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We introduce a new solution concept for models of coalition formation, called the
myopic stable set (MSS). The MSS is defined for a general class of social environments
and allows for an infinite state space. An MSS exists and, under minor continuity as-
sumptions, it is also unique.

The MSS generalizes and unifies various results from more specific applications.
It coincides with the coalition structure core in coalition function form games when
this set is nonempty; with the set of stable matchings in the Gale–Shapley matching
model; with the set of pairwise stable networks and closed cycles in models of network
formation; and with the set of pure strategy Nash equilibria in pseudo-potential games
and finite supermodular games. We also characterize the MSS for the class of proper
simple games.

KEYWORDS: Social environments, group formation, stability, Nash equilibrium.

1. INTRODUCTION

MODELS OF COALITION FORMATION study a widespread and important pattern of human
interaction: agents tend to form groups of equally interested individuals, but behave in
a noncooperative way toward outsiders. For example, individuals in a community join
forces to provide a local public good, voters create parties to attain their political goals,
and firms set up lobby groups to influence policy-makers.

The literature studies coalition formation in many distinct settings, like networks, coali-
tion function form games, and matching models. In this paper, we focus on a general class
of social environments that covers all of these settings and many more. More precisely, we
define a social environment on the basis of four components (Chwe (1994)): a finite col-
lection of agents, a set of states, for every agent preferences over the set of states, and an
effectivity correspondence that models the feasible transitions from one state to another.
We only require that the set of states is a nonempty, compact metric space. As such, in
contrast to most settings in the literature, we allow the state space to be infinite.
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For such social environments, we define a new solution concept called the myopic sta-
ble set, abbreviated as MSS. The MSS extends the idea of level-1 farsighted stability by
Herings, Mauleon, and Vannetelbosch (2009, 2018) from finite networks to the general
class of social environments. The MSS is defined by three conditions, deterrence of external
deviations, asymptotic external stability, and minimality. Deterrence of external deviations
requires that no coalition benefits by deviating from a state inside the MSS to a state
outside the MSS. Asymptotic external stability makes sure that from any state outside the
MSS it is possible to get arbitrarily close to a state inside by a sequence of coalitional devi-
ations. Finally, minimality requires that the MSS is minimal with respect to set inclusion.

Our notion of dominance is myopic as agents or coalitions do not predict how their deci-
sion to change the current state will lead to further changes by other agents or coalitions.
Such a notion is natural in complex social environments where the number of possible
states is large and agents have little information about the possible actions other agents
may take or the incentives of other agents.

The myopic stable set is closely related to other myopic concepts as the core and the
Nash equilibrium. It differs from the ones in the literature that focus on farsightedness
(see among others, Chwe (1994), Herings, Mauleon, and Vannetelbosch (2009, 2018),
Page, Wooders, and Kamat (2005), Page and Wooders (2009), Ray and Vohra (2015)), no-
tions which strengthen farsightedness by using state-dependent expectations (Greenberg
(1990), Xue (1998), Dutta and Vohra (2017)), and approaches to farsightedness that are
inspired by noncooperative game theory (Herings, Mauleon, and Vannetelbosch (2004),
Dutta, Ghosal, and Ray (2005)). In particular, Greenberg’s (1990) optimistic and con-
servative standards of behavior are popular farsighted notions that, as our MSS, cover a
large set of applications.

Our first main result (Theorem 3.1) shows that every social environment contains at
least one nonempty MSS. Moreover, under minor continuity assumptions, we establish
uniqueness of the MSS (Theorem 3.4). The existence and uniqueness results differ from
many other popular solution concepts in the literature. For instance, the core and the
coalition structure core for coalition function form games can be empty (Bondareva
(1963), Scarf (1967), Shapley (1967)), the von Neumann–Morgenstern stable set may fail
to exist or to be unique (Lucas (1968, 1992)), optimistic and conservative standards of be-
havior might fail to exist (Greenberg (1990)), and the set of pure strategy Nash equilibria
may be empty.

We provide several additional results that provide more insights about the structure of
an MSS. For finite state spaces, we fully characterize the MSS as the union of all closed cy-
cles (Theorem 3.9), that is, subsets which are closed under coalitional better replies. This
result also provides a connection to stochastic processes of coalition and network forma-
tion as in Jackson and Watts (2002) and Sawa (2014). For infinite spaces, the union of all
closed cycles is found to be a subset of the MSS. This result is helpful in applications and
in the comparison to other solution concepts. For instance, any state in the core is a closed
cycle and is therefore included in the MSS. As a special case of this result, it follows that
the MSS contains the set of pure strategy Nash equilibria in a normal-form game. Next,
we define a generalization of the weak improvement property (Friedman and Mezzetti
(2001)) to social environments and we show that, under weak continuity conditions, the
weak improvement property characterizes the collection of social environments for which
the MSS coincides with the core. We also show that if the von Neumann–Morgenstern
stable set exists, it has a nonempty intersection with any MSS.

We demonstrate the versatility of our results by analyzing the relationship between the
MSS and other solution concepts in specific social environments. In particular, we show
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that the MSS coincides with the coalition structure core for coalition function form games
(Kóczy and Lauwers (2004)) whenever the coalition structure core is nonempty; with the
set of stable matchings in the one-to-one matching model by Gale and Shapley (1962);
with the set of pairwise stable networks and closed cycles in models of network formation
(Jackson and Watts (2002)); and with the set of pure strategy Nash equilibria in pseudo-
potential games (Dubey, Haimanko, and Zapechelnyuk (2006)) and finite supermodular
games (Topkis (1979) and Milgrom and Roberts (1990)). We fully characterize the MSS
for the class of proper simple games.

The structure of the paper is as follows. Section 2 provides the primitives of our general
framework of social environments and introduces and motivates the MSS. Section 3 es-
tablishes existence, nonemptiness, and uniqueness results. Section 4 analyzes our solution
concept for various settings and relates it to other stability concepts from the literature.
Section 5 is a conclusion. All proofs can be found in the Appendix. Additional material
is covered in the Online Supplemental Material (Demuynck, Herings, Saulle, and Seel
(2019)).

2. THE MYOPIC STABLE SET

In this section, we first introduce the concept of a social environment. Next, we intro-
duce the notions of dominance and asymptotic dominance, which we then use to define
our solution concept, the myopic stable set.

Let N be a nonempty finite set of individuals. A coalition S is a subset of N . The set of
nonempty subsets of N is denoted by N . Let (X�d) be a metric space, where X denotes
our nonempty state space and d is a metric on X .1 Let some state x ∈ X be given and let
ε ∈ R++. We define Bε(x) = {y ∈ X | d(x� y) < ε} as the open ball around x with radius ε.
The set Bε(x) contains all states in X that are in an ε-neighborhood of x. For a sequence
(xk)k∈N in X , we write xk → x if for all ε > 0, there is a number N ∈ N such that for all
k≥ N , xk ∈ Bε(x), that is, the sequence (xk)k∈N converges to x.

An effectivity correspondence E associates with each pair of states (x� y) ∈ X × X a,
possibly empty, collection of coalitions E(x� y) ⊆ N . If S ∈ E(x� y), we say that coalition
S can move from state x to state y . If E(x� y)= ∅, then no coalition can move from x to y .

Each individual i ∈ N has a complete and transitive preference relation �i over the
state space X . The profile (�i)i∈N then lists the preferences of all individuals in N . We
denote the asymmetric part of �i by �i, that is, x �i y if and only if x �i y and not y �i x.
A social environment is now defined as follows.

DEFINITION 2.1—Social Environment: A social environment is a tuple

�= (
N�(X�d)�E� (�i)i∈N

)
consisting of a nonempty, finite set of agents N , a nonempty, compact metric space (X�d)
of states, an effectivity correspondence E on X , and a profile of preference relations
(�i)i∈N over X .

In Section 4, we specify different social environments which correspond to applications
such as coalition function form games, one-to-one matching, network formation, and non-
cooperative normal-form games.

1A metric is a function d :X ×X →R+ such that (i) for every x� y ∈X: d(x� y) = 0 if and only if x= y , (ii)
for every x� y ∈X: d(x� y) = d(y�x), and (iii) for every x� y� z ∈X , d(x� y) ≤ d(x�z)+ d(z� y).
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For a given social environment � = (N� (X�d)�E� (�i)i∈N), we say that a state y ∈ X
dominates another state x ∈ X if there is a coalition such that (i) it can move from x to y
and (ii) each of its members strictly prefers y over x.

DEFINITION 2.2—Dominance: A state y ∈ X dominates a state x ∈ X under E if there
exists a coalition S ∈ E(x� y) such that for every i ∈ S it holds that y �i x.

An alternative notion is the one of weak dominance. A state y ∈ X weakly dominates a
state x ∈X if there exists a coalition S ∈ E(x� y) such that for all i ∈ S, y �i x and there is
at least one j ∈ S such that y �j x. When we restrict ourselves to settings with a finite state
space X , all theoretical results from this section remain valid when we replace dominance
by weak dominance. For settings where X is infinite, most results remain valid with the
exception of Theorem 3.7 below, which provides sufficient conditions for uniqueness.

Let some state x ∈ X be given. The subset of X consisting of all states that dominate x
together with the state x itself is denoted by f (x), so

f (x) = {x} ∪ {y ∈ X | y dominates x under E}�
We refer to f as the dominance correspondence. We define the two-fold composition of f
by f 2(x) = {z ∈ X | ∃y ∈ X : y ∈ f (x) and z ∈ f (y)}. By induction, we can define the k-
fold iteration f k(x) as the subset of X that contains all states obtained by a composition
of dominance correspondences of length k ∈ N, that is, y ∈ f k(x) if there is a z ∈ X such
that y ∈ f (z) and z ∈ f k−1(x). Since by definition x ∈ f (x), it holds that, for all k�� ∈ N,
if k ≤ �, then f k(x) ⊆ f �(x). We define the set of all states that can be reached from x by
a finite number of dominations by f N(x), so

f N(x)=
⋃
k∈N

f k(x)�

A state y is said to asymptotically dominate the state x if starting from x it is possible to
get arbitrarily close to y in a finite number of dominations.

DEFINITION 2.3—Asymptotic Dominance: A state y ∈ X asymptotically dominates a
state x ∈ X under E if for all ε > 0 there exists k ∈ N and a state z ∈ f k(x) such that
z ∈ Bε(y).

We denote by f∞(x) the set of all states in X that asymptotically dominate x. Formally,
we have

f∞(x) = {
y ∈X | ∀ε > 0�∃k ∈ N�∃z ∈ f k(x) such that z ∈ Bε(y)

}
�

It is easy to see that the set f∞(x) coincides with the closure of the set f N(x).
We are now ready to define our solution concept, the myopic stable set, abbreviated as

MSS.

