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Abstract

This paper studies coalition formation among individuals who differ in productivity.

The output of a coalition is determined by the sum of productivities if the coalition

exceeds a minimal threshold of members. We consider competitive societies in which

the surplus of a coalition is split according to productivity and egalitarian societies in

which coalitions split their surplus equally. Preferences of coalition members depend

on their material payoffs, but are also influenced by positional concerns, which relate

their material payoffs to the average material payoff in the coalition. Our analysis uses

two stability notions, the Core and the Myopic Stable Set.

Both competitive and egalitarian societies lead to segregated partition structures.

For competitive societies, all stable allocations are based on bottom-up segregation,

i.e., individuals with adjacent productivities form coalitions and if some individuals

are not part of a productive coalition, then these are the most productive ones. For

egalitarian societies, we obtain top-down segregation in all stable allocations. Again it

holds that individuals with adjacent productivities form coalitions, but now the least

productive individuals may not be part of any productive coalition.

If all individuals have different productivity levels, then the material efficiency of

competitive societies is below that of egalitarian societies.
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1 Introduction

Coalition formation is an important pattern of human behavior and many social phenomena

can be studied in terms of a coalition formation process. For example, think of the provision

of a local public good, the bargaining process underlying environmental agreements, political

party formation, cartel formation, and racial integration. Typically, we think about the

coalition formation process as a voluntary one. And indeed, in coalitional games, we mostly

assume that individuals cannot exert their power or abilities in order to subjugate others.1

Historically, the exercise of power has been pervasive to every society albeit being present

in different forms. Those forms of coercion can be naturally traced back to the idea of the

“state of nature”, a hypothetical primitive scenario in which neither property rights nor socio-

political institutions of enforcement exist. According to the political philosopher Thomas

Hobbes (1651), this condition of “mere nature” induces a bellum omnium contra omnes in

which the most advantaged individuals are the physically strongest ones.

In the state of nature, however, individuals share the wish of ending the conflicts in order

to claim properties and to benefit from their goods. This common desire leads into a “social

contract” which bans the coercive force in favor of the enforcement power of institutions

which ensure social norms and property rights.2 In broad economic terms, different societies

can be seen as the outcome of different social contracts.

In this paper, we model two possible and alternative outcomes of a social contract, a

competitive and an egalitarian society. The competitive society is characterized by the fact

that it does not allow coercion, but there is no enforcement of resource redistribution within

it, i.e., each member of a coalition receives a material payoff which reflects the member’s

ability. The egalitarian society also does not allow for coercive force, but guarantees through

institutions or norms an equal distribution of resources within a coalition, i.e., each member

of a coalition receives the same material payoff.

In addition to the material payoff, in our model, preferences depend on a notion of

positional concern. The phenomenon of positional concern, especially about income and

consumption, was first elaborated by Duesenberry (1949) who proposed the “demonstration

effect” to explain how a family’s consumption is influenced by the purchases of its neighbors.

Based on this observation, he developed the “relative income hypothesis” which states that

the level of consumption satisfaction of an individual depends on his relative rank in the

society.

1Notable exceptions of models with different forms of coercion are due to Piccione and Rubinstein (2007),

Acemoglu, Egorov and Sonin (2008), and Piccione and Razin (2009).
2On this point of view, see Muthoo (2004) and Hafer (2006) who study models explaining the rise of

property rights from the state of nature.
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Following the same line of reasoning, Frank (1985) argues that positional concerns can

explain many real world phenomena such as flatter intrafirm wage profiles in which low pro-

ductivity workers and high productivity workers are paid more and less with respect to their

marginal contribution to compensate for the difference in relative ranking. More recently,

Card, Mas, Moretti, and Saez (2012) have shown that high relative wages affect job satisfac-

tion and Bracha, Gneezy, and Loewenstein (2015) have shown a positive correlation between

the supply of labor and relative wages. Moreover, happiness is found to be significantly

and negatively affected by a lower relative income (Ferrer-i-Carbonell, 2005; Luttmer, 2005;

Clark, Frijters, and Shields, 2008). To sum up, it is widely accepted that people do not only

care about their absolute wealth, but also about their relative ranking in society.

Motivated by these findings, we propose a coalition formation model with positional

externalities. A state in this model corresponds to a particular partition of the individuals

into coalitions. We model the importance of the relative position in a coalition by the

intragroup relative payoff. This measures the difference between the material payoff of an

individual and the average material payoff of the coalition to which the individual belongs.

For the analysis of competitive and egalitarian societies, we introduce two notions of

segregation, bottom-up segregation and top-down segregation. Roughly speaking, a state is

bottom-up segregated if every coalition is formed by individuals that are adjacent in abilities

and only the most productive individuals may be not be part of any productive coalition. On

the opposite, a state is top-down segregated if every coalition is formed by individuals with

adjacent productivities, but only the weakest individuals may not be part of any productive

coalition.

We employ two different solution concepts to analyze the different societies. First, the

classic concept of the Core which consists of all allocations for which there is no coalition

such that all members benefit from deviating. As a second solution concept, we consider

the Myopic Stable Set as introduced in Demuynck, Herings, Saulle, and Seel (2018). In the

setting of this paper, the Myopic Stable Set is the minimal set of states such that (i) from

any coalition structure in the set, no sequence of myopic coalitional improvements leaves the

set and (ii) for any given initial coalition structure, there is a sequence of myopic coalitional

improvements which leads to an element in the set.

For both competitive and egalitarian societies, we provide a full characterization of the

Core and the Myopic Stable Set and show that both solution concepts coincide. In particular,

we prove that for competitive societies the Myopic Stable Set consists of the set of bottom-up

segregated states and for egalitarian societies the Myopic Stable Set consists of the set of

top-down segregated states. This finding might seem counterintuitive at first glance as one

might expect that the most advantaged individuals are best-off in competitive societies and

the least advantaged individuals are best-off in egalitarian societies.
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The reasoning behind the predictions for competitive societies is as follows. First, note

that the individuals with the lowest productivity are very attractive as coalition members,

since they yield a higher relative payoff to other members of the coalition. Since these in-

centives are mutual, groups of individuals with low productivity will form. Intuitively, a

similar process repeats until only individuals with high productivity might remain in unpro-

ductive coalitions. By contrast, the results for egalitarian societies rely on the fact that in an

egalitarian society there is no envy among individuals, i.e. the relative payoff of each indi-

vidual in each coalition is the same. Thus, individuals prefer to stay with highly productive

individuals in order to increase their material payoff.

We conclude by providing a comparative welfare analysis between the two types of so-

cieties. When all individuals differ in productivity, stable states in egalitarian societies are

always at least as materially efficient as stable states in competitive societies. This is caused

by the fact that in an egalitarian society, the most productive individuals are always part

of a productive coalition, while this might not be the case for competitive societies. We

show that in the general case, with arbitrary productivities, there can be stable states in a

competitive society which lead to strictly higher material efficiency than all stable states in

egalitarian societies.

1.1 Related Literature

This paper is part of the vast literature on coalition formation theory (e.g. Ray, 2007; Ray

and Vohra, 2014) and it is in line with contributions on hedonic games (e.g. Banerjee,

Konishi, and Sönmez, 2001; Bogomolnaia and Jackson, 2002), social status (Milchtaich and

Winter, 2002), and segregation (e.g. Goyal, Hernández, Mart́ınez-Cánovas, Moisan, Muñoz-

Herrera, and Sánchez, 2018).

In particular, our work is closely related to an increasing branch of literature devoted to

the role of social norms in group formation (e.g. Watts, 2007; Piccione and Razin, 2009;

Barberà, Beviá, and Ponsat́ı, 2015; Morelli and Park, 2016; Beviá, Córchon, and Romero-

Medina, 2017). As in Piccione and Razin (2009), Morelli and Park (2016), and Barberà,

Beviá, and Ponsat́ı (2015), we consider a model of coalition formation in which agents are

vertically differentiated in productivity.

Piccione and Razin (2009) study a partition function game in which the relative strength

of coalitions is represented by an exogenous “power relation”. Agents care only about their

social ranking, which is determined by their own individual power and by the power of the

coalition to which they belong.

Morelli and Park (2016) study how the degree of heterogeneity in the remuneration of

the individuals affects the number of rival coalitions. The heterogeneity in remuneration

is modeled by a ranking rule defined on the imputation rule. Moreover, they distinguish
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between productivity and material efficiency defining the last one as an increasing function

with respect to the cardinality of the coalition. In contrast to Morelli and Park (2016), we

define the ranking rule on productivity levels.

