delays. This finding is opposite
to subjects’ becoming more insensitive to delays, as is commonly assumed in the
literature.

Our finding of increasing impatience are consistent with several other studies
(Airoldi, Read, and Frederick, 2005; Frederick, 1999; Read, Airoldi, and Loewe,
2005; Read, Frederick, Orsel, and Rahman, 2005; Rubinstein, 2003; Sayman and
Öncüler, 2005). Read, Frederick, Orsel, and Rahman (2005) found that hyperbolic
discounting is only observed when time is described in delay terms as opposed to
calendar time terms. Rubinstein (2003) reported three experiments that provide
evidence against constant or decreasing impatience. Bommier (2005) and Das-
gupta and Maskin (2005) gave theoretical reasons why increasing impatience can
occur.

The setup of the experiment made it unlikely that subjects noticed that the
questions were chained, and that several of them together served to elicit sequences.
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Therefore, it is unlikely that order effects would cause the increasing impatience
we found.

For the violations of general discounted utility that we found when estimating
the powers in Eq. 4.15, it is likely that the time-separability assumption underlying
general discounted utility is violated. It plays no role for the measurements of TTO
sequences, and only becomes effective for two or more outcomes. This finding
adds to the motivation for paying attention as much as possible to simple outcome
streams, as done when measuring TTO curves. Therefore the analysis of the TTO
sequences minimizes the biases caused by this violation.

Subjects were paid a flat fee for participating and all questions were hypo-
thetical. There are several reasons why we did not use performance-based real
incentives. First, it is administratively complicated to transfer money on the
timepoints specified, not only for the experimenters but also for the subjects.
Hence, such a procedure will generate many extra biases such as through doubts
on the subjects’ part about reliable implementations. Second, the outcomes we
used were large so as to avoid subjects thinking that the amount of money is trivial
anyhow and not worth thinking about carefully. Then real payments make the ex-
periment prohibitively expensive. Also, no clear evidence exists that hypothetical
amounts are discounted differently than real amounts (Frederick, Loewenstein, and
O’Donoghue, 2002). In other fields with stimuli that are not cognitively deman-
ding similar to our study, hypothetical incentives do not seem to give qualitatively
different results, although real incentives tend to reduce data variability (Camerer
and Hogarth, 1999, and Hertwig and Ortmann, 2001). Finally, there is no clear in-
centive for our subjects to please the experimenter, as there can be in experiments
about social behavior.

Many studies that provide evidence in favor of decreasing impatience elicit
indifference values in the outcome domain. They fix two timepoints and one
outcome and elicit a second outcome that makes the subject indifferent between
the two simple outcome streams. We elicit indifference values in the time domain.
Because we are interested in properties of the discount function, and not of the
utility function, it is more natural to focus the subjects’ attention on this dimension
as our questions did. Because, by construction of a TTO sequence, utilities cancel
out from the equations, our method does not require richness in the outcome
dimension and can, for instance, be used with qualitative health outcomes. It
naturally exploits the richness in the time dimension that is available anyhow.

Scale compatibility entails that subjects put more weight on the time dimension
in our setup than in studies eliciting indifferences in the outcome domain. This
could mean that subjects discount outcomes more heavily in our setup but it need
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not affect the main topic of interest to us: nonconstant impatience.
Although eliciting indifferences has not been very common in the time do-

main, it has been used on a number of occasions, for instance by Mazur (1987).
He conducted experiments with pigeons instead of humans. Green, Fristoe, and
Myerson (1994) did similar experiments with humans. These studies, as our study,
exploited the richness of the time dimension to study temporal preference. They,
however, still assumed linear utility of money.

Our findings suggest a number of new directions for intertemporal preference.
Virtually all existing models, including quasi-hyperbolic discounting and genera-
lized hyperbolic discounting, assume universal decreasing or constant impatience,
and have no clear extension to allow for increasing impatience. However, even if
group averages satisfy decreasing impatience, then there will still be individuals
who exhibit increasing impatience, so that for any data fitting at the individual
level such functions are required. For this reason we could not implement the
planned test to discriminate which of the currently popular models fit the data
better: None of them could at all fit data. In particular Rohde’s (2005) hyperbolic
factor, in theory a good tool to empirically distinguish between various families,
was not defined for many answers of virtually all subjects. Also when we used
TTO sequences to derive discount functions from two nonzero-outcome streams,
our findings were mostly negative: We found the general discounted utility model
(4.1) extensively violated. Hence, the development of models relaxing this assump-
tion is also desirable.

4.10 Appendix

Proof of Theorem 4.5. Because τ and τ∗ are strictly decreasing functions,
τ∗(t) = f(τ(t)) for a strictly increasing function f. Take any intervals [d, c] and
[b, a] to the right of [d, c] (b > d and a > c) in the domain of f. Then a = τ(s),
b = τ(t), c = τ(s + σ), and d = τ(t + σ + ρ) for some s < t, s + σ < t + σ + ρ,

σ > 0, σ +ρ > 0. Because the ranges of U and U∗ contain nondegenerate intervals
with 0 as lower bound, there exist outcomes β < γ with

(s : β) ∼ (t : γ) (4.24)

and outcomes β∗ < γ∗ with

(s : β∗) ∼∗ (t : γ∗). (4.25)

(Here is where we crucially use continuity of utility.) Only the utility ratios
U(β)/U(γ) and U∗(β∗)/U∗(γ∗) matter for all that follows and, hence, the par-
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ticular choices of β, γ, β∗, γ∗ are immaterial for all that follows.
We have equivalence of the following statements:

a− b = c− d;

τ(s)− τ(t) = τ(s + σ)− τ(t + σ + ρ);

ln ϕ(s)− ln ϕ(t) = ln ϕ(s + σ)− ln ϕ(t + σ + ρ);

ϕ(s)/ϕ(t) = ϕ(s + σ)/ϕ(t + σ + ρ);

(s + σ : β) ∼ (t + σ + ρ : γ).

We also have logical equivalence of the following statements:

f(a)− f(b) ≥ f(c)− f(d);

τ∗(s)− τ∗(t) ≥ τ∗(s + σ)− τ∗(t + σ + ρ);

ln ϕ∗(s)− ln ϕ∗(t) ≥ ln ϕ∗(s + σ)− ln ϕ∗(t + σ + ρ);

ϕ∗(s)/ϕ∗(t) ≥ ϕ∗(s + σ)/ϕ∗(t + σ + ρ);

(s + σ : β∗) 4∗ (t + σ + ρ : γ∗).

It is well-known that f is convex if and only if for all a, b, c, d as above we have
f(a)−f(b) ≥ f(c)−f(d). As we have just demonstrated, this is, in view of Eq. 4.24
and Eq. 4.25 and the independence of the choices β, γ, β∗, γ∗ above, the same as
the requirement that (s+σ : β) ∼ (t+σ+ρ : γ) imply (s+σ : β∗) 4∗ (t+σ+ρ : γ∗)
for all s, t, σ, ρ as above. That is, convexity of f is equivalent to more decreasing
impatience for <∗ than for < . Reversing inequalities and weak preferences above
shows that concavity of f is equivalent to more increasing impatience for <∗ than
for < . 2

The seven behavioral questions were as follows:

1. I do not study regularly, but often postpone it for too long, so that the
exams-week is extra stressful.

2. I wish I would drink less alcohol per week than I do currently.

3. I wish I would eat less per day than I do currently.

4. I tend to postpone things.

5. I am impatient.
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6. I am often late.

7. I tend to do impulsive purchases.

Figure 4.6: Layout of the computer screen
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5

Time-inconsistent Preferences in a

General Equilibrium Model

This chapter1 introduces time-inconsistent preferences in a multicommodity gene-
ral equilibrium framework with incomplete markets. It is based on Herings and
Rohde (2006). The standard concept of competitive equilibrium is extended in
order to allow for changes in intertemporal preferences. Depending on whether or
not agents recognize that their intertemporal preferences change, agents are called
sophisticated or näıve. This chapter presents competitive equilibrium notions for
economies with näıve agents and economies with sophisticated agents and provides
assumptions under which both types of equilibria exist. Surprisingly, the set of
näıve equilibria in societies populated by time-consistent households is not alloca-
tionally equivalent to the set of competitive equilibria. For sophisticated equilibria
the equivalence holds.

Time-inconsistency also raises conceptual issues about the appropriate concept
of efficiency. Choices have to be made concerning the incorporation of future
preferences and the appropriate instruments to create Pareto improvements. For
both näıve and sophisticated societies, we present four possible efficiency concepts.
Suitable conditions are specified for which both näıve and sophisticated equilibria
satisfy appropriate efficiency concepts.

5.1 Introduction

The vast majority of the economic literature assumes that preferences are time-
consistent. With time-consistent preferences a decision concerning a future date
can be made at any period before that date and will not have to be reconside-
red. Psychological research, however, has suggested that observed behavior is of-

1This chapter is based on Herings and Rohde (2006).
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ten time-inconsistent. Households frequently have intertemporal preferences that
change over time. An example is a phenomenon known as hyperbolic discounting.

Under discounted utility a consumption stream is evaluated by first determi-
ning the value of consumption in each period would that consumption have taken
place today, then multiplying each value by the discount factor corresponding to
the period of consumption, and finally adding all these discounted values. With
exponential discounting the discount factor is given by δt, where δ is a constant
and t is the period of consumption. The hyperbolic discount function is given by
(1+αt)−β/α, where α, β > 0 (Loewenstein and Prelec, 1992). The quasi-hyperbolic
discount factor is equal to 1 for t = 0 and to βδt for t > 0, where 0 < δ < 1 and
0 < β < 1 (Phelps and Pollak, 1968). Thus, under exponential discounting the dis-
count rate is constant, under quasi-hyperbolic discounting it is higher today than
tomorrow, and constant from tomorrow on, and under hyperbolic discounting it
is decreasing over time.

There is an extensive body of literature that claims that people tend to be
more patient in the long run than in the short run, i.e. that discounting is not ex-
ponential. If discounting is not exponential preferences can be time-inconsistent.
While a person may prefer one apple today to two apples tomorrow at any point
in time, he might prefer two apples eleven days from the current period to one
apple ten days from that period. Hyperbolic discounting can explain this phe-
nomenon while maintaining the assumption of constant instantaneous preferences,
but exponential discounting cannot. For evidence of time-inconsistent behavior,
we refer to Thaler (1981), Ainslie and Haslam (1992), Loewenstein and Prelec
(1992), Rachlin and Raineri (1992), and Frederick, Loewenstein and O’Donoghue
(2002).

This chapter introduces time-inconsistent preferences in a multicommodity ge-
neral equilibrium framework with incomplete markets. We take a general perspec-
tive on time-inconsistent preferences, which incorporates hyperbolic and quasi-
hyperbolic discounting as special cases. We model households as consisting of
a different self in every period. Thus, no intrapersonal conflicts can arise when
only one period is studied. This perspective differs from the one in Benhabib and
Bisin (2005), who assume that at every period a household has two conflicting
preferences.

The contribution of this chapter is on a conceptual level. The introduction
of time-inconsistent preferences in general equilibrium models requires a reformu-
lation of concepts and definitions of behavior, equilibrium, and efficiency. The
question of how to reformulate these concepts, is not trivial. It turns out that the
introduction of time-inconsistent preferences makes the analysis quite complex. To
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alleviate the arising complications, and to highlight the conceptual issues, we re-
strict the analysis to the simplest market structure we can think of. In particular,
we refrain from income transfers between periods.

We distinguish two types of societies, näıve and sophisticated ones. Näıve so-
cieties are populated by näıve households. These households do not realize that
their intertemporal preferences change over time. Sophisticated societies consist
of sophisticated households. A sophisticated household does realize that his in-
tertemporal preferences will change in the future, and makes decisions today while
anticipating these changes. We introduce the notions of näıve and sophisticated
equilibrium as an extension of the usual notion of competitive equilibrium as apply-
ing to the time-consistent case. Surprisingly, the set of näıve equilibria of societies
populated by time-consistent households is not allocationally equivalent to the set
of competitive equilibria. For sophisticated equilibria, the equivalence holds. We
give appropriate conditions under which both types of equilibria exist.

When intertemporal preferences change over time, the very definition of ef-
ficiency has to be reconsidered. Choices have to be made concerning the incor-
poration of future preferences and the appropriate instruments to create Pareto
improvements. When efficiency is modeled as a program carried out by a social
planner with certain objectives and instruments, we make a distinction between
myopic and forward-looking social planners. We also distinguish planners who can
change both actual and planned consumption and planners who can only change
the former. For both näıve and sophisticated societies, this results in four possible
efficiency concepts.

Related work on time-inconsistency in a general equilibrium setting has been
done by Luttmer and Mariotti (2003, 2006), who study an infinite-horizon one-
good model of an economy subject to uncertainty. Another related paper is the
one of Krusell, Kuruşçu, and Smith (2002), who study an infinite horizon one-good
model of a representative-agent economy without uncertainty. We will show how
the efficiency concepts presented in those papers relate to our more general set-up.

The outline of this chapter is as follows. Section 5.2 introduces the model. The
definition and existence of competitive equilibria in näıve societies is the subject
of Section 5.3. The definition of equilibrium and the proof of its existence for
sophisticated economies is analyzed in Section 5.4. Sections 5.5 and 5.6 introduce
the appropriate concepts of constrained optimality, and discuss them in relation to
näıve and sophisticated economies. Section 5.5 considers myopic social planners,
while Section 5.6 considers forward-looking social planners. Finally, Section 5.7
concludes. Proofs are in the Appendix.
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5.2 The Model

Vector inequalities will be denoted by À, >, ≥, ≤, <, and ¿ . We study a multi-
period multi-commodity general equilibrium model with incomplete markets that
is not subject to uncertainty. There are T periods that are indexed by t ∈ T. In
each period, the exchange economy consists of H households, indexed by h ∈ H,
and L commodities, indexed by l ∈ L.2

With respect to periods, a distinction should be made between a planning
period and a consumption period. At planning period t, plans are made for con-
sumption in periods τ ≥ t.

At planning period 1, households expect to have a consumption set Xh
·|1 ⊂

RLT for the remaining T periods. It is assumed that households have correct
expectations about their future consumption sets. This assumption implies that
the consumption set at a planning period t follows from the consumption plan
realized so far and the consumption set Xh

·|1. Throughout the chapter, we assume
that the consumption sets are independent of past consumption.3 Moreover, we
will assume that Xh

·|1 = RLT
+ .

At every planning period t, households foresee an initial endowment eh
τ |t ∈ RL

for period τ . Here again, households are assumed to have correct expectations, so
eh

τ |t is independent of the planning period t. At planning period t, the vector of all
expected future endowments for household h is represented by eh

·|t = (eh
t|t, . . . , e

h
T |t).

At every planning period t, every household h makes a consumption plan,
which indicates how much it plans to consume in the current and future periods.
For household h the consumption in period τ , as anticipated or planned in period
t, is denoted by xh

τ |t ∈ RL. The planned consumption path for household h at
period t is denoted by xh

·|t = (xh
t|t, . . . , x

h
T |t). For practical purposes some other

notation will be used: xh
−|t = (xh

1|1, . . . , x
h
t−1|t−1) equals actual consumption up

to period t, xh
τ,τ ′|t = (xh

τ |t, . . . , x
h
τ ′|t) is consumption planned at period t for the

periods τ up to τ ′, and xh = (xh
·|1, . . . , x

h
·|T ) denotes a consumption bundle, i.e. T

consumption paths, of household h. When we drop the superscript h, the H-tuple
over all households is taken, for instance x·|t = (x1

·|t, . . . , x
H
·|t). Similarly, if we drop

2Notice that T indicates both the number of time periods, and the set of time periods.

Similarly, H (L) indicates both the number of households (commodities) and the set of households

(commodities). The context in which the symbol is used will make sure that no confusion can

arise.
3Making the consumption sets depend on past consumption complicates the proofs of existence

of equilibria. For instance, even when the endowments are in the interior of Xh
·|1, for certain

realized consumption plans they might be on the boundary of the consumption set at a future

planning period.
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the subscript t, the T -tuple over all time periods is considered, x = (x·|1, . . . , x·|T ).
For all the preceding vectors, a subscript l is added if attention is restricted to
a particular commodity l. We define the set Xh

−|t = RL(t−1)
+ . The sets Xh

τ |t, Xh
·|t,

Xh
τ,τ ′|t, Xh, Xτ |t, X·|t, and X are defined by taking the appropriate projections

and Cartesian products. In particular, we define Xh
τ |t = RL

+, Xh
·|t = RL(T−t+1)

+ ,

Xh
τ,τ ′|t = RL(τ ′−τ+1)

+ , Xh = RLT (T+1)/2
+ , X·|t =

∏
h∈HXh

·|t, and X =
∏

h∈HXh.

We call x ∈ X an allocation. Notice that x consists of T consumption paths
for the entire economy, each one starting at a different time period. Consumption
paths starting at different time periods are not necessarily consistent. We explicitly
allow for the possibility that xτ |t 6= xτ |t′ . An allocation is called time-consistent if
at all periods the same consumption is planned for a given future period. This is
formally expressed by the following definition.

Definition 5.1 Time-consistent Allocation
An allocation x is time-consistent if, for every h ∈ H, for every t ∈ T we have
xh
·|t = xh

t,T |1.

At every planning period, every household has preferences over present and
future consumption bundles. These preferences may depend on consumption in
the past. Preferences of household h at planning period t, given past consumption
xh
−|t, are represented by the preference relation ºh,t

xh
−|t

defined on Xh
·|t×Xh

·|t. With

slight abuse of notation we will often write ºxh
−|t

instead of ºh,t

xh
−|t

. When past

consumption is clear from the context, it is sometimes omitted from the notation,
and the preferences of household h at planning period t are denoted by ºh,t .

The preference ºh of household h is the collection of preferences at all possible
planning periods, contingent on all possible historical consumption paths, ºh=(
ºxh

−|t

)
t∈T,xh

−|t∈Xh
−|t

.

An economy is described by its primitives, being consumption sets, preferences,
and endowments: E = (Xh,ºh, eh)h∈H .

Consider two consumption paths that coincide up to period t′ > t. Prefe-
rences of a household are said to be time-consistent if the household prefers one
consumption path over the other at period t′ if and only if it does so at period t.

Definition 5.2 Time-consistent Preferences
Preferences of household h are time-consistent if for all periods t, t′ ∈ T with t < t′,
for every xh

−|t ∈ Xh
−|t, and xh

·|t, x
h
·|t ∈ Xh

·|t with xh
t,t′−1|t = xh

t,t′−1|t we have

xh
·|t ºh,t

xh
−|t

xh
·|t if and only if xh

t′,T |t ºh,t′

(xh
−|t,x

h
t,t′−1|t)

xh
t′,T |t.
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Preferences are said to be time-inconsistent if they are not time-consistent4.
The following lemma shows that for the verification of time-consistency of

preferences it suffices to make only comparisons involving period 1 and period t.

The proofs of all lemmas and theorems are in the appendix.

Lemma 5.3 If the preferences of household h are such that for every t ∈ T, for
every xh

·|1, x
h
·|1 ∈ Xh

·|1 with xh
1,t−1|1 = xh

1,t−1|1,

xh
·|1 ºh,1 xh

·|1 if and only if xh
t,T |1 ºh,t

xh
1,t−1|1

xh
t,T |1,

then the preferences of household h are time-consistent.

One of the implications of the lemma is that knowledge of the preference rela-
tion ºh,1, together with the requirement of time-consistency, is sufficient for the
derivation of all preference relations ºh,t .

The consumption paths chosen by the households depend on current and ex-
pected future prices. In period t, the expected prices for period τ are denoted by
pτ |t ∈ Pτ |t = RL. As before, the vector of expected prices, at planning period t,
for present and future periods is denoted by p·|t = (pt|t, . . . , pT |t). The set of ad-
missible price systems P·|t is defined accordingly. The expected prices, at planning
period t, for periods τ up to τ ′ are denoted by pτ,τ ′|t = (pτ |t, . . . , pτ ′|t), and the
complete price system over all periods is represented by p = (p·|1, . . . , p·|T ), where
P is defined appropriately. Finally, realized prices up to period t are represented
by p−|t = (p1|1, . . . , pt−1|t−1).

We follow Pollak (1968), in distinguishing between näıve and sophisticated
households. Näıve households are not aware of their changing preferences. They
do not realize that in the future they might be willing to reconsider choices made
today. Thus, when making a consumption decision in planning period t, a näıve
household h only takes into account the prevailing preferences at that particular
period, ºxh

−|t
. Sophisticated households, on the other hand, are aware of their

changing preferences and will take them into account when making current de-
cisions. They will only consider future plans that they expect to stick to. That
is, when planning future consumption in period t, they incorporate ºxh

−|τ
for all

τ ≥ t.
First, the behavior of näıve households is addressed. Demand and supply of

commodities is identified and the existence of an equilibrium is established. An
4Note that we allow for a more general set of preferences than Laibson (1997, 1998), Angeletos

et al. (2001) and Luttmer and Mariotti (2003, 2006), since we allow for preferences that are not

time-separable.
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example illustrates the intuition behind the model. The following assumptions
will be made throughout the chapter:

Ass. 1 For every h ∈ H, for every t ∈ T, the consumption set Xh
·|t = RL(T−t+1)

+ .

Ass. 2 For every h ∈ H, t ∈ T, and xh
−|t ∈ Xh

−|t, the preference relation ºxh
−|t

is

complete, transitive, and continuous on Xh
·|t ×Xh

·|t.

Ass. 3 For every h ∈ H, t ∈ T, and xh
−|t ∈ Xh

−|t, the preference relation ºxh
−|t

is

monotone, i.e. for xh
·|t, x

h
·|t ∈ Xh

·|t with xh
·|t ≥ xh

·|t and xh
τ |t À xh

τ |t for some
τ ≥ t, we have xh

·|t Âxh
−|t

xh
·|t.

Ass. 4 For every h ∈ H, t ∈ T, and xh
−|t ∈ Xh

−|t, the preference relation ºxh
−|t

is convex in present and future consumption, i.e. for xh
·|t, x

h
·|t ∈ Xh

·|t with
xh
·|t Âxh

−|t
xh
·|t we have αxh

·|t + (1− α)xh
·|t Âxh

−|t
xh
·|t for any α ∈ (0, 1).

Ass. 5 For every h ∈ H, eh
·|1 À 0.

A preference relation º is continuous on X×X if for all x ∈ X we have that {y ∈
X : y º x} and {y ∈ X : y ¹ x} are closed in X. The completeness, transitivity
and continuity assumptions on preferences ensure that there are continuous utility
functions uxh

−|t
representing the preferences.

5.3 Näıve Societies

This section considers näıve households. We treat the most simple incomplete
markets case, where links between periods result from intertemporal preferences
only. In planning period t, given a price vector p·|t, the näıve household will have
to make sure that in each future period the value of its consumption bundle in
that period does not exceed the value of its endowment. That is, the opportunity
set of the näıve household h at period t is defined by

γh
t (p·|t) = {xh

·|t ∈ Xh
·|t | pτ |txh

τ |t ≤ pτ |teh
τ |t for all τ ≥ t}.

The demand set of household h at period t is then given by

δh
t (p·|t, xh

−|t) = {x̃h
·|t ∈ γh

t (p·|t) | x̃h
·|t ºxh

−|t
xh
·|t for all xh

·|t ∈ γh
t (p·|t)}.

In a standard competitive analysis, preferences are implicitly assumed to be time-
consistent. In our more general setting, one could define a competitive equilibrium
as follows.
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Time-inconsistent Preferences in a General Equilibrium Model

Definition 5.4 Competitive Equilibrium
A pair (p∗·|1, x

∗
·|1) ∈ P·|1 ×X·|1 is a competitive equilibrium of the economy E if

(a) x∗h·|1 ∈ δh
1 (p∗·|1) for all h ∈ H,

(b)
∑

h∈H x∗h·|1 =
∑

h∈H eh
·|1.

This definition only concerns the behavior in the first period. Obviously, this makes
sense only if preferences are time-consistent. Another implicit assumption in the
definition of competitive equilibrium in the standard setting is that allocations are
time-consistent, as well as expectations of future prices. This observation leads to
the following concept of extended competitive equilibrium.

Definition 5.5 Extended Competitive Equilibrium
A pair (p∗, x∗) ∈ P ×X is an extended competitive equilibrium of the economy E
if

(a) (p∗·|1, x
∗
·|1) is a competitive equilibrium,

(b) p∗·|t = p∗t,T |1 for every t ∈ T, and

(c) x∗h·|t = x∗ht,T |1 for every h ∈ H and every t ∈ T.

To define a competitive equilibrium that is appropriate for the study of economies
with time-inconsistent preferences, we first assume that all households are näıve
and maximize their utilities given past consumption. Thus, at any given price
system, every household demands a future consumption path that is in its de-
mand set. The price system and demanded consumption bundles will constitute
an equilibrium if at any planning period, for every commodity, the total demand
for that commodity does not exceed the total endowment of that commodity. Since
preferences can be time-inconsistent, it may well be that the planned consump-
tion bundles and prices will not be equal to the actual consumption bundles and
prices. However, näıve households are not able to foresee their changing prefe-
rences and the resulting changing consumption bundles and prices. Thus, at an
equilibrium price system there is no household that wants to deviate at any period
from the consumption plan at that period, given the prices and price expectations
at that period. This leads to the following definition of an equilibrium for näıve
households.

Definition 5.6 Näıve Equilibrium
A pair (p∗, x∗) ∈ P ×X is a näıve equilibrium of the economy E if

(a) x∗h·|t ∈ δh
t (p∗·|t, x

∗h
−|t) for all h ∈ H and all t ∈ T ,

(b)
∑

h∈H x∗h·|t =
∑

h∈H eh
·|t for all t ∈ T .

76
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The following theorem claims that the set of extended competitive equilibria
is a subset of the set of näıve equilibria if preferences are time-consistent.

Theorem 5.7 If preferences of all households are time-consistent, then an ex-
tended competitive equilibrium of the economy E is a näıve equilibrium.

The following example shows that the converse is not necessarily true. Even if
preferences of all households are time-consistent, a näıve equilibrium of the eco-
nomy might not be an extended competitive equilibrium. Notice that in a näıve
equilibrium all price expectations are correct and consistent with market clearing
in all periods. Our two-periods example is constructed in such a way that at the
beginning of the second period, two equilibrium continuations are possible. Since
preferences are time-consistent, one of these equilibrium continuations yields an
extended competitive equilibrium. The other equilibrium continuation, however,
turns out not to be consistent with any extended competitive equilibrium, but
does yield a näıve equilibrium.