DEFINITION 2.4—Myopic Stable Set: Let � = (N� (X�d)�E� (�i)i∈N) be a social envi-
ronment. The set M ⊆ X is a myopic stable set if it is closed and satisfies the following
three conditions:

1. Deterrence of external deviations: For all x ∈ M , f (x) ⊆M .
2. Asymptotic external stability: For all x /∈M , f∞(x)∩M �= ∅.
3. Minimality: There is no closed set M ′ �M that satisfies Conditions 1 and 2.
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The solution concept that results when we replace dominance by weak dominance is
called weak dominance MSS.

Let M be an MSS. Deterrence of external deviations requires that no coalition of my-
opic agents can profitably deviate to a state outside M . Next, asymptotic external stability
requires that from any state outside M it is possible to get arbitrarily close to a state in
M by a finite number of myopic deviations. Observe that the empty set would necessarily
violate asymptotic external stability, so any MSS is nonempty.

Although the property of asymptotic external stability resembles a notion of farsight-
edness, there is an important distinction. In models with farsighted behavior, coalitions
deviate from the current state because they expect to profit from a move in some fu-
ture period, that is, after possible subsequent moves by other coalitions. Our definition
of asymptotic external stability, however, is myopic in the sense that coalitions deviate
only because they see an immediate gain, without anticipating potential future deviations.
The condition of deterrence of external deviations also reflects myopic behavior. Myopic
agents will not leave the set as this would not result in an immediate gain for all players in
a deviating coalition. In contrast, farsighted agents might do so in the hope of gains after
subsequent deviations.

Finally, minimality imposes that there is no smaller closed set of states that satisfies
deterrence of external deviations and asymptotic external stability. We do not impose a
condition of internal stability in the sense of von Neumann and Morgenstern, so it is
possible that a state in the MSS is dominated by another state in the MSS. The MSS is
therefore stable as a set, whereas a state within the MSS may not be stable by itself.

For finite state spaces, the restriction imposed by asymptotic external stability remains
unchanged if f∞ is replaced by f N. We refer to the property that for all states x /∈ M ,
f N ∩ M �= ∅ as iterated external stability. For infinite state spaces, the two concepts differ.
If one uses iterated external stability instead of asymptotic external stability, we show in
the online supplement that a MSS might fail to exist.

A MSS is a minimal set satisfying deterrence of external deviations and asymptotic
external stability. Dropping the minimality requirement leads to the concept of a quasi
myopic stable set (QMSS) which is useful in the proofs.

DEFINITION 2.5—Quasi Myopic Stable Set: Let � = (N� (X�d)�E� (�i)i∈N) be a so-
cial environment. The set M ⊆ X is a quasi myopic stable set if it is closed and satisfies
deterrence of external deviations and asymptotic external stability.

3. GENERAL PROPERTIES

This section establishes existence of the myopic stable set in general and, under weak
additional assumptions, its uniqueness. We also derive some additional structural proper-
ties of myopic stable sets that are used in the next section. We provide a brief discussion of
the relationship between the MSS and the von Neumann–Morgenstern stable set. Finally,
we relate our approach to dynamic models that rely on stochastic processes.

3.1. Existence and Uniqueness

The first main result is about existence of the myopic stable set.

THEOREM 3.1—Existence: Let � be a social environment. Then a MSS exists.
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Note that the set of all states is a QMSS and the collection of all sets of states that
are a QMSS is partially ordered by inclusion. In the proof of Theorem 3.1, we verify that
the partially ordered collection satisfies the conditions for Zorn’s lemma and apply it to
conclude that there is a minimal QMSS, that is, a MSS.

Having established existence of a MSS, we now turn to the cardinality of such sets. The
following lemma shows that two myopic stable sets cannot be disjoint.

LEMMA 3.2: Let � be a social environment and let M1 and M2 be two myopic stable sets
of �. Then M1 ∩M2 �= ∅.

Suppose the intersection M1 ∩M2 satisfies deterrence of external deviations and asymp-
totic external stability, that is, it is a QMSS. Then, by minimality of M1 and M2, the MSS
is unique. In the online supplement, we show that for infinite social environments, the in-
tersection M1 ∩ M2 might not satisfy asymptotic external stability without any additional
assumptions. Thus, we impose the following weak continuity assumption.

DEFINITION 3.3—Lower Hemi-Continuity of f : The dominance correspondence f :
X →X is lower hemi-continuous if for every sequence (xk)k∈N in X such that xk → x and
for every y ∈ f (x) there is a sequence (yk)k∈N in X such that for all k, yk ∈ f (xk) and
yk → y .

This continuity assumption allows us to state the following uniqueness result.

THEOREM 3.4: Let � be a social environment such that the corresponding dominance
correspondence f is lower hemi-continuous. Then � has a unique MSS.

The continuity condition of Theorem 3.4 is trivially satisfied when the state space X
is finite. As such, for all applications with a finite state space, we have uniqueness of the
MSS.

The dominance correspondence f is defined in terms of the individual preference re-
lations (�i)i∈N and the effectivity correspondence E. To ease the verification of lower
hemi-continuity of f , we provide sufficient conditions on the primitives of a social envi-
ronment.

As a first condition, we impose lower hemi-continuity of the effectivity correspon-
dence E. Toward this end, consider, for every S ∈ N , the correspondence GS : X → X
defined by

GS(x) = {x} ∪ {
y ∈X | S ∈E(x� y)

}
� x ∈ X�

which associates to every state x ∈X the union of {x} and the set of states coalition S can
move to from x.

DEFINITION 3.5—Lower Hemi-Continuity of E: The effectivity correspondence E is
lower hemi-continuous if for every coalition S ∈ N the correspondence GS : X → X is
lower hemi-continuous, that is, for every sequence (xk)k∈N in X such that xk → x and for
every y ∈ GS(x) there is a sequence (yk)k∈N such that yk ∈ GS(x

k) and yk → y .

Our second condition is continuity of the preferences.
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DEFINITION 3.6—Continuity of Preferences: The preference relation �i of individual
i ∈ N is continuous if for any two sequences (xk)k∈N and (yk)k∈N in X with xk → x and
yk → y and, for every k ∈ N, xk �i y

k, it holds that x �i y .

The two conditions turn out to be sufficient for lower hemi-continuity of the dominance
correspondence, thus by Theorem 3.4 for uniqueness of the MSS.

THEOREM 3.7: Let � = (N� (X�d)�E� (�i)i∈N) be a social environment such that the
effectivity correspondence E is lower hemi-continuous and the preferences (�i)i∈N are con-
tinuous. Then the dominance correspondence f is lower hemi-continuous and � has a unique
MSS.

In the online supplement, we construct a social environment which satisfies the condi-
tions of Theorem 3.7, but has more than one weak dominance MSS.

3.2. Closed Cycles and the Core

In this subsection, we give two general results about the structure of a MSS. The first
result relates the MSS to the union of all closed cycles. The second result characterizes
the social environments for which the MSS is equal to the core.

DEFINITION 3.8—Closed Cycle: A closed cycle of a social environment � is a set C ⊆ X
such that for every x ∈C it holds that f∞(x)= C.

Thus, a closed cycle is a subset of X which is closed under the asymptotic dominance
correspondence f∞. We denote the union of all closed cycles by CC, so CC contains all
states that are part of some closed cycle. The following result characterizes the MSS for
social environments with a finite state space as the union of all closed cycles and shows
that this union is a subset of the MSS for social environments with an infinite state space.

THEOREM 3.9: Let � = (N� (X�d)�E� (�i)i∈N) be a social environment and let M be a
MSS of �. It holds that CC ⊆M . If the state space X is finite, we have CC = M .

A sink is a closed cycle which consists of only one state, that is, f (x) = {x}. The union
of all sinks is called the core.

DEFINITION 3.10—Core: Let �= (N� (X�d)�E� (�i)i∈N) be a social environment. The
core CO of � is given by

CO = {
x ∈ X | f (x) = {x}}�

It is well known that the core may be empty for some social environments. However, if
it is not empty, then it is always contained in the MSS by the observation that a sink is a
closed cycle which consists of one state and by virtue of Theorem 3.9.

COROLLARY 3.11: Let � be a social environment and let M be an MSS of �. Then we
have CO ⊆M .

The next definition is inspired by the finite analogue for normal-form games as pre-
sented in Friedman and Mezzetti (2001).
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DEFINITION 3.12—Weak (Finite) Improvement Property: A social environment � sat-
isfies the weak finite improvement property if for each state x ∈ X , f N(x) contains a sink
and the weak improvement property if for each state x ∈ X , f∞(x) contains a sink.

The following theorem provides a characterization for the MSS in social environments
with the weak improvement property.

THEOREM 3.13: Let � be a social environment with a lower hemi-continuous dominance
correspondence f . An MSS of � is equal to the core if and only if � satisfies the weak im-
provement property.

It follows easily from the proof of Theorem 3.13 that the requirement of lower hemi-
continuity of f in Theorem 3.13 can be weakened to the requirement that CO is closed.

3.3. The von Neumann–Morgenstern Stable Set

The von Neumann–Morgenstern (vNM) stable set provides a solution concept for an
environment consisting of a set of states X and a dominance relation on this set (von
Neumann and Morgenstern (1944)).

DEFINITION 3.14—vNM Stable Set: Let � = (N� (X�d)�E� (�i)i∈N) be a social envi-
ronment. The set V ⊆ X is a vNM stable set if it satisfies the following two conditions:

1. Internal stability: For all x� y ∈ V such that x �= y it holds that y /∈ f (x).
2. External stability: For all x /∈ V , f (x)∩ V �= ∅.

Internal stability requires that no state in the set is dominated by another state in the
set. External stability requires that every state outside the set should be dominated by a
state in the set.

Our notion of asymptotic external stability has a similar flavor as the vNM notion of
external stability. However, the vNM stable set looks at one-step dominations while our
notion of asymptotic external stability uses asymptotic dominance, which can be seen as
an infinite iteration of one-step dominations. In fact, extending the definition of the vNM
stable set by allowing for a finite iteration of one-step dominations, that is, replacing f by
f N in Definition 3.14, has also been advocated by several authors; see Harsanyi (1974), van
Deemen (1991), Page and Wooders (2009), and Herings, Mauleon, and Vannetelbosch
(2017).

On the other hand, our notion of deterrence of external deviations is quite different
from the vNM notion of internal stability. While we allow that a state in the MSS is dom-
inated by another state in the MSS, this is prohibited in the vNM stable set. Moreover,
unlike our concept, in the vNM stable set it is allowed that a state in the set is dominated
by a state outside the set.