In line with Barberà, Beviá, and Ponsat́ı (2015), we consider a stylized model of a society

consisting of individuals, a productivity vector, and a productivity threshold. We study two

possible allocation rules, the egalitarian one and the competitive one. In contrast to Barberà,

Beviá, and Ponsat́ı (2015), we incorporate positional concerns into our analysis.

Since we implement a ranking rule in the preference structure, our contribution can be

also broadly related to the literature on social preferences (e.g. Watts, 2007; Dufwenberg,

Heidhues, Kirchsteiger, Riedel, and Sobel, 2011; Maccheroni, Marinacci, and Rustichini,

2012). In particular, from this point of view, it is in line with Watts (2007), who studies two

different settings. In one of them, individuals prefer coalitions with high-skilled members

and in the other individuals prefer coalitions with low-skilled members. In Watts (2007), the

number of coalitions is fixed and ties are broken in favor of the biggest coalition.

2 Model and Key Definitions

We first describe the building blocks of a society pN, λ, ρq. The finite set N � t1, . . . , nu

consists of all individuals in the society. A coalition S is a non-empty subset of N and the

collection of all possible non-empty coalitions is denoted by N � 2NztHu. The collection of

all partitions of a coalition S P N is denoted by PpSq. The set PpNq is denoted by X and is

called the state space. An element x P X is called a state and we write |x| for the number

of coalitions in x.

Let λ P RN
�� be a productivity vector, where λi represents the productivity level of indi-

vidual i. Without loss of generality, the individuals in N are indexed in decreasing order of

productivity, i.e., λ1 ¥ λ2 ¥ � � � ¥ λn. Let some coalition S P N be given. An individual

i P S such that λi ¤ λj (λi ¥ λj) for all j P S is called a weak (strong) individual in S. Let

wpSq � maxS and spSq � minS denote the highest and the lowest numbered individual in

coalition S, respectively. Notice that wpSq is a weak and spSq is a strong individual in S.

For S � N , we drop the reference to the coalition and simply refer to an individual i as a

weak or a strong individual.

The productivity threshold ρ P N denotes the minimal level below which a coalition is

not productive. To make the problem interesting, we assume throughout the paper that

ρ ¤ n. The surplus upSq of coalition S P N equals upSq �
°
iPS λi if |S| ¥ ρ and 0 otherwise.

The average surplus in coalition S is denoted by ūpSq � upSq{|S|. To get an intuition for

the surplus function, think of the coalition as a firm which produces using a production

technology which requires a minimal number of workers to produce any output and exhibits
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constant returns to scale above this threshold.3

Our next step is to specify how a coalition S P N distributes its surplus over the coalition

members. We denote the material payoff of individual i in coalition S by mipSq P R.
Members of unproductive coalitions have a material payoff equal to zero. For members of

productive coalitions, we consider two natural ways to divide the surplus. A division is

competitive if each member of a productive coalition is paid according to productivity. A

division is egalitarian if each member of a productive coalition receives the same payoff.

These restrictions could be legal requirements, but they can also be thought of as social

norms within a society.

Definition 2.1 (Competitive Society). A society pN, λ, ρq is competitive if surplus division

within coalitions is competitive, i.e., for all S P N and for all i P S, mipSq � λi if |S| ¥ ρ

and mipSq � 0 otherwise.

Definition 2.2 (Egalitarian Society). A society pN, λ, ρq is egalitarian if surplus division

within coalitions is egalitarian, i.e., for all S P N and for all i P S, mipSq � ūpSq if |S| ¥ ρ

and mipSq � 0 otherwise.

Since it will be clear from the context which of the two types of societies we are studying,

we do not reflect the type of society in the notation for the material payoffs. We incorporate

positional concerns through the following notion of relative payoff.

Definition 2.3 (Relative Payoff). Let pN, λ, ρq be a society. The relative payoff of individual

i P N in coalition S P N equals ripSq � mipSq � ūpSq.

The relative payoff measures the material payoff of individual i relative to the average

payoff in the individual’s coalition. Note that both for competitive and egalitarian societies,

the partition structure uniquely determines the payoffs and thereby the relative payoffs. Note

also that in an egalitarian society, the relative payoff is equal to zero for each individual.

For every x P X and i P N , we denote by mipxq the material payoff of individual i in

state x, i.e., mipxq � mipSipxqq, where Sipxq is the coalition to which individual i belongs in

state x. Similarly, we write ripxq � ripSipxqq for the relative payoff of individual i in state x.

We are now ready to define the preferences of individual i P N over the state space. For

every x, y P X, we define relative payoff preferences ©i over X by setting x ©i y if and only

if either mipxq ¡ mipyq or both mipxq � mipyq and ripxq ¥ ripyq. Thus, individual i prefers

the state with the higher material payoff and if two states deliver the same material payoff,

the one with the higher relative payoff. We denote the asymmetric part of ©i by ¡i .

3An alternative specification would be to define the threshold in terms of a minimum sum of productivities.

This would lead to similar results.
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The final building block of our social environment is an effectivity correspondence E.

For each pair of states x, y P X, the effectivity correspondence E associates a collection of

coalitions Epx, yq � N which can move from x to y. If Epx, yq � H, then no coalition can

move from x to y. If T P Epx, yq, we say that coalition T can move from state x to state y.

We distinguish three groups that are affected by a move of T from x to y: the moving

individuals T themselves, the residual individuals, and the unaffected individuals. The

moving individuals T create a new coalition and leave their former coalition members, the

residual individuals, behind. Formally, for every x, y P X and T P Epx, yq, the residual

individuals are given by

Rpx, T q � ti P NzT | Sipxq X T � Hu.

The unaffected coalitions U are the coalitions that are not influenced by the activity of the

moving individuals. Formally, we have

Upx, T q � tS P x|S X T � Hu.

The members of the coalitions in Upx, T q are called the unaffected individuals and are col-

lected in the set Upx, T q.

The related literature entertains different assumptions regarding the residual individuals.

We consider the δ-model (see Hart and Kurz, 1983) which prescribes that the residual indi-

viduals stay together.4 We also assume that the deviating coalition does not have the power

to influence the unaffected individuals. The effectivity correspondence is therefore defined

as

Epx, yq � tT P N |T P y, Upx, T q � y, @i P Rpx, T q, SipxqzT P yu, x, y P X.

This completes the description of the effectivity correspondence and thereby of our social

environment Γ � pN,X,E, t©iuiPNq induced by a society pN, λ, ρq.

It follows from the definition that, for every x P X, Epx, xq � x, that is, any coalition in

x can choose to stay at x. Proposition 2.4 shows that for every x, y P X such that x � y, at

most two coalitions can be part of Epx, yq.

Proposition 2.4. Let Γ � pN,X,E, t©iuiPNq be a social environment induced by a society.

For all x, y P X such that x � y, we have |Epx, yq| P t0, 1, 2u.

Proof. We distinguish two cases: either the moving individuals were part of one coalition or

they were part of two or more coalitions before moving.

4An alternative specification is the γ-model, which prescribes that residual individuals fall apart into

singleton coalitions. This would lead to similar results.
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Case 1: For all T P y, there exists S P x such that T � S.

If Epx, yq � H, we are done, so assume Epx, yq � H. Since x � y, there exists T P y

and S P x such that T � S. Because we are in Case 1 and Epx, yq � H, the coalition S is

uniquely determined. Observe that T cannot be an unaffected coalition. Hence, T can only

be a moving coalition or a coalition consisting of residual individuals. In the latter case, SzT

is equal to the moving coalition. It follows that Epx, yq � tT, SzT u.

Case 2: There exists T P y such that, for all S P x, we have T zS � H.

If Epx, yq � H, we are done, so assume Epx, yq � H. Since T cannot be an unaffected

or a residual coalition, the only way to go from x to y is by a move of T . It follows that

Epx, yq � tT u.

3 Stability

In what follows, we define two related notions, the Core and the Myopic Stable Set. Both

rely on a particular dominance notion. To define it, we write ypx, Sq P X to denote the state

that results from E when the current state is x and the moving coalition is S.