Example 5.8
Consider an economy with two näıve households, two goods and two periods.
The endowments of the households are e1

·|1 = (e1
1|1, e

1
2|1) = (1, 2, 0, 4) and e2

·|1 =
(e2

1|1, e
2
2|1) = (2, 1, 4, 0). The time-consistent preferences are given by

u1(x1
1|1, x

1
2|1) =





min(x1
1,1|1, x

1
1,2|1, x

1
2,1|1, x

1
2,2|1)

if min(x1
1,1|1, x

1
1,2|1, x

1
2,1|1, x

1
2,2|1) ≤ 1

[
(x1

1,1|1 − 1)(x1
1,2|1 − 1)(x1

2,1|1 − 1)(x1
2,2|1 − 1)

]1/4

+ 1

if min(x1
1,1|1, x

1
1,2|1, x

1
2,1|1, x

1
2,2|1) ≥ 1

for household 1 and

u2(x2
1|1, x

2
2|1) = min(x2

1,1|1, x
2
1,2|1, x

2
2,1|1, x

2
2,2|1)

for household 2.
Consider prices p∗ such that p∗·|1 = (1, 2, 4, 1) and p∗·|2 = (3, 4). Then for house-

hold 1 we have min(x1
2,1|1, x

1
2,2|1) ≤ 4/5 < 1. Thus, x∗1·|1 = (1 2

3 , 1 2
3 , 4

5 , 4
5 ) is an

optimal consumption bundle for household 1. Moreover, x∗2·|1 = (1 1
3 , 1 1

3 , 16
5 , 16

5 ) is
an optimal consumption bundle for household 2. By time-consistency of preferen-
ces, when arriving in the second period, the households maximize the following
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utility functions

u1(x∗11|1, x
1
2|2) =





min(12
3 , 12

3 , x1
2,1|2, x

1
2,2|2)

if min(x1
2,1|2, x

1
2,2|2) ≤ 1

[
2
3 · 2

3 · (x1
2,1|2 − 1)(x1

2,2|2 − 1)
]1/4

+ 1

if min(x1
2,1|2, x

1
2,2|2) ≥ 1

and
u2(x∗21|1, x

2
2|2) = min(1 1

3 , 1 1
3 , x2

2,1|2, x
2
2,2|2)

With prices p∗·|2, the second-period budget constraint for household 1 implies that
x1

2,2|2 = 4− 3x1
2,1|2/4. The first household then maximizes (x1

2,1|2 − 1)(x1
2,2|2 − 1)

subject to that budget constraint, which yields x∗12|2 = (2 1
2 , 21

8 ). For household
2, x∗22|2 = (1 1

2 , 17
8 ) is an optimal consumption bundle. Thus, (p∗, x∗) is a näıve

equilibrium.
The allocation ((x∗11|1, x

∗1
2|2), (x

∗2
1|1, x

∗2
2|2)) = ((12

3 , 12
3 , 2 1

2 , 2 1
8 ), (11

3 , 1 1
3 , 11

2 , 17
8 ))

cannot be a competitive equilibrium allocation. Suppose to the contrary that this
allocation is a competitive equilibrium allocation. Since household 1 demands more
than one unit of each good for the second period, it maximizes (x1

1,1|1−1)(x1
1,2|1−1)

in the first period subject to the budget constraint. By deriving the first-order con-
ditions of that problem, it can easily be seen that household 1 will demand an equal
amount of both goods in the first period only if p1,1|1 = p1,2|1. But then again, it
would demand 1 1

2 units of each good in the first period, instead of 1 2
3 units. Thus,

we arrive at a contradiction. This shows that ((x∗11|1, x
∗1
2|2), (x

∗2
1|1, x

∗2
2|2)) cannot be

a competitive equilibrium allocation. By similar arguments, p = (1, 2, 3, 4) cannot
be a competitive equilibrium price system. 2

Although a näıve equilibrium allocation might be incompatible with any ex-
tended competitive equilibrium, a weaker result can be obtained. If preferences
are time-consistent and a näıve equilibrium exists, then at least one of the näıve
equilibria is an extended competitive equilibrium as well. This can be derived
from the next theorem combined with Theorem 5.7.

Theorem 5.9 Assume that preferences are time-consistent. If a näıve equilibrium
exists in the economy E , then also an extended competitive equilibrium exists.

A näıve equilibrium can be shown to exist under standard assumptions.

Theorem 5.10 (Existence of näıve equilibrium) If the economy E satisfies
Assumptions 1–5, then there exists a näıve equilibrium (p∗, x∗).
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The proof of the theorem requires an induction argument. That is, we first
establish the existence of equilibrium prices and allocations as planned in the
first period. Then given the first period equilibrium, we show the existence of
equilibrium prices and allocations as planned in the second period, and so on.

5.4 Sophisticated Societies

This section considers sophisticated households. Again, we treat the most simple
incomplete markets case, where links between periods result from intertemporal
preferences only. The introduction of sophisticated households gives rise to new
phenomena. The difference between a näıve and a sophisticated household is
that the former is not aware of its changing preferences, whereas the latter is. A
sophisticated household will only make consumption plans for the future that it
expects to actually stick to. A sophisticated household can be seen as consisting of
different selves, where the first self acts first and the next selves act subsequently.
The behavior of the household can then be modeled as a game where the players
are the different selves. A sophisticated household will only play a subgame-perfect
Nash equilibrium of that game.

In the last period, no plans for the future are made. Thus, in the last period,
the opportunity and demand sets of the sophisticated households resemble those
for the näıve households. More specifically, the opportunity set in the last period
is defined by

φh
T (p·|T , xh

−|T ) = {xh
·|T ∈ Xh

·|T | pT |T xh
T |T ≤ pT |T eh

T |T }.
The set of optimal consumption bundles in the last period is given by

ξh
T (p·|T , xh

−|T ) = {x̃h
·|T ∈ φh

T (p·|T , xh
−|T ) |

x̃h
·|T ºxh

−|T
xh
·|T for all xh

·|T ∈ φh
T (p·|T , xh

−|T )}.

The opportunity sets in earlier periods are similar to those for the näıve house-
holds, except for the fact that the sophisticated household restricts himself to
future consumption plans that are in his future demand sets at the expected fu-
ture prices. That is, the opportunity set for the sophisticated household h in
period t, t < T , is defined by

φh
t (p·|t, xh

−|t) = {xh
·|t ∈ Xh

·|t | pτ |txh
τ |t ≤ pτ |teh

τ |t for all τ ≥ t, and

xh
t+1,T |t ∈ ξh

t+1(pt+1,T |t, xh
−|t, x

h
t|t)}.
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Since preferences depend on past consumption, the opportunity sets also depend
on past consumption. The demand set for household h in period t, t < T , is then
given by:

ξh
t (p·|t, xh

−|t) = {x̃h
·|t ∈ φh

t (p·|t, xh
−|t) |

x̃h
·|t ºxh

−|t
xh
·|t for all xh

·|t ∈ φh
t (p·|t, xh

−|t)}.

We introduce the following equilibrium concept for sophisticated societies.

Definition 5.11 Sophisticated Equilibrium
A pair (p∗, x∗) ∈ P ×X is a sophisticated equilibrium if

(a) x∗h·|t ∈ ξh
t (p∗·|t, x

∗h
−|t) for all h ∈ H and all t ∈ T ,

(b)
∑

h∈H x∗h·|t =
∑

h∈H eh
·|t for all t ∈ T ,

(c) p∗t′,T |t = p∗·|t′ for all t, t′ ∈ T with t ≤ t′,

(d) x∗ht′,T |t = x∗h·|t′ for all t, t′ ∈ T with t ≤ t′.

As sophisticated households make plans that they will stick to in the future, we
follow Arrow (1953) and Radner (1972) and define an equilibrium price system in
such a way that expected prices are equal to actual prices, i.e. that households have
correct point expectations about future prices.5 Furthermore, it is also assumed
that consumption choices will not have to be reconsidered.

The next theorem presents a characterization of the notion of sophisticated
equilibrium.

Theorem 5.12 A pair (p∗, x∗) ∈ P ×X is a sophisticated equilibrium if and only
if it satisfies the following conditions:

(i) x∗h·|1 ∈ ξh
1 (p∗·|1) for all h ∈ H,

(ii)
∑

h∈H x∗h·|1 =
∑

h∈H eh
·|1 for all h ∈ H,

(iii) p∗·|t = p∗t,T |1 for all t ∈ T ,

(iv) x∗h·|t = x∗ht,T |1 for all h ∈ H and all t ∈ T .

The next result shows that if preferences are time-consistent, then the set of so-
phisticated equilibria coincides with the set of extended competitive equilibria.

5See Dutta and Morris (1997) for alternatives to the concept of rational expectations as used

by Arrow (1953) and Radner (1972).
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Theorem 5.13 Assume that the preferences of all households are time-consistent
and that Assumptions 1–2 hold. A pair (p∗, x∗) ∈ P ×X with p∗ À 0 is a sophis-
ticated equilibrium of the economy E if and only if it is an extended competitive
equilibrium.

We will establish the existence of a sophisticated equilibrium under some addi-
tional assumptions. Therefore, we first define independence of past consumption.

Definition 5.14 Independence of past consumption
Preferences are independent of past consumption when ºxh

−|t
= ºxh

−|t
for every

xh
−|t, x

h
−|t ∈ Xh

−|t.

The additional assumptions are as follows:

Ass. 4’ For every h ∈ H, t ∈ T, and xh
−|t ∈ Xh

−|t, the preference relation ºxh
−|t

is strictly convex in present and future consumption, i.e. for xh
·|t, x

h
·|t ∈ Xh

·|t
with xh

·|t ºxh
−|t

xh
·|t and xh

·|t 6= xh
·|t we have αxh

·|t + (1 − α)xh
·|t Âxh

−|t
xh
·|t for

any α ∈ (0, 1).

Ass. 6 Preferences are independent of past consumption.

Assumption 6 does not allow for habit formation, where consumption depends
on consumption in the past. However, it does allow for intertemporal utility
functions that discount hyperbolically or quasi-hyperbolically.

If the assumptions, and in particular Assumption 6, are not satisfied, it may
well happen that an equilibrium does not exist. In that case, it cannot be gua-
ranteed that demand correspondences are convex-valued. This is illustrated in the
following example.

Example 5.15
Consider an economy with two sophisticated households h ∈ {1, 2}, two goods
l ∈ {1, 2} and two periods t ∈ {1, 2}. The endowments of the first and the second
household are respectively given by e1

·|1 = (1, 0, 1, 1) and e2
·|1 = (0, 1, 1, 0). Let the

preferences of household 1 in respectively the first and the second period be

u1
1(x

1
1|1, x

1
2|1) = x1

1,1|1 + x1
2,1|1 + 1

2 (x1
1,2|1 + x1

2,2|1),

u1
2(x

1
1|1, x

1
2|2) =





ln x1
2,1|2

x1
1,1|1

+ ln x1
2,2|2 if x1

1,1|1 > 1/3

3 ln x1
2,1|2 + ln x1

2,2|2 otherwise.
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Note that u1
2(x

1
1|1, x

1
2|2) is continuous in x1

2,1|2 and x1
2,2|2. Given second-period

prices p·|2 = p2|1 À 0, the demand of household 1 for the second period satisfies

x1
2,1|2 =

p2,1|2 + p2,2|2
p2,1|2

1
x1

1,1|1

1
1

x1
1,1|1

+ 1
=

p2,1|2 + p2,2|2
p2,1|2

1
1 + x1

1,1|1
,

x1
2,2|2 =

p2,1|2 + p2,2|2
p2,2|2

x1
1,1|1

1 + x1
1,1|1

if x1
1,1|1 > 1/3, and

x1
2,1|2 =

p2,1|2 + p2,2|2
p2,1|2

1
1 + 1/3

,

x1,2
2,2|2 =

p2,1|2 + p2,2|2
p2,2|2

1/3
1 + 1/3

if x1
1,1|1 ≤ 1/3.
By substituting these second period demands and the first period budget con-

straint in the first period utility function, household 1 maximizes the indirect
utility function v in period 1, where

v(x1
1,1|1) = x1

1,1|1 +
p2,1|2 + p2,2|2

p2,1|2

1
1 + x1

1,1|1

+
1
2

(
p1,1|1 − p1,1|1x1

1,1|1
p1,2|1

+
p2,1|2 + p2,2|2

p2,2|2

x1
1,1|1

1 + x1
1,1|1

)

=
p1,1|1
2p1,2|1

+
(

1− p1,1|1
2p1,2|1

)
x1

1,1|1 +
p2,1|2 + p2,2|2

1 + x1
1,1|1

(
1

p2,1|2
+

x1
1,1|1

2p2,2|2

)

if x1
1,1|1 > 1/3, and

v(x1
1,1|1) = x1

1,1|1 +
p2,1|2 + p2,2|2

p2,1|2

1
1 + 1/3

+
1
2

(
p1,1|1 − p1,1|1x1

1,1|1
p1,2|1

+
p2,1|2 + p2,2|2

p2,2|2

1/3
1 + 1/3

)

if x1
1,1|1 ≤ 1/3. Note that in the former case v is a nonlinear function, whereas

in the latter case it is linear. The demand correspondence resulting from v is not
everywhere convex-valued.
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The time-consistent preferences of household 2 in respectively the first and the
second period are given by

u2
1(x

2
1|1, x

2
2|1) = min (x2

1,1|1, x
2
1,2|1) + x2

2,1|2 + 2x2
2,2|2,

u2
2(x

2
1|1, x

2
2|2) = x2

2,1|2 + 2x2
2,2|2.

In the appendix we show that there is no sophisticated equilibrium in this
economy. 2

The following theorem shows that, with our assumption, sophisticated equili-
bria exist.

Theorem 5.16 Existence of sophisticated equilibrium If the economy E
satisfies Assumptions 1–6 and 4’, then there exists a sophisticated equilibrium
(p∗, x∗).

The existence proof is standard and can be found in the appendix. The major
complication to be taken care of is the part of the proof that shows a sophisticated
equilibrium of the compactified economy to remain an equilibrium after the bounds
on consumption sets have been removed.

5.5 Efficiency - the Myopic Case

When intertemporal preferences change over time, the very definition of efficiency
has to be reconsidered. Choices have to be made concerning the incorporation of
future preferences in the efficiency notion used and the appropriate instruments
allowed to create Pareto improvements. When efficiency is modeled as a program
carried out by a social planner with certain objectives and instruments, we can
make a distinction between myopic and forward-looking social planners. Myopic
social planners care only about the current self of every household. Forward-
looking social planners take all selves of every household into account. As far as
instruments are concerned, we distinguish between social planners who can modify
both actual and planned consumption and social planners who can only change
actual consumption. For the former type of social planner there exists a näıve and a
sophisticated version, where the latter version sticks to time-consistent allocations.
We will show that for the myopic case the latter distinction is immaterial.

This section considers social planners who care only about the current self of
each household. When a social planner takes into account only the intertemporal
preferences of the households in one particular period, this can mean that the
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Instruments

Current Current and Planned
Consumption Consumption

Näıve Sophisticated
Societies Societies

Myopic CMP MOP MOP
Goals Section 5.5.2 Section 5.5.1 Section 5.5.1

Forward- CP OP TCOP
looking Section 5.6.2 Section 5.6.1 Section 5.6.1

Table 5.1: Summary of efficiency concepts

social planner cares only about the selves corresponding to the period in which
the planner is active and is myopic in that he forgets to realize that the preferences
of future selves might differ from the ones of current selves. Another interpretation
is that the social planner has reasons to believe that the preferences of the current
selves of the households are the true underlying preferences of the households and
that the preferences of the future selves of the households are distorted preferences.

5.5.1 Myopic Overall Pareto Efficiency

In this subsection we assume that social planners are myopic and can alter both
actual and planned consumption. An allocation is called myopic overall Pareto
efficient if there is no planning period t where actual and planned consumption
in that particular period could be reallocated in such a way that every household
would be at least as well off in that period as at the original allocation, whereas
one household would be strictly better off than at the original allocation.

Definition 5.17 Myopic Overall Pareto (MOP) Efficiency
The allocation x∗ is myopic overall Pareto (MOP) efficient if there is no allocation
x̃ and no period t′ such that

(i)
∑

h∈H x̃h
·|t′ =

∑
h∈H eh

·|t′ ,

(ii) x̃h
·|t′ ºx∗h

−|t′
x∗h·|t′ for all h ∈ H, and

(iii) x̃h′
·|t′ Âx∗h′

−|t′
x∗h

′
·|t′ for some h′ ∈ H.
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5.5. Efficiency - the Myopic Case

The intuition behind this definition is as follows. In every planning period t there
is a social planner who seeks to maximize only the preferences of the selves of the
households at period t. The social planner reallocates both current and planned
consumption. Now an equilibrium is called MOP efficient if there is no sequence of
social planners that behave as described and that can make at least one household
better off than in equilibrium, while not making any household worse off. If
preferences do not depend on past consumption this concept corresponds to “date-
t Pareto efficiency” for every t as introduced in Luttmer and Mariotti (2006). In
addition, a MOP efficient allocation is renegotiation-proof in the sense of Luttmer
and Mariotti (2006).

MOP efficiency is closely related to unconstrained Pareto efficiency. In our
multi-period context, by restricting attention to the preferences of households at
period 1, Pareto efficiency could be defined as follows.

Definition 5.18 Pareto Efficiency
The allocation x∗ is Pareto efficient if there is no allocation x̃ such that

(i)
∑

h∈H x̃h
·|1 =

∑
h∈H eh

·|1,

(ii) x̃h
·|1 ºh,1 x∗h·|1 for all h ∈ H, and

(iii) x̃h′
·|1 Âh′,1 x∗h

′
·|1 for some h′ ∈ H.

The following theorem shows that the two concepts are equivalent when preferences
are time-consistent and when attention is restricted to time-consistent allocations.

Theorem 5.19 Assume that preferences are time-consistent. Then a time-consis-
tent allocation is MOP efficient if and only if it is Pareto efficient.

In settings with incomplete markets, it has been shown that equilibria are
typically not Pareto efficient. Generically, they are not even efficient when weaker
efficiency concepts are used.6 Therefore, since we have a sequence of markets that
do not allow for intertemporal income transfers, examples that show that näıve
and sophisticated equilibria may be MOP inefficient can easily be found.

Example 5.20
Consider an economy with two households, two periods and two goods in each

6See for instance Geanakoplos and Polemarchakis (1986), Citanna, Kajii, and Villanacci

(1998) and Herings and Polemarchakis (2005).
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period. Let the endowments be given by eh
·|τ = (1, 1) for all h, τ . The first period

preferences of respectively the first and the second household are given by:

u1
1(x

1
·|1) = 2(x1

1,1|1 + x1
1,2|1) + x1

2,1|1 + x1
2,2|1

u2
1(x

2
·|1) = x2

1,1|1 + x2
1,2|1 + 2(x2

2,1|1 + x2
2,2|1),

and in the second period by

u1
2(x

1
·|2) = x1

2,1|2 + x1
2,2|2

u2
2(x

2
·|2) = 2(x2

2,1|2 + x2
2,2|2).

Consider prices pτ |t = (1, 1) for every τ, t with τ ≥ t. Then the allocation

(x∗h1,1|1, x
∗h
1,2|1, x

∗h
2,1|1, x

∗h
2,2|1) = (1, 1, 1, 1),

(x∗h2,1|2, x
∗h
2,2|2) = (1, 1)

is a näıve and sophisticated equilibrium. However, with the allocation x̃ as defined
next, the households are better off in the first period.

(x̃1
1,1|1, x̃

1
1,2|1, x̃

1
2,1|1, x̃

1
2,2|1) = (2, 2, 0, 0),

(x̃2
1,1|1, x̃

2
1,2|1, x̃

2
2,1|1, x̃

2
2,2|1) = (0, 0, 2, 2),

(x̃h
2,1|2, x̃

h
2,2|2) = (1, 1).

Thus, this näıve and sophisticated equilibrium is not MOP efficient. 2

The next example shows that a sophisticated equilibrium may be dominated
by a näıve equilibrium. This result might be surprising. It contradicts the view
that higher degrees of sophistication lead to higher utility.

Example 5.21
Consider a two-period economy with two households and two goods. Let eh

τ |1 =
(1, 1) for all h, τ . The first-period utilities for the two households are as follows:

u1
1(x

1
·|1) = 2(x1

1,1|1 + x1
2,1|1) + x1

1,2|1 + x1
2,2|1,

u2
1(x

2
·|1) = x2

1,1|1 + x2
2,1|1 + 2(x2

1,2|1 + x2
2,2|1),

where the subscripts are of the form τ, l|t. The utilities in the second period are
given by:

u1
2(x

1
2|2) = x1

2,1|2 + 2x1
2,2|2,

u2
2(x

2
2|2) = 2x2

2,1|2 + x2
2,2|2.
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The utility functions are continuous and strictly increasing in every argument.
Suppose that the prices of the two goods are equal in the second period, i.e.

p2,1|2 = p2,2|2. Since household 1 (2) cares more about consumption of good 2 (1)
in period 2, it will spend all of its wealth on good 2 (1). More specifically, the
demanded consumption bundles are as follows:

(x∗12,1|2, x
∗1
2,2|2) = (0, 2),

(x∗22,1|2, x
∗2
2,2|2) = (2, 0).

Since markets clear, this allocation can be sustained in equilibrium.
The foregoing analysis does not depend on whether households are näıve or

sophisticated. Both types of households would face the same maximization prob-
lem. For the analysis of period 1, however, a distinction has to be made between
näıves and sophisticates. To avoid confusion, a superscript ”n” is added for näıve
households and a superscript ”s” for sophisticated households.

Suppose that for each period the expected prices of both goods are equal, i.e.
p1,1|1 = p1,2|1 and p2,1|1 = p2,2|1. Since the näıve household 1 (2) now cares
most about consumption of good 1 (2), the demanded consumption bundles are
as follows:

(x∗n1
1,1|1, x

∗n1
1,2|1, x

∗n1
2,1|1, x

∗n1
2,2|1) = (2, 0, 2, 0),

(x∗n2
1,1|1, x

∗n2
1,2|1, x

∗n2
2,1|1, x

∗n2
2,2|1) = (0, 2, 0, 2).

Again, the assumed relative prices can be sustained in equilibrium.
Now the assumption is made that all households are sophisticated. Suppose

again that the prices of the two goods are equal in both periods. Demand for
sophisticated households is as follows:

(x∗s11,1|1, x
∗s1
1,2|1, x

∗s1
2,1|1, x

∗s1
2,2|1) = (2, 0, 0, 2),

(x∗s21,1|1, x
∗s2
1,2|1, x

∗s2
2,1|1, x

∗s2
2,2|1) = (0, 2, 2, 0),

and again markets clear.
Note that both households are better off if they are both näıve than if they

are both sophisticated. This can be seen by calculating their utility levels in both
cases.

(un1
1 , u1

2) = (8, 4),

(us1
1 , u1

2) = (6, 4),

(un2
1 , u2

2) = (8, 4),

(us2
1 , u2

2) = (6, 4).
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By reallocating the goods in the sophisticated equilibrium, all households can be
made strictly better off than at the equilibrium allocations in period 1. This means
that the sophisticated equilibrium is not MOP efficient. Moreover, all households
could benefit from being näıve instead of sophisticated. Here the sophisticated
households are too forward-looking. 2

5.5.2 Constrained Myopic Periodical Efficiency

In this subsection we assume that a social planner can only reallocate commodities
in the current period. This leads to the following definition.

Definition 5.22 Constrained Myopic Periodical (CMP) Efficiency
The feasible allocation x∗ is constrained myopic periodically (CMP) efficient if
there is no allocation x̃ and no period t′ such that

(i) x̃h
t′+1,T |t′ = x∗ht′+1,T |t′ for every h ∈ H,

(ii)
∑

h∈H x̃h
t′|t′ =

∑
h∈H eh

t′|t′ ,

(iii) x̃h
·|t′ ºx∗h

−|t′
x∗h·|t′ for all h ∈ H, and

(iv) x̃h′
·|t′ Âx∗h′

−|t′
x∗h

′
·|t′ for some h′ ∈ H.

The following theorem says that CMP efficiency is weaker than MOP efficiency.
Its proof is obvious and is therefore omitted.

Theorem 5.23 If an allocation is MOP efficient, then it is CMP efficient.

A näıve equilibrium allocation is CMP efficient under the assumptions of the
foregoing sections.

Theorem 5.24 In an economy E that satisfies Assumptions 2, 3, and 4, a näıve
equilibrium allocation is CMP efficient.

As the next example shows, a sophisticated equilibrium allocation is not necessarily
CMP efficient under Assumptions 2, 3, and 4.

Example 5.25
Consider an economy with two sophisticated households, two commodities and
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two periods. Let the preferences of household 1 be given by

u1
1(x

1
1|1, x

1
2|1) = x1

1,1|1 +
1
4
x1

1,2|1 + x1
2,1|1 +

1
4
x1

2,2|1

u1
2(x

1
1|1, x

1
2|2) =





x1
2,1|2 + 1

4x1
2,2|2 if x1

1,1|1 ≤ 1

1
4x1

2,1|2 + x1
2,2|2 if x1

1,1|1 > 1.

Let the preferences of household 2 be given by

u2
1(x

2
1|1, x

2
2|1) =

1
4
x2

1,1|1 + x2
1,2|1 +

1
4
x2

2,1|1 + x2
2,2|1

u2
2(x

2
1|1, x

2
2|2) =





1
4x2

2,1|2 + x2
2,2|2 if x2

1,2|1 ≤ 1

x2
2,1|2 + 1

4x2
2,2|2 if x2

1,2|1 > 1.

Let the endowments be given by eh
t,l|1 = 1 for every good l, for every period t, and

for every household h.
Consider prices and allocation (p∗, x∗), where p∗τ,l|t = 1 for every l ∈ L and

every t, τ ∈ T with t ≤ τ , x∗1·|1 = (1, 1, 2, 0), x∗2·|1 = (1, 1, 0, 2), x∗1·|2 = (2, 0), and
x∗2·|2 = (0, 2). It can easily be seen that the pair (p∗, x∗) constitutes a sophisticated
equilibrium.

However, consider the allocation x̃ where x̃1
·|1 = (2, 0, 2, 0), x̃2

·|1 = (0, 2, 0, 2),
x̃1
·|2 = (2, 0), and x̃2

·|2 = (0, 2). In the first period both households are better off.
Therefore, the sophisticated equilibrium allocation x∗ is not CMP efficient. 2

By restricting the degree of time-inconsistency in such a way that consump-
tion decisions do not depend on past consumption, a sophisticated equilibrium
allocation is CMP efficient. This is shown in the following theorem.

Theorem 5.26 In an economy E that satisfies Assumptions 2, 3, 4, and 6, a
sophisticated equilibrium allocation is CMP efficient.

Krusell, Kuruşçu, and Smith (2002) consider similar concepts as the ones used
in this section, for economies with a representative consumer.

5.6 Efficiency - the Forward-looking Case

In this section we consider social planners that care about all selves. A social
planner will reallocate consumption only if by doing so he can make one self of
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one household better off, while not making any self of any household worse off.
On the one hand we might expect social planners to have more opportunities to
improve welfare now, in the sense that there are more selves to be made better
off. On the other hand, social planners have less opportunities to improve welfare
since preferences depend on past consumption. In the preceding section, a social
planner was myopic and therefore allowed to make future selves worse off, but
here this is no longer the case. Thus, there is no direct relationship between the
concepts in this section and the concepts in the preceding section.

