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Chapter 1

Introduction

" ' i V :<<#;•£ •'•*
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' • • '

The subject of this thesis is argumentation. We consider argumentation as a
process in which arguments supporting a conclusion are taken into account. During
the process of argumentation, a conclusion originally justified by some argument
can become unjustified. This is the result of the tfe/eos/Mtfy of arguments.' Our
central theme is how argumentation and the defeasibility of arguments can be
formally modeled.

In this chapter, we first introduce the central concepts used throughout the
thesis: argumentation (section 1), arguments (sections 2 and 3) and defeasibility
(section 4). Then the research of the thesis is introduced. We put our research in
perspective by giving a brief survey of recent related research (section 5), and by
explaining our general aims and biases (section 6). The introductory chapter
concludes with the research goals and method (section 7), and an outline of the
thesis (section 8).

1 The process of argumentation

Argumentation is a process.^ Its purpose is to justify conclusions (see, e.g.,
Pollock, 1987). Which conclusions are justified changes during the argumentation
process. For instance, let us consider a story about John. It starts as follows.

John is going to work and notices that it is still freezing. He sees some people
skating on the lake that he passes each day, and he realizes that the ice is finally
thick enough. After his arrival at the office, he notices that his colleague Mary
is not there, and wonders whether she has taken a day off. Later that morning,
he meets Harry at the coffee machine. Harry tells John that whenever the ice is

' The term 'defeasibility' was introduced by Hart in 1948 (cf. Loui, 1995a).
This is an old idea in philosophy and can already be found in the work of Aristotle (cf.

Rescher, 1977). Recently, the importance of process for argumentation has been
reemphasized, e.g., by Loui (1992), Vreeswijk (1993) and Lodder(1996).



Chapter 1: Introduction

An argument from premises to conclusion consists of one or more steps. For
instance, the following argument that John cannot finish his work consists of two
steps:

The ice is thick enough for skating.
Whenever the ice is thick enough for skating, Mary takes a day off to go
skating.
So, Mary takes a day off to go skating. ><»-:<•. <•
Whenever Mary takes a day off, John cannot finish his work. •'-" • • • '• ' ••••"•
So, John cannot finish his work. < . . . - . ' '

This argument has three premises. Two of the premises are used in the first step of
the argument, and support the intermediate conclusion that Mary takes a day off.
The third premise is used in the second step of the argument to support the
conclusion that John cannot finish his work. The structure of the argument is
shown in Figure 2. It shows the premises, the intermediate conclusion, and the
conclusion of the argument.

The ice is thick
enough for skating.

Whenever the ice is
thick enough for
skating, Mary takes a
day off to go skating.

Mary takes a day off
to go skating.

Whenever Mary takes
a day off, John cannot
finish his work.

John cannot finish his
work.

Figure 2: A two step argument

In the story, it turns out that John's conclusions that he cannot finish his work and
that Mary takes a day off are in the end not justified. The arguments are defeated
because of Anne's prohibition. The defeasibility of arguments is our central theme.

Summarizing, we treat arguments as reconstructions of how conclusions are
supported. We regard argumentation as the process of collecting arguments in
order to justify conclusions. A property of the process of argumentation is that
whether arguments justify their conclusions can change during the process. They
can become defeated. Arguments that at an early stage in the argumentation
process justify their conclusion do not necessarily justify it at a later stage.
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3 Arguments and proofs vNV * * .>• a

In this thesis, we deal with formal models of argumentation. A well-known formal
model of argumentation is the proof theory of classical deductive logic (in its
various guises: Propositional Logic, First-Order Predicate Logic, Modal Logic).^
Proof theory deals with proofs, that in some ways resemble arguments.

For instance, a proof that resembles the argument in Figure 1 is • >,

Thick-ice Thick-ice -»Pay-off . , ' ••/; •
Day-off

Informally, a proof is a series of proof steps starting from given premises. Proof
steps are instances of deduction rules. The example consists of one proof step that
is an instance of the deduction rule known as Modus Ponens:

S e n t e n c e - 7 — > 5 e n / e n c e - 2 v ' , : ,.. •" • - : , ? v i < : ^ ••;"

S e n t e n c e - 2 • . • ? • ; •« • ' . \ ; - ' * - • ' •

Here Sentence-/ and Sentence-2 are any two sentences of the logical language.
The similarity of proofs and arguments is clear. For instance, the structure of

proofs is closely related to the structure of arguments. Like an argument, a proof
supports its conclusion. Like an argument, a proof can consist of several steps from
premises to conclusion.