Definition 3.1 (Strict Dominance). Let Γ � pN,X,E, t©iuiPNq be a social environment

induced by a society. A state y P X strictly dominates x P X by S P N if y � ypx, Sq and

y ¡i x for all i P S.

Let a coalition S P N be given. Let fS : X Ñ X be the coalitional dominance corre-

spondence, where, for every x P X, fSpxq denotes the set of states that strictly dominate

x by S. Note that fSpxq is either the singleton typx, Squ or the empty set. We write

fpxq �
�
SPN fSpxq to denote the subset of X consisting of all states that strictly dominate

x. Such states are also referred to as myopic improvements upon x. The Core equals the set

of states which are not strictly dominated by another state.

Definition 3.2 (Core). Let Γ � pN,X,E, t©iuiPNq be a social environment induced by a

society. The Core equals the set of states C � tx P X | fpxq � Hu.

To define the Myopic Stable Set, it is convenient to define f̃pxq � fpxq Y txu, so f̃pxq is

obtained from fpxq by adding the state x. We define the two-fold composition of f̃ by

f̃ 2pxq � tz P X|Dy P f̃pxq : z P f̃pyqu.

For k P N, we define the k-fold iteration f̃kpxq by induction as

f̃kpxq � tz P X|Dy P f̃k�1pxq : z P f̃pyqu.
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We define the set of all states that can be reached from x by a finite number of dominations

by

f̃Npxq �
�
kPNf̃

kpxq.

Because the set X is finite, there is k1 P N such that, for every k ¥ k1, f̃Npxq � f̃kpxq.

We are now ready to introduce the Myopic Stable Set, following the definition of De-

muynck, Herings, Saulle, and Seel (2018) for general social environments.5

Definition 3.3 (Myopic Stable Set). Let Γ � pN,X,E, t©iuiPNq be a social environment

induced by a society. The set M � X is a Myopic Stable Set if it satisfies the following three

conditions:

1. Deterrence of external deviations: For every state x PM , fpxq �M .

2. Iterated external stability: For every y P XzM , we have that f̃Npyq XM � H.

3. Minimality: There is no set M 1 �M that satisfies Conditions 1 and 2.

The first condition requires that no state in the set is dominated by a state outside the

set. By the second condition, from any state outside the set, there is a finite sequence of

dominations which reaches the set. The final condition requires the set to be a minimal set

which satisfies the first two conditions.

A Myopic Stable Set is based on a myopic notion of dominance as agents or coalitions

do not predict how their decision to change the current state will lead to further changes by

other agents or coalitions. Such a notion is natural in complex social environments where

the number of possible states is large and agents have little information about the possible

actions other agents may take or the incentives of other agents. As shown in Demuynck,

Herings, Saulle, and Seel (2018), for finite state spaces there is an equivalence between the

set of recurrent states of any dynamic process that selects all myopic improvements with

positive probability and the Myopic Stable Set.

In the remainder of this section, we provide some auxiliary results which will be helpful

in establishing the main results in the next section. The first set of results follow directly

from previous work. More specifically, by Theorem 3.4 in Demuynck, Herings, Saulle, and

Seel (2018), if the dominance correspondence f̃ is lower hemi-continuous then the Myopic

Stable Set is unique. Notice that lower hemi-continuity is trivially satisfied for finite state

spaces. Thus, the Myopic Stable Set of the social environment induced by a society is always

5Demuynck, Herings, Saulle, and Seel (2018) allow for social environments with an infinite state space.

For the finite case, their closedness requirement is automatically satisfied and f̃8pyq, the closure of f̃Npyq, can

be replaced by f̃Npyq in the definition of iterated external stability. Thus, for the finite case, the definition

of Myopic Stable Set in Demuynck, Herings, Saulle, and Seel (2018) is equivalent to Definition 3.3.
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unique. The property of internal external stability guarantees that the Myopic Stable Set is

non-empty. Moreover, by Corollary 3.11 in Demuynck, Herings, Saulle, and Seel (2018), the

Core is a subset of the Myopic Stable Set. Contrary to the concept of the Core, which only

requires that there is no deviation away from one of its elements, the property of iterated

external stability guarantees that the Myopic Stable Set can be reached from any initial

state.

We establish a simple but useful result for the case in which some individuals have the

same productivity level. Intuitively, if a state in which these individuals are in different

coalitions is in the Core, then all states in which these individuals swap their coalitions are

also in the Core. To define this formally, for given x, y P X, let b : N Ñ N be a productivity

preserving permutation, i.e., b is a one-to-one mapping such that bpiq � j implies λi � λj.

Moreover, we define bpSq � tj P N | Di P S such that j � bpiqu.

Definition 3.4 (Equivalence). Let pN, λ, ρq be a society. The states x and y in X are

equivalent if there is a productivity preserving permutation b such that for all coalitions

S P x it holds that bpSq P y.

Since b can be the identity, any state x is equivalent to itself. We denote the equivalence

class of a state x by rxs. The next result shows if a state is in the core, than all equivalent

states are also in the core.

Proposition 3.5. Let Γ � pN,X,E, t©iuiPNq be a social environment induced by a compet-

itive or an egalitarian society. If x P C, then rxs � C.

Proof. Assume x P C and y P rxs. Let b be a productivity preserving permutation such that

for all coalitions S P x it holds that bpSq P y. Suppose y R C. Then there exists z P X

and T P N such that z P fT pyq. We define b�1pzq � tS P N | bpSq P zu. It holds that

b�1pzq P fb�1pT qpxq, contradicting that x P C.

We do not establish the corresponding analogue of Proposition 3.5 for the Myopic Stable

Set at this point, since it does not admit a simple proof. In the next section, however, we

show that the predictions of the Myopic Stable Set and the Core coincide. Thus, if the

Myopic Stable Set contains a state x, it also contains all states in rxs.

4 Segregation

In this section, we introduce different notions of segregation. In our framework, segregation

means that coalitions are formed between individuals with adjacent productivity levels. We

first define segregation at the coalitional level.
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Definition 4.1 (Segregated Coalition). Let pN, λ, ρq be a society. A coalition S P N is

segregated if for all i, j P S with λi   λj there is no k P NzS such that λi   λk   λj.

To facilitate a formal definition of segregation at the societal level, we denote the set of

all unproductive individuals at state x by Zpxq � ti P N | |Sipxq|   ρu and the collection of

all productive coalitions at state x by Ppxq � tS P x | |S| ¥ ρu. We introduce two notions

which capture the idea of segregation at the societal level. The first one is called bottom-

up segregation. A state is bottom-up segregated if it satisfies three properties: coalitional

assortativity, homophily, and exclusion of the strong.

Definition 4.2 (Bottom-up Segregated State). Let pN, λ, ρq be a society. The state x P X

is bottom-up segregated if the following three properties hold:

i. Coalitional assortativity: For every S, T P Ppxq with S � T, we have λwpSq ¥ λspT q

or λwpT q ¥ λspSq.

ii. Homophily: If S P x satisfies |S| ¡ ρ, then, for all i, j P S, we have λi � λj.

iii. Exclusion of the strong: It holds that |Zpxq|   ρ. If Zpxq � H, then for every

i P Zpxq and for every j P NzZpxq, we have λi ¥ λj.

Coalitional assortativity requires that given any two productive coalitions, a weak indi-

vidual in one coalition has weakly higher productivity than a strong individual in the other

coalition. Homophily states that if a coalition strictly exceeds the productivity threshold,

then all individuals in the coalition have the same productivity. Exclusion of the strong

means that only the strongest individuals may not be part of a productive coalition.

We denote the set of all bottom-up segregated states by X.

Example 4.3. Consider a society pN, λ, ρq with N � t1, . . . , 7u, productivities given by

λ1 � � � � � λ3 ¡ λ4 � � � � � λ7, and a productivity threshold ρ � 2. The state x �

tt1, 2u, t3u, t4, 5, 6, 7uu is an example of a bottom-up segregated state. Since all individuals

in a coalition have the same productivity, coalitional assortativity and homophily are trivially

satisfied. Exclusion of the strong holds since the only member of an unproductive coalition

is the strong individual 3.

The following lemma shows that productive coalitions in a bottom-up segregated state

are indeed segregated.

Lemma 4.4. Let pN, λ, ρq be a society. If x P X and S P Ppxq, then S is segregated.

10



Proof. Suppose not. Let x P X, S P Ppxq, i, j P S, and k P NzS be such that λi   λk   λj.