The modeling of forward-looking social planners requires an extension of the
preferences of households. A reallocation of commodities in period t affects house-
holds in periods t + 1 and further. Such a reallocation will only be made if no
current or future self is made worse off. If we want to check whether future selves
will be worse off after the reallocation, we need households to be able to compare
consumption bundles with different realized past consumption. In this subsec-
tion we will extend the preferences of a household h in period t to preferences
with domain Xh

·|1. We denote these preferences by º∗h,t and impose the following
restriction on them

(xh
−|t, x

h
·|t) º∗h,t (xh

−|t, x
h
·|t)

iff

xh
·|t ºxh

−|t
xh
·|t

for xh
·|t, x

h
·|t ∈ Xh

·|t and xh
−|t ∈ Xh

−|t. Notice that on top of comparing consump-
tion bundles with identical past consumption, º∗h,t can also be used to compare
consumption bundles with different past consumption. The preferences relation
º∗ allows us to tell whether a household prefers a situation where it consumed 4
apples yesterday and it consumes 4 apples today to a situation where it consumed
4 pears yesterday and it consumes 4 pears today, which is impossible with the pre-
ference relation º . For all properties of preference relations ºxh

−|t
that we defined

in the first part of this chapter, we will say that º∗h,t satisfies these properties if
the induced ºxh

−|t
satisfy them.

Some of our results require the following version of independence of preferences
of past consumption.

Definition 5.27 Strong independence of past consumption
Preferences º∗h,t are strongly independent of past consumption if the following
holds: (x̂h

−|t, x̂
h
·|t) º∗h,t (xh

−|t, x
h
·|t) if and only if (xh

−|t, x̂
h
·|t) º∗h,t (x̆h

−|t, x
h
·|t) for

every xh
−|t, x̆

h
−|t ∈ Xh

−|t.
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We replace Assumption 6 by Assumption 6’.

Ass. 6’ Preferences º∗h,t are strongly independent of past consumption.

This assumption is stronger than Assumption 6. Consider a household with prefe-
rences º∗h,t represented by U(xh

−|t, x
h
·|t) =

∑
t′<t

∑
l∈L xh

t′,l|t′ +
∑

t′≥t

∑
l∈L xh

t′,l|t.
These preferences do satisfy Assumption 6, but not Assumption 6’. With these
specific preferences past consumption does not influence current behavior, but past
consumption does influence current utility.

We will again first consider social planners that can alter both actual and
planned consumption.

5.6.1 Overall Pareto Efficiency

In this subsection we consider social planners that can alter both current and
planned consumption. Combined with the assumption that social planners care
about all selves, the natural extension of the myopic overall Pareto efficiency con-
cept yields the following definition.

Definition 5.28 Overall Pareto (OP) Efficiency
The feasible allocation x∗ is overall Pareto (OP) efficient if there is no allocation
x̃ and no period t′ such that

(i)
∑

h∈H x̃h
·|t =

∑
h∈H eh

·|t for all t ≥ t′,

(ii) (x∗h−|t′ , x̃
h
t′|t′ , . . . , x̃

h
t−1|t−1, x̃

h
·|t) º∗h,t (x∗h−|t, x

∗h
·|t ) for all h ∈ H and all t ≥ t′ ,

and

(iii) (x∗h
′

−|t′ , x̃
h′
t′|t′ , . . . , x̃

h′
t′′−1|t′′−1, x̃

h′
·|t′′) Â∗h

′,t′′ (x∗h
′

−|t′′ , x
∗h′
·|t′′) for some h′ ∈ H and

some t′′ ≥ t′.

A social planner will reallocate commodities only if by doing so one self of
one household is made better off and no self of any household is made worse off.
There is no need for a social planner to restrict himself to time-consistent alloca-
tions. This concept is therefore not appropriate for the analysis of sophisticated
societies. If preferences do not depend on past consumption, OP efficiency corres-
ponds to “weak Pareto efficiency” as discussed in Luttmer and Mariotti (2006).
OP efficiency is indeed a weakening of Pareto efficiency.

Theorem 5.29 Assume that preferences are time-consistent and satisfy Assump-
tion 6’. If a time-consistent allocation is Pareto efficient, then it is OP efficient.
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Examples that show that näıve and sophisticated equilibrium allocations may not
be OP efficient can easily be constructed.

In sophisticated societies, it makes sense to require a social planner to only
change allocations in such a way that the reallocation is time-consistent. This is
formalized in the following definition.

Definition 5.30 TC Overall Pareto (TCOP) Efficiency
The feasible time-consistent allocation x∗ is time-consistent overall Pareto (TCOP)
efficient if there is no time-consistent allocation x̃ and no period t′ such that

(i)
∑

h∈H x̃h
·|t =

∑
h∈H eh

·|t for all t ≥ t′,

(ii) (x∗h−|t′ , x̃
h
t′|t′ , . . . , x̃

h
t−1|t−1, x̃

h
·|t) º∗h,t (x∗h−|t, x

∗h
·|t ) for all h ∈ H and all t ≥ t′ ,

and

(iii) (x∗h
′

−|t′ , x̃
h′
t′|t′ , . . . , x̃

h′
t′′−1|t′′−1, x̃

h
·|t′′) Â∗h

′,t′′ (x∗h
′

−|t′′ , x
∗h′
·|t′′) for some h′ ∈ H and

some t′′ ≥ t′.

In the case of myopic social planners we did not need to introduce a time-consistent
version of MOP efficiency, since those social planners do not care about future
selves. The following theorem provides a characterization TCOP efficiency, which
is useful for later results. Its proof is obvious and therefore not included in the
Appendix.

Theorem 5.31 A feasible time-consistent allocation x∗ is TCOP efficient if and
only if there is no time-consistent allocation x̃ and no period t′ such that

(i)
∑

h∈H x̃h
·|1 =

∑
h∈H eh

·|1,

(ii) (x∗h−|t′ , x̃
h
·|t′) º∗h,t x∗h·|1 for all h ∈ H and all t ≥ t′ , and

(iii) (x∗h
′

−|t′ , x̃
h′
·|t′) Â∗h

′,t′′ x∗h
′

·|1 for some h′ ∈ H and some t′′ ≥ t′.

The following results shows that TCOP efficiency is a weakening of Pareto
efficiency.

Theorem 5.32 Assume that preferences are time-consistent and satisfy Assump-
tion 6’. If a time-consistent allocation is Pareto efficient then it is TCOP efficient.

Note that a TCOP efficient allocation might not be Pareto efficient, even if pre-
ferences are time-consistent and satisfy Assumption 6’. Consider for instance an
economy with two households, where one household has a much lower discount
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factor than the other. Consider an initial allocation where consumers have strictly
positive endowments both in period 1 and in period 2. Then a social planner that
cares only about the selves in the first period would let one household consume
only in the first period and the other only in the second period. If the social plan-
ner would also have to take care of future selves of the households, this would not
be possible. The household that would not consume in the second period would
be better off in the first period, but worse off in the second period.

The following theorem claims that if preferences are independent of past con-
sumption, then a sophisticated equilibrium allocation is TCOP efficient.

Theorem 5.33 In an economy E that satisfies Assumptions 2, 3, 4, and 6’, a
sophisticated equilibrium allocation is TCOP efficient.

5.6.2 Constrained Periodical Efficiency

In this section we assume that social planners care about all selves, but that a
social planner active in period t can only modify consumption in period t. This
yields the following definition.

Definition 5.34 Constrained Periodical (CP) Efficiency
The feasible allocation x∗ is constrained periodically (CP) efficient if there is no
other allocation x̃ and no period t′ such that

(i) x̃h
t′+1,T |t′ = x∗ht′+1,T |t′ for every h ∈ H,

(ii)
∑

h∈H x̃h
t′|t′ =

∑
h∈H eh

t′|t′ ,

(iii) (x∗h−|t′ , x̃
h
t′|t′ , x

∗h
t′+1|t′+1, . . . , x

∗h
t−1|t−1, x

∗h
·|t ) º∗h,t (x∗h−|t, x

∗h
·|t ) for all h ∈ H and

all t ≥ t′ , and

(iv) (x∗h
′

−|t′ , x̃
h′
t′|t′ , x

∗h′
t′+1|t′+1, . . . , x

∗h
t′′−1|t′′−1, x

∗h
·|t′′) Â∗h

′,t′′ (x∗h
′

−|t′′ , x
∗h′
·|t′′) for some h′ ∈

H and some t′′ ≥ t′.

As only current consumption can be changed, it is not necessary to introduce
a time-consistent variant of this definition as we did in the foregoing section.
Contrary to the concept of TCOP efficiency, the CP efficiency concept is also
applicable to näıve societies.

The following theorem says that the CP efficiency concept is weaker than the
OP efficiency concept. Since its proof is obvious, it is omitted.
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Theorem 5.35 If an allocation is OP efficient, then it is CP efficient.

A similar theorem holds for time-consistent allocations and TCOP efficiency.

Theorem 5.36 If a time-consistent allocation is TCOP efficient, then it is CP
efficient.

The next example shows that under Assumptions 2, 3, 4 and 6, näıve and
sophisticated equilibria need not be constrained periodically efficient.

Example 5.37
Consider an economy with two periods, two households and two goods. Let the
endowments of all households be equal to 1 for each good in each period, i.e.
eh
·|τ = (1, 1) for all h, τ . For both households the preferences in the first period

can be represented by the following utility function:

uh
1 (xh

·|1) = xh
1,1|1 + xh

1,2|1 + xh
2,1|1 + xh

2,2|1.

In the second period, the preferences of the household are represented by the
following utility functions:

u1
2(x

1
1|1, x

1
·|2) = 2x1

1,1|1 + x1
1,2|1 + x1

2,1|2 + x1
2,2|2,

u2
2(x

2
1|1, x

2
·|2) = x2

1,1|1 + 2x2
1,2|1 + x2

2,1|2 + x2
2,2|2.

Consider a price system where the prices of all goods are equal in both periods, i.e.
p∗1,1|1 = p∗1,2|1 = p∗2,1|1 = p∗2,2|1 and p∗2,1|2 = p∗2,2|2. The following allocations are
consistent with optimizing behavior of both näıve and sophisticated households at
the price system p∗:

(x∗h1,1|1, x
∗h
1,2|1, x

∗h
2,1|1, x

∗h
2,2|1) = (1, 1, 1, 1),

(x∗h2,1|2, x
∗h
2,2|2) = (1, 1),

for every household h. Thus, at the price system p∗, markets clear, and (p∗, x∗) is
both a näıve and a sophisticated equilibrium. Note, however, that this equilibrium
is not CP efficient. In this equilibrium the first-period utility equals 4 for both
households, while the utilities in the second period equal 5. Now consider the
allocation

(x̃1
1,1|1, x̃

1
1,2|1, x̃

1
2,1|1, x̃

1
2,2|1) = (2, 0, 1, 1),

(x̃2
1,1|1, x̃

2
1,2|1, x̃

2
2,1|1, x̃

2
2,2|1) = (0, 2, 1, 1),
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where the utility levels in the first period remain equal to 4 for both households,
whereas the utilities in the second period both equal 6 under correct expectations.
Thus, at the allocation x̃, households are not worse off in the first period, and
better off in the second period. Moreover, the allocation x̃ is feasible. Therefore,
the equilibrium allocation x∗ is not CP efficient. 2

If preferences are strongly independent of the past, then näıve and sophisticated
equilibria are constrained periodically efficient.

Theorem 5.38 In an economy E that satisfies Assumptions 2, 3, 4, and 6’, näıve
and sophisticated equilibrium allocations are CP efficient.

The results of the last two sections are summarized in Figures 5.1 and 5.2. An
arrow from “A” to “B” means that A implies B. Labels attached to arrows specify
under which assumptions the implications hold true.

Näıve equilibrium

CMP

MOP

CP

OP

Pareto Efficiency

6 6

ª R

Y

j

*

2–4 2–4, 6’

TC TC, 6’

Figure 5.1: Näıve societies
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Sophisticated equilibrium

CMP

MOP

CP

TCOP

Pareto Efficiency

6 6

ª

^

R

Y

j

*

2–4, 6 2–4, 6’

TC TC, 6’

Figure 5.2: Sophisticated societies

5.7 Conclusion

In this chapter, changing preferences are introduced in a multi-period general equi-
librium model with incomplete markets. Time-inconsistent preferences lead to the
development of new concepts of household behavior, equilibrium, and efficiency. A
distinction is made between näıve and sophisticated societies. Appropriate equili-
brium notions are defined. We extend the standard competitive equilibrium notion
and call it an extended competitive equilibrium. It is shown that, in the case of
time-consistent preferences, an extended competitive equilibrium is a näıve equi-
librium and a sophisticated equilibrium coincides with an extended competitive
equilibrium. An intriguing result is that with time-consistent preferences there
can be näıve equilibrium allocations that are not compatible with any competi-
tive equilibrium. For näıve societies an equilibrium is shown to exist under quite
general conditions. For sophisticated societies the existence of an equilibrium can
only be established when certain assumptions on the degree of time-inconsistency
are made.
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Several efficiency criteria are introduced. A distinction is made between effi-
ciency concepts that take into account only the preferences of the current selves
and concepts that take into account the preferences of both the current and future
selves. Moreover, we distinguish the cases where only current consumption can be
altered to make Pareto improvements and cases where both current and planned
consumption can be changed. Suppose only current consumption can be altered.
Then we provide sufficient conditions for both näıve and sophisticated equilibria
to be efficient. Suppose both current and planned consumption can be changed.
Then näıve equilibria are typically not efficient. If future selves are not taken
into account, then sophisticated equilibria are not efficient either. For sophisti-
cated equilibria we provide sufficient conditions for efficiency when future selves
are taken into account.

5.8 Appendix

Proof of Lemma 5.3

Let xh
−|t ∈ Xh

−|t. We first show that when xh
·|t, x

h
·|t ∈ Xh

·|t are such that xh
t,t′−1|t =

xh
t,t′−1|t, then

xh
·|t ºh,t

xh
−|t

xh
·|t

implies

xh
t′,T |t ºh,t′

(xh
−|t,x

h
t,t′−1|t)

xh
t′,T |t.

If xh
·|t ºh,t

xh
−|t

xh
·|t, then it follows from the “if” part of the hypothesis of the lemma

that

(xh
−|t, x

h
·|t) ºh,1 (xh

−|t, x
h
·|t).

The “only if” part of the hypothesis yields

xh
t′,T |t ºh,t′

(xh
−|t,x

h
t,t′−1|t)

xh
t′,T |t.

The proof that

xh
t′,T |t ºh,t′

(xh
−|t,x

h
t,t′−1|t)

xh
t′,T |t

implies

xh
·|t ºh,t

xh
−|t

xh
·|t
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is similar. 2

Proof of Theorem 5.7

Suppose (p∗, x∗) is an extended competitive equilibrium. Since x∗hτ |t = x∗hτ |1 for
every h and every τ ≥ t and

∑
h∈H x∗h·|1 =

∑
h∈H eh

·|1, it can easily be seen that
(b) of Definition 5.6 is satisfied. It remains to be shown that Condition (a) of that
definition is satisfied.

Notice that if x∗h·|1 ∈ γh
1 (p∗·|1), then x∗ht,T |1 ∈ γh

t (p∗t,T |1). Moreover, for every
xh
·|t ∈ γh

t (p∗t,T |1) there is xh
·|1 ∈ γh

1 (p∗·|1) with xh
t,T |1 = xh

·|t and xh
1,t−1|1 = x∗h1,t−1|1.

We know that x∗h·|1 ∈ δh
1 (p∗·|1). Thus, x∗h·|1 ∈ γh

1 (p∗·|1) and x∗h·|1 ºh,1 xh
·|1 for all

xh
·|1 ∈ γh

1 (p∗·|1). Then, by time-consistency of preferences, x∗ht,T |1 ºh,t

x∗h
1,t−1|1

xh
·|t for all

xh
·|t ∈ γh

t (p∗t,T |1), so x∗ht,T |1 ∈ δh
t (p∗t,T |1, x

∗h
1,t−1|1) = δh

t (p∗·|t, x
∗h
−|t). Thus, the extended

competitive equilibrium is a näıve equilibrium. 2

Proof of Theorem 5.9

This follows immediately from the definitions. 2

Proof of Theorem 5.10

We follow the approach of Debreu (1959) compounded with an induction argument.
First, let ε > 0 and define

X̂h
τ |t =

{
xh

τ |t ∈ Xh
τ |t

∣∣∣∣∣ xh
τ,l|t ≤

∑

h∈H

eh
τ,l|t + ε for all l ∈ L

}

for some ε > 0. Let γ̂h
t and δ̂h

t denote the corresponding budget and demand
correspondences. The economy Ê is the compactified economy. We derive some
properties of the demand correspondence δ̂h.

We denote the (L − 1)-dimensional unit simplex by ∆, so ∆ = {p ∈ RL
+ |∑L

l=1 pl = 1}, and we denote the k-fold Cartesian product of ∆ by ∆k. The price
vectors are restricted to the sets P̂·|t = ∆T−t+1.

In the next lemma the box product in p·|t2δh
t (p·|t, xh

−|t) is defined by taking for
all τ ≥ t the product of pτ |t and any demand xh

τ |t planned at period t for period
τ , i.e.

p·|t2δh
t (p·|t, xh

−|t) = {(wt, . . . , wT ) ∈ RT−t+1 |
there is an xh

·|t ∈ δh
t (p·|t, xh

−|t) such that wτ = pτ |txh
τ |t, τ ∈ t, . . . , T}.

Lemma 5.39 Assume that the economy E satisfies Assumptions 1–5. Consider a
näıve household h ∈ H, a planning period t ∈ T, and a realized consumption plan
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xh
−|t ∈ X̂h

−|t. Then, at prices p·|t ∈ P̂·|t, δ̂h
t (·, xh

−|t) is a non-empty, compact and
convex-valued, upper-hemi continuous correspondence that satisfies:

• Walras’ law, p·|t2δ̂h
t (p·|t, xh

−|t) = {pt|teh
t|t, . . . , pT |teh

T |t},

• Homogeneity property, δ̂h
t (p·|t, xh

−|t) = δ̂h
t (p·|t, xh

−|t), where for τ ′ ≥ t, for
λ > 0, pτ ′|t = λpτ ′|t and pτ |t = pτ |t for τ 6= τ ′.

Proof
(i) Since eh

·|t ∈ γ̂h
t (p·|t), we know that γ̂h

t (p·|t) is non-empty.

(ii) Consider a sequence
{
p·|tm

}∞
m=1

with p·|tm → p·|t. Let the sequence
{

xh
·|t

m
}∞

m=1

be such that xh
·|t

m ∈ γ̂h
t (p·|tm) for every m and xh

·|t
m → xh

·|t. By closedness of

X̂h
·|t and since pτ |tmxh

τ |t
m ≤ pτ |tmeh

τ |t, it follows that xh
·|t ∈ γ̂h

t (p·|t). Since γ̂h
t is

bounded, it follows that γ̂h
t is upper-hemi continuous.

(iii) Let
{
p·|tm

}∞
m=1

be a sequence of prices with p·|tm → p·|t. Let xh
·|t ∈ γ̂h

t (p·|t).
Then pτ |txh

τ |t ≤ pτ |teh
τ |t. Define aτ m ∈ R++ such that pτ |tmaτ mxh

τ |t = pτ |tmeh
τ |t.

If pτ |txh
τ |t < pτ |teh

τ |t, then pτ |tmxh
τ |t ≤ pτ |tmeh

τ |t for m larger than a certain
value M1. In that case define xh

τ |t
m = xh

τ |t for m > M1.
Otherwise, if pτ |txh

τ |t = pτ |teh
τ |t > 0, it holds that pτ |tmeh

τ |t > 0 and pτ |tmxh
τ |t >

0 for m larger than a certain M2. Now, if aτ m > 1, then define xh
τ |t

m = xh
τ |t and

if aτ m ≤ 1, then define xh
τ |t

m = aτ mxh
τ |t for m larger than M2. Note that in this

case aτ m is unique and tends to one, since aτ m = pτ |tmeh
τ |t/pτ |tmxh

τ |t > 0.

For all m smaller than or equal to M1 or M2 define xh
·|t

m arbitrarily such that
xh
·|t

m ∈ γ̂h
t (p·|tm).

Then xh
·|t

m ∈ γ̂h
t (p·|tm) for every m and xh

·|t
m → xh

·|t. Thus, γ̂h
t is lower-hemi

continuous. It follows that γ̂h
t is continuous.

We can then apply the Theorem of the Maximum to establish that δ̂h
t (·, xh

−|t)
is non-empty, compact-valued and upper-hemi continuous.

Convex-valuedness of δ̂h
t is straightforward. Walras’ law follows from mono-

tonicity. The homogeneity property follows immediately from the definition of the
budget constraints γ̂h

t . 2

Proof of Theorem 5.10 (continued)

Define Ẑ·|t =
∑

h∈H X̂h
·|t −

∑
h∈H{eh

·|t} and for any x−|t ∈ X̂−|t,

ζ̂t(p·|t, x−|t) =
∑

h∈H δ̂h
t (p·|t, xh

−|t) −
∑

h∈H{eh
·|t}. Using Lemma 5.39, the corres-

pondence ζ̂t(·, x−|t) is non-empty, compact-valued, convex-valued and upper-hemi
continuous on P̂·|t.
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Define µt(z·|t) = {p̃·|t ∈ P̂·|t | p̃τ |tzτ |t ≥ pτ |tzτ |t for all p·|t ∈ P̂·|t for all τ ≥ t}.
By the theorem of the maximum, µt is non-empty and upper-hemi continuous.
Moreover, µt is convex-valued. For x−|t ∈ X̂−|t, define φt(·, x−|t) : P̂t × Ẑt →
P̂t × Ẑt as φt(p·|t, z·|t, x−|t) = µt(z·|t)× ζ̂t(p·|t, x−|t).

First, consider period 1. By Kakutani’s fixed point theorem φ1(·) has a fixed
point (p∗·|1, z·|1) ∈ µ1(z·|1)× ζ̂·|1(p∗·|t).

Since then p∗τ |1zτ |1 ≤ 0 for every τ , we know, by the definition of µ1, that

z·|1 ≤ 0. The corresponding consumption bundles are denoted by xh
·|1 ∈ δ̂h

1 (p∗·|1).

By Walras’ law (Lemma 5.39), we know that p∗τ,l|1 = 0 if zτ,l|1 < 0. By mono-
tonicity, the excess supply of good l for period τ can be given to any household
without making that household worse off and without violating the budget con-
straints. Thus, given prices p∗·|1, z∗·|1 = 0 ∈ ζ̂1(p∗·|1). Denote the corresponding
demands by x∗h·|1.

It remains to be shown that x∗h·|1 ∈ δh
1 (p∗·|1) for every h. Suppose that this is

not the case, i.e. suppose that there is a household h with x∗h·|1 /∈ δh
1 (p∗·|1). That

would mean that there is an x̃h
·|1 ∈ δh

1 (p∗·|1) with x̃h
·|1 Âh,1 x∗h·|1. Since x∗hτ,l|1 <∑

h∈H eh
τ,l|1 + ε for every τ, and every l, there would be a small positive number

λ ∈ (0, 1) such that λx̃h
·|1 + (1− λ)x∗h·|1 ∈ γ̂h

1 (p∗·|1), and λx̃h
·|1 + (1− λ)x∗h·|1 Âh,1 x∗h·|1,

which would contradict x∗h·|1 ∈ δ̂h
1 (p∗·|1). Thus, x∗h·|1 ∈ δh

1 (p∗·|1) for every h.

Now suppose that for every τ ≤ t there exist p∗·|τ such that 0 ∈ ζτ (p∗·|τ , x∗−|τ ).
Then, by a similar argument as before it can be shown that there exists a p∗·|t+1

such that 0 ∈ ζt+1(p∗·|t+1, x
∗
−|t+1). This argument of induction then establishes the

existence of a näıve equilibrium. 2

Proof of Theorem 5.12

It can immediately be seen that a sophisticated equilibrium pair (p∗, x∗) satisfies
(i)-(iv). It remains to be shown that a pair that satisfies (i)-(iv) is a sophisticated
equilibrium. Let (p∗, x∗) satisfy (i)-(iv) and let t < t′. Then, by (iii) p∗·|t = p∗t,T |1
and p∗·|t′ = p∗t′,T |1. So p∗t′,T |t = p∗·|t′ and (c) is satisfied. Furthermore, x∗·|t = x∗t,T |1
and x∗·|t′ = x∗t′,T |1. So x∗t′,T |t = x∗·|t′ and (d) is satisfied. It also holds that∑

h∈H x∗h·|t =
∑

h∈H x∗ht,T |1 =
∑

h∈H eh
t,T |1 =

∑
h∈H eh

·|t, so (b) is satisfied. Finally,
x∗h·|1 ∈ ξh

1 (p∗·|1), so x∗h·|1 ∈ φh
1 (p∗·|1), which implies that x∗h2,T |1 ∈ ξh

2 (p∗2,T |1, x
∗h
1|1). But

then, x∗h·|2 ∈ ξh
2 (p∗·|2, x

∗h
1|1). Now, by an argument of induction it can be shown that

x∗h·|t ∈ ξh
t (p∗·|t, x

∗h
−|t) for all t. So (a) is satisfied too. Thus, a pair (p∗, x∗) that

satisfies (i)-(iv) is a sophisticated equilibrium. 2
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Proof of Theorem 5.13

First of all, let (p∗, x∗) be an extended competitive equilibrium. Since x∗h·|1 ∈
δh
1 (p∗·|1) we know that x∗h·|1 ºh,1 xh

·|1 for every xh
·|1 ∈ Xh

·|1 with p∗τ |1x
h
τ |1 ≤ p∗τ |1e

h
τ |1

for every τ . By time-consistency we then know that x∗hT |1 ºh,T

x∗h
1,T−1|1

xh
T |1 for every

xh
T |1 ∈ Xh

·|T with p∗T |1x
h
T |1 ≤ p∗T |1e

h
T |1. It follows that x∗hT |1 ∈ ξh

T (p∗T |1, x
∗h
1,T−1|1).

We show next that x∗ht,T |1 ∈ ξh
t (p∗t,T |1, x

∗h
1,t−1|1) for every t. Assume that x∗hτ,T |1 ∈

ξh
τ (p∗τ,T |1, x

∗h
1,τ−1|1) for every τ > t. Suppose that x∗ht,T |1 /∈ ξh

t (p∗t,T |1, x
∗h
1,t−1|1). Then

there must be a consumption bundle that is strictly preferred to x∗ht,T |1, but is in
the opportunity set at time t, which, by time-consistency, leads to a contradiction
of x∗h·|1 being an optimal consumption bundle for household h in period 1. Thus,
(p∗, x∗) is a sophisticated equilibrium.