In one respect, however, proofs differ from arguments: arguments are
defeasible. Additional information may have the effect that an argument does no
longer justify its conclusion and becomes defeated. This does not hold for proofs
in deductive logic. Additional proofs never make other proofs unacceptable.
Therefore, the proof theory of deductive logic is inappropriate as a model of
argumentation. In this thesis, formal models of argumentation are discussed that
can deal with the defeasibility of arguments.

4 The defeasibility of arguments

In this section, we informally discuss four cases in which arguments may become
defeated. These are meant as illustrations of the defeasibility of arguments, and not
as a taxonomy of types of defeasibility.

4.1 Exceptions to rules . • M

So far, we have seen examples of arguments, but we have not yet investigated how
the steps in an argument arise. We reconsider our example.

Lukaszewicz (1990) and Gabbay er a/. (1993) give overviews.
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The ice is thick enough for skating. Whenever the ice is thick enough for
skating, Mary takes a day off to go skating.
So, Mary takes a day off to go skating. • . • . ^ : ••• :

This is an argument that consists of a single step. The argument above is an
instance of the following scheme:

S/7wa//oH-/. Whenever S//wa//'ort-/, S//wa//o«-2.
So, 5//«a//o/j-2. • '

Not only the argument above, but all instances of this scheme are arguments. There
is some kind of relation between the premises and the conclusion of the argument.
This relation is called a ru/e.'' If a rule gives rise to acceptable arguments, it is
valid.

The rule behind the argument scheme above is closely related to the deduction
rule Modus Ponens of classical deductive logic (see section 3). If an instance of a
(valid) rule is used as a step in an argument, we say that the rule is applied.

A characteristic of rules is that they can have exceptions: the conclusion of a
rule does not always follow if its condition is satisfied. In the case of an exception
to a rule, arguments that contain a step warranted by that rule are defeated.

We have already seen an exception to the rule above, namely the case that
Mary's boss prohibited her to take a day off. In such a case the rule is not applied.
Exceptions to the rule can exist, since even if Mary normally goes skating when
the ice is thick enough, there can be other reasons why she does not go.

4.2 Conflicting arguments : .. .. i •.•••-.. >•*-..•;

If arguments have incompatible conclusions, we speak of conflicting arguments.
For instance, Mary can have a reason to go to work, and at the same time a reason
to take a day off. Not going to work may cause problems at the office, but not
taking the day off means that she misses one of the few opportunities to go skating.
So, Mary might consider the following two arguments :

There will be problems at the office, if I take a day off.
S o , I g o t o w o r k . • , :-' . •. . - . . ...,.,, • ••• . : :

* One might think that "Whenever the ice is thick enough for skating, Mary takes a day
off to go skating" is a rule. In the argument in the text it is however a premise of the
argument. If it is considered to be a valid rule, it gives rise to the following argument:

The ice is thick enough for skating.
So, Mary takes a day off to go skating.

We come back to this difference in chapter 4. section 1, where we discuss syllogistic and
enthymematic arguments.
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I miss one of the few opportunities to go skating, if I go to work.
So, I take a day off.

However, it is impossible to go to work and to take a day off, so the conclusions of
Mary's two arguments are incompatible, and the arguments are conflicting.

In the arguments above, 'There will be problems at the office, if I take a day
off is a reason for 'I go to work', and 'I miss one of the few opportunities to go
skating, if I go to work' is a reason for 'I take a day off. In general, we call the
direct predecessor of a conclusion in an argument a reason for that conclusion. In a
case such as in this example, where reasons support incompatible conclusions, we
say that the reasons are conflicting.

Conflicting arguments must be distinguished from contradictory proofs in
deductive logic. If two proofs are contradictory, anything can be proven, and there
must be a false premise. If two arguments conflict, there is not necessarily a false
premise. It can also be the case that one (or both) of the arguments should be
considered defeated. In the example above, probably both arguments are defeated,
and replaced by an argument in which Mary takes her preferences into account:

There will be problems at the office, if I take a day off.
I miss one of the few opportunities to go skating, if I go to work.
Opportunities to go skating are extremely rare, and the problems can be solved
tomorrow. ; . , ,
So, I take a day off. ^

4.3 Conclusive force .. .

Not all arguments support their conclusion equally well; arguments have different
degrees of conclusive force. Some arguments make their conclusion more
plausible than others ('If it was Mary who told you John is nice, I believe he is. If
Anne told you, I don't know'). If an argument uses statistical evidence, one
conclusion can be more probable than another ('John's boss is probably male'). If
the conclusive force of an argument is too weak, it is defeated.