Let T P x be such that k P T. By homophily, it holds that |S| � ρ. If T P Ppxq, then,

by coalitional assortativity, λwpSq ¥ λspT q ¥ λk or λk ¥ λwpT q ¥ λspSq, which contradicts

i, j P S and λi   λk   λj. If T R Ppxq, then k P Zpxq, so by exclusion of the strong we have

λk ¥ λspSq, leading to a contradiction with j P S and λk   λj.

In what follows, we provide an algorithmic procedure to find all bottom-up segregated

states of a given society. The procedure results in a weighted directed rooted tree pV,A, v0q,

where V is a set of decision nodes, A � V � V is a set of ordered pairs of nodes called arcs,

and v0 is a given initial decision node. To each arc a P A, we associate an integer µa P N
called its weight. This weight µa corresponds to the size of the coalition that is formed at

the current decision node. Given some v P V, we denote by Av � A the set of all arcs

on the directed path from v0 to v. Since pV,A, v0q is a directed rooted tree, the set Av is

uniquely determined. To each decision node v, we associate a number npvq corresponding to

the number of individuals that are not yet assigned to a coalition.

Procedure 4.5. Let pN, λ, ρq be a society. Let v � v0 with v0 a given decision node. The

initial set of arcs A is equal to the empty set.

Step 1 Define npvq � n�
°
aPAv µa. If npvq ¥ ρ, then add

k � max
 
1, npvq � min

 
i P t1, . . . , npvqu | λi � λnpvq

(
� ρ� 2

(

arcs starting at v and ending at distinct new decision nodes. The arcs all have different

weights, ranging from ρ to ρ � k � 1. If 0 ¤ npvq   ρ, then v is a terminal decision

node and no new decision node is created.

Step 2 For each new decision node created in Step 1, go back to Step 1. Step 2 finishes

when there are no new decision nodes anymore.

Step 3 Consider the weighted rooted directed tree pV,A, v0q resulting from Steps 1 and 2.

For every terminal node v, let pa1, . . . , a`q be the arcs on the path from v0 to v, and,

for every partition P P Ptn�
°`
k�1 µak , . . . , 1u, generate the state

!
tn, . . . , n� µa1 � 1u, . . . , tn�

°`�1
k�1µak , . . . , n�

°`
k�1µak � 1u

)
Y P.

Step 4 Collect all the states created in Step 3 and add all equivalent states.

Intuitively, Procedure 4.5 works as follows. First, the highest numbered individuals form

a productive coalition that satisfies homogeneity. Then the remaining highest numbered

individuals form the next productive coalition that satisfies homogeneity, and so on. If some

11
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Figure 1: Result of Steps 1 and 2 of Procedure 4.5 for Example 4.3.

individuals are not part of a productive coalition of this bottom-up process, then those are

the lowest numbered ones, i.e., the most productive ones, and they split up in an arbitrary

way. The final step of Procedure 4.5 picks up equivalent states.

We use Example 4.3 to illustrate Procedure 4.5. The weighted directed rooted tree

generated in Steps 1 and 2 is illustrated in Figure 1. This directed rooted tree has five

terminal nodes, resulting in five states in Step 3:

x1 � tt1, 2, 3u, t4, 5u, t6, 7uu,

x2 � tt1u, t2, 3u, t4, 5u, t6, 7uu,

x3 � tt1, 2u, t3, 4u, t5, 6, 7uu,

x4 � tt1u, t2, 3u, t4, 5, 6, 7uu,

x5 � tt1, 2, 3u, t4, 5, 6, 7uu.

Step 4 adds equivalent states. By elementary combinatorics, this leads to two additional

states for x1, eight additional states for x2, eleven additional states for x3, two additional

states for x4, and no additional states for x5. None of these states is identical. Thus, we have

a total of 28 bottom-up segregated states. We refer to the appendix for a full enumeration

of the bottom-up segregated states.

Proposition 4.6. Let pN, λ, ρq be a society. Procedure 4.5 generates the set of bottom-up

segregated states X.

Proof. See Appendix.

The second notion of societal segregation is top-down segregation. As bottom-up segre-

gation, it requires three properties. The first two properties, coalitional assortativity and

12



homophily, are identical as for bottom-down segregation. The third one replaces exclusion

of the strong by exclusion of the weak, i.e., the least productive individuals can be excluded.

Definition 4.7 (Top-down Segregated State). Let pN, λ, ρq be a society. The state x P X

is top-down segregated if the following three properties hold:

i. Coalitional assortativity: For every S, T P Ppxq with S � T , we have λwpSq ¥ λspT q

or λwpT q ¥ λspSq.

ii. Homophily: If S P x satisfies |S| ¡ ρ, then, for all i, j P S, we have λi � λj.

iii. Exclusion of the weak: It holds that |Zpxq|   ρ. If Zpxq � H, then for every

i P Zpxq and for every j P NzZpxq, we have λi ¤ λj.

We denote the set of all top-down segregated states by X. The following result states

that every productive coalition in a top-down segregated state is segregated. The proof is

analogous to Lemma 4.4 and therefore omitted.

Lemma 4.8. Let pN, λ, ρq be a society. If x P X and S P Ppxq, then S is segregated.

The procedure to find all top-down segregated states also proceeds along the same lines

as for bottom-down segregated states.

Procedure 4.9. Let pN, λ, ρq be a society. Let v � v0 with v0 a given decision node. The

initial set of arcs A is equal to the empty set.

Step 1 Define npvq � n�
°
aPAv µa. If npvq ¥ ρ, then add

k � max
 
1, npvq � min

 
i P t1, . . . , npvqu | λi � λnpvq

(
� ρ� 2

(

arcs starting at v and ending at distinct new decision nodes. The arcs all have different

weights, ranging from ρ to ρ � k � 1. If 0 ¤ npvq   ρ, then v is a terminal decision

node and no new decision node is created.

Step 2 For each new decision node created in Step 1, go back to Step 1. Step 2 finishes

when there are no new decision nodes anymore.

Step 3 Consider the weighted rooted directed tree pV,A, v0q resulting from Steps 1 and 2.

For every terminal node v, let pa1, . . . , a`q be the arcs on the path from v0 to v, and,

for every partition P P Pt
°`
k�1 µak � 1, . . . , nu generate the state

!
t1, . . . , µa1u, . . . , t

°`�1
k�1µak � 1, . . . ,

°`
k�1µaku

)
Y P.

Step 4 Collect all the states created in Step 3 and add all equivalent states.

13



Proposition 4.10. Let pN, λ, ρq be a society. Procedure 4.9 generates the set of top-down

segregated states X.

As the procedure is the mirror image of the case for bottom-up segregation, we omit the

proof that Procedure 4.9 results in the set of top-down segregated states.

5 Results for Competitive and Egalitarian Societies

In this section, we study the general properties of competitive and egalitarian societies with

relative payoff preferences.

The following result is the main characterization result for competitive societies.

Theorem 5.1. Let Γ � pN,X,E, t©iuiPNq be the social environment induced by a competitive

society pN, λ, ρq. A state is in the Core of Γ if and only if it is a bottom-up segregated state.

Moreover, the Core coincides with the Myopic Stable Set.

Proof. See Appendix.

Both the Core and the Myopic Stable Set predict the set of bottom-up segregated states.

Let us start with an intuition for the Core. An existing productive coalition has two differ-

ent ways of improving its payoffs. Either it can get rid off a member with above average

productivity or it can add less productive individuals to the coalition. When a state satisfies

homophily, the first option does not work as any resulting coalition would be unproductive.

The second option is prevented when a state satisfies coalitional assortativity as the less

productive individuals would not want to switch to a more productive coalition. Finally,

if the total number of individuals in unproductive coalitions is below ρ, an unproductive

individual can only form coalitions with already productive individuals. However, if the un-

productive individuals have a high productivity as a consequence of exclusion of the strong,

other individuals will not form coalitions with them due to the resulting lower social rank.

The equivalence of the Core and the Myopic Stable Set gives an additional dynamic

foundation for the prediction: from any state that is not bottom-up segregated, there is a

path of myopic improvements to a bottom-up segregated state. In fact, any dynamic process

that selects myopic improvements with positive probability will have the Myopic Stable Set

as the set of recurrent states.

We now turn to the special case where all individuals differ in productivity.