In terms of predictions, first note that an MSS always exists and is unique under weak
continuity assumptions, whereas the vNM stable set may not exist and if it exists may fail
to be unique. If the vNM stable set exists, there are a few connections between the MSS
and the vNM stable set. First of all, both sets contain the core. Second, the intersection
between the vNM stable set and the MSS is nonempty as is stated in the next result.

THEOREM 3.15: Let � = (N� (X�d)�E� (�i)i∈N) be a social environment for which a
vNM stable set V exists. If M is an MSS of �, then M ∩ V �= ∅.
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By Theorem 3.9, the MSS contains the union of all closed cycles. If the vNM stable set
exists, one can show that it contains at least one state from every closed cycle.

It is easily verified that Theorem 3.15 remains true if the dominance correspondences
f N or f∞ are used in Definition 3.14.

3.4. Dynamic Stochastic Processes

Stochastic approaches have been frequently used in noncooperative settings like
normal-form games. Sawa (2014) presents a general framework, which extends such a
stochastic analysis to cooperative settings. In each period, one of the coalitions that can
make a move is randomly selected and chooses one of its moves at random. The move is
carried out with probability 1 if all members of the coalition are strictly better off. If no
member is worse off, but at least one agent is indifferent, the move is carried out with a
probability strictly between 0 and 1. Otherwise, the move is not carried out. The result-
ing dynamic process can be thought of as a weak better-response dynamic. To establish a
connection to the MSS, we consider a variation of the process in Sawa (2014) in which a
coalition only moves with positive probability if all coalition members are strictly better
off.

Consider a social environment � = (N� (X�d)�E� (�i)i∈N) such that X is finite. For
states x� y ∈X , let Q(x� y) denote the transition probability from state x to state y and let
Q be the matrix of transition probabilities. We say that Q is consistent with f if for every
y ∈ f (x) \ {x} it holds that Q(x� y) > 0 and for every y /∈ f (x) it holds that Q(x� y)= 0. In
particular, the state x need not change even if the set f (x) \ {x} is nonempty.

The next result presents an equivalence between the MSS and the set of recurrent states
of the Markov chain (X�Q).

THEOREM 3.16: Let �= (N� (X�d)�E� (�i)i∈N) be a social environment with finite state
space X , let f be the corresponding dominance correspondence, and let (X�Q) be a Markov
chain such that Q is consistent with f . Then the MSS of � is equal to the set of recurrent states
of (X�Q).

For social environments with a finite number of states, Theorem 3.16 gives an equiv-
alence between the set of recurrent states of a dynamic process that selects all better
responses with positive probability and the MSS. Suppose we replace our dominance cor-
respondence used in the definition of the MSS by requiring that y indifference dominates x
if there exists a coalition S ∈ E(x� y) such that for all i ∈ S, y �i x. Then the predictions of
the alternative version of MSS are equivalent to the set of recurrent states in Sawa (2014)
for the case of a finite state space.

The above results do not readily extend to settings where X is infinite, as the set of
recurrent states might be empty. In the online supplement, we discuss a stochastic ap-
proach to infinite environments based on irreducibility of the Markov chain and show
that its predictions differ drastically from those of the MSS.

4. APPLICATIONS

In this section, we illustrate the generality of our setting and the useful common struc-
ture of our results by means of four specific models that have been studied extensively
in the literature: coalition function form games, one-to-one matching models, models of
network formation, and normal-form games. For each of these settings, we first specify
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the social environment, that is, the set of individuals N , the state space (X�d), the effec-
tivity correspondence E, and the preferences (�i)i∈N . Subsequently, we discuss how the
results from the previous section can be applied.

4.1. Coalition Function Form Games

A coalition function form game is defined by a tuple (N�v), where N is the set of play-
ers and v : 2N → R is a characteristic function that assigns to each coalition S ⊆ N a num-
ber v(S) ∈ R, called the coalitional value of S, with the usual convention that v(∅)= 0.
A coalition structure is a partition π of N . It describes how the grand coalition is divided
into various sub-coalitions. The collection of all coalition structures, that is, the collection
of partitions of N , is denoted by Π.

For coalition function form games, we define X as the set of coalition structures Π
together with all individually rational payoff vectors that can be obtained by allocating
the coalitional values among the members of the respective coalitions:

X =
{
(π�u) ∈ Π ×RN

∣∣∣ ∀i ∈ N : ui ≥ v
({i}) and ∀S ∈ π :

∑
i∈S

ui = v(S)

}
�

Given a state x ∈ X , we denote by π(x) the projection to its first component, that is,
the coalition structure, and by u(x) the projection to its second component, that is, the
payoff vector, so we can write x = (π(x)�u(x)). The restriction of the payoff vector u(x)
to the members in coalition S is denoted by uS(x). The set X is nonempty since it always
contains the state where N is partitioned into singletons and each player i ∈ N receives
the payoff v({i}).

For x� y ∈X , we define d(x� y)= 1{π(x) �=π(y)} + ‖u(x)−u(y)‖∞, where 1 is the indicator
function and ‖ · ‖∞ is the infinity norm. It is easily seen that (X�d) is compact. We define
preferences �i over the state space X by setting x �i y if and only if ui(x)≥ ui(y).

For each ordered pair of states (x� y), the effectivity correspondence E(x� y) specifies
which coalitions can change state x into state y . As an example that imposes some reason-
able structure on the effectivity correspondence, we provide a brief outline of the notion
of coalitional sovereignty (Konishi and Ray (2003), Kóczy and Lauwers (2004), Ray and
Vohra (2014, 2015), Herings, Mauleon, and Vannetelbosch (2017)).

When a coalition of players S—called the leaving players—decides to leave their old
coalitions to create a new group, the state changes to a new state y characterized by a
new coalition structure π(y) and a new payoff vector u(y). The collection of coalitions of
π(x) that are unaffected by this change is denoted by U(x�S) and the set of all players in
this group by U(x�S). Formally, we have U(x�S) = {T ∈ π(x) | S ∩T = ∅} and U(x�S) =⋃

T∈U(x�S) T .
This notation helps us in defining coalitional sovereignty.

DEFINITION 4.1—Coalitional Sovereignty: An effectivity correspondence E satisfies
coalitional sovereignty if the following two conditions hold:

(1) Noninterference: For every x� y ∈ X , if S ∈ E(x� y) and T ∈ U(x�S), then S ∈ π(y),
T ∈ π(y), and uT(x) = uT(y).

(2) Full support: For every x ∈ X , for every S ∈ N , and for every u ∈ RS such that for
all i ∈ S : ui ≥ v({i}) and

∑
i∈S ui = v(S), there is a state y ∈ X such that S ∈ E(x� y) and

uS(y)= u.
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Intuitively, noninterference requires that if a coalition S induces a change from a state
x to a state y , then the unaffected coalitions in U(x�S) are still part of the new coali-
tion structure π(y) and every unaffected player i ∈ U(x�S) keeps his old payoff, that is,
ui(x)= ui(y). Full support requires that every coalition S has the opportunity to move to
a new state where it has the freedom to redistribute its worth v(S) at will.

Coalitional sovereignty does not fully specify the effectivity correspondence E. In par-
ticular, it does not specify the payoffs and coalition structure of players that are neither
part of the leaving coalition S nor part of the unaffected players U(x�S), that is, play-
ers in the set N \ (S ∪U(x�S)). We call these players residual players. Indeed, one of the
more controversial issues is to what extent the leaving players have the power to influence
the coalition structure and payoffs of these residual players; see Shubik (1962), Hart and
Kurz (1983), Konishi and Ray (2003), and Ray and Vohra (2014) for related discussions
and alternative viewpoints. One frequently used specification is the γ-model (Hart and
Kurz (1983)). The γ-model prescribes that the residual players are divided into single-
tons. This assumption is justified by the viewpoint that a coalition is only maintained if
there is unanimous agreement among its members. In our setting, the γ-model imposes
the following restriction on the effectivity correspondence.

DEFINITION 4.2—γ-Model: The effectivity correspondence E is induced by the γ-
model if it satisfies coalitional sovereignty and

(3) For every x� y ∈X , for every S ∈ E(x� y), if i ∈ N \ (S ∪U(x�S)), then {i} ∈ π(y).

The γ-model associates a unique social environment to each coalition function form
game.

One of the most prominent set-valued solution concepts for coalition function form
games is the coalition structure core.

DEFINITION 4.3—Coalition Structure Core: Let (N�v) be a coalition function form
game and �= (N� (X�d)�E� (�i)i∈N) be the social environment induced by the γ-model.
The coalition structure core of (N�v) is the set of states x ∈ X such that, for every coalition
S ∈N ,

∑
i∈S ui(x)≥ v(S).

In words, the coalition structure core gives to the members of each coalition at least the
payoff they can obtain by forming that coalition.

Kóczy and Lauwers (2004) defined the coalition structure core to be accessible if from
any initial state there is a finite sequence of states ending with an element of the coalition
structure core and each element in that sequence outsider independently dominates the
previous element. Accessibility of the coalition structure core thus corresponds to iter-
ated external stability of the coalition structure core with respect to outsider independent
domination. The notion of outsider independent domination differs from our notion of a
myopic improvement in the γ-model in two ways. First, it gives complete freedom to the
treatment of residual players after a move has taken place. Second, improvements for the
members of the coalition that moves are not necessarily strict improvements. In the on-
line supplement, we give an example where under the requirement of strict improvements
of all members involved in a move, as in our dominance correspondence f , the coalition
structure core does not satisfy iterated external stability. However, the definition of an
MSS uses asymptotic external stability rather than iterated external stability.

By Theorem 3.1, there exists at least one MSS. Theorem 4.4 shows the MSS to be
unique and to coincide with the coalition structure core whenever the coalition structure
core is nonempty.
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THEOREM 4.4: Let (N�v) be a coalition function form game and � the social environment
induced by the γ-model. Then � has a unique MSS. If the coalition structure core Y of (N�v)
is nonempty, then the MSS of � is equal to Y .

Theorem 4.4 covers coalition function form games with a nonempty coalition structure
core. We now study the predictions of MSS when the coalition structure core is empty.
To do so, we analyze the class of proper simple games which play an important role in
the analysis of political institutions. These are coalition function form games such that
v(N) = 1, for every S ⊆ N it holds that v(S) ∈ {0�1}, and v(S) = 1 implies v(N \ S) = 0.
Moreover, for S, T ⊆ N such that S ⊆ T , v(S) = 1 implies v(T) = 1. The collection of
winning coalitions is denoted by W = {S ⊆ N | v(S) = 1}. A veto player is a player that
belongs to every winning coalition and the set of veto players is given by S∗ = ⋂

S∈W S.
It is well known that the coalition structure core of a proper simple game is nonempty

if and only if there are veto players, so S∗ �= ∅. In that case, the coalition structure core,
and by Theorem 4.4 the MSS, is given by the states x ∈ X such that π(x) has an element
containing S∗ and

∑
i∈S∗ ui(x) = 1.