The depth of an argument influences its conclusive force: a series of argument
steps is often less cogent than one step. For instance, the argument that there will
be problems at the office is less cogent than the shorter argument that Mary takes a
day off. The conclusive force becomes less because the larger argument can be
defeated by exceptions to 6O//J argument steps. .' • <

In the story there is an exception to the first argument step. The conclusion that
Mary has taken a day off is not supported, because Anne prohibited it. As a result,
the conclusion that there will be problems at the office is then also no longer
justified. But if it was justified to believe that Mary took a day off, there could be
still be an exception to the second step. For instance, if a temporary employee is
hired, it is not justified to believe that there will be problems at the office. We call
this the 5e<7«en//a/weatem/jg of an argument.
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Also the number of arguments that support a conclusion or intermediate
conclusion influences the conclusive force of an argument. An argument that
contains more (independent) reasons for some conclusion can become more
cogent. For instance, •. . .- • , . » , , - , >

Harry told you John is nice; Pat told you John is nice. ; " ' •

S o , I b e l i e v e h e i s . ^ • • , •• •,•• • •••' - '••••

can justify its conclusion, while . •<•.. * . f - - ^ •

Harry told you John is nice. v ' ' : • ; - • . .,

So, I believe he is. * • •

may not. We call this the para//e/5/re«g//?ew>zg of an argument.

4.4 Other arguments taken into account ;

Whether an argument is defeated is influenced by the other arguments taken into
account. We have already seen an example: the argument that Mary takes a day off
to go skating is defeated as soon as there is another argument that justifies the
conclusion that Mary's boss forbids her to. In our story the latter argument was
actually a statement: it did not contain an argument step.^

In the example, there is an exception to the rule that Mary takes a day off to go
skating if the ice is thick enough. The argument that Mary takes a day off can also
be defeated by an argument that explicitly takes the exception into account:

The ice is thick enough for skating. - . - . . .
If the ice is thick enough for skating and Mary's boss does not forbid her to
take a day off, Mary takes a day off to go skating.
If the ice is thick enough for skating and Mary's boss forbids her to take a day
off, Mary does not take a day off to go skating. . . .
Mary's boss forbids her to take a day off.
So, Mary does not take a day off to go skating. / -.

Another example of the influence of arguments on each other is that arguments can
challenge each other. We say that one argument challenges another argument if the
challenged argument is defeated in case the challenging argument is not. For
instance, the argument . . . . .

John dislikes Mary. : •••?.' ; .'-. " -
So, I think that Mary is not nice.

^ By convention, we treat statements as arguments with trivial structure (cf. chapter 5,
section 2.1).



Section 5: Related research

might be challenged by the statement: .

John and Mary had a relationship, and Mary finished it. : -' • •'• r<- •-' *'-^

5 R e l a t e d r e s e a r c h * . • . ; • •....,. . .

In the previous sections, we introduced the central concepts of the thesis. We
continue with an introduction to the research in the thesis, and start with a brief
survey of related research.

Recently there has been a revival of research on argumentation and defeat. This
revival has been motivated by several cross-disciplinary interests. For instance, the
following - not necessarily disjoint - disciplines have stimulated the research on
argumentation and defeat:

• Z.og/c: The research on nonmonotonic logics remains popular (Gabbay e; a/.
(1994b) give an overview) and now encompasses the defeasibility of arguments
as a special topic (cf. Nute, 1994).

• Co/wpwter jc/eAJce: The computational complexity of nonmonotonicity attracted
the attention of the logic programming community (e.g., Dung, 1993, 1995;
Bondarenkoe/a/., 1993).

• /l/-///?c/'a/ //7/e///ge«ce: Since reasoning with defeasible arguments seems to lead
to successful behavior of people, artificial intelligence researchers try to
capture its essence (e.g.. Nute, 1988; Geffner and Pearl, 1992; Simari and
Loui, 1992).

• £/?/jtemo/ogy: Questions about the justification and support of beliefs have
resulted in formal epistemological theories (e.g., Loui, 1987, 1991;
Pollock, 1987-1995).

• /lrgM/wen/a//'o/j //jeory: Notions such as counterargument and reinstatement
have been formally studied (e.g., Vreeswijk, 1991, 1993; Verheij, 1995a, b, c).