Definition 5.2 (Complete Heterogeneity). A society pN, λ, ρq is completely heterogeneous if

all individuals differ in their productivity, i.e., for all i, j P N with i � j, we have λi � λj.

14



Let ` and o be non-negative integers such that o   ρ and the number of individuals in

the society equals n � `ρ � o. The number ` is equal to the highest possible number of

productive coalitions. For k P t1, . . . , `u, we define Bk � tn � ρk � 1, . . . , n � pk � 1qρu

and call it the kth bottom-up segregated coalition. These coalitions are collected in the set

B � tBk | k � 1, . . . , `u.

Proposition 5.3. Let Γ � pN,X,E, t©iuiPNq be the social environment induced by the

completely heterogeneous competitive society pN, λ, ρq. Then the Core consists of those states

which contain the collection B, i.e., C � tx P X|B � xu.

Proof. By Theorem 5.1, the Core coincides with the set of bottom-up segregated states X.

By Proposition 4.6, Procedure 4.5 generates the entire set X. Using the fact that the society

is completely heterogeneous, it follows that in Step 1 of the procedure only arcs with weight

ρ are generated, leading to exactly the states in tx P X|B � xu in Step 3. By the fact that

the society is completely heterogeneous, there are no equivalent states x and y such that

x � y. Therefore, no new states are added in Step 4 of Procedure 4.5.

The previous proposition uniquely characterizes the productive coalitions in the Core. It

allows for an arbitrary partition of the unproductive individuals. Their material payoff is

zero in either case and thus their relative payoff is also zero.

If n is an integer multiple of ρ, then the Core is unique and it coincides with the collection

of bottom-up segregated coalitions B. Similarly, if n � ρ` � 1, then the Core is unique and

it coincides with the collection of bottom-up segregated coalitions B and the singleton t1u.

We now turn to the analysis of egalitarian societies. Recall that relative payoffs are

now zero for all individuals. Thus, the preferences coincide with the preferences over the

material payoffs. The following proposition is the main characterization result for egalitarian

societies.

Theorem 5.4. Let Γ � pN,X,E, t©iuiPNq be the social environment induced by an egali-

tarian society pN, λ, ρq. A state is in the Core of Γ if and only if it is a top-down segregated

state. Moreover, the Core coincides with the Myopic Stable Set.

Proof. See Appendix.

Contrary to the case of competitive societies, in egalitarian societies members of produc-

tive coalitions prefer to have more productive individuals in their coalition.

Let ` and o be non-negative integers such that o   ρ and the number of individuals

in the society equals n � `ρ � o. For k P t1, . . . , `u, we define T k � tρk � ρ � 1, . . . , ρku

and call it the kth top-down segregated coalition. These coalitions are collected in the set

T � tT k | k � 1, . . . , `u.
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Proposition 5.5. Let Γ � pN,X,E, t©iuiPNq be the social environment induced by the

completely heterogeneous egalitarian society pN, λ, ρq. Then the Core consists of those states

which contain the collection T , i.e., C � tx P X|T � xu.

Proof. By Theorem 5.4, the Core coincides with the set of top-down segregated states X.

Procedure 4.9 generates the entire set X. Using the fact that the society is completely

heterogeneous, it follows that in Step 1 of the procedure only arcs with weight ρ are generated,

leading to exactly the states in tx P X|T � xu in Step 3. By the fact that the society is

completely heterogeneous, there are no equivalent states x and y such that x � y. Therefore,

no new states are added in Step 4 of Procedure 4.9.

6 Material Efficiency

In this section, we compare competitive and egalitarian allocations in terms of the resulting

material efficiency.

Definition 6.1 (Material Efficiency). Let pN, λ, ρq be a society. The material efficiency of

a state x P X is equal to
°
iPN mipxq.

The maximal material efficiency a state x P X can reach is given by
°
iPN λi. We now

compare competitive and egalitarian societies in terms of the resulting material efficiency.

Theorem 6.2. Let pN, λ, ρq be a completely heterogeneous society. Every Core element of

the social environment induced by the egalitarian society is at least as materially efficient as

every Core element of the social environment induced by the competitive society. They are

equally materially efficient if and only if n is an integer multiple of ρ.

Proof. Recall that in the competitive case the Core is equal to X � tx P X|B � xu by

Proposition 5.3 and in the egalitarian case it equals X � tx P X|T � xu by Proposition 5.5.

Let some x P X and some x P X be given. We have that
°
iPN mipxq �

°
iPN λi�

°
iPZpxq λi

and
°
iPN mipxq �

°
iPN λi �

°
iPZpxq λi.

Let ` and o be non-negative integers such that o   ρ and the number of individuals

in the society equals n � `ρ � o. As the society is completely heterogeneous, it holds that°
iPZpxq λi � pλ1� � � � � λoq ¥ pλn�o�1� � � � � λnq �

°
iPZpxq λi, so

°
iPN mipxq ¤

°
iPN mipxq,

where equality holds if and only if o � 0.

7 Concluding Remarks

We have studied coalition formation among individuals who differ in productivity. The joint

output of a coalition is determined by the sum of productivities if a coalition exceeds a
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minimal threshold of members. We consider two types of societies, competitive societies in

which the surplus of a coalition is split according to productivity and egalitarian societies in

which coalitions split their surplus equally. The preferences of coalition members depend on

the share of the surplus, but also on the relative payoff in the group.

Our analysis of the societies uses two different stability concepts, the classic static concept

of the Core and the Myopic Stable Set, which enables a dynamic interpretation. The two

concepts are shown to yield the same predictions.

Both competitive and egalitarian societies lead to segregated societies, i.e., coalitions are

only formed between individuals with similar productivities. In contrast to a superficial

intuition, the only individuals who might not be part of a productive coalition are the most

productive individuals in a competitive society and the least productive individuals in an

egalitarian society. To understand the intuition for these predictions, note that members of

a competitive society will lose in social rank when forming coalitions with very productive

individuals. Thus, the last (least productive individuals) are first in forming coalitions and

the first (most productive individuals) last. The most productive individuals might even fail

to attract other coalition members at all. On the contrary, in the egalitarian society the

most productive individuals are very attractive as coalition members, since other coalition

members gain from their productivity.
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Appendix

A.1 Bottom-up Segregated States in the Example 4.3.

rx1s tt1, 2, 3u, t4, 5u, t6, 7uu

tt1, 2, 3u, t4, 6u, t5, 7uu

tt1, 2, 3u, t4, 7u, t5, 6uu

rx2s tt1u, t2, 3u, t4, 5u, t6, 7uu

tt1u, t2, 3u, t4, 6u, t5, 7uu

tt1u, t2, 3u, t4, 7u, t5, 6uu

tt2u, t1, 3u, t4, 5u, t6, 7uu

tt2u, t1, 3u, t4, 6u, t5, 7uu

tt2u, t1, 3u, t4, 7u, t5, 6uu

tt3u, t1, 2u, t4, 5u, t6, 7uu

tt3u, t1, 2u, t4, 6u, t5, 7uu

tt3u, t1, 2u, t4, 7u, t5, 6uu

rx3s tt1, 2u, t3, 4u, t5, 6, 7uu

tt1, 2u, t3, 5u, t4, 6, 7uu

tt1, 2u, t3, 6u, t4, 5, 7uu

tt1, 2u, t3, 7u, t4, 5, 6uu

tt1, 3u, t2, 4u, t5, 6, 7uu

tt1, 3u, t2, 5u, t4, 6, 7uu

tt1, 3u, t2, 6u, t4, 5, 7uu

tt1, 3u, t2, 7u, t4, 5, 6uu

tt2, 3u, t1, 4u, t5, 6, 7uu

tt2, 3u, t1, 5u, t4, 6, 7uu

tt2, 3u, t1, 6u, t4, 5, 7uu

tt2, 3u, t1, 7u, t4, 5, 6uu

rx4s tt1u, t2, 3u, t4, 5, 6, 7uu

tt2u, t1, 3u, t4, 5, 6, 7uu

tt3u, t1, 2u, t4, 5, 6, 7uu

rx5s tt1, 2, 3u, t4, 5, 6, 7uu

A.2 Proof of Theorem 4.6

Proof. We first show that any state generated by Procedure 4.5 is bottom-up segregated.