Let us now consider proper simple games with an empty core. Define the subset F(X)
of X as the set of states such that its partition contains a winning coalition different from
the grand coalition and all other elements of the partition are singletons:

F(X)= {
x ∈ X | π(x)∩ (

W \ {N}) �= ∅ and ∀S ∈ π(x) \W� |S| = 1
}
�

If x ∈ F(X), then the payoff vector u(x) distributes one unit of surplus to the players,
each player has a nonnegative payoff, and at least one player has a payoff of zero. The
payoff vector therefore belongs to a facet of the unit simplex.

THEOREM 4.5: Let (N�v) be a coalition function form game such that v is a proper sim-
ple game with an empty core and let � = (N� (X�d)�E� (�i)i∈N) be the social environment
induced by the γ-model. Then the MSS of � is unique and equal to F(X).

Each state in the MSS of the γ-model for simple games with an empty core contains
a winning coalition that is a proper subset of the grand coalition. All other coalitions fall
apart into singletons. In the online supplement, we consider the δ-model as suggested by
Hart and Kurz (1983) where residual players remain together. In payoff terms, the predic-
tions of the γ-model and the δ-model are shown to coincide, though in the δ-model the
non-winning coalitions need not be singletons. In the online supplement, we also compare
the predictions of the MSS with the vNM stable set for three-player simple games with
either one, two, or three winning two-player coalitions. In the first case, both concepts co-
incide. In the second case, there are two vNM stable sets each with a continuum of states
and containing the finite MSS as a proper subset. In the third case, there are four vNM
stable sets and their union contains the MSS as a proper subset.

4.2. Matching

As a second application, we consider the one-to-one matching model of Gale and Shap-
ley (1962) and the one-to-one matching model of Knuth (1976). In the online supplement,
we also discuss the housing matching model of Shapley and Scarf (1974).

Gale and Shapley (1962) introduced a one-to-one matching model for a finite set N
of individuals, partitioned in the two exhaustive subgroups, men M and women W . The
model can be described by a tuple (M�W � (Pm)m∈M� (Pw)w∈W ) of individuals and their
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preference relations. A matching is a function μ :M ∪W → M ∪W satisfying the follow-
ing properties:

1. For every man m ∈ M , μ(m) ∈W ∪ {m}.
2. For every woman w ∈ W , μ(w) ∈ M ∪ {w}.
3. For all men m ∈ M and women w ∈ W , μ(m) =w if and only if μ(w) =m.

In this setting, our state space X consists of all possible matchings μ. Since X is finite, we
can endow it with the discrete metric d(μ�μ′) = 1{μ�=μ′}. Each man m ∈M has a complete
and transitive strict preference relation Pm over the set W ∪ {m} and each woman w ∈ W
has a complete and transitive strict preference relation Pw over the set M ∪ {w}. The
preferences of the individuals (�i)i∈M∪W over the set X are induced by their preferences
over their match, that is, for all m ∈ M it holds that μ �m μ′ if and only if μ(m) Pm μ′(m)
and for all w ∈W it holds that μ�w μ′ if and only if μ(w) Pw μ′(w).

The formulation of the effectivity correspondence allows us to study the consequences
of different hypothesis on the matching process. We introduce two common assumptions
from the literature on matching. First, every man or woman is allowed to break the link
with the current partner, in which case this man or woman and the former partner become
single:

(1) For all i ∈ N and μ ∈ X with μ(i) �= i, we have {i} ∈ E(μ�μ′) where μ′ ∈ X is such
that

(i) μ′(i)= i,
(ii) μ′(μ(i))= μ(i),

(iii) for every j ∈ N \ {i�μ(i)}, μ′(j)= μ(j).
The second assumption is that any man and woman that are currently not matched to each
other can deviate by creating a link and thereby leaving their former partners single:

(2) For all m′ ∈ M , w′ ∈ W , and μ ∈ X with μ(m′) �= w′, we have that {m′�w′} ∈
E(μ�μ′), where μ′ ∈ X is such that

(i) μ′(m′)=w′,
(ii) μ(m′) ∈ W implies μ′(μ(m′))= μ(m′),

(iii) μ(w′) ∈ M implies μ′(μ(w′))= μ(w′),
(iv) for every j ∈ N \ {m′�w′�μ(m′)�μ(w′)}, μ′(j)= μ(j).

Observe that these two conditions are in line with the γ-model of coalitional sovereignty.
This completes the description of the effectivity correspondence and thereby of the social
environment of the model by Gale and Shapley (1962).

Let (M�W � (Pm)m∈M� (Pw)w∈W ) be a matching problem. A matching μ is said to be
stable if for every i ∈ M ∪ W it does not hold that i Pi μ(i) and if for every pair
(m�w) ∈ M ×W it does not hold that w Pm μ(m) and mPw μ(w). It can easily be shown
that a matching is stable if and only if it is in the core of the social environment �.

In their seminal contribution, Gale and Shapley (1962) showed the existence of a stable
matching. The following result of Roth and Vande Vate (1990) is helpful in determining
the relation between the set of stable matchings and the MSS.

THEOREM 4.6—Roth and Vande Vate (1990): For every matching μ ∈ X , there is a stable
matching μ′ such that μ′ ∈ f N(μ).

Since the set of states is finite in this application, it holds that f N(μ) = f∞(μ). Recalling
Definition 3.12, the result of Roth and Vande Vate (1990) means that � satisfies the weak
improvement property. For finite settings, f is always lower hemi-continuous. Thus, by
Theorem 3.13, the MSS of the social environment induced by the one-to-one matching
model coincides with the set of stable matchings, which is the statement of the following
corollary.
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COROLLARY 4.7: Let (M�W � (Pm)m∈M� (Pw)w∈W ) be a matching problem and let � be the
induced social environment. The MSS of � is unique and equal to the set of stable matchings.

An alternative one-to-one matching model is due to Knuth (1976). This model differs
from the model of Gale and Shapley (1962) in that no individual is allowed to be single.
Therefore, it requires the number of men to be equal to the number of women. If a block-
ing pair forms, the deserted partners are matched together. The primitives of the match-
ing model are given by a tuple (M�W � (Pm)m∈M� (Pw)w∈W ) with |M| = |W |. A matching is
a function μ :M ∪W → M ∪W satisfying the following properties:

1. For every man, m ∈M , μ(m) ∈ W .
2. For every women, w ∈ W , μ(w) ∈ M .
3. For all men m ∈M and women, w ∈W , μ(m) = w if and only if μ(w) = m.

The state space X consists of all matchings μ satisfying the above three properties and
is endowed with the discrete metric d(μ�μ′) = 1{μ�=μ′}. The preferences of the individuals
(�i)i∈M∪W over the set X are induced by their preferences over their match, that is, for
all m ∈ M it holds that μ �m μ′ if and only if μ(m) Pm μ′(m) and for all w ∈ W it holds
that μ �w μ′ if and only if μ(w) Pw μ′(w). If a man and woman create a new link, the
effectivity correspondence also requires a link between their deserted partners. Formally,
for all m′ ∈ M , w′ ∈ W , and μ ∈ X with μ(m′) �= w′, we have that {m′�w′} ∈ E(μ�μ′),
where μ′ ∈ X is such that

1. μ′(m′)=w′,
2. μ′(μ(w′))= μ(m′),
3. for every j ∈ N \ {m′�w′�μ(m′)�μ(w′)}, μ′(j)= μ(j).

This completes the definition of the effectivity correspondence and thereby of the social
environment.

The core of the social environment induced by the Knuth (1976) model is nonempty.
Moreover, as shown by Tamura (1993), when there are at least four women, there are
preferences and a matching μ ∈ X such that f∞(μ) does not contain a stable matching.
In these cases, the MSS contains matchings outside the core and can thus be rather large.
We present such an example in the online supplement and also compare the MSS to the
vNM stable set for that example.

To obtain an intuition which states outside the core are part of a MSS, recall that, by
Theorem 3.9, the MSS coincides with the union of all closed cycles. Thus, if the MSS
contains states outside the core, these states are part of a closed cycle with more than
one element. In such a cycle, agents myopically form new matches and eventually come
back to the initial match. These additional states are included in the MSS due to two re-
strictions on the agents. First, agents are myopic, and thus only consider deviations which
result in an immediate gain. Second, agents are additionally restricted by the effectivity
correspondence which only allows for pairwise deviations.

4.3. Network Formation

As a third application, we look at the model of network formation by Jackson and
Wolinsky (1996). A network is given by a tuple g = (N�E), where the nodes N are the
players of the network and E is the set of undirected edges of the network. An undirected
edge is represented as a set of two distinct players. Two players i� j ∈ N are linked in g
if and only if {i� j} ∈ E . We abuse notation and write ij ∈ g if i and j are linked in the
network g. The set of all networks with node set N is denoted by G. A value function for
player i is a function vi :G → R that associates payoffs for player i for each network in G.
A network problem is thus given by (N�G� (vi)i∈N).
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We identify X with the set G of all possible networks on N and endow it with the
discrete metric d(g�g′)= 1{g �=g′}. Every player i ∈ N has a preference relation �i over the
set X of all possible networks defined by g �i g

′ if and only if vi(g) ≥ vi(g
′). Let g + ij

be the network obtained from network g by adding the link ij to g and let g − ij be the
network obtained by deleting link ij from g.

We follow Jackson and Wolinsky (1996) by considering deviations by coalitions of size
one or two and by assuming link deletion to be one-sided and link addition to be two-
sided. One-sided link deletion allows every player to delete one of his links:

(1) For all players i ∈ N , all networks g ∈ X , and all links ij ∈ g, {i} ∈ E(g�g − ij).
Two-sided link addition allows any two players that are currently not linked to change the
network by forming a link between themselves:

(2) For all players i� j ∈N , all networks g ∈X with ij /∈ g, we have {i� j} ∈E(g�g + ij).
This completes the description of our social environment for the network formation
model. It is straightforward to adjust the effectivity correspondence to incorporate mod-
els of network formation where more than one link at a time can be changed by coalitions
of arbitrary size (Dutta and Mutuswami (1997), Jackson and van den Nouweland (2005))
or where link formation is one-sided (Bala and Goyal (2000)) into our framework. We
refer to Page and Wooders (2009) for a more extensive discussion of alternative rules of
network formation.