• D/a/ec//cj: Several game-like formalisms have been proposed in which two
parties are disputing an issue (e.g., Loui, 1992; Gordon, 1993a, 1993b, 1995;
Vreeswijk, 1993; Brewka, 1994; Leenese/a/., 1994; Hagee/a/., 1994; Lodder
andHerczog, 1995).

• Z.ega/ ///eory: The pragmatic solutions in legal reasoning to deal with
exceptions and conflicts have inspired researchers and have been formally
analyzed (e.g., Hage, 1993, 1995; Prakken, 1993a, b, 1995; Sartor, 1994).

This brief survey contains only a selection of recent research to give an idea of the
current activity and the diversity of perspectives. Overviews of research on
argumentation and defeat have recently been given by Bench-Capon (1995), who
focuses on artificial intelligence and law, and Loui (1995b), who focuses on
computational dialectics.
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6 General aims and biases of research

Research on the modeling of argumentation can have rather different aims, for
instance: .

• to describe and evaluate actual human argumentation by means of empirical
investigation, e.g., in cognitive science or psychology;

• to apply an argumentation model in order to build intelligent computers and
programs, e.g., in computer science and artificial intelligence;

• to investigate and enhance our conceptualizations of argumentation in order to
better understand its nature, e.g., in philosophical and mathematical logic.

Of course, doing research on the modeling of argumentation, one does not
normally have only one of the aims above: even if one is mostly interested in
intelligent computer programs, one can be inspired by actual human
argumentation, and be led to the enhancement of one's initial model of
argumentation. Nevertheless, research is often biased towards one or more of the
mentioned aims of study.

In Figure 3, we have visualized the biases of some research on the modeling of
argumentation in a triangular diagram. The three corners of the triangle correspond
to the three aims mentioned, and are suggestively labeled 'Minds and humans',
'Machines and programs', and 'Theories and models'. Researchers or subjects of
research are indicated by a labeled dot.^ The closer a dot is to one of the corners,
the more the corresponding researcher or subject of research is biased towards the
aim of study of that corner.^

Some research is mostly biased to one of the three aims. We give examples of
«ach. First, we mention First-Order Predicate Logic* As a model of
argumentation, it is most appropriate as a theoretical model, due to its nice
mathematical properties, but less as an empirical model or as a computational
model. It is therefore indicated in the upper corner. Second, Van Eemeren and
Grootendorst (Van Eemeren e/ a/., 1981, 1987) have provided a model of
argumentation explicitly meant to analyze argumentation as it occurs in
argumentative texts, and are therefore indicated in the lower-left corner. Third, the
research on logic programming is clearly mostly aimed at building intelligent
machines, notwithstanding its theoretical achievements, and is therefore indicated
in the lower-right corner. >•-. • \. • . . H

" Several of the indicated researchers or subjects of research are extensively discussed
later on.
' The triangle has ftaryce/rtnc coordinates. One can think of the triangle as the set of
points (.x, y, z) in the plane x + >> + z = 1, such that 0 < .v < 1.0<y< 1 and 0 < z < 1. For
instance, the corners of the triangle are the points where one of the coordinates is equal to 1.
The sides of the triangle are the points where one of the coordinates is equal to 0. The
values of each of the three coordinates represent the bias level towards one of the corners.
* Van Dalen (1983) and Davis (1993) give introductions to First-Order Predicate Logic.
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Theories and models

•»! - • : • : ;

Reiter's
Default Logic

First Order
Predicate Logic

/ . ; ; - • • • • ; v

CumulA
(chapter 5 ) '

Reseller's
dialectics

Reason-Based Logic
(chapter 2) •

Pollock's OSCAR

^ Dung's admissible
sets of arguments ' '

Vreeswijk's abstract ,,.
argumentation systems

Loui's system of
defeasible inference

van Eemeren
and Grootendorst • Lodder's DiaLaw

logic programming

Minds and humans Machines and programs

Figure 3: Biases diagram of some research on modeling argumentation

Some research is equally biased towards two of the aims, and is therefore indicated
near the middle of one of the sides of the triangle. For instance, Vreeswijk's
abstract argumentation systems (1991, 1993) were meant both as a model for
theoretical study and for computational application.' Pollock's (1995) research on
OSCAR is indicated in the middle of the triangle, since it equally contains elements
of all three aims: Pollock has applied his philosophical theories on epistemology in
the computer program OSCAR that is designed to argue as people do (or should do).