We start with a state generated in Step 3 from an arc pa1, . . . , a`q. Since all productive

coalitions consist of individuals with adjacent subscripts and hence adjacent productivities,
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we have coalitional assortativity. If, for some k P t1, . . . , `u, µak ¡ ρ, then it follows from the

selection of the number of added arcs in Step 1 that all individuals involved in the associated

coalition have the same productivity, so homophily is satisfied. Finally, the individuals in

the set tn�
°`
k�1 µak , . . . , 1u cannot form a productive coalition themselves and have weakly

higher productivity than individuals in the productive coalitions, so exclusion of the strong is

satisfied. To complete the first part of the proof, note that all three properties of a bottom-up

segregated state are preserved under productivity preserving permutations, so the equivalent

states generated in Step 4 are bottom-up segregated as well.

It remains to be shown that all bottom-up segregated states are generated by Proce-

dure 4.5. To do so, we show that for each bottom-up segregated state, there is one permu-

tation of a state generated in Steps 1-3. The key is to define the permutation/relabeling in

a precise way.

Let x � tS1, . . . , Smu P X be a bottom-up segregated state with productive coalitions

Ppxq � tS1, . . . , S`u, where S1, . . . , S` are chosen such that

λspS1q ¤ λwpS2q ¤ � � � ¤ λspS`�1q ¤ λwpS`q,

and unproductive coalitions S`�1, . . . , Sm. For k P t1, . . . ,mu, we denote the cardinality |Sk|

of coalition Sk by pk.

We define the permutation b : N Ñ N as follows. Let some i P N be given. The number

k1 P t1, . . . , `� 1u is uniquely determined in the following way. If

i P tn�
°`
k�1pk, . . . , 1u,

then k1 � `� 1. Otherwise, k1 P t1, . . . , `u is chosen such that

i P tn�
°k1�1
k�1 pk, . . . , n�

°k1

k�1pk � 1u.

In case k1 ¤ `, we write Sk
1
� tj1, . . . , jpk1u with j1 ¡ � � � ¡ jpk1 and define

bpiq � j
n�
°k1�1

k�1 pk�i�1
.

In case k1 � `� 1, we write S`�1 Y � � � Y Sm � tj1, . . . , jn�°`
k�1 pk

u with j1 ¡ � � � ¡ jn�
°`

k�1 pk

and define

bpiq � jn�
°`

k�1 pk�i�1.

One of the directed paths pa1, . . . , a`q generated by Procedure 4.5 is such that, for k �

1, . . . , `, µak � pk. Let the permutation P P Ptn �
°`
k�1 µak , . . . , 1u be defined by P �

tb�1pSkq | k P t` � 1, . . . ,muu. In Step 3, the directed path pa1, . . . , a`q together with the

permutation P generates the state

y �
!
tn, . . . , n� µa1 � 1u, . . . , tn�

°`�1
k�1µak , . . . , n�

°`
k�1µak � 1u

)
Y P.
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Clearly, for all S P y it holds that bpSq P x. It remains to be shown that b is productivity

preserving, so bpiq � j implies λi � λj, in order to conclude that x P rys, so is generated in

Step 4.

Suppose there is i, j P N such that bpiq � j and λi � λj. Let i1 be the highest numbered

individual with this property and define j1 � bpi1q. Since x satisfies exclusion of the strong

and by the construction of b, it cannot hold that j1 P S`�1 Y � � � Y Sm. Let k1 ¤ ` be such

that j1 P Sk
1
. Since i1 is the highest numbered individual among i P N such that λi � λbpiq,

it must hold that λi1   λj1 . It follows that there is j ¡ i1 such that j R S1 Y � � � Y Sk
1
.

Suppose there is k P tk1 � 1, . . . , `u such that j P Sk. Since λwpSkq ¤ λj   λj1 ¤ λspSk1 q,

we obtain a contradiction to x satisfying coalitional assortativity. Consequently, it holds

that j P S`�1 Y � � � Y Sm. However, in that case x violates exclusion of the strong since

λj ¤ λi1   λj1 . We have obtained a contradiction. Consequently, bpiq � j implies λi � λj.

A.3 Proof of Theorem 5.1

The following lemma is helpful in the proof of Theorem 5.1.

Lemma A.1. Let Γ � pN,X,E, t©iuiPNq be a social environment induced by a competitive

society pN, λ, ρq. Let x P X and S P x be such that |S| ¡ ρ and λi � λj for some i, j P S.

Then fSztspSqupxq � H.

Proof. Consider the coalition T � SztspSqu. Since |T | ¥ ρ, we have mipT q � mipSq for all

i P T . Hence, to prove that fSztspSqu � H, it remains to show that ripT q ¡ ripSq for all i P T .

Observe that λspSq ¡ upSq since λi � λj for some i, j P S. Hence, for every i P T, we

have upT q   upSq and thus ripT q � mipT q � upT q ¡ mipSq � upSq � ripSq.

Proof of Theorem 5.1. The proof consists of three parts. We show first that X � C, next

that X � C, thereby showing that the Core coincides with the set of bottom-up segregated

states, and finally that the Myopic Stable Set coincides with the Core.

Part 1. X � C.

Let x P X be a bottom-up segregated state, where x � tS1, . . . , Smu, Ppxq � tS1, . . . , S`u,

and, for every k P t1, . . . , `� 1u, λspSkq ¤ λwpSk�1q. Moreover, we write S1 � ts11, . . . , s
1
pu with

s11   � � �   s1p.

Towards a contradiction, suppose that x R C. Thus, there exists a coalition T �

tt1, . . . , tqu with t1   � � �   tq and a state y such that y P fT pxq. Notice that any devi-

ating coalition has to be productive, i.e., |T | ¥ ρ. We proceed by induction.

Step 1: S1 X T � H.
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Notice that S1 is productive. For all i P S1 X T , it holds that mipS
1q � mipT q. Then a

deviation has to rely on an improvement in relative payoff. We consider two cases: a case in

which, for all i, j P S1, λi � λj and a case in which there are some i, j P S1 with λi � λj.

In the former case, we have that upS1q � λn ¤ upT q as, by assumption, n is a weak

individual in the society. Therefore, for all i P S1 X T , it holds that

ripS
1q � mipS

1q � upS1q ¥ mipT q � upT q � ripT q,

so it follows that S1 X T � H.

In the latter case, homophily of x implies that |S1| � ρ. We define the collection of

ρ weakest individuals in T by T 1 � ttq�ρ�1, . . . , tqu. It holds that upT 1q ¤ upT q. For

i � 0, . . . , ρ�1, it holds that λtq�i
¥ λs1p�i

, so we have that upS1q ¤ upT 1q ¤ upT q. Therefore,

for every i P S1 X T , it holds that

ripS
1q � mipS

1q � upS1q ¥ mipT q � upT q � ripT q,

so it follows that S1 X T � H.

Step 2: If
�k
κ�1 S

κ X T � H, then Sk�1 X T � H.

If k ¥ `, then Sk�1 R Ppxq. As
�k
κ�1 S

κ X T � H and |Zpxq|   ρ it follows that |T |   ρ,

a contradiction to |T | ¥ ρ.

If k   `, then Sk�1 P Ppxq and we write Sk�1 � tsk�1
1 , . . . , sk�1

p u with sk�1
1   . . .   sk�1

p .

For every i P Sk�1 X T , it holds that mipS
k�1q � mipT q since |T | ¥ ρ. A deviation has to

rely on an improvement in relative payoff. If for all i, j P Sk�1, λi � λj, then upSk�1q �

λsk�1
p

¤ upT q as, by assumption, sk�1
p is a weak individual in Nz

�k
κ�1 S

κ. Therefore, for all

i P Sk�1 X T , it holds that

ripS
k�1q � mipS

k�1q � upSk�1q ¥ mipT q � upT q � ripT q,

so Sk�1 X T � H. If there is some i, j P Sk�1 with λi � λj, by homophily, |Sk�1| � ρ. We

define T 1 � ttq�ρ�1, . . . , tqu, so upT 1q ¤ upT q. Since λtq�i
¥ λsk�1

p�i
for i � 0, . . . , ρ � 1, it

follows that upSk�1q ¤ upT 1q ¤ upT q. Therefore, for every i P Sk�1 X T , it holds that

ripS
k�1q � mipS

k�1q � upSk�1q ¥ mipT q � upT q � ripT q,

so Sk�1 X T � H.

By Steps 1 and 2 it follows that T � H and we have obtained a contradiction. Conse-

quently, it holds that x P C.