A network g is said to be pairwise stable (Jackson and Wolinsky (1996)) if for every
ij ∈ g it holds that vi(g − ij) ≤ vi(g) and vj(g − ij) ≤ vj(g) and for every ij /∈ g it holds
that vi(g + ij) > vi(g) implies vj(g + ij) ≤ vj(g).2 It is not hard to show that a network
is pairwise stable if and only if it is in the core of the social environment � as defined in
Definition 3.10.

Corollary 3.11 shows that any pairwise stable network is in the myopic stable set. How-
ever, it is not necessarily the case that the MSS only contains the pairwise stable networks.

Consider the binary relation R on X defined by g R g′ if g ∈ f N(g′), that is, g can be
reached from g′ by a finite number of dominations. Let I be the symmetric part of R, that
is, g I g′ if and only if g R g′ and g′ Rg. Consider the set of equivalence classes E induced
by I. Denote the equivalence class of network g by [g], that is, g′ ∈ [g] if and only if g′ I g.
For two distinct equivalence classes [g] and [g′], write [g] P [g′] if g R g′. It is easy to see
that [g] P [g′] if and only if g R g′ and not g R g′.

Let V be the collection of maximal elements of (E�P), that is, [g] ∈ V if there is no
[g′] ∈ E such that [g′] P [g]. Since an element of V simply represents a closed cycle as
defined in Definition 3.8, the following result follows from Theorem 3.9.

COROLLARY 4.8: Let (N�G� (vi)i∈N) be a network problem and let � be the induced social
environment. A network g belongs to the unique MSS M of � if and only if the equivalence
class [g] belongs to V , that is, M = {g ∈ X | [g] ∈ V }.

Herings, Mauleon, and Vannetelbosch (2009) defined the pairwise myopically stable
sets for network problems using pairwise stability as defined in Section 2 of Jackson and
Wolinsky (1996). It is not hard to see that the MSS for social environments � coincides
with the pairwise myopically stable set for generic network problems. For such network

2Pairwise stability as defined in Section 2 of Jackson and Wolinsky (1996) is somewhat stronger and also
requires that there is no ij /∈ g such that vi(g + ij) > vi(g) and vj(g + ij) = vj(g). The weaker notion used
here is discussed as an alternative in Section 5 of Jackson and Wolinsky (1996) and is also widely used in the
literature. For generic network problems, there are no indifferences, so the two definitions are equivalent.
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problems, Corollary 4.8 is therefore equivalent to Theorem 1 of Herings, Mauleon, and
Vannetelbosch (2009) that characterizes the pairwise myopically stable set as the union
of closed cycles. In their paper, a closed cycle is defined in the sense of Jackson and
Watts (2002) for network problems. The notion of closed cycle in Definition 3.8 is the
appropriate generalization to social environments.

4.4. Normal-Form Games

As a final application, we consider normal-form games. We consider social environ-
ments where players are restricted to the use of pure strategies. The online supplement
contains a formalization of the mixed extension with several results for that case.

A normal-form game G = (N� ((Σi�di)�ui)i∈N) consists of a set of players N and for
each player i ∈ N a nonempty and compact metric space (Σi�di) of pure strategies and a
utility function ui : Σ→R over the set of strategy profiles Σ= ∏

i∈N Σi. A typical element
of Σ is denoted by s.

For the corresponding social environment � = (N� (X�d)�E� (�i)i∈N), we equate the
state space X with the set of strategy profiles Σ and endow it with the product metric
d(s� s′)= ∑

i∈N di(si� s
′
i). The preferences (�i)i∈N are such that s �i s

′ if and only if ui(s) ≥
ui(s

′).
We write (sS� s−S) for the strategy profile where sS is the list of strategies of players in

coalition S ∈ N and s−S is the list of strategies of all other players, that is, sS = (sj)j∈S
and s−S = (sj)j∈N\S . With a slight abuse of notation, we write si and s−i = (sj)j∈N\{i} for
single-player coalitions S = {i}.

It remains to specify the effectivity correspondence E of the social environment �. By
allowing for all coalitional deviations, we describe coalitional normal-form games. For-
mally, for a coalition S ∈N , the effectivity correspondence is such that S ∈ E(s� s′) if and
only if s−S = s′

−S . For this effectivity correspondence, a strategy profile s ∈ Σ is a strong
Nash equilibrium (Aumann (1959)) if and only if it is in the core of the social environ-
ment �= (N� (X�d)�E� (�i)i∈N). Thus, any strong Nash equilibrium must be in the MSS
of the associated social environment.

Instead of the coalitional approach, we will henceforth restrict attention to the more
frequently analyzed case of a noncooperative game. In this case, the effectivity correspon-
dence E only allows singletons to move. Formally, we have that S ∈ E(s� s′) if and only if
s−S = s′

−S and |S| = 1. A non-cooperative normal-form game G = (N� ((Σi�di)�ui)i∈N)
then induces a social environment � = (N� (X�d)�E� (�i)i∈N) that is identical to the so-
cial environment defined for normal-form games with coalitional moves, except that the
effectivity correspondence E only allows for coalitions of size one.

A strategy profile s ∈ Σ is said to be a pure strategy Nash equilibrium of the game
G if for every i ∈ N and for every s′

i ∈ Σi it holds that ui(s) ≥ ui(s
′
i� s−i). Note that a

strategy profile is a pure strategy Nash equilibrium if and only if it is in the core of the
social environment �. Corollary 3.11 then shows that every pure strategy Nash equilibrium
belongs to every MSS.

In the next step, we define pseudo-potential games (Dubey, Haimanko, and Zapechel-
nyuk (2006)) and show that the MSS coincides with the set of pure-strategy Nash equilib-
ria for this class of games.

DEFINITION 4.9—Pseudo-Potential Game: The game G = (N� ((Σi�di)�ui)i∈N) is a
pseudo-potential game if there exists a continuous function P : Σ → R such that, for all
i ∈N , for all s ∈ Σ, arg maxsi∈Σi

ui(si� s−i)⊇ arg maxsi∈Σi
P(si� s−i).
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Pseudo-potential games generalize ordinal potential games (Monderer and Shap-
ley (1996)) and best-response potential games (Voorneveld (2000)). Moreover, Dubey,
Haimanko, and Zapechelnyuk (2006) showed that the class of pseudo-potential games
contains games of strategic complements or substitutes with aggregation such as Cournot
oligopoly games. Jensen (2010) extended this result to generalized quasi-aggregative
games.3

THEOREM 4.10: Let G = (N� ((Σi�di)�ui)i∈N) be a pseudo-potential game and let � be
the induced social environment. If the utility functions (ui)i∈N are continuous, then the MSS
of � coincides with the set of pure strategy Nash equilibria of G.

For finite supermodular games, Friedman and Mezzetti (2001) establish the weak finite
improvement property which implies the weak improvement property. Thus, the equiva-
lence between the set of pure strategy Nash equilibria and the MSS also extends to this
class of games.

5. CONCLUSION

The myopic stable set provides a solution concept for a wide variety of social environ-
ments. As we have shown, the setting encompasses coalition function form games, models
of network formation, matching models, and noncooperative games. These environments
have been chosen based on their prominence in the literature but are by no means exhaus-
tive. In particular, promising environments for future research on the myopic stable set
include exchange processes in general equilibrium models and many-to-many matching
models with transfers.

The following three features boost the appeal of the myopic stable set as a solution con-
cept. First, the myopic stable set unifies standard solution concepts in many social envi-
ronments. For instance, it coincides with the coalition structure core in coalition function
form games (Kóczy and Lauwers (2004)) if the coalition structure core is nonempty, the
set of stable matchings in the one-to-one matching model of Gale and Shapley (1962),
the set consisting of pairwise stable networks and closed cycles of networks (Jackson and
Watts (2002), and the set of pure strategy Nash equilibria in finite supermodular games
(Topkis (1979) and Milgrom and Roberts (1990) and pseudo-potential games (Dubey,
Haimanko, and Zapechelnyuk (2006).

Second, our solution concept exists for any social environment and—under weak conti-
nuity assumptions—provides a unique set-valued prediction. This differs from well-known
concepts in the literature which fail to satisfy these properties even in social environments
with more structure.

Third, in important classes of problems, the MSS gives sharp predictions. For instance,
for matching markets empirical findings starting with Roth and Peranson (1999) suggested
that the core is small and Ashlagi, Kanoria, and Leshno (2017) provided theoretical ar-
guments for why this is the case. The equivalence between the core of matching problems
and the MSS then implies that MSS has significant predictive power. Other examples are
the equivalence between MSS and the set of pure Nash equilibria pseudo-potential games
and finite supermodular games.

3Generalized quasi-aggregative games include aggregative games (Selten (1970)). For a subclass of aggrega-
tive games, the equivalence result in Theorem 4.10 can be obtained from Dindoš and Mezzetti (2006).



128 DEMUYNCK, HERINGS, SAULLE, AND SEEL

At the same time, there are cases where the MSS may be large. For example, when the
MSS contains states that do not belong to the core as in the matching model by Knuth
(1976) as discussed in Section 4.2. Intuitively, the combination of myopic behavior and
a restrictive effectivity correspondence may result in cycling and hence, a large MSS.
This reflects the trade-off between a general solution concept for which existence and
nonemptiness is guaranteed, like the MSS, and a clear prediction for every class of so-
cial environments. The investigation of refinements of the MSS in such cases is a natural
direction for future research.

APPENDIX: PROOFS

PROOF OF THEOREM 3.1: First, observe that the set of states X is a QMSS. Indeed,
since it is compact, it is closed and it trivially satisfies deterrence of external deviations
and asymptotic external stability.

Let Z be the collection of all sets of states that are a QMSS. Notice that Z is nonempty
as X ∈ Z . A set Z′ ∈ Z is a maximal element in the partially ordered set (Z�⊇) if for all
Z ∈Z with Z′ ⊇Z, we have Z =Z′. We will use Zorn’s lemma to show the existence of a
maximal element in the partially ordered set (Z�⊇).

Let S be a chain in Z , that is, (S�⊇) is a totally ordered subset of (Z�⊇). Let I be
an index set for the sets in S , that is, S = {Zα | α ∈ I}. Let � be the order on I that is
induced by the order on S , that is, β � α if and only if Zα ⊇ Zβ. In order to apply Zorn’s
lemma, we have to show that S has an upper bound in Z . Let M = ⋂

α∈I Z
α. Clearly, M

is an upper bound of S . We proceed by showing that M ∈ Z , that is, M is a QMSS. First
of all, observe that M is closed as it is defined as the intersection of a collection of closed
sets. We need to show that it satisfies deterrence of external deviations and asymptotic
external stability.