In order to show our aims of research, we have included our two main topics,
Reason-Based Logic and CumulA, in the triangle. The first, Reason-Based Logic
(see chapter 2), is indicated near the middle of the left-side of the triangle. It was
inspired by actual human argumentation, especially in the field of law (see
chapter 4), but it was also developed in order to compare it with other models. The
second main topic of research, CumulA (see chapter 5), is indicated near the upper
comer, since it was mainly designed as an abstract model of argumentation, that
can be used to analyze different approaches towards modeling argumentation.

Although the diagram is merely tentative and we make no claim about its
'truth', we nevertheless hope that the biases diagram illustrates how differently
biased research on modeling argumentation can be, and what the biases of our own
research are.

' Vreeswijk (1995) describes the program IACAS, which was written to demonstrate his
abstract argumentation systems.
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7 Research goals and method

Our starting point of research is that the currently available models of
argumentation are not fully satisfactory. This starting point, although certainly not
new, remains valuable, despite the abundance of newly presented models (see
section 5). As Haack (1978) put it, when discussing the paradigmatic example of a
rule in argumentation, the material conditional of First-Order Predicate Logic,

'(...) the significance of the discrepancies between 'if and '->' will depend on
the answers to at least two (...) questions: for what purpose(s) is the
formalisation intended? and, does that purpose require something stronger than
the material conditional? Both (...) are deep and difficult questions.'
(Haack, 1978, p. 38)

The recent revival of research (cf. section 5) is partly due to a new answer to the
first of these questions: recent research often is concerned with defeasible
arguments, leading to other formalizations of rules. As for rules, new purposes of
formalizing argumentation, such as capturing the role of counterarguments and of
the process character of argumentation, lead to new models.

The purpose of our research is to find answers to two groups of research
questions.

• What is the role of rules and reasons in argumentation with defeasible
arguments? What properties of rules and reasons are relevant for argumentation
and defeat? How do these properties relate?

• What is the role of process in argumentation with defeasible arguments? How
is the defeat of an argument determined by its structure, counterarguments and
the argumentation stage?

Trying to answer these groups of questions, we study argumentation and defeat
from two angles, resulting in formalisms of different nature, Reason-Based Logic
andCumulA. '. : , •

Reason-Based Logic is a model of the nature of rules and reasons, which are at
the basis of argumentation. We investigate the properties of rules and reasons that
are relevant for the argumentation and defeat, and how these properties relate to
each other. This part of the research is joint work with Hage, who initiated the
development of Reason-Based Logic (see chapter 2).

CumulA is a model of argumentation in stages. We investigate how the
structure of an argument is related to defeat, when arguments are defeated by
counterarguments, and how the status of arguments is affected by the
argumentation stage.

The thesis has five goals:
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• Providing a model of rules and reasons, Reason-Based Logic, focusing on
properties that are relevant for the defeasibility of arguments.

• Demonstrating the usefulness of the model by providing examples in the field
of law.

• Discussing how Reason-Based Logic relates to previously proposed models.
• Providing a model of argumentation, CumulA, that focuses on the process of

taking arguments into account, and shows how the status of an argument is
determined by the structure of the argument, the counterarguments and the
stage of the argumentation process.

• Demonstrating how CumulA can be used to analyze other models of
argumentation.

Our method of research can be summarized, as follows: • ' • •

Developing formal models of argumentation on the basis of informal examples.

The advantage of formal models is that they are clear and precise, which is
necessary to show the intentions of the model and is useful for revealing errors and
shortcomings. A drawback of formal models, as put forward by Van Eemeren ef
a/., discussing the attraction of Toulmin's less formal model (Toulmin, 1958), is
that:

'Studying formal logic systems requires quite a lot of effort, its relevance for
practical purposes is not immediately apparent and the return on the effort
spent is slight.' (Van Eemeren <?/ a/., 1987, p. 206) - :

This is felt so by many people, and indeed the feeling seems to be justified by the
research on nonmonotonic logics, which has become a mathematically inclined
subject, even though it was initially inspired by intuitive examples.

The drawback can partly be circumvented by providing informal examples. We
not only do this to make the text more legible, but also as an essential ingredient of
our method: without informal examples, a formalism remains uninterpreted, and
therefore much less useful. We are backed by Haack (1978), who in her
'Philosophy of logics' stresses the importance of informal interpretation and extra-
systematic judgments (p. 32ff.) for devising and evaluating a formal model.

As a result, in this thesis, we stick to the precision and rigor of formal models,
but precede all formal definitions by informal examples, needed to interpret the
formalism.