Part 2. X � C.
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Let some y P C be given. Towards a contradiction, suppose that y is not bottom-up

segregated.

If homophily is violated, then there exists a coalition S P y with |S| ¡ ρ such that for

some i, j P S, λi ¡ λj. Thus, by Lemma A.1, it holds that fSztspSqupyq � H, a contradiction

to y being in the Core.

If coalitional assortativity is violated, then there are coalitions S, T P Ppyq such that

λwpSq   λspT q and λwpT q   λspSq. We write S � ts1, . . . , spu and T � tt1, . . . , tqu with

s1   � � �   sp and t1   � � �   tq. We show that for S 1 � ttq, s2, . . . , spu it holds that

fS1pyq � H or for T 1 � tsp, t2, . . . , tqu it holds that fT 1pyq � H.

Since S and S 1 are productive, we have mipSq � mipS
1q for all i P SXS 1. Moreover, since

|S| � |S 1| and λs1 ¡ λtq , we have

upSq �
λs1 �

°p
i�2 λsi

|S|
¡
λtq �

°p
i�2 λsi

|S 1|
� upS 1q.

Thus, for all i P S X S 1 � S 1zttqu, it holds that ripSq � mipSq � upSq   mipS
1q � upS 1q �

ripS
1q. By symmetry, it also holds for all i P T X T 1 � T 1ztspu that mipT q � mipT

1q and

ripT q   ripT
1q.

Towards a contradiction, suppose that sp � wpSq has no incentive to participate in T 1

and tq � wpT q has no incentive to form S 1, so rwpSqpSq ¥ rwpSqpT
1q and rwpT qpT q ¥ rwpT qpS

1q.

Thus, by definition,

mwpSqpSq �
°

iPS λi
p

¥ mwpSqpT
1q �

λwpSq

q
�
°

iPT ztspT qu λi

q
,

mwpT qpT q �
°

iPT λi
q

¥ mwpT qpS
1q �

λwpT q

p
�
°

iPSztspSqu λi

p
.

These expressions can be simplified to get

pλwpSq � p
°
iPT ztspT qu λi ¥ q

°
iPS λi,

qλwpT q � q
°
iPSztspSqu λi ¥ p

°
iPT λi.

Adding up these two inequalities and simplifying results in

pλwpSq � qλwpT q ¥ qλspSq � pλspT q,

leading to a contradiction since λwpSq   λspT q and λwpT q   λspSq. Consequently, sp is strictly

better off participating in T 1 or tq is strictly better off forming S 1.

We have shown that fS1pyq � H or fT 1pyq � H, contradicting that y P C. Consequently,

y satisfies coalitional assortativity.

Suppose y violates exclusion of the strong. If |Zpyq| ¥ ρ, then we have fZpyqpyq � H, a

contradiction. It remains to consider the case |Zpyq|   ρ. There exists j P Zpyq, S P Ppyq,
and i P S such that λj   λi. We write S � ts1, . . . , spu with s1   � � �   sp. Consider the
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coalition T � tj, s2, . . . , spu. We argue that fT pyq � H. Notice that mjpZpyqq � 0   mjpT q,

so j has an incentive to deviate. It remains to be shown that also members of ts2, . . . , spu �

S X T have an incentive to deviate. For all i P S X T, mipSq � mipT q ¡ 0. Since |S| � |T |,

the following inequality holds,

upSq �
λs1 �

°p
i�2 λsi

|S|
¡
λj �

°p
i�2 λsi

|T |
� upT q.

Therefore, for all i P S XT , it holds that ripSq � mipSq� upSq   mipT q� upT q � ripT q. We

have obtained a contradiction with y P C. Consequently, y satisfies exclusion of the strong.

Part 3. The Myopic Stable Set coincides with the Core.

Notice that the Core trivially satisfies deterrence of external deviations. In order to

show that it coincides with the Myopic Stable Set, we have to show that it satisfies iterated

external stability. The minimality requirement follows from the fact that the Core is a subset

of the Myopic Stable Set.

The proof of iterated external stability is constructive using the following procedure,

which, given an initial state x0 P XzC, generates a finite sequence of productive coalitions

S1, . . . , S` and states x1, . . . , x` such that, for k � 1, . . . , `, xk P f̃Skpxk�1q and x` is a bottom-

up segregated state. The coalitions Sk are all disjoint and chosen such that their members

have the lowest productivity among players in NzpYk�1
κ�1S

κq.

Start with a state x0 P XzC. Parts (i) and (ii) formalize a sequence of dominations

where first a productive coalition with weak individuals forms and so forth until a strongest

productive coalition forms. We define k � 1.

(i) If |Nz
�k�1
κ�1 S

κ|   ρ, then the procedure ends. Otherwise, move to (ii).

(ii) Consider a coalition T � Nz
�k�1
κ�1 S

κ with |T | � ρ such that for all i P T and for

all j P Nzp
�k�1
κ�1 S

κ Y T q it holds that λi ¤ λj. If fT pxk�1q � H, then define Sk � T. If

fT pxk�1q � H, then there is i P T who belongs to a productive coalition S P xk�1 such that

ripSq ¥ ripT q. For all i P S, for all j P Nzp
�k�1
κ�1 S

κ Y Sq, it holds that λi ¤ λj. In this case,

define Sk � S. Define xk � ypxk�1, S
kq. Increase k by 1 and move back to (i).

The procedure takes ` ¤ n{ρ steps and finally generates the state x`. We have that

Ppx`q � tSk | k P t1, . . . , `uu. It holds that x` P f̃ `px0q since, for every k P t1, . . . , `u,

xk P fSkpxk�1q or xk � xk�1. It remains to be shown that x` belongs to the Core. By Parts 1

and 2 of the proof, we need to show that x` is bottom-up segregated.

We have that Ppx`q � tSk | k P t1, . . . , `uu. By construction it holds that λspS1q ¤

λwpS2q ¤ � � � ¤ λspS`�1q ¤ λwpS`q. It directly follows that for all S, T P Ppx`q with S � T, we
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have λwpSq ¥ λspT q or λwpT q ¥ λspSq, so x` satisfies coalitional assortativity.

In the procedure, x` can only contain a coalition of size larger than ρ if for some k �

1, . . . , `, it holds in Step (ii) of the procedure that fT pxk�1q � H. Since there is i P Sk X T

such that ripS
kq ¥ ripT q, it holds that upSkq ¤ upT q. If Sk contains more than ρ individuals

and there is i, j P Sk such that λi � λj, then upSkq ¡ upSkztspSkquq ¥ upT q, leading to a

contradiction. Consequently, x` satisfies homophily.

If Zpx`q � H, then |Zpx`q|   ρ, as otherwise the procedure does not stop. By construc-

tion, it holds that for every i P Y`
k�1S

k, for every j P Nz Y`
k�1 S

k � Zpx`q that λi ¤ λj, so

x` satisfies exclusion of the strong.

A.4 Proof of Theorem 5.4

The following lemma is helpful in the proof of Theorem 5.4.

Lemma A.2. Let Γ � pN,X,E, t©iuiPNq be a social environment induced by a competitive

society pN, λ, ρq. Let x P X and S P x be such that |S| ¡ ρ and λi � λj for some i, j P S.

Then fSztwpSqupxq � H.

Proof. Consider the coalition T � SztwpSqu. Since |T | ¥ ρ, in order to prove that fSztwpSqu �

H, it suffices to show that mipT q ¡ mipSq for all i P T . Observe that λwpSq  
°
iPS λi{|S|

and thus upT q ¡ upSq. It follows that, for every i P T, mipT q � upT q ¡ upSq � mipSq.

Proof of Theorem 5.4. The proof consists of three parts. We show first that X � C, next

that X � C, thereby showing that the Core coincides with the set of top-down segregated

states, and finally that the Myopic Stable Set coincides with the Core.

Part 1. X � C.

Let x P X be a top-down segregated state, where x � tS1, . . . , Smu, Ppxq � tS1, . . . , S`u,

and, for every k P t1, . . . , `� 1u, λspSkq ¤ λwpSk�1q. Moreover, we write S1 � ts11, . . . , s
1
pu with

s11   � � �   s1p.

Towards a contradiction, suppose that x R C. Thus, there exists a coalition T �

tt1, . . . , tqu with t1   � � �   tq and a state y such that y P fT pxq. Notice that any devi-

ating coalition has to be productive, i.e., |T | ¥ ρ. We proceed by induction.