Now let (p∗, x∗) be a sophisticated equilibrium. Suppose that (p∗, x∗) is not
an extended competitive equilibrium. Then there must be a household h and an
x̂h
·|1 ∈ Xh

·|1 such that x̂h
·|1 Âh,1 x∗h·|1 with p∗τ |1x̂

h
τ |1 ≤ p∗τ |1e

h
τ |1 for every τ . Consider

the maximum of those x̂h
·|1 with respect to Âh,1. Such an x̂h

·|1 exists because pre-
ferences are continuous. Since x̂h

·|1 is not chosen by h, there must be a t1 > 1 such
that x̂h

t1,T |1 /∈ ξh
t1(p

∗
t1,T |1, x̂

h
1,t1−1|1). So there must be a t′1 ≥ t1 and an x̃h

·|t′1 ∈ Xh
·|t′1

such that x̃h
·|t′1 Â

h,t′1
bxh
1,t′1−1|1

x̂h
t′1,T |1 and p∗τ |1x̃

h
τ |t′1 ≤ p∗τ |1e

h
τ |1 for every τ ≥ t′1, and

by time-consistency (x̂h
1,t′1−1|1, x̃

h
·|t′1) Â

h,1 x̂h
·|1 Âh,1 x∗h·|1, which contradicts our as-

sumption on x̂h
·|1. 2

Example 5.15

An important role is played by the second derivative of v with respect to x1
1,1|1. It

is given by

d2v

dx1
1,1|1

2 =
p2,1|2 + p2,2|2
(1 + x1

1,1|1)
3

(
2

p2,1|2
− 1

p2,2|2

)

for x1
1,1|1 > 1/3 and is equal to 0 otherwise. Thus, when x1

1,1|1 > 1/3, it depends
on the prices whether v is convex (p2,1|2 < 2p2,2|2), linear (p2,1|2 = 2p2,2|2) or
concave (p2,1|2 > 2p2,2|2). We distinguish three cases accordingly.

Case 1
First consider the case where p2,1|2 < 2p2,2|2. Note first that in this case the second
derivative of v with respect to x1

1,1|1 is larger than 0 for x1
1,1|1 > 1/3 and equal to

0 if x1
1,1|1 ≤ 1/3.

First, assume that 2p1,2|1 < p1,1|1, so that the first derivative of v is negative
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when x1
1,1|1 > 1/3, i.e.

dv

dx1
1,1|1

= 1− p1,1|1
2p1,2|1

+
p2,1|2 + p2,2|2
(1 + x1

1,1|1)
2

(
1

2p2,2|2
− 1

p2,1|2

)
< 0

for x1
1,1|1 > 1/3. It is easily verified that the first derivative of v is negative as

well for x1
1,1|1 ≤ 1/3. Then x∗11,1|1 = 0. Note that if x∗11,1|1 = 0, then in equilibrium

it must hold that x∗21,1|1 = 1, which is only possible if p1,1|1 = 0. However, then
demand for goods would be infinite in the first period, which cannot yield an
equilibrium.

Now assume that 2p1,2|1 ≥ p1,1|1. Since the second derivative of v is larger
than 0 if x1

1,1|1 > 1/3, it holds that v is convex for x1
1,1|1 > 1/3. Thus, the optimal

x1
1,1|1 will not be an interior solution if x1

1,1|1 > 1/3. Thus, either x∗11,1|1 ∈ [0, 1/3]
or x∗11,1|1 = 1. If x∗11,1|1 = 1 then p1,2|1 = 0, since otherwise household 2 would
never be willing to consume x∗21,1|1 = 0. But if p1,2|1 = 0, then household 1 will
demand an infinite amount of good 2 in period 1. Thus, this can also not yield an
equilibrium. So consider x∗11,1|1 ∈ [0, 1/3]. Then, for the second period demand it
holds that x∗12,1|2 > 9/4. However, it also holds that x∗22,1|2 = 1. Thus, there would
be excess demand of good 1 in period 2.
Case 2
Now consider the case where p2,1|2 > 2p2,2|2. Then x∗22,2|2 = p2,1|2

p2,2|2
and x∗22,1|2 = 0. So

in equilibrium it would have to hold that x∗12,1|2 = 2 and x∗12,2|2 = p2,2|2−p2,1|2
p2,2|2

. First
of all, assume that x∗11,1|1 > 1/3. This would imply the following two conditions:

(
1 +

p2,2|2
p2,1|2

)
1

1 + x∗11,1|1
= 2,

(
p2,1|2
p2,2|2

+ 1
)

x∗11,1|1
1 + x∗11,1|1

= 1− p2,1|2
p2,2|2

.

By manipulating these two conditions, we arrive at

x∗11,1|1 =
1
2

(
p2,2|2
p2,1|2

− 1
)

< −1
4
,

which is not possible.
Now assume x∗11,1|1 ≤ 1/3. Then the following two conditions should hold:

(
1 +

p2,2|2
p2,1|2

)
1

1 + 1/3
= 2,

(
p2,1|2
p2,2|2

+ 1
)

1/3
1 + 1/3

= 1− p2,1|2
p2,2|2

,
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which would imply that p2,2|2/p2,1|2 = 5/3, which contradicts the fact that p2,1|2 >

2p2,2|2.
Case 3
Finally, consider the case where p2,1|2 = 2p2,2|2. Then the second derivative of v

is equal to zero and

dv

dx1
1,1|1

= 1− p1,1|1
2p1,2|1

.

Thus, if p1,1|1 6= 2p1,2|1, then either x∗11,1|1 = 0 or x∗11,1|1 = 1, which is incompatible
with equilibrium for the same reasons as before. Now assume that p1,1|1 = 2p1,2|1.
For household 2 it then holds that x∗21,1|1 = 1/3. Then in equilibrium it follows
that x∗11,1|1 = 2/3. This leads to x∗12,1|2 = 9/5 and x∗12,2|2 = 6/5. This yields a
contradiction, since the total endowment of good 2 in period 2 equals 1. Thus, in
this economy no equilibrium exists. 2

Proof of Theorem 5.16

We will now prove the existence of sophisticated equilibria. The next lemma
states that Assumptions 1-6 and 4’ suffice to obtain convex-valued demand of
sophisticated households. In particular, it is shown that demand is either empty
or single-valued. The first step is again to compactify the consumption sets and
examine the compactified economy Ê .

Lemma 5.40 Assume that the economy E satisfies Assumptions 1–6 and 4’. Con-
sider a sophisticated household h ∈ H, a planning period t ∈ T, and a realized con-
sumption plan xh

−|t ∈ Xh
−|t. Then, at prices p·|t ∈ P·|t, ξh

t (·, xh
−|t) is convex-valued

and either empty or single-valued.
Proof
Since preferences are independent on past consumption, the demand correspon-
dences will also be independent on past consumption. Therefore, the opportunity
sets

φh
t (p·|t, xh

−|t) = {xh
·|t ∈ Xh

·|t | pτ |txh
τ |t ≤ pτ |teh

τ |t for all τ ≥ t, and
xh

t+1,T |t ∈ ξh
t+1(pt+1,T |t, xh

−|t, x
h
t|t)}

will be convex-valued. Then it is straightforward that the demand correspondences
are convex-valued.

Suppose that a demand correspondence contains two elements. By convex-
valuedness of the demand correspondence and by strict convexity of preferences
this yields a contradiction. Thus, the demand correspondence is either empty or
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single-valued. 2

The next lemma shows that demand in the compactified economy satisfies
standard properties needed to show existence.

Lemma 5.41 Assume that the economy E satisfies Assumptions 1–6, and 4’.
Then, at prices p·|t ∈ P̂·|t, ξ̂h

t is a non-empty, compact-valued and continuous
function that satisfies for every h ∈ H, t ∈ T :

• Walras’ law, p·|t2ξ̂h
t (p·|t, xh

−|t) = {pt|teh
t|t, . . . , pT |teh

T |t},

• Homogeneity property, ξ̂h
t (p·|t, xh

−|t) = ξ̂h
t (p·|t, xh

−|t), where for τ ′ ≥ t, for
λ > 0, pτ ′|t = λpτ ′|t and pτ |t = pτ |t for τ 6= τ ′.

Proof
The homogeneity property is straightforward.

Since in the last period the maximization problem for the sophisticated house-
hold is identical to that of the näıve household and since φ̂h

T (p·|T , xh
−|T ) is inde-

pendent of xh
−|T , the characteristics of ξ̂h

T follow immediately from Lemma 5.39.

By single-valuedness and upper-hemi continuity, continuity of ξ̂h
T follows immedi-

ately. We will establish the properties of the other demand correspondences by an
argument of backwards induction.

Let t ∈ T . Assume that ξ̂h
τ is non-empty, compact-valued and continuous

for τ ∈ T, τ ≥ t + 1. We need to show that ξ̂h
t is non-empty, compact-valued

and upper-hemi continuous. Thus, it is necessary to show that φ̂h
t satisfies the

conditions needed to apply the theorem of the maximum.
(i) Since ξ̂h

t+1(p·|t+1, x
h
−|t, e

h
t|1) is non-empty, pt|teh

t|1 ≤ pt|teh
t|1, and pτ |txh

τ |t ≤
pτ |teh

τ |1, τ ≥ t + 1 for xh
t+1,T |t = ξ̂h

t+1(p·|t+1, x
h
−|t, e

h
t|1), it can be seen that

(eh
t|1, ξ̂

h
t+1(p·|t+1, x

h
−|t, e

h
t|1)) ∈ φ̂h

t (p·|t, xh
−|t). Thus, φ̂h

t (p·|t, xh
−|t) is non-empty.

(ii) Consider the sequence {p·|tm}∞m=1 with p·|tm → p·|t. Let {xh
−|t

m
, xh
·|t

m}∞m=1

be a sequence of consumption plans converging to (xh
−|t, x

h
·|t), where xh

−|t
m ∈ Xh

−|t
and xh

·|t
m ∈ φ̂h

t (p·|tm, xh
−|t

m) for all m. Then pτ |tmxh
τ |t

m ≤ pτ |tmeh
τ |t for every

τ ≥ t and xh
t+1,T |t

m = ξ̂h
t+1(pt+1,T |tm, xh

−|t
m

, xh
t|t

m). By continuity it follows that

pτ |txh
τ |t ≤ pτ |teh

τ |t for every τ ≥ t. Moreover, by continuity of ξ̂h
t+1, xh

t+1,T |t =

ξ̂h
t+1(pt+1,T |t, xh

−|t, x
h
t|t). Therefore, xh

·|t ∈ φ̂h
t (p·|t, xh

−|t). Thus, the graph of φ̂h
t is

closed.
By boundedness of X̂h

·|t it can easily be seen, for a compact set B, that φ̂h
t (B) is

bounded. Therefore, φ̂h
t is upper-hemi continuous.
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(iii) Consider a sequence {p·|tm, xh
−|t

m}∞m=1 with (p·|tm, xh
−|t

m) → (p·|t, xh
−|t).

Let xh
·|t ∈ φ̂h

t (p·|t, xh
−|t). Then, for m large enough, there are xh

t|t
m ∈ X̂h

t|t such
that pt|tmxh

t|t
m ≤ pt|tmeh

t|1 and xh
t|t

m → xh
t|t.

Let xh
t+1,T |t

m = ξ̂h
t+1(pt+1,T |tm, xh

−|t
m

, xh
t|t

m). It follows immediately that

pτ |tmxh
τ |t

m ≤ pτ |tmeh
τ |t for τ ≥ t + 1. Continuity of ξ̂h

t+1 then implies that

xh
t+1,T |t

m → ξ̂h
t+1(pt+1,T |t, xh

−|t, x
h
t|t) = xh

t+1,T |t. Therefore, xh
·|t

m ∈ φ̂h
t (p·|tm, xh

−|t
m)

and xh
·|t

m → xh
·|t. Thus, φ̂h

t (·) is lower-hemi continuous.

Since φ̂h
t is both upper-hemi and lower-hemi continuous, it is continuous.

To conclude, φ̂h
t satisfies the conditions needed to apply the theorem of the

maximum. Also, since Walras’ law holds for period t + 1, and since consumption
in period t does not influence the optimal consumption in period t + 1, Walras’
law holds for period t. The characteristics of ξ̂h

t then follow immediately. 2

Proof of Theorem 5.16 (continued)

Note that in order to prove the existence of a sophisticated equilibrium, we can
restrict ourselves to the first planning period. By similar arguments as in the
foregoing section, there exists a restricted equilibrium pair (p∗·|1, z

∗
·|1) such that

z∗·|1 ∈ ζ̂1(p∗·|1) and z∗·|1 ≤ 0. By monotonicity and strict convexity of preferences,
it must be the case that p∗·|1 À 0. Therefore, and by Walras’ law, it must hold
that z∗·|1 = 0. Denote the corresponding consumption bundles by x∗h·|1. It remains
to be shown that x∗h·|1 ∈ ξh

1 (p∗·|1). Suppose that this is not the case. Then two
cases can be distinguished. First assume that x∗h2,T |1 ∈ ξh

2 (p∗2,T |1, x
∗h
1|1). Then, since

consumption in period 1 does not influence optimal consumption in period 2, a
similar argument as in the proof of Theorem 5.10 leads to a contradiction. Now
assume that x∗h2,T |1 /∈ ξh

2 (p∗2,T |1, x
∗h
1|1). Then, either x∗h3,T |1 ∈ ξh

3 (p∗3,T |1, x
∗h
1,2|1), which

again leads to a contradiction, or x∗h3,T |1 /∈ ξh
3 (p∗3,T |1, x

∗h
1,2|1). Continuing in this

way, we end up with x∗hT |1 /∈ ξh
T (p∗T |1x

∗h
1,T−1|1), which leads to a contraction by the

same arguments as before. Thus, a sophisticated equilibrium exists. 2

Proof of Theorem 5.19

Let the time-consistent allocation x∗ be Pareto efficient. Suppose that it is not
MOP efficient. Then there must be an x̃ and a period t′ such that

(i)
∑

h∈H x̃h
·|t′ =

∑
h∈H eh

·|t′ ,

(ii) x̃h
·|t′ ºx∗h

−|t′
x∗h·|t′ for all h ∈ H, and

(iii) x̃h′
·|t′ Âx∗h′

−|t′
x∗h

′
·|t′ for some h′ ∈ H.
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But then, by time-consistency of preferences we have (x∗h−|t′ , x̃
h
·|t′) ºh,1 (x∗h−|t′ , x

∗h
·|t′)

for all h ∈ H, and (x∗h
′

−|t′ , x̃
h′
·|t′) Âh′,1 (x∗h

′
−|t′ , x

∗h′
·|t′ ) for some h′ ∈ H. Then it

follows from time-consistency of x∗ that (x∗h−|t′ , x̃
h
·|t′) ºh,1 x∗h·|1 for all h ∈ H, and

(x∗h
′

−|t′ , x̃
h′
·|t′) Âh′,1 x∗h

′
·|1 for some h′ ∈ H. This yields a contradiction to x∗ being

Pareto efficient.
That a MOP efficient allocation is Pareto efficient, follows immediately from

the definitions. 2

Proof of Theorem 5.24

Let (p∗, x∗) be a näıve equilibrium. Suppose that x∗ is not CMP efficient, i.e. that
there is a reallocation x̃ and a period t′ that satisfy

(i) x̃h
t′+1,T |t′ = x∗ht′+1,T |t′ for every h ∈ H,

(ii)
∑

h∈H x̃h
t′|t′ =

∑
h∈H eh

t′|t′ ,

(iii) x̃h
·|t′ ºx∗h

−|t′
x∗h·|t′ for all h ∈ H, and

(iv) x̃h′
·|t′ Âx∗h′

−|t′
x∗h

′
·|t′ for some h′ ∈ H.

Then, since x̃h
·|t′ was not chosen in equilibrium, we must have

p∗t′|t′ x̃
h′
t′|t′ > p∗t′|t′x

∗h′
t′|t′ , and

p∗t′|t′ x̃
h
t′|t′ ≥ p∗t′|t′x

∗h
t′|t′ for every household h ∈ H.

By summing over all households, this leads to
∑

h∈H

p∗t′|t′ x̃
h
t′|t′ >

∑

h∈H

p∗t′|t′x
∗h
t′|t′ ,

which can be written as

p∗t′|t′
∑

h∈H

x̃h
t′|t′ > p∗t′|t′

∑

h∈H

x∗ht′|t′ .

This leads to a contradiction, since, by assumption, we have
∑

h∈H

x̃h
t′|t′ =

∑

h∈H

eh
t′|1 =

∑

h∈H

x∗ht′|t′ .

Thus, it follows that the näıve equilibrium allocation x∗ must be CMP efficient. 2

Proof of Theorem 5.26

Let (p∗, x∗) be a sophisticated equilibrium. Suppose that x∗ is not CMP efficient.
Then there must be a reallocation x̃ and a period t′ that satisfy
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(i) x̃h
t′+1,T |t′ = x∗ht′+1,T |t′ for every h ∈ H,

(ii)
∑

h∈H x̃h
t′|t′ =

∑
h∈H eh

t′|t′ ,

(iii) x̃h
·|t′ ºx∗h

−|t′
x∗h·|t′ for all h ∈ H, and

(iv) x̃h′
·|t′ Âx∗h′

−|t′
x∗h

′
·|t′ for some h′ ∈ H.

Since preferences are independent of consumption in the past, optimal con-
sumption is also not dependent on consumption in the past. Similarly, optimal
future consumption is independent of current and past consumption. Therefore,
the only reason why household h′ has not chosen x̃h′

·|t′ is that its period-t′ com-
ponent must be too expensive. Similarly, for every household h the period-t′

component of x̃h
·|t′ must be at least as expensive as the period-t′ component of

x∗h·|t′ . This can be summarized as

p∗t′|t′ x̃
h′
t′|t′ > p∗t′|t′x

∗h′
t′|t′ , and

p∗t′|t′ x̃
h
t′|t′ ≥ p∗t′|t′x

∗h
t′|t′ for every household h ∈ H.

As in the proof of Theorem 5.24 this leads to a contradiction. It follows that the
sophisticated equilibrium allocation x∗ must be CMP efficient. 2

Proof of Theorem 5.29

Let x∗ be a time-consistent allocation that is Pareto efficient. Suppose that x∗ is
not OP efficient. Then there must be an allocation x̃ and a period t′ such that

(i)
∑

h∈H x̃h
·|t =

∑
h∈H eh

·|t for all t ≥ t′,

(ii) (x∗h−|t′ , x̃
h
t′|t′ , . . . , x̃

h
t−1|t−1, x̃

h
·|t) º∗h,t (x∗h−|t, x

∗h
·|t ) = x∗h·|1 for all h ∈ H and all

t ≥ t′ , and

(iii) (x∗h
′

−|t′ , x̃
h′
t′|t′ , . . . , x̃

h′
t′′−1|t′′−1, x̃

h′
·|t′′) Â∗h

′,t′′ (x∗h
′

−|t′′ , x
∗h′
·|t′′) = x∗h

′
·|1 for some h′ ∈

H and some t′′ ≥ t′.

Then, by Assumption 6’, we have

(ii) (x∗h−|t, x̃
h
·|t) º∗h,t x∗h·|1 for all h ∈ H and all t ≥ t′ , and

(iii) (x∗h
′

−|t′′ , x̃
h′
·|t′′) Â∗h

′,t′′ x∗h
′

·|1 for some h′ ∈ H and some t′′ ≥ t′.

By time-consistency of preferences it then follows that

(ii) (x∗h−|t′′ , x̃
h
·|t′′) º∗h,1 x∗h·|1 for all h ∈ H, and
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(iii) (x∗h
′

−|t′′ , x̃
h′
·|t′′) Â∗h

′,1 x∗h
′

·|1 .

Since
∑

h∈H(x∗h−|t′′ , x̃
h
·|t′′) =

∑
h∈H eh

·|1 by definition of x∗, this would imply that
x∗ is not Pareto efficient, which is a contradiction. Thus, x∗ must be OP efficient.

2

Proof of Theorem 5.32

Let the time-consistent allocation x∗ be Pareto efficient. Then it follows by The-
orem 5.29 that x∗ is OP efficient. By the definitions it then follows immediately
that x∗ is TCOP efficient. 2

Proof of Theorem 5.33

Let (p∗, x∗) be a sophisticated equilibrium. Suppose that x∗ is not TCOP efficient.
Then, there must be a time-consistent reallocation x̃ and a period t′ that satisfy

(i)
∑

h∈H x̃h
·|1 =

∑
h∈H eh

·|1,

(ii) (x∗h−|t′ , x̃
h
·|t′) º∗h,t x∗h·|1 for all h ∈ H and all t ≥ t′ , and

(iii) (x∗h
′

−|t′ , x̃
h′
·|t′) Â∗h

′,t′′ x∗h
′

·|1 for some h′ ∈ H and some t′′ ≥ t′.

If t′′ = T then, since preferences are independent of past consumption, we must
have

p∗T |1x̃
h′
T |t′ > p∗T |1x

∗h′
T |1, and

p∗T |1x̃
h
T |t′ ≥ p∗T |1x

∗h
T |1 for every household h ∈ H,

which yields a contradiction as before. Now assume that for every household h

and every t̃ > t we have

p∗t̃|1x̃
h
t̃|t′ ≤ p∗t̃|1x

∗h
t̃|1 , and

(x∗h−|t′ , x̃
h
·|t′) º∗h,t̃ x∗h·|1.

Since preferences are independent of past consumption it follows that x̃h
·|t̃ must be

an optimal consumption in period t̃ given prices p∗
t̃,T |1. Now assume that t′′ = t.

Then we must have

p∗t|1x̃
h′
t|t′ > p∗t|1x

∗h′
t|1 , and

p∗t|1x̃
h
t|t′ ≥ p∗t|1x

∗h
t|1 for every household h ∈ H,

which again leads to a contradiction. Continuing like this we end up with this
contradiction for t = t′, so that case (iii) can never hold.
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It follows that the sophisticated equilibrium allocation x∗ must be TCOP effi-
cient. 2

Proof of Theorem 5.36

Let the time-consistent allocation x∗ be TCOP efficient. Suppose that x∗ is not
CP efficient. Then there is an allocation x̃ and a period t′ such that

(i) x̃h
t′+1,T |t′ = x∗ht′+1,T |t′ = x∗ht′+1,T |1 for every h ∈ H,

(ii)
∑

h∈H x̃h
t′|t′ =

∑
h∈H eh

t′|t′ ,

(iii) (x∗h−|t′ , x̃
h
t′|t′ , x

∗h
t′+1|t′+1, . . . , x

∗h
t−1|t−1, x

∗h
·|t ) º∗h,t (x∗h−|t, x

∗h
·|t ) for all h ∈ H and

all t ≥ t′ , and

(iv) (x∗h
′

−|t′ , x̃
h′
t′|t′ , x

∗h′
t′+1|t′+1, . . . , x

∗h
t′′−1|t′′−1, x

∗h
·|t′′) Â∗h

′,t′′ (x∗h
′

−|t′′ , x
∗h′
·|t′′) for some h′ ∈

H and some t′′ ≥ t′,

which contradicts the fact that x∗ is TCOP efficient. 2

Proof of Theorem 5.38

For sophisticated equilibria the result follows directly from Theorems 5.36 and 5.33,
since sophisticated equilibrium allocations are time-consistent. Now let (p∗, x∗) be
a näıve equilibrium. Suppose that x∗ is not CP efficient. Then there must be a
reallocation x̃ and a period t′ that satisfy

(i) x̃h
t′+1,T |t′ = x∗ht′+1,T |t′ for every h ∈ H,

(ii)
∑

h∈H x̃h
t′|t′ =

∑
h∈H eh

t′|t′ ,

(iii) (x∗h−|t′ , x̃
h
t′|t′ , x

∗h
t′+1|t′+1, . . . , x

∗h
t−1|t−1, x

∗h
·|t ) º∗h,t (x∗h−|t, x

∗h
·|t ) for all h ∈ H and

all t ≥ t′ , and

(iv) (x∗h
′

−|t′ , x̃
h′
t′|t′ , x

∗h′
t′+1|t′+1, . . . , x

∗h
t′′−1|t′′−1, x

∗h
·|t′′) Â∗h

′,t′′ (x∗h
′

−|t′′ , x
∗h′
·|t′′) for some h′ ∈

H and some t′′ ≥ t′.

Since preferences are independent of past consumption, t′′ = t′. Since x̃h′
t′|t′ was

not demanded in equilibrium by household h′ in period t′′, it must hold that

p∗t′|t′ x̃
h′
t′|t′ > p∗t′|t′x

∗h′
t′|t′ , and

p∗t′|t′ x̃
h
t′|t′ ≥ p∗t′|t′x

∗h
t′|t′ for every household h ∈ H,

which leads to a contradiction as before. Thus, x∗ must be CP efficient. 2
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6

On the Completeness of Complete

Markets

This chapter1 reconsiders the allocational invariance of equilibria to different for-
mulations of market completeness. We identify the so-far neglected assumption of
sophisticated behavior as crucial to this result. The chapter studies three market
structures. First, the Arrow-Debreu setting is considered, where markets do not
reopen in the future. Second, sequentially complete markets are analyzed, where
goods on the spot markets and all contingent one-period ahead commodities can
be traded in every state. Finally, complete markets are analyzed, where all pos-
sible contingent commodities can be traded at every state. Preferences may be
time-consistent or time-inconsistent. A distinction is made between näıve and
sophisticated behavior. Whereas näıve households do not realize that their pre-
ferences might change in the future, sophisticated households do realize this and
only make plans for the future that they expect to carry out in the future. For
economies with time-inconsistent preferences, Arrow-Debreu equilibria are not re-
lated to either sequentially complete equilibria or complete equilibria. It does hold
that every equilibrium consumption that can be attained in sequentially complete
markets, can also be attained in complete markets. An example shows that the
converse is not true for näıve economies. Finally, when preferences are restricted to
be time-consistent and households are sophisticated, the three market structures
yield the same equilibrium consumption. Surprisingly, for näıve households, this
result is not true, even when preferences are time-consistent.

6.1 Introduction

Debreu (1959) discusses how the one-period Arrow-Debreu (1954) model can be
used to analyze multi-period settings with uncertainty. The crucial idea is to in-

1This chapter is based on Herings and Rohde (2005).
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clude the period and the state of the world at the time of delivery in the definition
of a commodity, resulting in contingent commodities. Debreu assumes that mar-
kets are complete in the sense that all contingent commodities can be traded in
the first period and does not allow for markets to reopen after the first period.

As an alternative to the assumption that all contingent commodities can be
traded in the initial period, sequentially complete markets have been considered.
In a sequentially complete market structure, it is typically assumed that at every
state there are complete spot markets for commodities available at that state
together with a restricted set of markets for commodities available at future states.
It is well-known that, under certain assumptions, equilibria in the Arrow-Debreu
model are allocationally equivalent to equilibria in sequentially complete models,
see Arrow (1953). Donaldson and Selden (1981) and Haller (1990) provide two
discussions of the assumptions needed for this result. Drèze and Herings (2003)
show in an example that there might be equilibrium continuations in a sequentially
complete markets setting that are not allocationally equivalent to any equilibrium
in the Arrow-Debreu setting. A closer look at their example suggests that the result
is driven by the fact that in the Arrow-Debreu setting, markets are not reopened.
Chattopadhyay and Gottardi (1999) consider differences between complete and
sequentially complete market structures in overlapping generations models.