8 Outline of the thesis

The structure of this thesis follows the research goals discussed in the previous
section.
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In chapter 2, we describe Reason-Based Logic. We determine types of facts
concerning rules and reasons that are relevant for the defeasibility of arguments,
and show their relations. Using this semantics of rules and reasons, we determine
some intuitively attractive modes of reasoning. However, these lead to the
difficulties of nonmonotonic reasoning. We show how the ideas of Reiter (1980,
1987) can be used to define rigorously which conclusions nonmonotonically
follow from a given set of premises.

Chapter 3 contains a series of examples of Reason-Based Logic, taken from the
field of law. We give applications of Reason-Based Logic to the theory of legal
reasoning: we describe three different ways of reconstructing reasoning by
analogy, and provide an integrated view on rules and principles, which seem
fundamentally different (cf. Dworkin, 1978, p. 22ff. and 7Iff).

In chapter 4, we survey other models of rules, and compare them to Reason-
Based Logic. We do this by treating a number of issues concerning the
formalization of rules, and discussing various approaches to deal with these issues.

In chapter 5, the second part of the thesis starts with a discussion of CumulA. It
is a formal model of argumentation with defeasible arguments, focusing on the
process of taking arguments into account. The main ingredients of the formalism
are arguments, defeaters, argumentation stages and lines of argumentation.

In chapter 6, we show how CumulA can be used to analyze models of
argumentation. We investigate types of argument structure and of defeat, the role
of inconsistency and counterarguments for defeat, and directions of argumentation.
As a result, we are able to distinguish a number of argumentation theories (based
on existing argumentation models) on formal grounds.

The thesis ends with the results and conclusions of the research (chapter 7). We
also give some suggestions for future research.

• • • • • - • •• • • • - v . • • • • • - < . • : • . . • ; , ; • ' • •
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Chapter 2

Reason-Based Logic:
a semantics of rules and reasons

In this chapter, a formalism is developed that models rules and reasons. The
formalism, called Reason-Based Logic, is a formal semantics of rules and reasons:
Reason-Based Logic specifies the types of facts concerning rules and reasons that
are relevant for the defeasibility of arguments, and makes the relations that must
hold between these facts precise.' Examples of such facts are the fact that some
rule applies, or that certain reasons outweigh other reasons. A crucial difference
with other logical formalisms is that Reason-Based Logic provides a semantics in
which such facts and their relations are made explicit.

The chapter begins with a motivation of the approach by means of examples
(section 1). After a discussion of what is meant by a formal semantics (section 2),
the formalism is introduced using the informal examples (section 3). Then a
description of the formalism follows. First the types of facts concerning rules and
reasons, as distinguished in Reason-Based Logic, are described (section 4), and
second the relations between these types of facts (section 5). Third we define
which conclusions follow from given premises (section 6).

1 Rules and reasons by example

In the previous chapter, we introduced argumentation by concentrating on the
arguments that can justify a conclusion, and their defeasibility. In this chapter, we
focus on rules and reasons. Both are fundamental for argumentation: rw/es give rise
to the r e a s o n that are used in arguments to support a conclusion. We start with a

' Hage initiated the development of Reason-Based Logic; it was continued in close
cooperation with Verheij. Hage (1991) describes a theory of rational belief, called Reason
Based Reasoning, that already contains the basic informal ideas of Reason-Based Logic.
Verheij (1994) describes a limited version of Reason-Based Logic to get the formalism
right. Hage and Verheij (1994) describe the first full version of Reason-Based Logic that is
also formally satisfactory. The description of Reason-Based Logic in this chapter as a
specification of types of facts concerning rules and reasons and the relations between these
facts is related to that of Verheij (1995e). See also note 14.
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number of informal examples. Issues related to the defeasibility of arguments
(introduced in chapter 1, section 4) are examined in detail.

. • * • . . ' » " ' " ' *

1.1 Rules and reasons

Mary and John are planning to have a picnic on Sunday. The evening before,
they watch the weather report on television. According to the weather report, it
is going to rain the whole day. Mary and John are disappointed.

Mary and John's disappointment is the result of the following argument:

According to the weather report, it will rain all day.
So, it will rain all day.

Because of this argument John and Mary conclude that it will rain all day. Their
conclusion is in this argument supported by the prediction in the weather report.
'According to the weather report, it will rain all day' is a reason for 'It will rain all
day'.