Deterrence of external deviations: Let x ∈ M and y /∈ M be given. Then there is α ∈ I
such that y /∈ Zα, since otherwise y ∈ Zα for all α ∈ I, which means that y ∈ M . Since
x ∈Zα and Zα satisfies deterrence of external deviations, we obtain y /∈ f (x) as was to be
shown.

Asymptotic external stability: Consider some y /∈ M . Then there is α ∈ I such that y /∈ Zα.
As S is a chain, it follows that for all β � α we have y /∈ Zβ.

For every β � α, there is xβ ∈ Zβ such that xβ ∈ f∞(y), since Zβ satisfies asymptotic
external stability. This defines a net (xβ)β�α. Given that X is compact, it follows by The-
orem 2.31 of Aliprantis and Border (2006) that this net has a convergent subnet, say
(xβ′

)β′∈I′ , where I ′ ⊆ I is such that for all β ∈ I there is a β′ ∈ I ′ such that β′ �β. Let x be
the limit of this convergent subnet. We split the remaining part of the proof in two steps.
First, we show that x ∈ M . Second, we show that x ∈ f∞(y).

Step 1: x ∈ M : Toward a contradiction, suppose that x /∈ M . Then there exists γ ∈ I
such that x /∈ Zγ . In particular, given that Zγ is a closed set, there is ε > 0 such that
Bε(x)∩Zγ = ∅. Since S is a chain, we have that Bε(x)∩Zδ = ∅ for all δ�γ. Since x is the
limit of the subnet (xβ′

)β′∈I′ , there is γ′ ∈ I ′ such that γ′ �γ and xγ′ ∈ Bε(x). Then we have
xγ′ ∈ Zγ′ , xγ′ ∈ Bε(x), and Bε(x)∩Zγ′ = ∅, a contradiction. We conclude that x ∈ M .

Step 2: x ∈ f∞(y): We need to show that for every ε > 0 there is k ∈ N and x ∈ f k(y)
such that x ∈ Bε(x).

Let some ε > 0 be given. The subnet (xβ′
)β′∈I′ converges to x. As such, there exists

γ′ ∈ I ′ such that xγ′ ∈ Bε/2(x). In addition, xγ′ ∈ f∞(y), so there is k ∈ N and x ∈ f k(y)
such that x ∈ Bε/2(x

γ′
). Then, by the triangle inequality, it holds that x ∈ Bε(x). Together

with x ∈ f k(y), this concludes the proof, that is, x ∈ f∞(y). Q.E.D.
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PROOF OF LEMMA 3.2: Step 1: Let � be a social environment and let M be an MSS
of �. We show in Step 1 that if x ∈ M and y ∈ f∞(x), then y ∈ M .

Let x ∈ M and y ∈ f∞(x) and suppose, toward a contradiction, that y /∈ M . Given that
M is closed, there is ε > 0 such that Bε(y) ∩ M = ∅. Also, by definition, there is k ∈ N
and z ∈ f k(x) such that z ∈ Bε(y), that is, z /∈ M . Since z ∈ f k(x), there is a sequence
z0� z1� � � � � zk of length k such that

z0 = x� z1 ∈ f
(
z0

)
� � � � � zk = z ∈ f

(
zk−1

)
�

Let k′ ∈ {1� � � � �k} be such that zk′ is the first element in this sequence with the property
that zk′

/∈ M . Given that z0 = x ∈ M and zk = z /∈ M , such an element exists. It holds that
zk′−1 ∈ M , zk′ ∈ f (zk′−1), and zk′

/∈ M . This contradicts deterrence of external deviations
for M .

Step 2: It remains to show that M1 ∩M2 �= ∅.
Consider a state x1 ∈ M1. If x1 ∈ M2, then we are done. Otherwise, by asymptotic ex-

ternal stability of M2, we know that there is x2 ∈ M2 such that x2 ∈ f∞(x1). By Step 1, we
have that x2 ∈ M1, so x2 ∈M1 ∩M2. Q.E.D.

The following technical lemma is helpful in proving Theorem 3.4.

LEMMA A.1: If the dominance correspondence f :X →X is lower hemi-continuous, then
the asymptotic dominance correspondence f∞ :X → X is transitive.

PROOF: Let x� y� z ∈ X be such that y ∈ f∞(x) and z ∈ f∞(y). We have to show that
z ∈ f∞(x), so we need to show that for every ε > 0, there is k′ ∈ N and z′ ∈ f k′

(x) such
that z′ ∈ Bε(z).

By assumption, z ∈ f∞(y), so there is k ∈ N and z1 ∈ f k(y) such that z1 ∈ Bε/2(z). In
addition, as y ∈ f∞(x), we know that for every � ∈ N there is k� ∈ N and y� ∈ f k�(x) such
that y� ∈ B1/�(y). This generates a sequence (y�)�∈N that converges to y , that is, y� → y .

Note that f k is lower hemi-continuous, since it is a composition of k lower hemi-
continuous correspondences. Given lower hemi-continuity of f k and the fact that z1 ∈
f k(y), we know that there is a sequence (z�

2)�∈N such that z�
2 → z1 and z�

2 ∈ f k(y�). Now,
we have that y� ∈ f k�(x) and z�

2 ∈ f k(y�), which gives z�
2 ∈ f k+k�(x).

We take � large enough such that z�
2 ∈ Bε/2(z1). Since z1 ∈ Bε/2(z), the triangular in-

equality gives z�
2 ∈ Bε(z). This completes the proof. Q.E.D.

PROOF OF THEOREM 3.4: Suppose not, then, by Theorem 3.1 and Lemma 3.2, there
exists a MSS M1 and a MSS M2 such that M1 �= M2 and their intersection M3 = M1 ∩M2

is nonempty. Let us show that M3 is a QMSS, contradicting the minimality of M1 and
M2, and establishing the uniqueness of the MSS. First of all, notice that M3, being the
intersection of two closed sets, is also closed.

For deterrence of external deviations, let x ∈ M3 and y ∈ f (x). Then given that x ∈ M1

and M1 satisfies deterrence of external deviations, it must be that y ∈ M1. Also given that
x ∈ M2 and M2 satisfies deterrence of external deviations, it must be that y ∈ M2. This
implies that y ∈M1 ∩M2 =M3 as was to be shown.

For asymptotic external stability, take any y /∈ M3. There are three cases to consider.
Case 1: y ∈M1 \M3: Then, by asymptotic external stability of M2, there is x ∈ M2 such

that x ∈ f∞(y). By Step 1 in the proof of Lemma 3.2, we have that x ∈ M1. This means
that x ∈ M1 ∩M2 =M3, which is what we needed to show.
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Case 2: y ∈ M2 \M3: The proof is symmetric to Case 1 with M1 and M2 interchanged.
Case 3: y ∈X \ (M1 ∪M2): We know, by asymptotic external stability of M1, that there

is x ∈ M1 such that x ∈ f∞(y). If x ∈ M3, we are done. If not, we know from Case 1 above
that there is z ∈ M3 such that z ∈ f∞(x). It follows from x ∈ f∞(y) and z ∈ f∞(x) that
z ∈ f∞(y) by Lemma A.1. Q.E.D.

PROOF OF THEOREM 3.7: Let x� y ∈ X and sequences (xk)k∈N and (yk)k∈N in X such
that xk → x and yk → y be given. Let us first show that if individual i ∈ N strictly prefers
y to x, so y �i x, then there is � ∈ N such that for all k ≥ �, yk �i x

k. Suppose not, then
for every � ∈ N we can find k� ≥ � such that xk� �i y

k� . This creates sequences (xk�)�∈N,
(yk�)�∈N in X with xk� → x and yk� → y such that, for every � ∈N, xk� �i y

k� . By continuity
of �i, it holds that x �i y , a contradiction.

Let (xk)k∈N be a sequence in X such that xk → x and consider some y ∈ f (x). Then
either y = x or y �= x and there is a coalition S ∈E(x� y) such that, for every i ∈ S, y �i x.

If y = x, take the sequence (yk)k∈N in X defined by yk = xk. We immediately have that,
for every k ∈N, yk ∈ f (xk), and yk → y .

We now consider the case where y �= x and there is a coalition S ∈ E(x� y) such that,
for every i ∈ S, y �i x. By lower hemi-continuity of the correspondence GS , we know that
there is a sequence (yk)k∈N such that yk ∈ GS(x

k) and yk → y . By the first paragraph of
the proof, we know that for every i ∈ S there is �i ∈N such that, for every k≥ �i, yk �i x

k.
Let �= maxi∈S �i. Then, for every k≥ �, for every i ∈ S, yk �i x

k, and S ∈ E(xk� yk), which
shows that yk ∈ f (xk). The sequence (zk)k∈N defined by zk = xk if k < � and zk = yk if
k ≥ � therefore has all the desired properties: for every k ∈ N, zk ∈ f (xk), and zk → y .

As f is lower hemi-continuous, Theorem 3.4 implies that the social environment has a
unique MSS. Q.E.D.

PROOF OF THEOREM 3.9: Toward a contradiction, suppose there is a closed cycle C
which is not a subset of M . Let x ∈ C and x /∈ M . By asymptotic external stability there is
y ∈ M such that y ∈ f∞(x). By definition of a closed cycle, it follows that y ∈C. As x ∈ C,
again by definition of a closed cycle, we also have that x ∈ f∞(y). By Step 1 in the proof
of Lemma 3.2, it follows that x ∈ M , a contradiction. Since the choice of C was arbitrary,
we have shown that CC ⊆M .

We show next that if X is finite, then CC = M . Since CC ⊆ M , we only need to show
that CC is a QMSS. The set CC satisfies deterrence of external deviations, since for all
x ∈ CC, f (x) ⊆ f∞(x)⊆ CC. It remains to verify asymptotic external stability of CC, that
is, for every state x /∈ CC, f∞(x)∩ CC �= ∅.

Let x /∈ CC and define Y = f∞(x). Note that Y is nonempty since x ∈ f (x). It also
holds that Y is finite and f∞(y) ⊆ Y for every y ∈ Y . Let us represent the set Y and the
dominance correspondence f on Y by a finite directed graph D, that is, (i) Y is the set
of vertices of D and (ii) D has an arc from y to z if and only if z ∈ f (y). By contracting
each strongly connected component of D to a single vertex, we obtain a directed acyclic
graph, which is called the condensation of D. As the condensation is finite and acyclic, it
has a maximal element, say c. Observe that c represents a closed cycle C, so Y ∩ CC �= ∅.

Q.E.D.