Step 1: S1 X T � H.

Notice that coalition S1 is productive. We consider two cases: a case in which, for all

i, j P S1, λi � λj and a case in which there are some i, j P S1 with λi � λj.

In the former case, we have that upS1q � λ1 ¥ upT q as, by assumption, 1 is a strong

individual in the society. Therefore, it holds that S1 X T � H.

24



In the latter case, homophily of x implies that |S1| � ρ. We define the collection of ρ

strongest individuals in T by T 1 � tt1, . . . , tρu. It holds that upT 1q ¥ upT q. For i � 1, . . . , ρ,

it holds that λsi ¥ λti , so we have that upS1q ¥ upT 1q ¥ upT q, and it follows that S1XT � H.

Step 2: If
�k
κ�1 S

κ X T � H, then Sk�1 X T � H.

If k ¥ `, then Sk�1 R Ppxq. As
�k
κ�1 S

κ X T � H and |Zpxq|   ρ it follows that |T |   ρ,

a contradiction to |T | ¥ ρ.

If k   `, then Sk�1 P Ppxq and we write Sk�1 � tsk�1
1 , . . . , sk�1

p u with sk�1
1   � � �   sk�1

p .

If for all i, j P Sk�1, λi � λj, then upSk�1q � λsk�1
1

¥ upT q as, by assumption, sk�1
1 is a strong

individual in Nz
�k
κ�1 S

κ. Therefore, for all i P Sk�1 X T , it holds that mipS
k�1q ¥ mipT q,

so Sk�1 X T � H. If there is some i, j P Sk�1 with λi � λj, by homophily, |Sk�1| � ρ. We

define T 1 � tt1, . . . , tρu, so upT 1q ¥ upT q. Since λsk�1
i

¥ λti for i � 1, . . . , ρ, we have that

upSk�1q ¥ upT 1q ¥ upT q. It follows that Sk�1 X T � H.

By Steps 1 and 2 it follows that T � H and we have obtained a contradiction. Conse-

quently, it holds that x P C.

Part 2. X � C. Let some y P C be given. Towards a contradiction, suppose that y is

not top-down segregated.

If homophily is violated, then there exists a coalition S P y with |S| ¡ ρ such that for

some i, j P S, λi ¡ λj . Thus, by Lemma A.2, it holds that fSztwpSqupyq � H, a contradiction

to y being in the Core.

If coalitional assortativity is violated, then there are coalitions S, T P Ppyq such that

λwpSq   λspT q and λwpT q   λspSq. We write S � ts1, . . . , spu and T � tt1, . . . , tqu with

s1   � � �   sp and t1   � � �   tq. We show that for S 1 � ts1, . . . , sp�1, t1u it holds that

fS1pyq � H or for T 1 � tt1, . . . , tq�1, s1u it holds that fT 1pyq � H.

Since |S| � |S 1| ¥ ρ and λq1 ¡ λsp , we have, for all i P S X S 1 � S 1ztt1u,

mipSq � upSq �
λsp �

°p�1
i�1 λsi

|S|
 
λy1 �

°p�1
i�1 λsi

|S 1|
� upS 1q � mipS

1q.

By symmetry, it also holds for all i P T X T 1 � T 1zts1u that mipT q   mipT
1q.

Towards a contradiction, suppose that s1 � spSq has no incentive to participate in T 1

and t1 � spT q has no incentive to form S 1, so upSq ¥ upT 1q and upT q ¥ upS 1q. Thus, by

definition,

°
iPS λi
p

¥
λspSq
q

�
°

iPT ztwpT qu λi

q
,

°
iPT λi
q

¥
λspT q
p

�
°

iPSztwpSqu λi

p
.
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These expressions can be simplified to get

q
°
iPS λi ¥ pλspSq � p

°
iPT ztwpT qu λi,

p
°
iPT λi ¥ qλspT q � q

°
iPSztwpSqu λi.

Adding up these two inequalities and simplifying results in

qλwpSq � pλwpT q ¥ pλspSq � qλspT q,

leading to a contradiction since λwpSq   λspT q and λwpT q   λspSq. Consequently, s1 is strictly

better off participating in T 1 or t1 is strictly better off forming S 1.

We have shown that fS1pyq � H or fT 1pyq � H, contradicting that y P C. Consequently,

y satisfies coalitional assortativity.

Suppose y violates exclusion of the weak. If |Zpyq| ¥ ρ, then we have fZpyqpyq � H, a

contradiction. It remains to consider the case |Zpyq|   ρ. There exists j P Zpyq, S P Ppyq,
and i P S such that λi   λj. We write S � ts1, . . . , spu with s1   � � �   sp. Consider

the coalition T � ts1, . . . , sp�1, ju. We argue that fT pyq � H. Notice that mjpZpyqq �

0   mjpT q, so j has an incentive to deviate. It remains to be shown that also members of

ts1, . . . , sp�1u � S X T have an incentive to deviate. Since |S| � |T |, for all i P S X T the

following inequality holds,

mipSq � upSq �
λsp �

°p�1
i�1 λi

|S|
 
λj �

°p�1
i�1 λi

|T |
� upT q � mipT q.

We have obtained a contradiction with y P C. Consequently, y satisfies exclusion of the weak.

Part 3. The Myopic Stable Set coincides with the Core.

Notice that the Core trivially satisfies deterrence of external deviations. In order to

show that it coincides with the Myopic Stable Set, we have to show that it satisfies iterated

external stability. The minimality requirement follows from the fact that the Core is a subset

of the Myopic Stable Set.

The proof of iterated external stability is constructive using the following procedure,

which, given an initial state x0 P XzC, generates a finite sequence of productive coalitions

S1, . . . , S` and states x1, . . . , x` such that, for k � 1, . . . , `, xk P f̃Skpxk�1q and x` is a top-

down segregated state. The coalitions Sk are all disjoint and chosen such that their members

have the highest productivity among players in NzpYk�1
κ�1S

κq.

Start with a state x0 P XzC. We define k � 1.

(i) If |Nz
�k�1
κ�1 S

κ|   ρ, then the procedure ends. Otherwise, move to (ii).
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(ii) Consider a coalition T � Nz
�k�1
κ�1 S

κ with |T | � ρ such that for all i P T and for

all j P Nzp
�k�1
κ�1 S

κ Y T q it holds that λi ¥ λj. If fT pxk�1q � H, then define Sk � T. If

fT pxk�1q � H, then there is i P T who belongs to a productive coalition S P xk�1 such that

mipSq ¥ mipT q. For all i P S, for all j P Nzp
�k�1
κ�1 S

κYSq, it holds that λi ¥ λj. In this case,

define Sk � S. Define xk � ypxk�1, S
kq. Increase k by 1 and move back to (i).

The iteration takes ` ¤ n{ρ steps and finally generates the state x`. We have that

Ppx`q � tSk | k P t1, . . . , `uu. It holds that x` P f̃ `px0q since, for every k P t1, . . . , `u,

xk P fSkpxk�1q or xk � xk�1. It remains to be shown that x` belongs to the Core. By Parts 1

and 2 of the proof, we need to show that x` is top-down segregated.

We have that Ppx`q � tSk | k P t1, . . . , `uu. By construction it holds that λwpS1q ¥

λspS2q ¥ � � � ¥ λwpS`�1q ¥ λspS`q. It directly follows that for all S, T P Ppx`q with S � T, we

have λwpSq ¥ λspT q or λwpT q ¥ λspSq, so x` satisfies coalitional assortativity.

In the procedure, x` can only contain a coalition of size larger than ρ if for some k �

1, . . . , `, it holds in Step (ii) of the procedure that fT pxk�1q � H. Since there is i P Sk X T

such that mipS
kq ¥ mipT q, it holds that upSkq ¥ upT q. If Sk contains more than ρ individuals

and there is i, j P Sk such that λi � λj, then upSkq   upSkztwpSkquq ¤ upT q, leading to a

contradiction. Consequently, x` satisfies homophily.

If Zpx`q � H, then |Zpx`q|   ρ, as otherwise the procedure does not stop. By construc-

tion, it holds that for every i P Y`
k�1S

k, for every j P Nz Y`
k�1 S

k � Zpx`q that λi ¥ λj, so

x` satisfies exclusion of the weak.
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