John and Mary would have made a similar argument if the prediction in the
weather report had been different. If the prediction had been that it would be a
sunny day, John and Mary would have concluded that it will be sunny because of
the weather report.

So, reasons do not arise individually, but follow a pattern. The prediction of the
weather report gives rise to a reason, whatever that prediction is, in the following
pattern:

According to the weather report, it will 6e wea/Aer f>pe so-a/K/-so.
So, it will 6e weaf/jer ry/>e so-aw^-so.

Each instance of this argument scheme can be an argument that supports the
conclusion that it will be some type of weather. Moreover, each instance can be a
step in a larger argument. The relation between a reason and a conclusion as
expressed by such an argument scheme is what we call a rw/e.^ If an instance of the
scheme can actually be used as part of an argument that supports its conclusion
(for instance, when its condition holds) we say that the rule a/?/?//ej.

Not all rules give rise to argument schemes that lead to acceptable arguments.
We consider a rule to be va/;tf if it is generally accepted (in some reasoning
community) that the application of the rule can give rise to an argument that
supports its conclusion.^

^ Rules in Reason-Based Logic correspond to warrants in Toulmin's (1958) argument
scheme.
^ This is in contrast with the /ega/ va/i'rfiVy of a rule, which requires that the rule is
obtained by a legal procedure, such as when the rule is made by the legislator, and approved
by the parliament.
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1 . 2 E x c l u s i o n a r y r e a s o n s ' ? - > • > : . , M : ' i ; ; ? > ; ! • • ' . .•;••.:-: • , , . . . < • » - • ! • < > < • = . ; s I A

After watching the weather report, John is disappointed. He would not like to
have a picnic if it is going to rain all day. Mary smiles, and says that he does
not have to worry, because the weather report on national television is not good
at predicting the weather in their district, due to the peculiar local
circumstances. Therefore, there is no reason to conclude that it will rain all day.

The story illustrates the defeasibility of arguments, introduced in the previous
chapter. In chapter 1, the first example of the defeat of an argument was an
exception to a rule (chapter 1, section 4.1): in exceptional circumstances the
conclusion of a rule does not follow, even though its condition holds.

In the story about John and Mary, we again encounter an example of an
exception: the weather report on national television is not good at predicting the
local weather. Therefore, the fact that, according to the weather report, it will rain
all day is «or a reason that it will rain all day in this district. The rule underlying
the argument scheme '

According to the weather report, it will 6e weo//7er
So, it will Ae

is not applicable, even though its condition is satisfied by the fact that, according
to the weather report, it will rain all day. We say that 'The weather report on
national television is not good at predicting the local weather' is an ex:c/u5/o«arv
rearo/i to the applicability of the rule.'* In case there is no exclusionary reason to
the applicability of a rule, the rule is applicable. We will later see that even an
applicable rule does not always apply, although it normally does (section 1.4).

1.3 Weighing reasons

That Saturday evening, John's father pays a visit, and the plan to have a picnic
is discussed. He agrees that the weather report on television is not good at
predicting the local weather, but says that he nevertheless thinks that it will rain
on Sunday. Because John's father has been a farmer for more than twenty
years, John and Mary take his opinion seriously. They go to bed
disappointedly. The next morning Mary looks out the window and sees that the
sky is completely cloudless. She happily tells John that it might not rain
after all. • .-• - • > .--•• - • < • <

Our use of the term 'exclusionary reason' is closely related to Raz's (1990, p. 35ff.).
Raz focuses on reasons for acting, and he defines an exclusionary reason as a reason not to
act for some other reason. Our exclusionary reasons are reasons that make a rule
inapplicable, even in case its condition is satisfied.
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At this point in our story, John and Mary can make two arguments, one that it will
rain:

John's father thinks that it will rain. . ,

So, it will rain. : ••.,->.- , .

and the other that it will not rain: : < , , -•...;

The sky is completely cloudless. ..... • - : . - . . .:
So, it will not rain. • •

This is an instance of conflicting arguments (see chapter 1, section 4.2). Because
there is a reason that it will rain, and also a reason that it will not rain, John and
Mary can currently not draw a conclusion. • r . '

At breakfast, John says he is at a loss, and does not know what to think about
the weather. He still takes his father's opinion seriously, but agrees with Mary
that the weather looks very good. After some discussion, John and Mary decide
that what they see with their own eyes provides the stronger reason, and they
conclude it will not rain. . „,,

In the story, John and Mary have we/g/je^ the conflicting reasons.^ Since John and
Mary consider the second reason the strongest, the argument .