PROOF OF THEOREM 3.13: Assume that � satisfies the weak improvement property.
Let M be an MSS of �. By Corollary 3.11, we have CO ⊆ M . We will show that CO is a
QMSS. By minimality, it then follows that CO = M .

In order to see that CO is closed, let (xk)k∈N be a sequence in CO, so for all k ∈ N it
holds that f (xk) = {xk}. Now assume that xk → x and x /∈ CO. This means that there is
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y �= x such that y ∈ f (x). By lower hemi-continuity of f , there is a sequence (yk)k∈N such
that yk ∈ f (xk) and yk → y . As for all k ∈N, xk ∈ CO, we have that yk = xk, which means
that yk → x, so y = x, a contradiction. Deterrence of external deviations is immediate for
the core as it is the union of the sinks. If the social environment satisfies the weak im-
provement property, we have that for all x /∈ CO, f∞(x)∩ CO �= ∅, thus the core satisfies
asymptotic external stability.

For the reverse, let M be a MSS equal to CO. Now, if x ∈ M , it is a sink, so f∞(x) =
{x} ⊆ CO. If x /∈ CO, we have by asymptotic external stability of M that f∞(x) ∩M �= ∅,
so f∞(x) contains a sink, that is, � satisfies the weak improvement property. Q.E.D.

PROOF OF THEOREM 3.15: Suppose that M is a MSS such that M ∩ V = ∅. Recall that
M is nonempty. Let x ∈ M and x /∈ V . Since V satisfies external stability, there is y ∈ f (x)
such that y ∈ V . Since M satisfies deterrence of external deviations, we have that y ∈ M ,
so M ∩ V �= ∅, a contradiction. Q.E.D.

PROOF OF THEOREM 3.16: By Theorem 3.9, the MSS is unique and equal to the union
of all closed cycles CC. Since Q is consistent with f , a state is recurrent if and only if it
belongs to a closed cycle. Q.E.D.

PROOF OF THEOREM 4.4:
Step 1: � has a unique MSS.
We show lower hemi-continuity of E and continuity of the preferences. The result then

follows from Theorem 3.7.
To show lower hemi-continuity of E, let some S ∈N , a sequence (xk)k∈N in X such that

xk → x, and some y ∈ GS(x) be given. We show that there is a sequence (yk)k∈N such that
yk ∈ GS(x

k) and yk → y . If y = x, then the choice yk = xk would do, so consider the case
y �= x.

First of all, there is k′ ∈ N such that for all k ≥ k′, π(xk) = π(x), so in particular
U(xk�S) = U(x�S). For every k < k′, we define yk = xk. For every k ≥ k′, we define
yk ∈ X by π(yk)= π(y) and

ui

(
yk

) =
{
ui(y)� i ∈ N \U(x�S)�

ui

(
xk

)
� i ∈ U(x�S)�

This completely specifies the state yk. Consider some k≥ k′. Since y �= x and y ∈GS(x), it
holds that S ∈ π(y) and, for every i ∈ N \ (S∪U(x�S)), we have that i is a residual player.
The properties of the γ-model imply that {i} ∈ π(y). The same properties hold for π(yk).
For every i ∈ S, it holds that ui(y

k)= ui(y), so ui(y
k)≥ v({i}) and

∑
i∈S ui(y

k)= v(S). For
every i ∈ N \ (S ∪ U(x�S)), we have that ui(y

k) = v({i}) = ui(y). For every i ∈ U(x�S)
it holds that ui(y) = ui(x) and ui(y

k) = ui(x
k). By coalitional sovereignty, we have that

yk ∈ GS(x
k). Using that xk → x, it follows easily that yk → y .

Let some i ∈ N be given. To show continuity of �i, let (xk)k∈N and (yk)k∈N be sequences
in X such that xk → x and yk → y . Then, by continuity of the projection, we have that
ui(x

k) → ui(x) and ui(y
k) → ui(y). So if ui(x

k) ≥ ui(y
k) for all k ∈ N, we obtain ui(x) ≥

ui(y), which shows that x �i y .
Step 2: The core of � is equal to Y .
Let y ∈ CO and suppose y /∈ Y . Then there is a coalition S ∈ N such that

∑
i∈S ui(y) <

v(S). Since y ∈ X , it holds for all i ∈ S that ui(y) ≥ v({i}). Now, let uS be a vector of
payoffs for the members in S such that

∑
i∈S ui = v(S) and for all i ∈ S, ui > ui(y). Then,
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by full support, there exists a state y ′ ∈ X such that S ∈ E(y� y ′) and uS = uS(y
′). We

conclude that y ′ ∈ f (y). This contradicts the fact that y ∈ CO.
For the reverse, let y ∈ Y and suppose there is z ∈ f (y) such that z �= y , that is, y /∈

CO. Then there is S ∈ E(y� z) such that for all i ∈ S it holds that ui(z) > ui(y). Also,
v(S) = ∑

i∈S ui(z) >
∑

i∈S ui(y)≥ v(S), where the first equality follows from the definition
of the state space and the last inequality from the definition of Y . We have obtained a
contradiction.

Step 3: If Y �= ∅, then the MSS of � is equal to Y .
Step 2 shows that Y is equal to the core of �. If we can show that � satisfies the weak

improvement property whenever Y �= ∅, then we can use Theorem 3.13 to establish our
result. Since the proof is trivial when the number of individuals n is equal to 1, we assume
n ≥ 2 throughout.

Assume that Y �= ∅. We need to show that for all x0 ∈ X , f∞(x0) ∩ Y �= ∅. If x0 in Y ,
then nothing needs to be shown, so assume that x0 ∈ X \ Y . We need to show that for
every ε > 0 there is a number k′ ∈ N, a state xk′ ∈ f k′

(x0), and a state y ∈ Y such that
d(xk′

� y) < ε.
Let some ε > 0 be given. Béal, Rémila, and Solal (2013) show that there exists a se-

quence of states (x0� � � � � xk′
) such that xk′ ∈ Y , k′ is less than or equal to (n2 + 4n)/4,

and, for every k ∈ {1� � � � �k′}:
1. there is Sk ∈N such that Sk ∈ E(xk−1�xk),
2. uSk(x

k−1) < uSk(x
k).

Notice that the inequality in 2. only means that at least one of the players in Sk gets a
strictly higher payoff, not necessarily all of them. Let Pk be the set of partners of the
players in Sk at state xk−1, more formally defined as

Pk =
⋃

{S∈π(xk−1)|S∩Sk �=∅}
S�

so Pk is equal to the moving coalition Sk together with the residual players. Since Sk ∈
E(xk−1�xk), it follows that

ui

(
xk

) = v
({i})� i ∈ Pk \ Sk�

ui

(
xk

) = ui

(
xk−1

)
� i ∈ N \ Pk�

We define W k ⊂ Sk to be the, possibly empty, proper subset of Sk consisting of players
that only weakly improve when moving from state xk−1 to state xk, so for every i ∈ W k it
holds that ui(x

k−1)= ui(x
k). We define

δ= min
k∈{1�����k′}

min
i∈Sk\W k

ui

(
xk

) − ui

(
xk−1

)
and ε′ = min{δ�ε}�

so δ is the smallest improvement of any of the strictly improving players involved in
any move along the sequence. It holds that δ > 0 and, therefore, that ε′ > 0. For
k ∈ {0� � � � �k′}, define νk = n2k/(n2k′+1). We define e(W k) = 0 if W k = ∅ and e(W k) = 1
otherwise. We use the sequence (x0�x1� � � � � xk′

) of states as constructed by Béal, Rémila,
and Solal (2013) to define a new sequence (x̃0� x̃1� � � � � x̃k′

) of states by setting x̃0 = x0

and, for every k ∈ {1� � � � �k′},
π

(
x̃k

) = π
(
xk

)
�
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ui

(
x̃k

) = ui

(
xk

) + ε′νk

∣∣Sk \W k
∣∣∣∣W k

∣∣ � i ∈ W k�

ui

(
x̃k

) = ui

(
xk

) − ε′νke
(
W k

)
� i ∈ Sk \W k�

ui

(
x̃k

) = ui

(
xk

) = v
({i})� i ∈ Pk \ Sk�

ui

(
x̃k

) = ui

(
x̃k−1

)
� i ∈ N \ Pk�

Notice that the first line does not entail a division by zero, since if i ∈ W k, then W k �= ∅.
Compared to the sequence (x0�x1� � � � � xk′

), the sequence (x̃0� x̃1� � � � � x̃k′
) is such that

each strictly improving player in Sk \ W k donates an amount ε′νk/|W k| to each of the
players in W k whenever the latter set is nonempty. It is also important to observe that the
fraction νk is an n2 multiple of νk−1 and that νk′ = 1/n.

We show first by induction that, for every k ∈ {0� � � � �k′}, x̃k ∈ X . Obviously, it holds
that x̃0 = x0 ∈ X . Assume that, for some k ∈ {1� � � � �k′}, x̃k−1 ∈ X . We show that x̃k ∈ X .
It holds that

ui

(
x̃k

)
> ui

(
xk

) ≥ v
({i})� i ∈ W k�

ui

(
x̃k

) ≥ ui

(
xk−1

) + δ− ε′νk > ui

(
xk−1

) + δ− ε′ ≥ ui

(
xk−1

) ≥ v
({i})� i ∈ Sk \W k�

ui

(
x̃k

) = v
({i})� i ∈ Pk \ Sk�

ui

(
x̃k

) = ui

(
x̃k−1

) ≥ v
({i})� i ∈N \ Pk�

where the very last inequality follows from the induction hypothesis. Moreover, for every
S ∈ π(xk), it holds that either S = Sk and W k = ∅, so∑

i∈S
ui

(
x̃k

) =
∑
i∈Sk

ui

(
xk

) = v(S)�

or S = Sk and W k �= ∅, so

∑
i∈S

ui

(
x̃k

) =
∑
i∈W k

(
ui

(
xk

) + ε′νk

∣∣Sk \W k
∣∣∣∣W k

∣∣
)

+
∑

i∈Sk\W k

(
ui

(
xk

) − ε′νk
) =

∑
i∈Sk

ui

(
xk

) = v(S)�

or S = {i′} with i′ ∈ Pk \ Sk and∑
i∈S

ui

(
x̃k

) = ui′
(
x̃k

) = ui′
(
xk

) = v
({
i′
}) = v(S)�

or S ⊆ N \ Pk, so S ∈ π(x̃k−1), and∑
i∈S

ui

(
x̃k

) =
∑
i∈S

ui

(
x̃k−1

) = v(S)�

where the last equality makes use of the induction hypothesis. We have now completed
the proof of the fact that for every k ∈ {0� � � � �k′}, x̃k ∈X .