This chapter studies multi-period economies subject to uncertainty, where mar-
kets may reopen at future states. At every state, households are endowed with
preferences that may or may not be time-consistent. In general equilibrium mo-
dels, time-inconsistent preferences have been introduced by Luttmer and Mariotti
(2003) and Herings and Rohde (2006). We consider three market structures that
are commonly believed to result in the same set of competitive equilibria. First, we
consider the Arrow-Debreu (AD) structure with complete markets in the first pe-
riod and no reopening of markets as time passes. Second, we consider sequentially
complete (SC) markets, where in every state, people can trade the goods to be
consumed in that state and all one-period ahead contingent commodities. Finally,
we consider the complete (C) market structure. We say that markets are complete
if, in every state, there are complete markets for all contingent commodities to be
consumed in that state or in a later state. Figure 6.1 indicates which markets are
open at various periods under these three market structures in an economy with
four periods.

We follow Pollak (1968) in making a distinction between näıve and sophisti-
cated behavior. Whereas näıve households believe that their preferences will not
change in the future, sophisticated households correctly anticipate their future
preferences. The latter households make plans that they expect to stick to in
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6.1. Introduction

AD1 2 3 4

SC1 2 3 4

C1 2 3 4

Figure 6.1: Commodities traded simultaneously in a 4-period economy

the future. Sophisticated households can be interpreted as consisting of multiple
agents, playing a subgame perfect equilibrium against themselves. We will ana-
lyze these two types of behavior for both time-consistent and time-inconsistent
preferences.

In general, the Arrow-Debreu market structure leads to equilibrium allocations
that differ from equilibrium allocations corresponding to the other two market
structures. The explanation is that the Arrow-Debreu market structure yields the
commitment power needed not to re-trade. For sophisticated economies, sequen-
tially complete markets yield the same allocations as complete markets do, even
when preferences are allowed to be time-inconsistent. The assumption of sophis-
ticated behavior is extremely demanding. It might be more reasonable to assume
that households, at least partly, mispredict their future preferences (Loewenstein,
O’Donoghue, and Rabin (2003)). For näıve economies any sequentially complete
equilibrium is allocationally equivalent to some complete equilibrium, but the con-
verse statement does not hold.

When preferences are time-consistent, we show that all three markets structures
are allocationally equivalent for sophisticated economies. For näıve economies,
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On the Completeness of Complete Markets

every equilibrium in the Arrow-Debreu market structure is allocationally equiva-
lent to some sequentially complete equilibrium and some complete equilibrium,
but surprisingly the reverse does not hold. The results of this chapter are sum-
marized in Figures 6.2, 6.3, 6.4 and 6.5. In those figures, an arrow from ‘A’ to ‘B’
indicates that any concept ‘A’ equilibrium allocation is allocationally equivalent
to some concept ‘B’ equilibrium allocation.

AD

SC

Complete

*

j
?

Figure 6.2: Näıve equilibria when preferences are time-consistent

AD

SC

Complete

*

¼

j

Y

6

?

Figure 6.3: Sophisticated equilibria when preferences are time-consistent

This chapter therefore identifies a crucial assumption that has to be satisfied in
order for complete and sequentially complete markets to be equivalent: behavior
should be sophisticated. For equivalence to Arrow-Debreu markets, it is also
needed that preferences are time-consistent.

Section 6.2 starts by describing the primitives of the economies as considered
in this chapter, without elaborating on market structures. Section 6.3 describes
the Arrow-Debreu market structure. Sections 6.4 and 6.5 analyze the sequen-
tially complete markets structure and the complete one, respectively. Both these
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6.2. The Primitives of the Economy

AD

SC

Complete

?

Figure 6.4: Näıve equilibria when preferences are time-inconsistent

AD

SC

Complete

6

?

Figure 6.5: Sophisticated equilibria when preferences are time-inconsistent

sections are built up in the same fashion. First, näıve and sophisticated behav-
ior is described. Then, properties of the specific market structure are studied.
Section 6.6 then concludes. All proofs are in the Appendix.

6.2 The Primitives of the Economy

There is a finite number of periods, denoted by the integer T 2. In every period
t ∈ {2, . . . , T}, exactly one event in the finite set Ω occurs. A sequence of T − 1
events constitutes a state. We let S = ΩT−1 be the set of states. For every s ∈ S

and every t ∈ {2, . . . , T}, we define the state at period t by

s(t) =
{

(ωτ )t
τ=2 ∈ Ωt−1 | ∃ (ωτ )T

τ=t+1 ∈ ΩT−t with (ωτ )T
τ=2 = s

}
.

2As no confusion will arise, for finite sets we will use the same notation to indicate the set

and its cardinality.
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For t = 1, we define s(1) = 1.

s3(2)

B

G

B

G B

G

B

G

G

B G

B

G

B

s1

s2

s3

s4

s8

s7

s6

s5

Figure 6.6: An economy with T = 4 and Ω = {Bad, Good}

Figure 6.6 illustrates the structure of an economy with 4 periods (T = 4) and
two events in every period (Ω = {Bad, Good}). A state in period 4 is a path
from the root of the tree to an end-node. Thus, in the figure there are 8 states
in period 4. Consider the state that corresponds to the path that leads to the
third end-node from above. We call this state s3 = (B, G, B). We have s3(2) = B,

s3(3) = (B, G), and s3(4) = (B, G,B). For every s(t) we define s+(t) = {s′(t+1) ∈
Ωt|s′ ∈ S, s′(t) = s(t)}.

The economy consists of a finite number of households h ∈ H. In every state of
every period, households consume a finite number of goods l ∈ L. For s ∈ S and
τ ≥ t, the consumption bundle xh

s(τ)|s(t) denotes the consumption of every good
at state s(τ) anticipated in state s(t). Consumption for state s(t) and every later
state anticipated at s(t), is given by the consumption plan xh

·|s(t). Consumption
for state s(τ) and all states that can be reached from there up till period τ ′,
as anticipated in state s(t), is given by xh

s(τ),τ ′|s(t). By xh
·|s(t) o x̂h

·|s(τ), we denote
the consumption xh

·|s(t) with xh
s(τ),T |s(t) replaced by x̂h

·|s(τ). For t ∈ T, we define

Lt = L
∑T−t

τ=1 Ωτ , the total number of commodities to be consumed at states
later than s(t). Consumption in every state is limited to the consumption sets
Xh
·|s(t) ⊂ RL+Lt , where the interpretation of sub- and superscripts is similar as
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6.2. The Primitives of the Economy

before. A subscript l is added to denote consumption of good l. In every state
s(t), households have initial endowments eh

·|s(t). Households are assumed to have
correct expectations about consumption sets and endowments.

In every state, households have preferences over consumption in that state and
all possible future states. Preferences of household h in state s(t) are represented
by ºh,s(t), a relation defined on Xh

·|s(t). The preferences of household h are denoted
by ºh=

(ºh,s(t)
)
s∈S,t∈T

.

Preferences might depend on the state of nature and can change over time.
Consider a consumption plan in state s(t). If we replace consumption from a future
state s(τ) on by consumption that will be preferred once state s(τ) is reached,
then time-consistency of preferences implies that the resulting consumption plan
at state s(t) is preferred to the original one.

Definition 6.1 Time-consistent Preferences
Preferences for household h are time-consistent if for all states s ∈ S, for all periods
t, τ with τ ≥ t, for every xh

·|s(t) ∈ Xh
·|s(t) and every x̂h

·|s(τ) ∈ Xh
·|s(τ), we have

xh
·|s(t) ºh,s(t) xh

·|s(t) o x̂h
·|s(τ)

if and only if

xh
s(τ),T |s(t) ºh,s(τ) x̂h

·|s(τ).

Preferences are time-inconsistent if they are not time-consistent.

Preferences of a household in a particular state s(t) are locally non-satiated
in state s(t′), where t′ ≥ t, if for every consumption plan in state s(t), we can
find another consumption plan in state s(t) that (i) only deviates from the initial
consumption plan in state s(t′), (ii) is arbitrarily close to the initial consumption
plan, and (iii) is preferred to the initial consumption plan. This can be formalized
as follows. Consider a household h, a state s, and two periods t, t′ with t′ ≥ t.

Preferences ºh,s(t) are locally non-satiated in s(t′) if for every xh
·|s(t) ∈ Xh

·|s(t),
for every ε > 0, there is an xh

·|s(t) ∈ Xh
·|s(t) with xh

s′(τ)|s(t) = xh
s′(τ)|s(t) for every

s′(τ) 6= s(t′), ‖ xh
·|s(t) − xh

·|s(t) ‖< ε and xh
·|s(t) Âh,s(t) xh

·|s(t). An economy with
preferences

(ºh,s(t)
)
h∈H,s∈S,t∈T

is locally non-satiated if for every state s and every

t, t′ with t′ ≥ t there is a household h such that ºh,s(t) is locally non-satiated in
s(t′).

An economy E is described by its primitives (Xh
·|1, e

h
·|1,ºh)h∈H . A household

will sell its endowments and use the revenues from this sale to buy the goods the
household desires most. The timing of the opportunities to sell endowments will
depend on the market structure.
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6.3 Arrow-Debreu Markets

This section considers the model of Arrow and Debreu (1954) and Debreu (1959).
There are complete markets in contingent commodities in period 1. Markets do
not reopen in later periods. All commodities can be traded in period 1 against the
prices p·|1. Prices for commodities in state s(t) are then given by ps(t)|1. Prices for
state s(t) and all states that can be reached from s(t) are denoted by ps(t),T |1. We
denote the set of possible prices by P·|1 = RL+L1 .

In the Arrow-Debreu model, markets do not reopen after period 1. Therefore,
it is implicitly assumed that consumption in those later periods is completely
determined by the choices made in period 1. Moreover, since markets do not
reopen after period 1, there is no need to specify prices in periods after period 1.
To be consistent in notation throughout this chapter, we do want to specify those
prices. Without loss of generality, we set prices in states later than period 1 equal
to the prices in period 1 of corresponding contingent commodities. We define
p·|s(t) = ps(t),T |1 for every s(t), and P·|s(t) = RL+Lt and P =

∏
s(t) P·|s(t).

The opportunity set of household h in period 1 is given by

γ̆h
1 (p·|1, eh

·|1) = {xh
·|1 ∈ Xh

·|1 | p·|1xh
·|1 ≤ p·|1eh

·|1}.

The opportunity set of household h in any state s(t) with t > 1 is given by

γ̆h
s(t)(p·|s(t), x

h
s(t),T |s(t−1)) = {xh

s(t),T |s(t−1)}.

A household selects a most preferred consumption plan in the opportunity set.
Thus, the demand sets are given by

δ̆h
s(t)(p·|s(t), x

h
s(t),T |s(t−1)) = {xh

·|s(t) ∈ γ̆h
s(t)(p·|s(t), x

h
s(t),T |s(t−1)) |

@ xh
·|s(t) ∈ γ̆h

s(t)(p·|s(t), x
h
s(t),T |s(t−1)) with xh

·|s(t) Âh,s(t) xh
·|s(t)}.

In equilibrium, total demand must equal total endowments. For notational
purposes, we define xh

1,T |s(0) = eh
·|1.

Definition 6.2 Arrow-Debreu (AD) Equilibrium
A pair (p∗, x∗) ∈ P ×X is an Arrow-Debreu (AD) equilibrium of the economy E if

(a) x∗h·|s(t) ∈ δ̆h
s(t)(p

∗
·|s(t), x

∗h
s(t),T |s(t−1)) for all h ∈ H, t ∈ T , s ∈ S,

(b)
∑

h∈H x∗h·|s(t) =
∑

h∈H eh
·|s(t) for all t ∈ T, s ∈ S,

(c) p∗·|s(t) = p∗s(t),T |1 for all t ∈ T, s ∈ S.
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6.4 Sequentially Complete Markets

This section considers sequentially complete markets. In every state there are
spot markets and forward markets for one-period ahead contingent commodities.
In period t households can trade all goods for period t and all goods for all possible
events in period t+1. They have to form expectations about prices for goods that
will be consumed in later periods, i.e. periods from t+2 on. We assume that they
form point expectations and that all households form the same expectations. We
let P·|s(t) = RL+Lt , Q·|s(t) = RLt , P =

∏
s(t) P·|s(t) and Q =

∏
s(t) Q·|s(t). Prices

and expected (at state s(t)) prices on spot markets will be denoted by p·|s(t) ∈
P·|s(t). Prices and expected (at state s(t)) prices of forward commodities will be
denoted by q·|s(t) ∈ Q·|s(t). The (expected) prices in state s(t) of commodities
to be delivered in state s(τ) and traded in s(τ − 1), are denoted by qs(τ)|s(t).

We define Y
h

·|s(t) = RLt and Y =
∏

h∈H

∏
s(t) Y

h

·|s(t). For household h the forward
commodity bundle for state s(τ) that is expected in state s(t) to be bought in state
s(τ − 1) is denoted by yh

s(τ)|s(t). For notational purposes, we define yh
·|s(0) = eh

·|1
and yh

s(t)|s(t) = yh
s(t)|s(t−1).

The structure of sequentially complete markets is illustrated in Figure 6.7.
There, rows refer to the period in which the commodities are bought and columns
refer to the period in which the commodities are delivered. The first block of 4
rows refers to the perspective of a household in period 1. The next blocks are
the perspectives of the households in the next periods. Bullets indicate that the
prices and consumption are directly observable in the markets, open bullets denote
expectations.

When markets can reopen in the future, and preferences are allowed to be
time-inconsistent, a conflict can arise between the preferences from the perspec-
tive of one state and those of another, later, state. Following Pollak (1968), we
make a distinction between näıve and sophisticated households. Näıve households
will typically revise their plans over time. They have the incorrect belief that their
preferences will not change in the future. Sophisticated households correctly anti-
cipate their future preferences. They only make choices that they expect to stick
to in the future. A more realistic assumption would be that households are partly
sophisticated and incorrectly anticipate future preferences. For these households
the relation between the various market structures will be similar to those for
näıve households. Therefore, we restrict attention to näıve and (fully) sophisti-
cated households. First, we consider näıve and then sophisticated behavior.
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1 2 3 4
period 1 • •

◦ ◦
◦ ◦

◦

period 2 • •
◦ ◦

◦

period 3 • •
◦

period 4 •

• – directly observable
◦ – expectations

Figure 6.7: Structure of sequentially complete markets

6.4.1 Näıve Behavior

In every state, näıve households sell the endowments of that particular state and
the one-period ahead endowments. They use the revenue from selling these com-
modities to buy goods on the spot markets and to buy one-period ahead con-
tingent commodities. At each state s(t) households form expectations about all
future prices. We assume that näıve households have rational price expectations.
By this we mean that in every period and every state they have common point ex-
pectations about prices and that prices are expected to be market clearing. Thus,
rational price expectations are correct price expectations (Radner, 1972) given the
belief that preferences will not change in the future. Nevertheless, preferences can
change and that will induce new rational price expectations in the future, which
will again be correct from the viewpoint of that future state.

The opportunity set of household h in state s(t) is given by

nγh
s(t)(p·|s(t), q·|s(t), y

h
s(t)|s(t−1), e

h
t+1,T |s(t)) =

{
(xh
·|s(t), y

h
·|s(t)) ∈ Xh

·|s(t) × Y
h

·|s(t) |
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ps′(τ)|s(t)xh
s′(τ)|s(t) +

∑

s′(τ+1)∈s′+(τ)

qs′(τ+1)|s(t)yh
s′(τ+1)|s(t) ≤

ps′(τ)|s(t)yh
s′(τ)|s(t) +

∑

s′(τ+1)∈s′+(τ)

qs′(τ+1)|s(t)eh
s′(τ+1)|s(t)

for every τ ≥ t, for every s′(τ) with s′(t) = s(t)
}

,

where, by definition, yh
s(t)|s(t) = yh

s(t)|s(t−1) and yh
1|s(0) = eh

1|1.
The demand set of household h in state s(t) is then given by

nδ
h

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t)) =

{
(xh
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t)) |

@ (xh
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t))

with xh
·|s(t) Âh,s(t) xh

·|s(t)
}

.

Prices and consumption are said to constitute a näıve sequentially complete
equilibrium if consumption is in the demand sets and if markets clear and are
expected to clear in every state.

Definition 6.3 Näıve Sequentially Complete (SC) Equilibrium
A pair (p∗, q∗, x∗, y∗) ∈ P × Q × X × Y is a Näıve Sequentially Complete (SC)
equilibrium of the economy E if

(a) (x∗h·|s(t), y
∗h
·|s(t)) ∈ nδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)) for all h ∈ H, t ∈ T ,

s ∈ S,

(b)
∑

h∈H x∗h·|s(t) =
∑

h∈H eh
·|s(t) for all t ∈ T, s ∈ S, and

(c)
∑

h∈H y∗h·|s(t) =
∑

h∈H eh
t+1,T |s(t) for all t ∈ T, s ∈ S.

6.4.2 Sophisticated Behavior

Sophisticated households know exactly how their preferences will change in the
future. Therefore, they can correctly predict their future behavior. Moreover, they
only make plans that they expect to adhere to. They face the additional constraint
that their expected future consumption should be in their future demand sets given
expected future prices.

The opportunity set of sophisticated household h in state s(T ) is the same as
for its näıve counterpart:

sγh
s(T )(p·|s(T ), y

h
s(T )|s(T−1)) = nγh

s(T )(p·|s(T ), y
h
s(T )|s(T−1)).
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The opportunity set of sophisticated household h in state s(t), where t < T, is
given by

sγh
s(t)(p·|s(t), q·|s(t), y

h
s(t)|s(t−1), e

h
t+1,T |s(t)) =

{
(xh
·|s(t), y

h
·|s(t)) ∈ Xh

·|s(t) × Y
h

·|s(t) |

(i) ps′(τ)|s(t)xh
s′(τ)|s(t) +

∑

s′(τ+1)∈s′+(τ)

qs′(τ+1)|s(t)yh
s′(τ+1)|s(t) ≤

ps′(τ)|s(t)yh
s′(τ)|s(t) +

∑

s′(τ+1)∈s′+(τ)

qs′(τ+1)|s(t)eh
s′(τ+1)|s(t)

for every τ ≥ t, for every s′(τ) with s′(t) = s(t),

and

(ii)
(
xh

s(t+1),T |s(t), y
h
s+(t+1),T |s(t)

)
∈

sδ
h

s(t+1)(ps(t+1),T |s(t), qs+(t+1),T |s(t), y
h
s(t+1)|s(t), e

h
t+2,T |s(t+1))

for every s(t + 1) ∈ s+(t)
}

.

The demand set of a sophisticated household is given by

sδ
h

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t)) =

{
(xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t)) |

@ (xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t))

with xh
·|s(t) Âh,s(t) xh

·|s(t)
}

.

Prices, consumption bundles and purchases of forward commodities constitute
a sophisticated sequentially complete equilibrium if actual and planned supply of
spot and forward commodities equals actual and planned demand, price expecta-
tions are correct, and expected consumption and expected purchases of forward
commodities equal realized consumption and realized purchases of forward com-
modities. This is formalized in the following definition.

Definition 6.4 Sophisticated Sequentially Complete (SC) Equilibrium
A pair (p∗, q∗, x∗, y∗) ∈ P × Q ×X × Y is a Sophisticated Sequentially Complete
(SC) equilibrium of the economy E if

(a) (x∗h·|s(t), y
∗h
·|s(t)) ∈ sδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)) for all h ∈ H, t ∈ T ,

s ∈ S,
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(b)
∑

h∈H x∗h·|s(t) =
∑

h∈H eh
·|s(t) for all t ∈ T, s ∈ S,

(c)
∑

h∈H y∗h·|s(t) =
∑

h∈H eh
t+1,T |s(t) for all t ∈ T, s ∈ S,

(d) p∗s(τ),T |s(t) = p∗·|s(τ) for all s ∈ S, t, τ ∈ T with t ≤ τ ,

(e) q∗s(τ),T |s(t) = q∗s(τ),T |s(τ−1) for all s ∈ S, t, τ ∈ T with t < τ ,

(f) x∗hs(τ),T |s(t) = x∗h·|s(τ) for all h ∈ H, s ∈ S, t, τ ∈ T with t ≤ τ, and

(g) y∗hs(τ),T |s(t) = y∗hs(τ),T |s(τ−1) for all h ∈ H, s ∈ S, t, τ ∈ T with t < τ.

6.4.3 Properties of Sequentially Complete Equilibria

In both näıve SC and sophisticated SC equilibria, expectations of relative prices
on spot markets are equal to the corresponding expected relative prices of assets
or one-period ahead contingent commodities, except when all those asset prices
are equal to zero. This is formalized in the following theorem. Svensson (1976)
derives a similar result in a two-period economy without uncertainty. He called
these price expectations stationary point expectations.

Theorem 6.5 Let the economy E be locally non-satiated and let (p∗, q∗, x∗, y∗) be
a näıve SC equilibrium of E . Then for every s, s′ ∈ S and every t, τ ∈ T with τ > t

and s′(t) = s(t) there is µs′(τ)|s(t) ∈ R such that

q∗s′(τ)|s(t) = µs′(τ)|s(t)p∗s′(τ)|s(t).

The result of Theorem 6.5 is driven by the arbitrage opportunities that are
created in locally non-satiated economies if the condition of the result would be
violated. This intuition is entirely correct for the näıve case. The sophisticated case
is more difficult. The reason is that a sophisticated household cannot guarantee
that his future self will behave as he would like him to behave. Therefore, changing
income in a future state may make the future self consume a bundle that the
current self does not like at all. The availability of an arbitrage opportunity in
a particular state is not sufficient to drive the result. The arbitrage opportunity
needs to be such that also income in future states is unchanged, so that future
selves will behave the same, irrespective of whether the arbitrage opportunity is
taken or not. Our proof for the näıve case is constructed in such a way that these
properties are satisfied, and therefore applies to the sophisticated case as well.

Theorem 6.6 Let the economy E be locally non-satiated and let (p∗, q∗, x∗, y∗) be
a sophisticated SC equilibrium of E . Then for every s, s′ ∈ S and every t, τ ∈ T

with τ > t and s′(t) = s(t) there is a µs′(τ)|s(t) ∈ R such that

q∗s′(τ)|s(t) = µs′(τ)|s(t)p∗s′(τ)|s(t).
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An AD equilibrium (p∗, x∗) is said to be allocationally equivalent to a näıve
(sophisticated) SC equilibrium if there are p ∈ P, q ∈ Q and y ∈ Y such that
(p, q, x∗, y) is a näıve (sophisticated) SC equilibrium. Similarly, a näıve (sophisti-
cated) SC equilibrium (p∗, q∗, x∗, y∗) is said to be allocationally equivalent to an
AD equilibrium if there is p ∈ P such that (p, x∗) is an AD equilibrium.

When preferences are time-consistent one might expect that there is no dif-
ference between näıve and sophisticated behavior. However, this is not the case.
We show by means of an example that näıve SC equilibria are not necessarily al-
locationally equivalent to AD equilibria. However, sophisticated SC equilibria are
allocationally equivalent to AD equilibria and the other way around. The diffe-
rence arises because in an AD equilibrium price expectations are correct, whereas
in a näıve SC equilibrium price expectations are only rational. The key insight
used in the example is that even in the time-consistent case, rational price ex-
pectations need not be correct. Finally, every AD equilibrium is allocationally
equivalent to some SC equilibrium in both the näıve and the sophisticated case.
These results will be derived next.

The following example with time-consistent preferences displays näıve SC equi-
libria that are not allocationally equivalent to any AD equilibrium. It is borrowed
from Drèze and Herings (2003). Hellwig (1983) considered a similar example for
the case with incomplete markets.

Example 6.7 Consider a two-period economy without uncertainty. There are
two agents and two goods in every period. Endowments are eh

·|1 = (2, 2, 2, 2) for
h = 1, 2. Preferences are time-consistent and represented by

uh
1 (xh

·|1) = vh(xh
1,1|1, x

h
1,2|1)

1
2 · vh(xh

2,1|1, x
h
2,2|1)

1
2 ,

where

v1(x1
·,1|1, x

1
·,2|1) =





[min(x1
·,1|1, x

1
·,2|1)], min(x1

·,1|1, x
1
·,2|1) ≤ 1,

[(x1
·,1|1 − 1)

1
2 (x1

·,2|1 − 1)
1
2 + 1], min(x1

·,1|1, x
1
·,2|1) ≥ 1,

and

v2(x2
·,1|1, x

2
·,2|1) =





[min(x2
·,1|1, x

2
·,2|1)], min(x2

·,1|1, x
2
·,2|1) ≤ 3,

[(x2
·,1|1 − 3)

1
2 (x2

·,2|1 − 3)
1
2 + 3], min(x2

·,1|1, x
2
·,2|1) ≥ 3.
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Now consider sequentially complete markets. Let p∗·|1 = (1/2, 1/2, 1/2, 1/2),
q∗2|1 = (1/2, 1/2), p∗·|2 = (3/4, 1/4). Consider the following allocation

x∗1·|1 = (2, 2, 2, 2) x∗2·|1 = (2, 2, 2, 2)

x∗1·|2 = (1, 1) x∗2·|2 = (3, 3)

achieved by the asset allocations

y∗12|1 = (0, 4),

y∗22|1 = (4, 0).

It can be verified that (p∗, q∗, x∗, y∗) is a näıve SC equilibrium. In particular it
holds that the choice of y∗12|1 = (0, 4) and y∗22|1 = (4, 0) is optimal given prices and
price expectations p∗·|1 = (1/2, 1/2, 1/2, 1/2) and it holds that for the subeconomy
starting in period 2 with initial endowments y∗12|1 = (0, 4) and y∗22|1 = (4, 0), prices
p∗·|2 = (3/4, 1/4) constitute a competitive equilibrium. The prices for contingent
commodities in period 1 are not proportional to actual prices in period 2. Thus,
in period 1 households have rational expectations about prices in period 2, but in
period 2 they are confronted with different competitive equilibrium prices. Since
x1
·|1 = (2, 2, 1, 1) is not individually rational for household 1 from the perspective of

period 1, there can be no p such that (p, (2, 2, 1, 1), (2, 2, 3, 3)) is an AD equilibrium.
2

When preferences are time-consistent, every AD equilibrium is allocationally
equivalent to some näıve and to some sophisticated SC equilibrium. This is shown
in the following theorems. Crucial in the derivation of the first result is that the
set of correct price expectations is a subset of the set of rational price expectations.

Theorem 6.8 Let preferences be time-consistent and let the economy E be locally
non-satiated. Let (p∗, x∗) be an AD equilibrium of E . Then there is (q∗, y∗) ∈ Q×Y

such that (p∗, q∗, x∗, y∗) is a näıve SC equilibrium of E .