We show next by induction that, for every k ∈ {0� � � � �k′}, and for every i ∈N ,∣∣ui

(
x̃k

) − ui

(
xk

)∣∣ ≤ ε′νk(n− 1)�
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Obviously, for every i ∈ N , it holds that |ui(x̃
0)− ui(x

0)| = 0 ≤ ε′ν0(n− 1). Assume that,
for some k ∈ {1� � � � �k′}, for every i ∈ N , |ui(x̃

k−1) − ui(x
k−1)| ≤ ε′νk−1(n − 1). We show

that, for every i ∈ N , |ui(x̃
k) − ui(x

k)| ≤ ε′νk(n − 1). If i ∈ W k, then W k �= ∅, and the
statement follows from the observation that

0 ≤ ui

(
x̃k

) − ui

(
xk

) = ε′νk

∣∣Sk \W k
∣∣∣∣W k

∣∣ ≤ ε′νk(n− 1)�

If i ∈ Sk \W k, then we have that

0 ≥ ui

(
x̃k

) − ui

(
xk

) ≥ −ε′νk ≥ −ε′νk(n− 1)�

If i ∈ Pk \ Sk, then we have |ui(x̃
k)− ui(x

k)| = 0. If i ∈ N \ Pk, then it holds that∣∣ui

(
x̃k

) − ui

(
xk

)∣∣ = ∣∣ui

(
x̃k−1

) − ui

(
xk−1

)∣∣ ≤ ε′νk−1(n− 1) < ε′νk(n− 1)�

where the first inequality makes use of the induction hypothesis and the last inequality of
the fact that νk−1 < νk.

Let some k ∈ {1� � � � �k′} and some i ∈ Sk be given. We show that ui(x̃
k) > ui(x̃

k−1). If
i ∈W k, then it holds that

ui

(
x̃k

) = ui

(
xk

) + ε′νk

∣∣Sk \W k
∣∣∣∣W k

∣∣ = ui

(
xk−1

) + ε′νk

∣∣Sk \W k
∣∣∣∣W k

∣∣
≥ ui

(
x̃k−1

) − ε′νk−1(n− 1)+ ε′νk
1

n− 1
> ui

(
x̃k−1

)
�

where the strict inequality uses that νk = n2νk−1. If i ∈ Sk \W k, then it holds that

ui

(
x̃k

) ≥ ui

(
xk

) − ε′νk ≥ ui

(
xk−1

) + δ− ε′νk

≥ ui

(
x̃k−1

) − ε′νk−1(n− 1)+ δ− ε′n2νk−1 > ui

(
x̃k−1

)
�

where the strict inequality uses the facts that δ ≥ ε′ and(
n2 + (n− 1)

)
νk−1 < 2n2νk−1 ≤ 2νk ≤ 1�

Combining the statements proven so far, it follows that x̃k′ ∈ f k′
(x0). We complete the

proof of the weak improvement property by noting that xk′ ∈ Y by the result of Béal,
Rémila, and Solal (2013) and by observing that d(x̃k′

�xk′
) < ε since π(x̃k′

) = π(xk′
) and,

for every i ∈ N , ∣∣ui

(
x̃k′) − ui

(
xk′)∣∣ ≤ ε′νk′(n− 1) < ε′ ≤ ε� Q.E.D.

PROOF OF THEOREM 4.5: We show first that F(X) satisfies deterrence of external de-
viations. Let x ∈ F(X) and y ∈ f (x) be given and let S ∈ E(x� y) be such that, for every
i ∈ S, ui(y) > ui(x). It follows that S ∈ W . Since

∑
i∈N ui(x) = ∑

i∈N ui(y) = 1, we have
that S �= N . Since N \ S /∈ W , S has a nonempty intersection with the unique coalition in
π(x)∩W . It follows that π(y) = {S} ∪ {{i} | i ∈ N \ S}, so it holds that y ∈ F(X).

We show next that F(X) satisfies asymptotic external stability. Let some x ∈ X \ F(X)
be given. If π(x) ∩ W �= ∅, then let j ∈ N be such that uj(x) > 0. If π(x) ∩ W = ∅, then
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take any j ∈ N . Since the core of v is empty, it holds that N \{j} ∈W , as otherwise j would
be a veto player. Let y ∈ F(X) be such that π(y) = {N \ {j}� {j}} and uN\{j}(y)� uN\{j}(x).
Since N \ {j} ∈ E(x� y) it holds that y ∈ f (x).

We show next that for every x ∈ F(X) it holds that f∞(x) = F(X). Let some x� y ∈
F(X) be given and denote the winning coalition in π(y) by W . We have to show that for
every ε > 0 there exists k′ ∈N and z ∈ f k′

(x) such that z ∈ Bε(y).
Let some ε ∈ (0�1/n) and S ∈ π(y)\{W } be given. We show first that there is k ∈N and

xk ∈ f k(x) such that for every i ∈ N \ S, ui(x
k) < ε/n and each element of π(xk) is either

a winning coalition or a singleton. If x itself satisfies these properties, then we are done.
Otherwise, there is j ∈ N \ S such that uj(x) ≥ ε/n. Since j is not a veto player, it holds
that N \ {j} ∈ W . Let x1 ∈ X be such that π(x1) = {N \ {j}� {j}}, uN\{j}(x1) � uN\{j}(x),
and, for every i ∈ N \ {j} such that ui(x) < ε/n, ui(x

1) < ε/n. Since uj(x) ≥ ε/n, such an
element x1 exists. It holds that x1 ∈ f (x) and uj(x

1) = 0. If there is j1 ∈ N \ S such that
uj1(x1) ≥ ε/n, then we repeat this argument using j1. Since the set N \S is finite, we reach
a state xk with the desired properties in a finite number of steps.

We define the possibly empty set W 0 = {i ∈ W | ui(y) ≤ ε/n}. Let w ∈ W be a player
such that uw(y)≥ 1/n. Let z ∈ X be such that π(z)= π(y) = {W } ∪ {{i} | i ∈N \W } and

uj(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε

n
� j ∈ W 0�

uj(y)� j ∈ W \ (
W 0 ∪ {w})�

uw(y)−
∑
i∈W 0

(
ε

n
− ui(y)

)
� j = w�

For every j ∈W 0 it holds that uj(z)= ε/n > uj(x
k), for every j ∈ W \ (W 0 ∪ {w}) it holds

that uj(z) = uj(y) > ε/n > uj(x
k), and

uw(z)= uw(y)−
∑
i∈W 0

(
ε

n
− ui(y)

)
≥ 1

n
− n− 2

n

ε

n
>

ε

n
> uw

(
xk

)
�

so uW (z) � uW (x
k). Since every element of π(xk) is either a winning coalition or a single-

ton, it holds that W ∈ E(xk� z). We have shown that z ∈ f (xk) and therefore z ∈ f k+1(x).
We have that π(y) = π(z), for every j ∈ W 0 it holds that |uj(y)− uj(z)| ≤ ε/n, for every
j ∈ W \ (W 0 ∪ {w}) it holds that |uj(y) − uj(z)| = 0, and |uw(y) − uw(z)| ≤ (n − 2)ε/n,
therefore, z ∈ Bε(y), so z has all the desired properties.

It follows by Theorem 3.9 that F(X) is a subset of the MSS and since F(X) satisfies
deterrence of external deviations and asymptotic external stability, it must be equal to the
MSS. Q.E.D.

PROOF OF THEOREM 4.10: It is easy to see that the effectivity correspondence E is
lower hemi-continuous. Moreover, continuity of (�i)i∈N is identical to continuity of the
utility functions (ui)i∈N . As such, it suffices to show that � satisfies the weak improvement
property.

Consider a function b : Σ→ Σ such that, for every s ∈ Σ,

b(s) ∈ arg max
{τ∈Σ|∃i∈N�τ−i=s−i}

P(τ)�

and b(s) = s if P(b(s)) = P(s). For each strategy profile s ∈ Σ, there is j ∈ N and τ∗
j ∈ Σj

such that b(s) = (τ∗
j � s−j) and b(s) maximizes the value of P(τ) over all strategies τ such
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that there is i ∈ N with τ−i = s−i. If the maximal value of P(τ) is equal to P(s), then b(s) is
taken equal to s. As P is continuous and, for every i ∈N , Σi is compact, the maximization
problem has a solution.

Observe that s ∈ Σ is a pure strategy Nash equilibrium of G if and only if

P(s)≥ P(τi� s−i)� i ∈ N�τi ∈ Σi�

It follows that s is a pure strategy Nash equilibrium of G if and only if b(s) = s. Let NE
be the set of all pure strategy Nash equilibria of G. The set NE is nonempty as it contains
all the strategy profiles that maximize P over Σ, a nonempty set since P is continuous and
Σ is compact.

Let us show that � satisfies the weak improvement property, that is, for all states s ∈ Σ,
f∞(s)∩ NE �= ∅.

Let s1 ∈ Σ \ NE be given. Consider the sequence of states (sk)k∈N in Σ defined by s2 =
b(s1)� s3 = b(s2)� � � � . For every k ∈ N, it holds that sk+1 ∈ f (sk), so any accumulation point
of the sequence (sk)k∈N belongs to f∞(s1).

Observe that, by definition, P(s1) ≤ P(s2) ≤ P(s3) ≤ · · · , so the sequence (P(sk))k∈N is
nondecreasing. Further, as (sk)k∈N takes values in the compact set Σ, it has a convergent
subsequence. Let us denote such a subsequence by (x�)�∈N and let x� → x. It holds that
x ∈ f∞(s1). By continuity of P , it holds that P(x�) → P(x). It also holds that, for every
k ∈N, P(sk)≤ P(x).

Since x ∈ f∞(s1), we complete the proof by showing that x ∈ NE. Suppose not, then
there is j ∈ N and a best response τ′

j ∈ Σj such that uj(τ
′
j� x−j) > uj(x). As G is a pseudo-

potential game, there is a best response τ∗
j ∈ Σj such that P(τ∗

j � x−j) > P(x). Since P
is continuous, there is ε > 0 such that for every τ ∈ Bε((τ

∗
j � x−j)) it holds that P(τ) >

P(x). As x� → x, there is �′ ∈ N such that x�′ ∈ Bε(x), so (τ∗
j � x

�′
−j) ∈ Bε((τ

∗
j � x−j)) and

P(τ∗
j � x

�′
−j) > P(x). We have that

P(x) < P
((
τ∗
j � x

�′
−j

)) ≤ P
(
b
(
s�

′)) ≤ P(x)�

a contradiction. Consequently, it holds that x ∈ NE. Q.E.D.
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