Theorem 6.9 Let preferences be time-consistent and let the economy E be locally
non-satiated. Let (p∗, x∗) be an AD equilibrium of E . Then there is (q∗, y∗) ∈ Q×Y

such that (p∗, q∗, x∗, y∗) is a sophisticated SC equilibrium of E .

Every sophisticated SC equilibrium is allocationally equivalent to some AD
equilibrium if preferences are time-consistent, as is shown next. The fact that
sophisticated households have correct price expectations is important for deriving
this result. Notice that we need to make some additional assumptions for this
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direction, because we need optimal consumption plans to exist in the opportunity
sets. The preferences of household h are said to be acyclic if for every state s(t)
there is no finite set {xh,1

·|s(t), . . . , x
h,n
·|s(t)} ⊂ Xh

·|s(t) such that xh,i
·|s(t) Âh,s(t) xh,i+1

·|s(t) for

i = 1, . . . , n− 1 and such that xh,n
·|s(t) Âh,s(t) xh,1

·|s(t). The preferences of household h

are said to have open lower sections if for every state s(t), for every xh
·|s(t) ∈ Xh

·|s(t),
the set {x̂h

·|s(t) ∈ Xh
·|s(t) | xh

·|s(t) Âh,s(t) x̂h
·|s(t)} is open in Xh

·|s(t).

Theorem 6.10 Let preferences be time-consistent, locally non-satiated, acyclic,
and have open lower sections, and let consumption sets be closed and bounded
from below. Let (p∗, q∗, x∗, y∗) be a sophisticated SC equilibrium of E with p∗ À 0.

Then there is a p such that (p, x∗) is an AD equilibrium of E .

In general, when preferences might be time-inconsistent, there is no relation
between AD equilibria and näıve or sophisticated SC equilibria. When preferences
are time-inconsistent conflicts arise between current and future preferences. A
näıve household will typically deviate from planned consumption, since he does
not anticipate a change in his future preferences. Sophisticated households do
anticipate future changes, and are therefore constrained by their future behavior.
On the contrary, the AD market setting ensures perfect commitment in period 1,
which is optimal from the perspective of the preferences of households in period 1.
Constraints coming from the behavior of future selves are thereby irrelevant.

6.5 Complete Markets

In this section there are complete markets for all possible contingent commodities
at every state of every period. Again, p·|s(t) denotes the expected (at state s(t))
prices on the spot markets. In state s(t), the expected state s′(τ) prices for con-
tingent commodities that are delivered in state s′′(τ̃) are given by q(s′′(τ̃)|s′(τ))|s(t),
where τ̃ > τ ≥ t, s′′(τ) = s′(τ), and s′(t) = s(t). The expectations in state s(t)
of prices for all ‘future’ contingent commodities that can possibly be traded from
state s′(τ) on, are denoted by q(·|s′(τ),T )|s(t). We define Q·|s(t) = R

PT−1
τ̃=t Lτ̃ . We

let yh
(s′(τ̃)|s′(τ))|s(t) denote bundles of contingent commodities that are expected at

s(t) to be bought in s′(τ) and that are delivered in s′(τ̃). For notational purposes,
we define yh

(·|s(0))|s(0) = eh
·|1. We also define Y h

·|s(t) = R
PT−1

τ̃=t Lτ̃ . Finally,

X =
∏

h∈H

∏

s(t)

Xh
·|s(t), P =

∏
s(t) P·|s(t),

Y =
∏

h∈H

∏

s(t)

Y h
·|s(t), Q =

∏
s(t) Q·|s(t).
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1 2 3 4
period 1 • • • •

◦ ◦ ◦
◦ ◦

◦

period 2 • • •
◦ ◦

◦

period 3 • •
◦

period 4 •
• – directly observable
◦ – expectations

Figure 6.8: Structure of complete markets

Figure 6.8 illustrates the structure of complete markets and is analogous to Fi-
gure 6.7.

6.5.1 Näıve Behavior

In every state households sell their endowments which are determined by previous
purchases of contingent commodities. With the revenues of these sales they buy
goods on spot markets and contingent commodities on asset markets. The contin-
gent commodities bought determine the endowments at future states. In order to
make a choice, a household needs to have expectations about prices of goods and
contingent commodities in the future so as to know what to buy. As before, näıve
households have rational price expectations. Thus, they all have the same point
expectations about prices on spot and forward-commodity markets and prices are
expected to be market clearing. We will show later that, in equilibrium, house-
holds cannot expect prices to change a lot, since that would make them believe
that there are arbitrage opportunities, so that demand of some commodities would
be infinite. In every period households form new rational price expectations. The
new expectations need not be equal to the expectations from the period before.
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This again is due to the changing preferences. This does not contradict with the
fact that previous expectations were rational, since näıve households always have
the incorrect belief that their preferences will not change. Again, rational price
expectations are correct price expectations given this belief. The opportunity set
of household h in state s(t) is given by

nγh
s(t)(p·|s(t), q·|s(t), y

h
(·|s(t−1))|s(t−1)) =

{
(xh
·|s(t), y

h
·|s(t)) ∈ Xh

·|s(t) × Y h
·|s(t) |

ps′(τ)|s(t)xh
s′(τ)|s(t) + q(·|s′(τ))|s(t)yh

(·|s′(τ))|s(t) ≤
ps′(τ)|s(t)yh

(s′(τ)|s′(τ−1))|s(t) + q(·|s′(τ))|s(t)yh
(s′+(τ),T |s′(τ−1))|s(t)

for every τ ≥ t, and every s′(τ) with s′(t) = s(t)
}

,

where, by definition, yh
(·|s(0))|s(0) = eh

·|1 and yh
(·|s(t−1))|s(t) = yh

(·|s(t−1))|s(t−1). The
demand set is then given by

nδh
s(t)(p·|s(t), q·|s(t), y

h
(·|s(t−1))|s(t−1)) =

{(xh
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p·|s(t), q·|s(t), y
h
(·|s(t−1))|s(t−1)) |

@(xh
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p·|s(t), q·|s(t), y
h
(·|s(t−1))|s(t−1))

with xh
·|s(t) Âh,s(t) xh

·|s(t)}.

In equilibrium all markets should clear and should be expected to clear.

Definition 6.11 Näıve Complete Equilibrium
A pair (p∗, q∗, x∗, y∗) ∈ P × Q × X × Y is a Näıve Complete equilibrium of the
economy E if

(a) (x∗h·|s(t), y
∗h
·|s(t)) ∈ nδh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1)) for all h ∈ H, s ∈ S, t ∈ T ,

(b)
∑

h∈H x∗h·|s(t) =
∑

h∈H eh
·|s(t) for all s ∈ S, t ∈ T, and

(c)
∑

h∈H y∗h(·|s(τ))|s(t) =
∑

h∈H eh
τ+1,T |s(τ) for all s ∈ S, t, τ ∈ T with t ≤ τ.

6.5.2 Sophisticated Behavior

In period T the opportunity set of a sophisticated household h in state s is the
same as the opportunity set for its näıve counterpart, i.e.

sγh
s(T )(p·|s(T ), y

h
·|s(T−1)) = nγh

s(T )(p·|s(T ), y
h
·|s(T−1)).

The opportunity set of a sophisticated household h in state s(t), where t < T,

is given by
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sγh
s(t)(p·|s(t), q·|s(t), y

h
(·|s(t−1))|s(t−1)) =

{
(xh
·|s(t), y

h
·|s(t)) ∈ Xh

·|s(t) × Y h
·|s(t) |

(i) ps′(τ)|s(t)xh
s′(τ)|s(t) + q(·|s′(τ))|s(t)yh

(·|s′(τ))|s(t) ≤
ps′(τ)|s(t)yh

(s′(τ)|s′(τ−1))|s(t) + q(·|s′(τ))|s(t)yh
(s′+(τ),T |s′(τ−1))|s(t)

for every τ ≥ t, and every s′(τ) with s′(t) = s(t),

and

(ii) (xh
s(t+1),T |s(t), y

h
(·|s(t+1),T )|s(t)) ∈

sδh
s(t+1)(ps(t+1),T |s(t), q(·|s(t+1),T )|s(t), yh

(·|s(t))|s(t))

for every s(t + 1) ∈ s+(t)
}

.

The demand set of a sophisticated household is as follows.

sδh
s(t)(p·|s(t), q·|s(t), y

h
(·|s(t−1))|s(t−1)) =

{(xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p·|s(t), q·|s(t), y
h
(·|s(t−1))|s(t−1)) |

@(xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p·|s(t), q·|s(t), y
h
(·|s(t−1))|s(t−1))

with xh
·|s(t) Âh,s(t) xh

·|s(t)}.

Finally, we define a sophisticated complete equilibrium as follows. Note that the
difference with a näıve complete equilibrium is that sophisticated households have
correct price expectations and correct expectations about future purchases.

Definition 6.12 Sophisticated Complete Equilibrium
A pair (p∗, q∗, x∗, y∗) ∈ P ×Q×X × Y is a Sophisticated Complete equilibrium of
the economy E if

(a) (x∗h·|s(t), y
∗h
·|s(t)) ∈ sδh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1)) for all h ∈ H, s ∈ S, t ∈ T ,

(b)
∑

h∈H x∗h·|s(t) =
∑

h∈H eh
·|s(t) for all s ∈ S, t ∈ T,

(c)
∑

h∈H y∗h(·|s(τ))|s(t) =
∑

h∈H eh
τ+1,T |s(τ) for all s ∈ S, t, τ ∈ T with t ≤ τ,

(d) p∗s(τ),T |s(t) = p∗·|s(τ) for all s ∈ S, t, τ ∈ T with t ≤ τ ,

(e) q∗(·|s(τ),T )|s(t) = q∗·|s(τ) for all s ∈ S, t, τ ∈ T with t ≤ τ ,

(f) x∗hs(τ),T |s(t) = x∗h·|s(τ) for all h ∈ H, s ∈ S, t, τ ∈ T with t ≤ τ, and

(g) y∗h(·|s(τ),T )|s(t) = y∗h·|s(τ) for all h ∈ H, s ∈ S, t, τ ∈ T with t ≤ τ .
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6.5.3 Properties of Complete Equilibria

The essential difference between complete (C) and sequentially complete (SC)
markets is that in complete markets there is a richer set of assets available. As a
consequence, in a 3-period example for instance, under C it is possible in period 1 to
make binding commitments regarding the delivery and purchases of commodities in
periods 2 and 3. When price expectations regarding periods 2 and 3 do not change,
this is inconsequential. All that matters is available wealth in each period, and not
the composition of wealth, i.e. the distribution of wealth over the various assets.
When price expectations do change, different compositions of wealth typically
do have real consequences. Under SC there is less choice for the composition of
wealth. In this section we will therefore address the question of how complete and
sequentially complete equilibria relate to one another.

An AD equilibrium (p∗, q∗) is said to be allocationally equivalent to a näıve (so-
phisticated) complete equilibrium if there are p ∈ P, q ∈ Q and y ∈ Y such that
(p, q, x∗, y) is a näıve (sophisticated) complete equilibrium. Similarly, a näıve (so-
phisticated) complete equilibrium (p∗, q∗, x∗, y∗) is said to be allocationally equiva-
lent to an AD equilibrium if there is a p ∈ P such that (p, x∗) is an AD equilibrium.
A näıve (sophisticated) complete equilibrium (p∗, q∗, x∗, y∗) is said to be alloca-
tionally equivalent to a näıve (sophisticated) SC equilibrium if there are p ∈ P,

q ∈ Q and y ∈ Y such that (p, q, x∗, y) is a näıve (sophisticated) SC equilibrium.
A näıve (sophisticated) SC equilibrium (p∗, q∗, x∗, y∗) is said to be allocationally
equivalent to a näıve (sophisticated) complete equilibrium if there are p ∈ P, q ∈ Q

and y ∈ Y such that (p, q, x∗, y) is a näıve (sophisticated) complete equilibrium.
In complete equilibria, relative prices are expected to remain unchanged. This

is proven in the following theorem.

Theorem 6.13 Let the economy E be locally non-satiated and let (p∗, q∗, x∗, y∗)
be a näıve (sophisticated) complete equilibrium of E . Then for every s, s′ and every
t, τ with t < τ there must be µs′(τ)|s(t) ∈ R with

q∗(s′(τ),T |s′(τ−1))|s(t) = µs′(τ)|s(t)(p∗s′(τ)|s(t), q
∗
(·|s′(τ))|s(t)).

In general, when preferences are allowed to be time-inconsistent, there is no
link between näıve (sophisticated) complete equilibria and AD equilibria. In AD
equilibria, because of the commitment power provided by the AD market structure,
future selves of households have no influence. In näıve complete equilibria, future
selves will typically deviate from the plans of current selves. In sophisticated
complete equilibria, current selves are constrained by the optimizing behavior of
future selves.
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When preferences are time-consistent, every AD equilibrium is allocationally
equivalent to some näıve (sophisticated) complete equilibrium. This is shown in
the following two theorems.

Theorem 6.14 Let preferences in the economy E be time-consistent and let (p∗, x∗)
be an AD equilibrium of E . Then (p∗, q∗, x∗, y∗) is a näıve complete equilibrium of
E , where y∗h(s′(τ̃)|s′(τ))|s(t) = x∗hs′(τ̃)|s(t) for every h, s′, s, τ̃ > τ ≥ t and q∗(s′(τ̃)|s′(τ))|s(t)
= p∗s′(τ̃)|s(t) for every s′, s, τ̃ > τ ≥ t.

Theorem 6.15 Let preferences in the economy E be time-consistent and let (p∗, x∗)
be an AD equilibrium of E . Then (p∗, q∗, x∗, y∗) is a sophisticated complete equi-
librium of E , where y∗h(s′(τ̃)|s′(τ))|s(t) = x∗hs′(τ̃)|s(t) for every h, s′, s, τ̃ > τ ≥ t and
q∗(s′(τ̃)|s′(τ))|s(t) = p∗s′(τ̃)|s(t) for every s′, s, τ̃ > τ ≥ t.

The following example shows that even when preferences are time-consistent,
not every näıve complete equilibrium is allocationally equivalent to an AD equi-
librium. As before, this result arises because näıve households form only rational
price expectations.

Example 6.16 Consider Example 6.7. For two-period economies, the sequen-
tially complete market structure is identical to the complete market structure.
Thus, (p∗, q∗, x∗, y∗) is also a näıve complete equilibrium. Again, there is no p

such that (p, (2, 2, 1, 1), (2, 2, 3, 3)) is an AD equilibrium. 2

Every sophisticated complete equilibrium, however, is allocationally equivalent
to some AD equilibrium when preferences are time-consistent. Again, we need to
make some additional assumptions.

Theorem 6.17 Let preferences be time-consistent, locally non-satiated, acyclic,
and have open lower sections, and let consumption sets be closed and bounded from
below. Let (p∗, q∗, x∗, y∗) be a sophisticated complete equilibrium of E with p∗ À 0.

Then (p, x∗) is an AD equilibrium of E , where p1|1 = p∗1|1 and p2,T |1 = q∗2,T |1|1.

So far we have studied the relation between AD equilibria on the one hand and
SC and complete equilibria on the other hand. Now we will analyze the relation
between the latter two. The next theorem shows that every näıve SC equilibrium
is allocationally equivalent to some näıve complete equilibrium. Notice that there
is no need to assume time-consistency to obtain this result.

Theorem 6.18 Let the economy E be locally non-satiated and let (p∗, q∗, x∗, y∗)
be a näıve SC equilibrium of E . Then there is (p, q, y) ∈ P × Q × Y such that
(p, q, x∗, y) is a näıve complete equilibrium of E .
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Surprisingly, there are näıve complete equilibria that are not allocationally
equivalent to any näıve SC equilibrium, even when preferences are time-consistent.
This is shown in the following example. The key insight is that the richer set of
assets available under complete markets may lead to initial endowments in future
periods that are not feasible under sequentially complete markets and that admit
continuation equilibria that are not feasible in the sequentially complete markets
setting.

Example 6.19 Consider an economy with three periods, no uncertainty, one good
per period, and two households. Assume that each household initially owns one
unit of the good in period 1 and two units of the good in period 2 and period 3,
i.e. e1

·|1 = e2
·|1 = (1, 2, 2).

Assume that both households have time-consistent preferences represented by
the utility function

uh(xh
1|1, x

h
2|1, x

h
3|1) =

√
xh

1|1 +
√

xh
2|1

√
xh

3|1 +
√

xh
3|1.

Consider the complete market structure. Suppose that prices and price expec-
tations in period 1 are given by p∗·|1 =

(
1, 1, 1 +

√
2/2

)
, q∗(·|1)|1 =

(
1, 1 +

√
2/2

)
,

and q∗(·|2)|1 = 1 +
√

2/2. Consider the case where price expectations are correct,
so p∗·|2 =

(
1, 1 +

√
2/2

)
, q∗(·|2)|2 = 1 +

√
2/2, and p∗·|3 = 1 +

√
2/2. It can easily

be shown that with these prices both households expect to consume and actually
will consume their initial endowments. Thus, these prices together with the con-
sumption of the endowments and no trade in contingent commodities constitute a
näıve complete equilibrium. It is easily verified that the same allocation can also
be sustained by a näıve sequentially complete equilibrium.

In the complete market structure households have the option to trade contin-
gent commodities in period 1 while still consuming their endowments in period 1.
Let prices and price expectations in period 1 be as before, p·|1 =

(
1, 1, 1 +

√
2/2

)
,

q(·|1)|1 =
(
1, 1 +

√
2/2

)
, and q(·|2)|1 = 1 +

√
2/2. Suppose that in period 1 house-

holds trade contingent commodities for period 2 and period 3 in such a way that

x1
1|1 = 1,

y1
(2|1)|1 = 4 +

√
2− 2 +

√
2

2
8 + 8

√
2

4
√

2− 2
√

3− 2
,

y1
(3|1)|1 =

8 + 8
√

2
4
√

2− 2
√

3− 2
.

Market clearing requires that y2
(2|1)|1 = 4−y1

(2|1)|1 and y2
(3|1)|1 = 4−y1

(3|1)|1. Notice
that for h = 1, 2, q(2|1)|1y

h
(2|1)|1 + q(3|1)|1y

h
(3|1)|1 = q(2|1)|1e

h
2|1 + q(3|1)|1e

h
3|1.
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Households plan to retrade in period 2, for h = 1, 2,

yh
(3|2)|1 = 2,

so xh
·|1 = (1, 2, 2).
Assume realized and expected prices in period 2 to be given by

p·|2 = (1,
5 +

√
3

4
),

q(3|2)|2 =
5 +

√
3

4
.

Then the optimal consumption for household 1 is x1
·|2 =

(
1, 8/(5 +

√
3)

)
and for

household 2, x2
·|2 =

(
3, 4− 8/(5 +

√
3)

)
. In period 3 it will follow that x1

3|3 =
y1
(3|2)|2 = 8/(5 +

√
3), and x2

3|3 = y2
(3|2)|2 = 4− 8/(5 +

√
3). It can be verified that

(p, q, x, y) is a näıve complete equilibrium.
In sequentially complete markets consuming the endowment in the first period

implies no trade of contingent commodities. Therefore the allocation x cannot be
achieved in a näıve sequentially complete equilibrium. 2

We have already mentioned that there is no relation between AD equilibria on
the one hand and näıve (sophisticated) SC or näıve (sophisticated) complete equi-
libria on the other hand when preferences are not time-consistent. Theorem 6.18
shows that every näıve SC equilibrium is allocationally equivalent to some com-
plete equilibrium and Example 6.19 shows that the converse is not true. When
we consider sophisticated behavior, however, sophisticated SC equilibria are allo-
cationally equivalent to sophisticated complete equilibria and vice versa. This is
shown in the following theorem.

Theorem 6.20 Let the economy E be locally non-satiated. Every sophisticated
SC equilibrium of E is allocationally equivalent to some sophisticated complete
equilibrium of E and vice versa.

6.6 Conclusion

Arrow (1953) showed that every Pareto optimal allocation in an Arrow-Debreu
economy can be achieved both by Arrow-Debreu markets and a particular se-
quentially complete market setting where first securities are traded and then spot
markets are opened. Debreu (1959) claims that, when all contingent commodities
can be traded in the first period and preferences of households do not change over
time, there is no need for markets to reopen in later periods.
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In this chapter we allow preferences to be time-inconsistent and we analyze
three market structures. In this richer environment, we reconsider the results of
Arrow (1953) and Debreu (1959).

We first examine the Arrow-Debreu setting where all contingent commodities
can be traded in the first period and where markets are not reopened in later
periods. Next, we consider sequentially complete markets where goods on the spot
markets and all one-period ahead contingent commodities can be traded in every
state. Finally, we consider complete markets where all contingent commodities
can be traded in every state.

Following Pollak (1968) we make a distinction between näıve and sophisticated
behavior. Näıve households do not realize that their preferences change over time,
whereas sophisticated ones do. The latter will only make plans that they expect
to carry out in the future.

For sophisticated households, we show that sequentially complete markets are
allocationally equivalent to complete markets. For näıve households, every näıve
sequentially complete equilibrium is allocationally equivalent to some näıve com-
plete equilibrium, but the converse does not hold, even if we assume that prefe-
rences are time-consistent.

When preferences are time-consistent and households are näıve, every equi-
librium in the Arrow-Debreu setting is allocationally equivalent to some näıve
sequentially complete equilibrium and to some näıve complete equilibrium. When
preferences are time-consistent and, in addition, households are sophisticated all
three market market structures are allocationally equivalent.

Sophisticated behavior requires a lot from households, however. A more
reasonable type of behavior would be “somewhat” sophisticated. Loewenstein,
O’Donoghue, and Rabin (2003) assume that households do make plans that
they expect to stick to. However, they assume that households mispredict their
future utility function and thus will want to reconsider their plans in the future.
Here, we could model these households as having the same budget constraints
as sophisticated households, but with different actual utility functions in later
periods. For these households, it cannot be expected that they have perfect
foresight of prices and thus, the results for the näıve households in this chapter
would apply. As soon as we allow at least one household not to be completely
sophisticated, this chapter shows that the degree of market completeness matters.
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6.7 Appendix

Proof of Theorem 6.5

Let (p∗, q∗, x∗, y∗) be a näıve SC equilibrium. Consider some s, s′ ∈ S and τ, t ∈ T

with τ > t and s′(t) = s(t). Since the economy is locally non-satiated, it is evident
that p∗s′(τ)|s(t) 6= 0. Let l be a commodity such that p∗s′(τ),l|s(t) 6= 0.

Suppose there is l̃ ∈ L such that there is no µ ∈ R with both

µp∗s′(τ),l|s(t) = q∗s′(τ),l|s(t) and

µp∗
s′(τ),l̃|s(t) = q∗

s′(τ),l̃|s(t).

Then it follows that

p∗s′(τ),l|s(t)q
∗
s′(τ),l̃|s(t) 6= p∗

s′(τ),l̃|s(t)q
∗
s′(τ),l|s(t).

Let h be a household such that ºh,s(t) is locally non-satiated in s′(τ − 1).
Case 1: Assume that

p∗s′(τ),l|s(t)q
∗
s′(τ),l̃|s(t) > p∗

s′(τ),l̃|s(t)q
∗
s′(τ),l|s(t).

Now consider the vector ∆yh
·|s(t) defined by

∆yh
s′′(t′),l′|s(t) =





p∗
s′(τ),l̃|s(t) if s′′(t′) = s′(τ) and l′ = l,

−p∗s′(τ),l|s(t) if s′′(t′) = s′(τ) and l′ = l̃,

0 otherwise.

Then

p∗s′(τ)|s(t)∆yh
s′(τ)|s(t) = 0,

i.e. in state s(t) household h could plan to buy ∆yh
·|s(t) in addition to y∗h·|s(t),

without changing income in state s′(τ). Moreover,

q∗s′(τ)|s(t)∆yh
s′(τ)|s(t) = q∗s′(τ),l|s(t)p

∗
s′(τ),l̃|s(t) − q∗

s′(τ),l̃|s(t)p
∗
s′(τ),l|s(t) < 0.

Therefore, buying ∆yh
·|s(t) in addition to y∗h·|s(t) decreases expected expenditures in

state s′(τ − 1), while not changing income in any other state.
By local non-satiation this contradicts (p∗, q∗, x∗, y∗) being a näıve SC equili-

brium.
Case 2: Assume that

p∗s′(τ),l|s(t)q
∗
s′(τ),l̃|s(t) < p∗

s′(τ),l̃|s(t)q
∗
s′(τ),l|s(t).
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This case follows by repeating the argument of Case 1, replacing ∆yh
·|s(t) by

−∆yh
·|s(t).

It follows that for any l̃ ∈ L, µ = q∗s′(τ),l|s(t)/p∗s′(τ),l|s(t) satisfies µp∗
s′(τ),l̃|s(t) =

q∗
s′(τ),l̃|s(t). 2

Proof of Theorem 6.8

Let (p∗, x∗) be an AD equilibrium. We define q∗·|s(t) = p∗t+1,T |s(t) for every s(t). By
local non-satiation of the economy we know that for every s, s′ ∈ S, t, τ ∈ T with
τ > t and s′(t) = s(t) there is an ls′(τ)|s(t) with p∗s′(τ),ls′(τ)|s(t)|s(t) 6= 0. For every

s(t), we define y∗h·|s(t) recursively as follows. Start by setting, for every h ∈ H and
every s′ ∈ S with s′(t) = s(t),

y∗hs′(T ),ls′(T )|s(t)|s(t) =
p∗s′(T )|s(t)

(
x∗hs′(T )|s(t) − eh

s′(T )|s(t)
)

p∗s′(T ),ls′(T )|s(t)|s(t)
+ eh

s′(T ),ls′(T )|s(t)|s(t),

and y∗hs′(T ),l|s(t) = eh
s′(T ),l|s(t) for every l 6= ls′(T )|s(t). Then, continue by setting, for

every h ∈ H, t < τ < T, s′ ∈ S with s′(t) = s(t),

y∗hs′(τ),ls′(τ)|s(t)|s(t) =
p∗s′(τ)|s(t)

(
x∗hs′(τ)|s(t) − eh

s′(τ)|s(t)
)

p∗s′(τ),ls′(τ)|s(t)|s(t)
+ eh

s′(τ),ls′(τ)|s(t)|s(t)

+

∑
s′(τ+1)∈s′+(τ)

(
p∗s′(τ+1)|s(t)y

∗h
s′(τ+1)|s(t) − p∗s′(τ+1)|s(t)e

h
s′(τ+1)|s(t)

)

p∗s′(τ),ls′(τ)|s(t)|s(t)

and y∗hs′(τ),l|s(t) = eh
s′(τ),l|s(t) for every l 6= ls′(τ)|s(t).

Then it holds that

p∗s′(T )|s(t)y
∗h
s′(T )|s(t) = p∗s′(T )|s(t)x

∗h
s′(T )|s(t)

for all s, s′, t, h, and

p∗s′(τ)|s(t)x
∗h
s′(τ)|s(t) +

∑

s′(τ+1)∈s′+(τ)

p∗s′(τ+1)|s(t)y
∗h
s′(τ+1)|s(t) =

p∗s′(τ)|s(t)y
∗h
s′(τ)|s(t) +

∑

s′(τ+1)∈s′+(τ)

p∗s′(τ+1)|s(t)e
h
s′(τ+1)|s(t).

for all s, s′, h, t ≤ τ < T.

We claim that (p∗, q∗, x∗, y∗) is a näıve sequentially complete equilibrium.
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By summing the budget constraints over all households, using that
∑

h∈H

x∗h·|s(t) =
∑

h∈H

eh
·|s(t),

we obtain, for every s, t,

∑

h∈H

y∗h·|s(t) =
∑

h∈H

eh
·|s(t+1).

It therefore holds that conditions (b) and (c) of the definition of a näıve sequentially
complete equilibrium are satisfied. It only remains to be checked that condition
(a) is satisfied as well.

Consider any t, s, h, and any

(xh
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

By summing up budget constraints, we have that

p∗·|s(t)x
h
·|s(t) + p∗t+1,T |s(t)y

h
t+1,T |s(t) ≤

p∗s(t)|s(t)y
∗h
s(t)|s(t−1) + p∗t+1,T |s(t)e

h
t+1,T |s(t) + p∗t+1,T |s(t)y

h
t+1,T |s(t),

so,

p∗·|s(t)x
h
·|s(t) ≤ p∗s(t)|s(t)y

∗h
s(t)|s(t−1) + p∗t+1,T |s(t)e

h
t+1,T |s(t).

In addition, we have

p∗s(τ)|s(τ)x
∗h
s(τ)|s(τ) +

∑

s(τ+1)∈s+(τ)

p∗s(τ+1)|s(τ)y
∗h
s(τ+1)|s(τ) ≤

p∗s(τ)|s(τ)y
∗h
s(τ)|s(τ−1) +

∑

s(τ+1)∈s+(τ)

p∗s(τ+1)|s(τ)e
h
s(τ+1)|s(τ)

for every τ < t.

By summing all these and by keeping in mind that x∗ is a time-consistent
allocation, we find that x∗h·|1 o xh

·|s(t) ∈ γ̆h
1 (p∗·|1, e

h
·|1).

Now suppose that there are t, s, h with

(x∗h·|s(t), y
∗h
·|s(t)) /∈ nδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

Then there must be (x̂h
·|s(t), ŷ

h
·|s(t)) ∈ nγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)) with

x̂h
·|s(t) Âh,s(t) x∗h·|s(t). But then, by time-consistency of preferences, x∗h·|1 o x̂h

·|s(t) Âh,1
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x∗h·|1. By the discussion above we also have x∗h·|1 o x̂h
·|s(t) ∈ γ̆h

1 (p∗·|1, e
h
·|1). So x∗h·|1 /∈

δ̆h
1 (p∗·|1, e

h
·|1), a contradiction to the fact that (p∗, x∗) is an AD equilibrium. 2

Proof of Theorem 6.9

Define q∗ and y∗ as in Theorem 6.8. We only need to verify whether condition
(a) of the definition of a sophisticated SC equilibrium is satisfied. By the same
argument as in Theorem 6.8 we know that for every s

x∗h·|s(T ) ∈ sδ
h

s(T )(p
∗
·|s(T ), y

∗h
s(T )|s(T−1)).

We continue the proof by an induction argument. Assume that, for some t,

(x∗h·|s(τ), y
∗h
·|s(τ)) ∈ sδ

h

s(τ)(p
∗
·|s(τ), q

∗
·|s(τ), y

∗h
s(τ)|s(τ−1), e

h
τ+1,T |s(τ))

for every τ > t, for every s. Suppose that

(x∗h·|s(t), y
∗h
·|s(t)) /∈ sδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

Then there must be (x̂h
·|s(t), ŷ

h
·|s(t)) ∈ sγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)) with

x̂h
·|s(t) Âh,s(t) x∗h·|s(t). The same argument as in the proof of Theorem 6.8 then leads

to a contradiction. 2

Proof of Theorem 6.10

Let (p∗, q∗, x∗, y∗) be a sophisticated SC equilibrium. By Theorem 6.6, for every
s, s′ ∈ S and every t, τ ∈ T with τ > t and s′(t) = s(t), there must be µs′(τ)|s(t)
such that

q∗s′(τ)|s(t) = µs′(τ)|s(t)p∗s′(τ)|s(t).

Suppose that µs′(τ)|1 ≤ 0 for some s′(τ). Then q∗s′(τ)|1 = µs′(τ)|1p∗s′(τ)|1 ≤ 0.

Thus, it would be possible to increase available income in state s′(τ) without
increasing expenditures in state s′(τ−1). A household h that, from the perspective
of period 1, is locally non-satiated in state s′(τ), could change consumption in state
s′(τ) and have a consumption plan that is strictly preferred to the current bundle.
Since preferences are time-consistent, the new consumption bundle would also
be consistent with sophisticated behavior. This yields a contradiction against x∗

being an equilibrium allocation. It follows that µs′(τ)|1 > 0 for every s′(τ).
Let p1|1 = p∗1|1 and ps′(τ)|1 = p∗s′(τ)|1

∏τ
τ ′=2 µs′(τ ′)|1 for every s′ ∈ S and every

τ > 1. Also, let p·|s(t) = ps(t),T |1 for all t ∈ T, s ∈ S. It holds that p À 0 and
therefore that γ̆h

1 (p·|1, eh
·|1) is compact.
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Suppose that (p, x∗) is not an AD equilibrium. Then there is s(t) with x∗h·|s(t) /∈
δ̆h
s(t)(p·|s(t), x

∗h
s(t),T |s(t−1)). Since we have x∗h·|s(t) = x∗hs(t),T |s(t−1) for every t > 1,

it should hold that s(t) = 1. We know that x∗h·|1 ∈ γ̆h
1 (p·|1, eh

·|1). So there is xh
·|1

with xh
·|1 ∈ γ̆h

1 (p·|1, eh
·|1) and xh

·|1 Âh,1 x∗h·|1. Since ºh,1 is acyclic and has open
lower sections and γ̆h

1 (p·|1, eh
·|1) is compact, according to Bergstrom (1975) there

exists a maximum on γ̆h
1 (p·|1, eh

·|1) with respect to ºh,1 . Without loss of gene-
rality, xh

·|1 equals that maximum. We define xh
·|s(t) = xh

s(t),T |1 for every s(t).
By the same argument as in the proof of Theorem 6.8, there must be y with
(xh
·|1, y

h
·|1) ∈ nγh

1 (p·|1, p2,T |1, eh
·|1) and yh

s(t+1),T |s(t) = yh
s(t+1),T |1 for every s(t).

Moreover, from the opportunity sets, it follows that whenever there is yh
1 with

(xh
1 , yh

1 ) ∈ nγh
1 (p·|1, p2,T |1, eh

·|1), then there is y′h1 with (xh
1 , y′h1 ) ∈ nγh

1 (p∗·|1, q
∗
·|1, e

h
·|1)

and vice versa.
Then, by definition of xh

·|1 and the fact that xh
·|1 Âh,1 x∗h·|1, there is s(t) such

that

(xh
·|s(t), y

h
·|s(t)) /∈ sδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

h
s(t)|s(t−1), e

h
t+1,T |s(t))

for any choice of yh
·|s(t). Two cases can be distinguished.

Case 1:
There exists yh

·|s(t) with (xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

h
s(t)|s(t−1), e

h
t+1,T |s(t)).

Then there must be (x̂h
·|s(t), ỹ

h
·|s(t)) ∈ sγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

h
s(t)|s(t−1), e

h
t+1,T |s(t)) with

x̂h
·|s(t) Âh,s(t) xh

·|s(t). By time-consistency of preferences, it follows that xh
·|1 o

x̂h
·|s(t) Âh,1 xh

·|1. Also, it can be checked that xh
·|1 o x̂h

·|s(t) ∈ γ̆h
1 (p·|1, eh

·|1). This
contradicts the definition of xh

·|1. Thus, case 1 is not possible.
Case 2:
There does not exist yh

·|s(t) with
(xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

h
s(t)|s(t−1), e

h
t+1,T |s(t)).

Since xh
·|1 ∈ γ̆h

1 (p·|1, eh
·|1) and relative prices do not change over time and are

correctly anticipated, this can only happen if there is s(t′) with t′ > t and

(xh
·|s(t′), ỹ

h
·|s(t′)) /∈ sδ

h

s(t′)(p
∗
·|s(t′), q

∗
·|s(t′), y

h
s(t′)|s(t′−1), e

h
t′+1,T |s(t′))

for every ỹh
·|s(t′).

Next, as before, for s(t′) we can distinguish two cases. We repeat this reasoning
until we end up at the last period. For the last period, we can no longer distinguish
two cases. In the last period, only case 1 can happen. This again leads to a
contradiction by a similar reasoning as before. 2
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Proof of Theorem 6.13

Consider some s, s′ ∈ S and t, τ ∈ T with τ > t and s′(t) = s(t). Since the economy
is locally non-satiated, it holds that p∗s′(τ)|s(t) 6= 0. Let l be a commodity such that
p∗s′(τ),l|s(t) 6= 0.

Apart from the fact that we have more cases, the remainder of the proof is
analogous to the proof of Theorem 6.5. Suppose that there is no µ ∈ R with both

µp∗s′(τ),l|s(t) = q∗(s′(τ),l|s′(τ−1))|s(t),

µp∗
s′(τ),l̃|s(t) = q∗

(s′(τ),l̃|s′(τ−1))|s(t)

or that there is no µ with both

µp∗s′(τ),l|s(t) = q∗(s′(τ),l|s′(τ−1))|s(t) and

µq∗
(s′′(τ̃),l̃|s′(τ))|s(t) = q∗

(s′′(τ̃),l̃|s′(τ−1))|s(t).

Next a contradiction can be obtained and the proof can be finished in a similar
way as in the proof of Theorem 6.5. 2

Proof of Theorem 6.14

Let prices be as described in the theorem. First of all, we need one observation.
Consider

(xh
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1)).

Then we have

p∗s′(τ)|s(t)x
h
s′(τ)|s(t) + p∗s′+(τ),T |s(t)y

h
(τ+1,T |s′(τ))|s(t) ≤ p∗s′(τ),T |s(t)y

h
(s′(τ),T |s′(τ−1))|s(t)

for every s′, τ ≥ t. By adding these over all s′(τ) with τ ≥ t and s′(t) = s(t), we
get

p∗·|s(t)x
h
·|s(t) ≤ p∗·|s(t)y

h
(s(t),T |s(t−1))|s(t−1). (6.1)

Thus, we also have

p∗·|s′(t)x
∗h
·|s′(t) ≤ p∗·|s′(t)y

∗h
(s′(t−1),T |s′(t−1))|s′(t) (6.2)

for every s′. Similarly, for all τ < t, we know that

p∗s(τ)|s(τ)x
∗h
s(τ)|s(τ) + p∗τ+1,T |s(τ)y

∗h
(τ+1,T |s(τ))|s(τ) ≤ p∗·|s(τ)y

∗h
(s(τ),T |s(τ−1))|s(τ−1), (6.3)
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by definition of y∗. Using that p∗s(τ),T |s(t) = p∗·|s(τ), and taking the sum of equa-
tion (6.2) for all s′(t) 6= s(t), equation (6.1) and equation (6.3) for all s(τ) with
τ < t, we obtain x∗h·|1 o xh

·|s(t) ∈ γ̆h
1 (p∗·|1, e

h
·|1).

With this observation in mind, we can continue the proof. Since (p∗, x∗) is an
AD equilibrium and by definition of y∗, it follows immediately that conditions (b)
and (c) of the definition of a näıve complete equilibrium are satisfied. It remains
to be shown that condition (a) is satisfied as well. Suppose there are t, s(t), h with
(x∗h·|s(t), y

∗h
·|s(t)) /∈ nδh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1)). Then there must be

(x̂h
·|s(t), y

h
·|s(t)) ∈ nγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1))

with x̂h
·|s(t) Âh,s(t) x∗h·|s(t). But then, by time-consistency of preferences, x∗h·|1 o

x̂h
·|s(t) Âh,1 x∗h·|1. By our observation, it follows that x∗h·|1 o x̂h

·|s(t) ∈ γ̆h
1 (p∗·|1, e

h
·|1).

So x∗h·|1 /∈ δ̆h
1 (p∗·|1, e

h
·|1), contradicting that (p∗, x∗) is an AD equilibrium. 2

Proof of Theorem 6.15

First, of all, by definition of p∗, q∗, x∗, and y∗, it follows immediately that condi-
tions (b), (c), (d), (e), (f), and (g) of the definition of a sophisticated complete
equilibrium are satisfied. It remains to be shown that condition (a) is satisfied as
well.

By the same argument as used in the proof of Theorem 6.14, it holds that

(x∗h·|s(T ), y
∗h
·|s(T )) ∈ sδh

s(T )(p
∗
·|s(T ), y

∗h
·|s(T−1)).

We proceed with an induction argument. Let s ∈ S, t ∈ T. Assume that

(x∗h·|s(t+1), y
∗h
·|s(t+1)) ∈ sδh

s(t+1)(p
∗
·|s(t+1), q

∗
·|s(t+1), y

∗h
(·|s(t))|s(t))

for every s(t + 1) ∈ s+(t). Suppose that

(x∗h·|s(t), y
∗h
·|s(t)) /∈ sδh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1)).

Then there must be

(x̂h
·|s(t), ŷ

h
·|s(t)) ∈ sγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
(·|s(t−1))|s(t−1))

with x̂h
·|s(t)Âh,s(t)x∗h·|s(t). But then, by time-consistency of preferences x∗h·|1ox̂h

·|s(t) Âh,1

x∗h·|1. By the same argument as in the proof of Theorem 6.14 we also have x∗h·|1 o
x̂h
·|s(t) ∈ γ̆h

1 (p∗·|1, e
h
·|1). This contradicts (p∗, x∗) being an AD equilibrium. 2
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Proof of Theorem 6.17

This proof is analogous to the proof for the sophisticated SC equilibrium in The-
orem 6.10. 2

Proof of Theorem 6.18

Since (p∗, q∗, x∗, y∗) is a näıve SC equilibrium, it holds that

(x∗h·|s(t), y
∗h
·|s(t)) ∈ nδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

For s(t), s′(τ) with τ > t, we define µs′(τ)|s(t) as the unique real number satisfying
q∗s′(τ)|s(t) = µs′(τ)|s(t)p∗s′(τ)|s(t), see Theorem 6.5.

Next, we define ps(t)|s(t) = p∗s(t)|s(t), ps′(τ)|s(t) = p∗s′(τ)|s(t)
∏τ

τ ′=t+1 µs′(τ ′)|s(t),
q(s′(τ),T |s′(τ−1))|s(t) = ps′(τ),T |s(t).
Let yh

(s′(τ+1)|s′(τ))|s(t) = y∗hs′(τ+1)|s(t) and yh
(s′(τ+2),T |s′(τ))|s(t) = eh

·|s′(τ+2) for every
τ ≥ t and every s′ with s′(t) = s(t). Then

(x∗h·|s(t), y
h
·|s(t)) ∈ nγh

s(t)(p·|s(t), q·|s(t), y
∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

Suppose that (x∗h·|s(t), y
h
·|s(t)) /∈ nδh

s(t)(p·|s(t), q·|s(t), y
∗h
s(t)|s(t−1), e

h
t+1,T |s(t)). Then

there must be (xh
·|s(t), ỹ

h
·|s(t)) ∈ nγh

s(t)(p·|s(t), q·|s(t), y
∗h
s(t)|s(t−1), e

h
t+1,T |s(t)) with xh

·|s(t)
Âh,s(t)x∗h·|s(t). As in the proof of Theorem 6.8 it follows that there is ŷh

·|s(t) with

(xh
·|s(t), ŷ

h
·|s(t)) ∈ nγh

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

This then contradicts the fact that

(x∗h·|s(t), y
∗h
·|s(t)) ∈ nδ

h

s(t)(p
∗
·|s(t), q

∗
·|s(t), y

∗h
s(t)|s(t−1), e

h
t+1,T |s(t)).

2

Proof of Theorem 6.20

Step 1
Consider p ∈ P, q ∈ Q, q ∈ Q, and, for every s, s′, for every τ, t with τ ≥ t and
s′(t) = s(t), µs′(τ)|s(t) ∈ R such that

ps(τ),T |s(t) = p·|s(τ),

qs′(τ)|s(t) = µs′(τ)|s(t)ps′(τ)|s(t)

q(s′(τ),T |s′(τ−1))|s(t) = µs′(τ)|s(t)(ps′(τ)|s(t), q(·|s′(τ))|s(t)),

ps′(τ)|s(t) 6= 0.
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For every s(τ), for every yh
·|s(τ−1) ∈ Y h

·|s(τ−1), for every yh
·|s(τ−1) ∈ Y

h

·|s(τ−1), we
will prove that whenever household h starts with the same income in both market
structures, i.e.

ps(τ)|s(τ)y
h
(s(τ)|s(τ−1))|s(τ−1)

+
∑

s′(τ+1)∈s+(τ)

q(s′(τ+1),T |s(τ))|s(τ)y
h
(s′(τ+1),T |s(τ−1))|s(τ−1) =

ps(τ)|s(τ)y
h
s(τ)|s(τ−1) + q(τ+1,T |s(τ))|s(τ)e

h
τ+1,T |s(τ),

we have that:

(xh
·|s(τ), y

h
·|s(τ)) ∈ sγh

s(τ)(p·|s(τ), q·|s(τ), y
h
(·|s(τ−1))|s(τ−1))

implies that there is yh
·|s(τ) ∈ Y

h

·|s(τ) such that

(xh
·|s(τ), y

h
·|s(τ)) ∈ sγh

s(τ)(p·|s(τ), q·|s(τ), y
h
s(τ)|s(τ−1), e

h
τ+1,T |s(τ))

and vice versa. We give a proof by induction.
[Step 1a]
First of all, it is obvious that for every yh

s(T )|s(T−1), y
h
s(T )|s(T−1) with

p·|s(T )y
h
s(T )|s(T−1) = p·|s(T )y

h
s(T )|s(T−1)

it holds that

sγh
s(T )(p·|s(T ), y

h
s(T )|s(T−1)) = sγh

s(T )(p·|s(T ), y
h
s(T )|s(T−1)).

[Step 1b]
Assume the result is true for every s(τ), where τ > t.

Now assume that, in state s(t), household h starts with the same income in
both market structures, i.e.

ps(t)|s(t)yh
(s(t)|s(t−1))|s(t−1)

+
∑

s′(t+1)∈s+(t)

q(s′(t+1),T |s(t))|s(t)yh
(s′(t+1),T |s(t−1))|s(t−1) =

ps(t)|s(t)yh
s(t)|s(t−1) + q(t+1,T |s(t))|s(t)eh

t+1,T |s(t).

We first prove one direction of our result.
(⇒) Let

(xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p·|s(t), q·|s(t), y
h
(·|s(t−1))|s(t−1)).
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We define yh
·|s(t) recursively as follows. For every s′(τ), s(t) there is a ls′(τ)|s(t) with

ps′(τ),ls′(τ)|s(t)|s(t) 6= 0. Start by setting, for every h ∈ H,

yh
s′(T ),ls′(T )|s(t)|s(t) =

ps′(T )|s(t)
(
xh

s′(T )|s(t) − eh
s′(T )|s(t)

)

ps′(T ),ls′(T )|s(t)|s(t)
+ eh

s′(T ),ls′(T )|s(t)|s(t),

and yh
s′(T ),l|s(t) = eh

s′(T ),l|s(t) for every l 6= ls′(T )|s(t). Then, continue by setting, for
every h ∈ H, t < τ < T, s′ ∈ S with s′(t) = s(t),

yh
s′(τ),ls′(τ)|s(t)|s(t) =

ps′(τ)|s(t)
(
xh

s′(τ)|s(t) − eh
s′(τ)|s(t)

)

ps′(τ),ls′(τ)|s(t)|s(t)
+ eh

s′(τ),ls′(τ)|s(t)|s(t)

+

∑
s′(τ+1)∈s′+(τ)

(
qs′(τ+1)|s(t)y

h
s′(τ+1)|s(t) − qs′(τ+1)|s(t)e

h
s′(τ+1)|s(t)

)

ps′(τ),ls′(τ)|s(t)|s(t)

and y∗hs′(τ),l|s(t) = eh
s′(τ),l|s(t) for every l 6= ls′(τ)|s(t).

Then,

ps(t+1)|s(t+1)y
h
s(t+1)|s(t)

+
∑

s′(t+2)∈s+(t+1)

q(s′(t+2),T |s(t+1))|s(t)eh
s′(t+2),T |s(t) =

ps(t+1)|s(t+1)x
h
s(t+1)|s(t) +

∑

s′(t+2)∈s+(t+1)

q(s′(t+2),T |s(t+1))|s(t)xh
s′(t+2),T |s(t).

and

ps(t+1)|s(t+1)y
h
(s(t+1)|s(t))|s(t)

+
∑

s′(t+2)∈s+(t+1)

q(s′(t+2),T |s(t+1))|s(t+1)y
h
(s′(t+2),T |s(t))|s(t) =

ps(t+1)|s(t+1)x
h
s(t+1)|s(t) +

∑

s′(t+2)∈s+(t+1)

q(s′(t+2),T |s(t+1))|s(t+1)x
h
s′(t+2),T |s(t)

so it follows that

ps(t+1)|s(t+1)y
h
(s(t+1)|s(t))|s(t)+∑

s′(t+2)∈s+(t+1)

q(s′(t+2),T |s(t+1))|s(t+1)y
h
(s′(t+2),T |s(t))|s(t) =

ps(t+1)|s(t+1)y
h
s(t+1)|s(t) +

∑

s′(t+2)∈s+(t+1)

q(s′(t+2),T |s(t+1))|s(t)eh
s′(t+2),T |s(t).
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Using our induction hypothesis, we obtain easily that
(
xh

s(t+1),T |s(t), y
h
s+(t+1),T |s(t)

)
∈

sδ
h

s(t+1)(ps(t+1),T |s(t), qs+(t+1),T |s(t), y
h
s(t+1)|s(t), e

h
t+2,T |s(t+1)).

Since the income of household h in state s(t) is the same under both market
structures, it follows that

(xh
·|s(t), y

h
·|s(t)) ∈ sγh

s(t)(p·|s(t), q·|s(t), y
h
s(t)|s(t−1), e

h
t+1,T |s(t)).

(⇐) The other direction of our result is straightforward, when following the
approach used in Theorem 6.18
Step 2
Let (p∗, q∗, x∗, y∗) be a sophisticated SC equilibrium. By local non-satiation we
know that for all s′(τ), p∗s′(τ)|1 6= 0. By Theorem 6.6 there is µs′(τ)|1 ∈ R such that

q∗s′(τ)|1 = µs′(τ)|1p∗s′(τ)|1.

We define q ∈ Q as follows.
For every s′(T ),

q(s′(T )|s′(T−1))|1 = µs′(T )|1(p∗s′(T )|1).

Next, recursively, for τ descending from T − 1 to 2, for every s′(τ),

q(s′(τ),T |s′(τ−1))|1 = µs′(τ)|1(p∗s′(τ)|1, q(·|s′(τ))|1).

Finally, for every s, s′, for every t, τ with τ ≥ t and s′(t) = s(t),

q(·|s′(τ))|s(t) = q(·|s′(τ))|1.

From the previous analysis it follows that there is a y such that (p∗, q, x∗, y) is
a sophisticated complete equilibrium.
Step 3
Let (p∗, q∗, x∗, y∗) be a sophisticated complete equilibrium. Consider any s, s′, any
t, τ with τ ≥ t and s′(t) = s(t). By local non-satiation we know that p∗s′(τ)|s(t) 6= 0.

We define

qs′(τ)|s(t) = q∗(s′(τ)|s′(τ−1))|s(t).

From the previous analysis it follows that there is y ∈ Y such that (p∗, q, x∗, y) is
a sophisticated SC equilibrium. 2
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7

Arbitrage Opportunities in

Frictionless Markets with

Sophisticated Investors

Imagine that it is possible to buy a portfolio of assets that costs nothing today and
that will yield a positive payoff in the future. It is a widespread belief that, if there
are no market frictions, such arbitrage opportunities cannot exist. The reason is
that as long as they do exist, the demand for the portfolio of assets mentioned will
be very large, exceeding supply, which will drive the price of the portfolio up until
arbitrage is no longer possible.

This chapter1 shows, by means of an example, that the mentioned belief can
be incorrect when preferences change over time. Indeed, when preferences change
over time it is possible that arbitrage opportunities exist even if the market is in
equilibrium. Since Strotz’s (1956) discussion of changing preferences, there has
been an increasing interest in economic models thereof, including Akerlof (2002),
Angeletos et al. (2001), Barro (1999), Frederick, Loewenstein, and O’Donoghue
(2002), Gul and Pesendorfer (2001), Harris and Laibson (2001), Herings and Rohde
(2006), Krusell and Smith (2003), Krusell, Kuruşçu, and Smith (2002), Laibson
(1997), Loewenstein and Prelec (1992), Luttmer and Mariotti (2003), O’Donoghue
and Rabin (1999), Phelps and Pollak (1968), Rubinstein (2003), and Thaler and
Benartzi (2004).

When preferences change over time, several types of behavior can be distin-
guished. Näıve individuals erroneously believe that their preferences will not
change over time (Pollak, 1968). Sophisticated individuals who do recognize that
their preferences may change, either pre-commit themselves or only make plans
that they expect to adhere to in the future. These individuals first try to predict
their future behavior for every given possible current behavior. They may delibe-
rately choose a suboptimal current behavior in order to force themselves not to

1This chapter is based on Rohde (2006).
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choose behavior in the future that is even worse from today’s perspective. Akerlof
(1991), Benhabib and Bisin (2005), DellaVigna and Malmendier (2004), Schelling
(1984), Thaler and Shefrin (1981) give evidence and many examples thereof. In
predicting their future behavior, individuals may predict their future preferences
either correctly (fully sophisticated) or incorrectly (partly sophisticated; see Pollak,
1968, and Loewenstein, O’Donoghue, and Rabin, 2003).

Consider, as an illustration of the concept of sophistication, a smoker for whom
it is optimal to smoke one cigarette per day. Suppose that he would indeed initially
restrict himself to smoking only one cigarette a day. Then, after smoking that one
cigarette, assume that he will be tempted even stronger to smoke a second cigarette
and that he might indeed give in to that temptation, ending up smoking more than
one cigarette per day. If this smoker would be näıve, he would not foresee this
increased temptation after smoking the first cigarette, and would indeed smoke the
one cigarette, ending up smoking more than one cigarette after all. If he would
be sophisticated, he would foresee this temptation, and thus, know that he would
never stick to only one cigarette per day. Knowing that his choice is restricted to
either not smoking at all or smoking more than one cigarette, he may choose not
to smoke at all.

This chapter gives an example of a market where an arbitrage opportunity
exists in equilibrium, only because individual investors have changing preferences
and want to influence future behavior. In the example, which is borrowed from
Liebhafsky (1969), there is a possibility to buy an asset at zero costs today, which
will yield a positive income tomorrow. Tomorrow, two goods can be consumed.
More of these goods is always preferred. One of the goods is inferior from the
perspective of tomorrow. From the perspective of today, however, that good is not
inferior. Think of ‘today’ being the first half of an individual’s life and ‘tomorrow’
being the second half. The normal good is a basket of goods corresponding to a
luxurious life style and the upper social class of society. The inferior good is a less
luxurious basket of goods corresponding to the middle class of society. Suppose
that the individual expects that as his income rises he will tend to purchase more
of the luxurious basket and less of the less luxurious one. From the perspective of
the first half of his life he wishes he would keep buying the less luxurious basket
corresponding to the middle class of society and not switch to the upper class in
the future. One way to make sure that he stays in the middle class is to refrain
his income from rising a lot.

Illustration
Assume that there are two periods: ‘today’ and ‘tomorrow’. Today investors
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buy portfolios of assets that will pay off tomorrow. Tomorrow investors consume
goods. There are two goods that can be consumed tomorrow: good 1 and good 2.
The expenditures are limited by income, which is determined by two components.
The investor has an initial endowment of every good tomorrow. The value of
endowments tomorrow and the payoffs tomorrow of the assets bought today to-
gether constitute income tomorrow. There are no market frictions, i.e. investors
are allowed to go short or long in assets without bounds and tomorrow there are
complete spot markets.

Consider an investor with endowments ω = (ω1, ω2) = (1/2, 3/2), i.e. 1/2 units
of good 1 and 3/2 units of good 2. The prices of these two goods are expected to
be equal to 1 tomorrow, and will indeed be equal to 1 tomorrow, i.e. consumers
have rational price expectations (Radner, 1972). There is one asset that can be
bought today at zero costs and that pays off 1 unit of money tomorrow. It will be
shown later that such an asset can indeed exist when the market is in equilibrium.
Thus, the income of the investor tomorrow will be equal to

I = ω1 + ω2 + θ,

where θ is the amount of assets bought today.
Today the preferences of the investor over consumption tomorrow are repre-

sented by the following utility function:

U0(x1, x2) = min{3x1, x2},

where x1 and x2 are the consumption of good 1 and good 2, respectively. The
investor believes that his preferences over consumption will be different tomorrow,
represented by

U1(x1, x2) =
3
4

lnx1 +
x2

2

2
.

Thus, both today and tomorrow his utility is increasing in consumption, which
means that he likes the goods.

It can be shown that with the latter preferences consumption tomorrow will
depend on income I as follows: either

x∗1 =
1
2

(
I −

√
I2 − 3

)
and (7.1)

x∗2 =
1
2

(
I +

√
I2 − 3

)
, (7.2)

or x∗1 = I and x∗2 = 0. Today the sophisticated investor believes that his consump-
tion will be like this tomorrow and that his choice is restricted by (7.1) and (7.2).
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The only way in which he can influence tomorrow’s consumption, is by influencing
future income, through the sale or purchase of assets today.

Suppose that the investor decides not to invest in the costless asset, i.e. θ = 0.

Then his income tomorrow will be equal to I = ω1 + ω2 = 1/2 + 3/2 = 2, so that
x∗1 = 1/2 and x∗2 = 3/2. Thus, he would keep his endowments.

Consider what would happen if he would decide to buy the asset. The curve
in Fig. 7.1 shows tomorrow’s demanded consumption bundles for various income
levels. The dashed curve is an indifference curve from the perspective of today,
that goes through ω. From the perspective of today only bundles to the north-east
of ω would be weakly preferred by the investor. However, by changing income, no
bundles to the north-east of ω can be reached, given demand tomorrow. Thus, the
investor will not buy the asset.

Figure 7.1: Tomorrow’s consumption

Note that the utility functions of the investor are increasing in the consumption
of the goods. Thus, tomorrow he would always wish he had more income. Also, a
perfect pre-commitment device would allow the investor to specify today how he
would like to spend his income tomorrow and would not allow him to choose to
spend his income differently tomorrow. Then he would buy an infinite amount of
the asset.

The figure shows that there can be investors who do want to either increase or
decrease their future income by a limited amount. Consider a second investor who
has the same preferences as the first investor, but less income from endowments in
the second period. This investor wants to increase his income in the second period,
until he can afford the consumption bundle ω. Similarly, a third investor who has
a higher income from endowments than our first investor, wants to decrease his
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income, until he will choose the consumption bundle ω tomorrow. Thus, the
second investor will buy the asset, whereas the third investor will sell the asset.
The endowments of the second and third investor can be chosen in such a way
that demand and supply of the goods and the asset are exactly equal when the
price of the asset is equal to zero. Thus, the second and third investor will trade
the asset. This shows that in equilibrium there can indeed exist an asset in the
market that (1) costs nothing, (2) yields a positive payoff in a future period, and
(3) is traded.

This example shows that the existence of arbitrage opportunities in markets that
are in equilibrium may not only be due to market frictions like, for instance,
transaction costs, asymmetric information and restrictions to borrow money, but
also by time-inconsistency of consumers’ preferences.
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Intertemporele Keuzes en Competitief Evenwicht
De meeste beslissingen die men neemt hebben direct of indirect te maken met
intertemporele afwegingen. Door als kind naar school te gaan kunnen we op dat
moment geen geld verdienen, maar investeren we in capaciteiten die het mogelijk
maken later meer geld te verdienen. Veel mensen sparen of beleggen in aandelen,
waardoor ze vandaag minder kunnen besteden in ruil voor meer mogelijkheden
om geld uit te geven in de toekomst. Op een soortgelijke manier gaan kwesties
omtrent het milieu meestal over de afweging tussen voordelige consumptie in het
heden en een goed milieu in de toekomst.

Door de huidige vergrijzing van de bevolking, is er steeds meer aandacht voor
ons pensioensysteem. De kosten voor de samenleving die veroorzaakt worden
door de vergrijzing zijn enorm (Feldstein, 2005). Voor overheden is het steeds
belangrijker om een goed systeem van pensioenen en sociale zekerheid te bieden.
Het is daarom belangrijk om de intertemporele afwegingen die een samenleving
wil maken goed te begrijpen. Dit proefschrift bestudeert zulke intertemporele
afwegingen.

In economische en psychologische modellen wordt gewoonlijk aangenomen dat
individuen huidige kosten en opbrengsten sterker wegen dan toekomstige. We
zeggen dat individuen toekomstige kosten en opbrengsten verdisconteren. Sinds
Samuelson’s (1937) introductie van constant verdisconteerde utiliteit is dat model
een gebruikelijke aanname geweest in economische analyses. Constant verdiscon-
teren, ook wel bekend als exponentieel verdisconteren, impliceert dat voorkeuren
over intertemporele afwegingen niet veranderen over tijd als de extra aanname
wordt gemaakt dat voorkeuren over kosten en opbrengsten binnen periodes niet
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veranderen. Onder constant verdisconteren zullen we een vandaag genomen be-
slissing niet willen herzien in de toekomst, zolang er geen onvoorziene gebeurtenis-
sen plaatsvinden. Constant verdisconteren impliceert dan dus tijdsconsistente
voorkeuren.

Strotz (1956) was de eerste die een economisch model met tijdsinconsistente
voorkeuren bestudeerde. Sinds de publicatie van zijn artikel zijn er veel psy-
chologische en economische studies geweest die vonden dat individuen niet con-
stant verdisconteren (Frederick, Loewenstein en O’Donoghue, 2002). Hyperbolisch
verdisconteren bleek accurater te zijn in het beschrijven van intertemporele afwe-
gingen die individuen maken. Als individuen niet constant, maar bijvoorbeeld
hyperbolisch verdisconteren, veranderen hun voorkeuren meestal met de tijd. Als
we willen dat economische modellen de realiteit representeren, dan vragen de vele
schendingen van constant verdisconteren dus om een verwerping van de aanname
dat voorkeuren tijdsconsistent zijn in die modellen. Tegenwoordig wordt veel on-
derzoek gedaan op dit gebied. De introductie van hyperbolisch verdisconteren in
economische modellen heeft economen in staat gesteld fenomenen uit te leggen
die voorheen niet verklaard konden worden, zoals, bijvoorbeeld, de sterke daling
in consumptie rond pensionering en het feit dat consumenten vaak van zichzelf
vinden dat zij te weinig sparen.

De introductie van tijdsinconsistente voorkeuren in economische modellen bete-
kent niet alleen dat we de analyses van voorheen opnieuw moeten uitvoeren. Het
vraagt ook om een herziening van de concepten waaruit economische modellen
bestaan. Het is bijvoorbeeld niet direct duidelijk hoe traditionele welvaartscon-
cepten uitgebreid moeten worden in het geval van tijdsinconsistente voorkeuren.
Welvaartsconcepten zijn essentieel bij het ontwerpen en beoordelen van overheids-
beleid en economische systemen. Tot op heden is er weinig onderzoek gedaan
naar het definiëren van goede welvaartscriteria als voorkeuren veranderen met de
tijd. In het tweede gedeelte van dit proefschrift worden zulke welvaartscriteria
gëıntroduceerd en worden economische systemen geanalyseerd als voorkeuren ver-
anderen. Het ontwikkelen van nieuwe welvaartscriteria en de verdere analyse van
economische systemen onder de aanname dat voorkeuren veranderen met de tijd,
moet overheden en beleidsmakers uiteindelijk in staat stellen om, bijvoorbeeld,
goede pensioensystemen te ontwerpen die de samenleving in staat stellen zo goed
mogelijk met de vergrijzing om te gaan.

Het eerste deel van dit proefschrift bestudeert intertemporele voorkeuren op
individueel niveau. Het tweede gedeelte bestudeert dynamische algemene even-
wichtsmodellen en de bijbehorende welvaartscriteria. De volgende drie paragrafen
geven een overzicht van het eerste gedeelte, het verband tussen de twee gedeeltes,
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en een overzicht van het tweede gedeelte.

Intertemporele Keuzes
Het eerste deel van dit proefschrift bestudeert intertemporele voorkeuren van in-
dividuen. Door dit hele deel heen nemen we verdisconteerde utiliteit aan. Onder
verdisconteerde utiliteit waarderen individuen een stroom van uitkomsten als volgt.
Ze berekenen eerst de utiliteit van elke uitkomst als die uitkomst meteen zou wor-
den ontvangen. Vervolgens vermenigvuldigen ze elke utiliteit met de verdisconte-
ringsfactor behorende bij het tijdstip van ontvangst van de uitkomst. Uiteindelijk
tellen ze al deze verdisconteerde utiliteiten bij elkaar op. De som wordt dan de
verdisconteerde utiliteit genoemd. Onder verdisconteerde utiliteit kan men tijd-
stippen waarop uitkomsten niet van de beslissing afhangen dus negeren bij het
nemen van een beslissing.

Verdisconteerde utiliteit is een gebruikelijke aanname in de economie. Veel
onderzoek in de economie en de psychologie richt zich op het type verdiscon-
teringsfunctie. Samuelson (1937) bestudeerde constante verdiscontering, ook wel
exponentiële verdiscontering genoemd. Bij constante verdiscontering verandert
een voorkeur tussen twee stromen van uitkomsten niet als de ontvangst van alle
uitkomsten in beide stromen wordt vertraagd met dezelfde tijdsperiode. Indi-
viduen die constant verdisconteren hebben een constant geduld. Vanaf vandaag
gezien is hun geduld tussen vandaag en morgen niet anders dan hun geduld tussen
4 maart 2030 en 5 maart 2030.

Veel empirisch onderzoek heeft uitgewezen dat mensen en dieren niet constant
verdisconteren (Frederick, Loewenstein en O’Donoghue, 2002). Veel studies vinden
dat individuen minder ongeduldig zijn voor de verre toekomst dan voor de nabije
toekomst, d.w.z. individuen zijn steeds geduldiger. (Quasi-) hyperbolisch verdis-
conteren kan dit stijgende geduld modelleren. Tegenwoordig is quasi-hyperbolisch
verdisconteren steeds populairder aan het worden in toepassingen. Hyperbolisch
en quasi-hyperbolisch verdisconteren zijn slechts twee alternatieven voor constant
verdisconteren. Andere alternatieven zijn mogelijk, maar zijn nog niet onderzocht
in de literatuur. De belangrijkste taken in het vakgebied van intertemporele keuzes
zijn het beter leren begrijpen van de afwijking van constant verdisconteren en
het ontwikkelen van goede alternatieven. Het eerste gedeelte van dit proefschrift
draagt bij aan die taak.

Om een goed begrip te krijgen van de afwijking van constant verdisconteren,
is het belangrijk om eerst te begrijpen wat constant verdisconteren precies is.
Koopmans (1960, 1972) gaf een keuze-fundering van constant verdisconteren die
erg populair is. Een keuze-fundering bestaat uit een aantal condities dat een
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keuzemodel volledig kenmerkt en dat gemakkelijk te interpreteren en empirisch te
verifiëren is. Een keuze-fundering van constant verdisconteren geeft ons dus een
goed inzicht in wat constant verdisconteren empirisch precies betekent. Helaas
bevat Koopmans’ analyse een aantal onnauwkeurigheden. Koopmans staat ook
geen oneindige economische groei toe, wat onnodig beperkend is. Hoofdstuk 2
lost deze problemen op en geeft de eerste correcte uiteenzetting van Koopmans’
klassieke resultaat.

Hoofdstuk 3 introduceert een maat voor de afwijking van constant verdiscon-
teren. Die maat, de hyperbolische factor, kwantificeert de graad van stijgend
geduld en de neiging tot tijdsinconsistent gedrag. De hyperbolische factor is
gemakkelijk meetbaar. Hij geeft dus een gemakkelijk middel om (groepen van)
mensen te identificeren die neigen tot tijdsinconsistent gedrag. Bovendien geeft de
hyperbolische factor een makkelijke test voor hyperbolisch verdisconteren: de hy-
perbolische factor is constant dan en slechts dan als algemeen hyperbolisch verdis-
conteren geldt.

Hoofdstuk 4 introduceert zogenaamde tijdsafwegingsreeksen (TTO-reeksen)
om de verdisconteringsfunctie en de mate van dalend of stijgend geduld te meten.
Deze reeksen zijn heel eenvoudig te verkrijgen van individuen en kunnen meteen
geanalyseerd worden met behulp van slechts pen en papier. Van TTO-reeksen
kunnen de mate van stijgend geduld en de neiging tot tijdsinconsistent gedrag
direct worden afgeleid uit eenvoudige grafieken. Door de constructie van TTO-
reeksen zijn er gedurende de hele procedure geen aannames over of metingen van
utiliteit nodig. Bij vrijwel alle metingen van verdiscontering in de literatuur was
het wel nodig om aannames over utiliteit te maken. Van TTO-reeksen kunnen
hyperbolische factoren direct worden verkregen. We introduceren ook nog andere,
heuristische maten van stijgend geduld.

In een experiment worden TTO-reeksen verkregen van subjecten. De resultaten
laten zien dat de subjecten inderdaad niet voldoen aan constant verdisconteren.
In tegenstelling tot de meeste studies in de literatuur, maar in overeenstemming
met een aantal andere recente studies, vinden we bewijs voor dalend geduld. De
hyperbolische factoren weerleggen ook de hyperbolische verdisconteringsfuncties
die zo populair zijn in de literatuur. Deze bevindingen suggereren een aantal
nieuwe richtingen voor toekomstig onderzoek in intertemporele keuzes.

Intertemporeel Gedrag
Zoals al eerder uitgelegd en aangetoond in het eerste deel van dit proefschrift,
is er significant empirisch bewijs dat intertemporele voorkeuren van individuen
niet aan constante verdiscontering voldoen. Als verdisconteerde utiliteit geldt en
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als voorkeuren over uitkomsten niet veranderen met de tijd, dan betekent een
schending van constante verdiscontering dat individuen tijdsinconsistente, of dy-
namisch inconsistente, voorkeuren hebben. Er is ook ander bewijs voor het feit
dat individuen tijdsinconsistente voorkeuren hebben. Individuen met tijdsincon-
sistente voorkeuren willen vaak eerder genomen beslissingen herzien, zelfs als er
niets onvoorziens is voorgevallen. Daarom zullen individuen die zich er bewust
van zijn dat ze tijdsinconsistente voorkeuren hebben, zichzelf willen vastleggen
voor de toekomst om toekomstige herzieningen van beslissingen te voorkomen. Er
zijn inderdaad gevallen bekend waarin individuen zich op dure wijze vastleggen
voor de toekomst (Schelling, 1984).

Een klassiek voorbeeld van iemand die zich vastlegt voor de toekomst is Odys-
seus uit de Odyssee van Homerus. Odysseus riskeerde schipbreuk doordat hij met
zijn schip langs een eiland met Syrenen moest varen, die zo mooi konden zingen
dat ieder die hen hoorde het niet kon weerstaan naar hen toe te varen. Odysseus,
die dat risico voorzag, liet zijn matrozen was in hun oren stoppen en liet zichzelf
door hen aan de mast vastbinden, zodat hij de zang van de Syrenen zou kunnen
horen zonder schade aan te richten.

Voor individuen met tijdsinconsistente voorkeuren veranderen de intertem-
porele voorkeuren eigenlijk met de tijd. Individuen met veranderende voorkeuren
kunnen zich op verschillende manier gedragen, afhankelijk van hun zelfkennis.
Näıeve individuen realiseren zich niet dat hun voorkeuren zullen veranderen met
de tijd en zullen dus telkens verrast worden door hun onvoorziene voorkeuren. Zij
zullen hun eerdere keuzes willen herzien en nieuwe plannen willen maken (Pol-
lak, 1968). Verfijnde individuen, zoals Odysseus, voorspellen hun toekomstige
voorkeuren correct en willen zichzelf vastleggen voor de toekomst of willen alleen
plannen maken waarvan ze weten dat ze die ook uit zullen voeren. Gedeeltelijk ver-
fijnde individuen voorspellen dat hun voorkeuren zullen veranderen in de toekomst,
maar zij doen dit incorrect. Zij gedragen zich dus als verfijnde individuen, maar
zullen toch elke periode verrast worden door hun voorkeuren.

Algemeen Evenwicht
Het tweede gedeelte van dit proefschrift analyseert het gedrag van näıeve en
(gedeeltelijk) verfijnde individuen op geaggregeerd niveau in algemene evenwichts-
modellen. Een algemeen evenwichtsmodel bestaat uit consumenten en producen-
ten die producten (goederen en diensten) verhandelen. Producenten beschikken
over een technologie die productiefactoren zoals grond, arbeid en kapitaal ge-
bruikt om goederen en diensten te produceren. In een zogeheten private eigen-
dom economie zijn de producenten of bedrijven in het bezit van de consumenten,
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die een gegeven aantal aandelen in de bedrijven bezitten. Consumenten hebben
voorkeuren over consumptie. Hun doel is zoveel mogelijk in hun behoeften te
voorzien door producten te consumeren. Prijzen bepalen de verhoudingen waarin
producten verhandeld worden tussen consumenten en producenten. De initiële
bezittingen van de consumenten (met name arbeid en kapitaal) bepalen hun inko-
men en vermogen. Consumenten zullen meestal hun inkomen willen verhogen om
zoveel mogelijk producten te kunnen kopen. Zij zullen producenten dus dwingen
een winst te behalen die het inkomen van de consumenten maximaliseert. Con-
sumptie, productie en prijzen vormen dan een evenwicht als er geen vraagoverschot
en geen aanbodsoverschot is. Markten zijn volledig competitief als er zoveel pro-
ducenten en consumenten zijn dat een enkele producent of consument prijzen niet
kan bëınvloeden. Consumenten en producenten nemen prijzen dan als gegeven en
het evenwicht wordt dan een competitief evenwicht genoemd.

Het bekendste welvaartscriterium dat gebruikt wordt in algemene evenwichts-
theorie, is Pareto efficiëntie. Een verdeling van producten wordt Pareto efficiënt
genoemd als geen enkele consument beter af kan worden gemaakt zonder een an-
dere consument slechter af te maken.

Traditionele algemene evenwichtsmodellen nemen aan dat voorkeuren van indi-
viduen niet veranderen met de tijd. Er kan dan worden aangetoond dat een com-
petitief evenwicht altijd bestaat onder tamelijk lichte aannames. Het Eerste Fun-
damentele Welvaartstheorema houdt in dat elk competitief evenwicht in volledige
markten Pareto efficiënt is. Markten zijn volledig als individuen alle mogelijke
toekomstige producten nu al kunnen verhandelen door contracten op te stellen.
Het Tweede Fundamentele Welvaartstheorema laat zien dat elke Pareto efficiënte
verdeling van producten bereikt kan worden als een competitief evenwicht in
volledige markten door een passende herverdeling van beginvoorraden. Deze stellin-
gen laten zien dat, afgezien van herverdelingen van beginvoorraden, overheidsin-
grijpen alleen welvaartsverhogend is in het geval van externaliteiten, marktmacht,
asymmetrische informatie of beperkingen in het verhandelen van toekomstige pro-
ducten.

Bij de afleiding van deze resultaten werd altijd aangenomen dat voorkeuren
niet veranderen met de tijd. Als voorkeuren wel kunnen veranderen met de tijd
is het niet duidelijk of deze resultaten nog wel gelden. Het zou best kunnen zijn
dat wanneer voorkeuren veranderen met de tijd, de rol van de overheid actiever
moet zijn, zelfs als markten volledig zijn. Het is dan trouwens niet eens meer
duidelijk hoe een competitief evenwicht en efficiëntie gedefinieerd moeten worden.
Bij efficiëntie komt bijvoorbeeld de vraag naar boven welke voorkeuren moeten
worden beschouwd in de concepten, de huidige, de toekomstige, of beide. Het

158



tweede gedeelte van dit proefschrift introduceert veranderende voorkeuren in al-
gemene evenwichtsmodellen. Voorkeuren nemen hier een algemene vorm aan en
hoeven niet aan verdisconteerde utiliteit te voldoen. Omdat het opzetten van het
model erg complex is, bekijken we alleen ruileconomieën, d.w.z. economieën zonder
productie.

Hoofdstuk 5 introduceert evenwichts- en welvaartsconcepten in algemene even-
wichtsmodellen waar consumenten niet vandaag al kunnen handelen in toekomstige
producten. Wij zijn de eersten die algemeen veranderende voorkeuren opnemen in
een volledig algemeen evenwichtsmodel. We introduceren nieuwe evenwichtscon-
cepten, laten zien welke problemen opduiken bij het definiëren van welvaartscrite-
ria en laten zien hoe die problemen verholpen kunnen worden. We bewijzen dat
evenwichten bestaan en dat sommige efficiëntie-concepten vervuld zijn in even-
wicht, en andere niet.

Hoofdstuk 6 analyseert de volledigheid van markten. Markten zijn volledig als
alle mogelijke conditionele producten kunnen worden verhandeld. Een conditioneel
product is een product dat men vandaag betaalt en dat geleverd wordt in een
toekomstige periode, conditioneel op een bepaalde gebeurtenis, zoals bijvoorbeeld
futures, verzekeringen, aandelen en obligaties. Markten zijn sequentieel volledig
als in elke periode alle conditionele producten voor de huidige en de volgende
periode kunnen worden verhandeld. De Eerste en Tweede Welvaartstheorema zijn
geldig in volledige alsook in sequentieel volledige markten. Beide marktstructuren
leidden altijd tot dezelfde verdelingen van producten in evenwicht. Als voorkeuren
veranderen met de tijd is het niet langer zo dat de twee marktstructuren dezelfde
verdelingen opleveren wanneer individuen niet volledig verfijnd zijn, hetgeen wordt
aangetoond in Hoofdstuk 6. Zo gauw individuen niet volledig verfijnd zijn, doet
de graad van volledigheid van markten er toe.

Hoofdstuk 7 laat aan de hand van een voorbeeld zien dat er, in evenwicht,
activa kunnen bestaan die vandaag niets kosten en die een positief inkomen in de
toekomst opleveren. Dat voorbeeld geeft een indruk van wat de consequenties zijn
van het introduceren van veranderende voorkeuren in economische modellen. Stan-
daard economische modellen gaan ervan uit dat alle individuen hun toekomstige
inkomen zo veel mogelijk willen laten stijgen. Het voorbeeld laat zien dat verfijnde
individuen hun toekomstige inkomen niet per se willen laten stijgen. Het voor-
beeld beschrijft een verfijnd individu dat weet dat hij morgen zijn inkomen gaat
besteden op een manier die hij vandaag niet wil. Daarom kan het voorkomen dat
arbitrage-mogelijkheden niet door de individuen in de markt worden weggenomen.
Dit voorbeeld laat dus zien hoe bepaalde economische principes die zelden in twijfel
getrokken worden, afhangen van de sterke aanname van tijdsconsistent gedrag.
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näıve, 71
sophisticated, 71

spot markets, 119
state, 115, 116

at period t, 115

stationarity, 30, 40–45, 47, 49–51, 56,
57, 59

stopwatch time, 47

tail robustness, 17, 21, 22
time

homogeneity, 47
time-inconsistency

stationarity, and, 43
time-tradeoff sequence, see TTO se-

quence
timed outcome, see outcome, timed

preferences over, 30
timepoint, 30, 42
TTO curve, 45, 46, 48, 49, 57, 58, 60,

62
degree of concavity, 48
degree of convexity, 48

TTO sequence, 4, 40–42, 44, 44, 45,
51–57, 62, 63

ultimate continuity, 15
uniqueness

up to unit and level, 17
utility, 14, 17, 40

bounded, 12, 25
unbounded, 13

utility function, 28, 32, 42, 75

Walras’ law, 99, 104
welfare, 2
willingness to wait, 43, 44, 56, 57, 59
WTW, see willingness to wait

176







Short Curriculum Vitae

Kirsten Ingeborg Maria Rohde was born on March 4, 1980 in Eindhoven, the
Netherlands. She attended a Dutch primary school in Madrid, Spain, from 1982 to
1985. From there she attended a primary school in France from 1985 to 1989. She
graduated with distinction (cum Laude) from high school (VWO) in the Nether-
lands in 1998. She then proceeded to Maastricht University to study econometrics,
specifically mathematical economics, from 1998 to 2002, during which she worked
as a research assistant in finance. She obtained her master’s degree with distinction
in 2002 with a thesis that earned the Thesis Award of Maastricht University.

Kirsten was a PhD student at the Department of Economics of Maastricht
University under the supervision of Professors Jean-Jacques Herings and Peter
Wakker from 2002 to 2006. She was a visiting fellow at the Institute for Empirical
Research in Economics at the University of Zürich in the spring of 2006.
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