The sky is completely cloudless. . •• . . , • •• . -
So, it will not rain. . , - . . . .

justifies its conclusion, while the argument

John's father thinks that it will rain.
So, it will rain.

does not, and John and Mary conclude that it will not rain.
Weighing can involve several reasons for and against a conclusion. If, for

instance, the prediction of the national weather report had been good at predicting
the local weather, and therefore the rule based on the prediction was not excluded,
there would have been an additional reason that it will rain. In that situation, the
reasons would again have to be weighed. John and Mary might still decide that
what they see with their own eyes gives a reason that is strong enough to outweigh
both opposing reasons, but they might also change their opinion and decide that
the reasons provided by the weather report and the opinion of John's father
together are stronger than the cloudless sky alone. . • < •

Cf. Naess(1978). p. lOOfT.
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1.4 R e a s o n s c o n c e r n i n g t h e a p p l i c a t i o n o f a r u l e - ; •••.*>>.'•

After preparing the food, John and Mary drive off to their favorite picnic site.
They turn their local radio station on, and at ten o'clock the weather report
brings bad news: after a nice start of the day, it will begin raining before noon.
John and Mary know that, in contrast with the national weather report on
television, this local weather report provides a strong reason that it will rain.
Nevertheless, they refuse to take it into account, against better judgment.

John and Mary's seemingly irrational behavior has a reason: otherwise, they would
have to conclude that it will rain, and they would certainly not enjoy their trip any
longer. As before, John and Mary consider the rule underlying the argument
scheme below to be valid:

According to the weather report, it will 6e weaf/jer lype so-am/-$o. T
So, it will 6e

In the case of the report on television, this rule was excluded, because the national
report is not good at predicting the local weather. This exclusionary reason does
not hold for the local weather report on the radio. Nevertheless, John and Mary do
not take the reason that it will rain into account. In other words, they do not apply
the rule.

Nevertheless, they have a reason for applying the rule since the rule is
applicable: the condition of the rule is satisfied, and the rule is not excluded. They
also have a reason against applying the rule since if they would apply it they would
certainly not enjoy their trip any longer. Their arguments are the following:

The rule's condition is satisfied.
So, the rule applies.

and

The trip will certainly not be enjoyable any longer if the rule is applied.
So, the rule does not apply.

Again there is a conflict of reasons, and the reasons have to be weighed. In this
case, John and Mary consider the reason not to apply the rule to be the strongest.

The seemingly irrational behavior of Mary and John shows an important
characteristic of rule application: it is an act, and there can be reasons for and
against performing the act. Their behavior is only reem/'/ig/y irrational: John and
Mary do have a reason not to apply the rule.* .. :!

* In chapter 3, section 5.2, another example of reasons against the application of a rule is
discussed taken from the field of law.
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And, for those who may wonder, Mary and John's behavior c#rf have the right
result: the weather stayed well during their picnic, and they had a nice afternoon.
Only when they got back in their car, did it begin to rain heavily.

I . 1 . : .- "':

1 . 5 O v e r v i e w - ; ••••i- •>;>• •. ._.<• •. • * -.• .> -. • - - . i ; i » v j >::, . r : o

In the remainder of this chapter we will forget about the actual practice of
argumentation (to which we will return in chapter 5), and focus on the rules and
reasons on which argumentation is based. The resulting model of rules and reasons
can be used to analyze argumentation. As we hope our examples have shown, such
a model is bound to be rather complicated.

In the examples, we made the following points about rules and reasons: ;*•

• Reasons for a conclusion do not arise individually, but follow a pattern
represented by a valid rule.

• By the application of a rule, a reason arises that supports a conclusion in an
argument.

• A rule can be excluded if there is an exclusionary reason. An excluded rule is
not applicable, even if its condition is satisfied.

• In case of conflicting reasons, whether a conclusion follows depends on how
the reasons pro and con are weighed. The outcome of the weighing can change
if new reasons arise.

• The application of a rule is an act. There can be reasons for and against
performing the act. If a rule is applicable, the fact that makes it applicable is a
reason to apply the rule.

The remainder of this chapter is devoted to the elaboration of these points and to
the development of a formalism called Reason-Based Logic that is based on them.

2 Semantics

In the previous section, we have informally introduced our view on the role of
rules and reasons in argumentation with defeasible arguments, by means of
examples. This view is at the core of Reason-Based Logic. Using these examples,
we develop the formalism Reason-Based Logic in the subsequent sections, in
accordance with our method of research (chapter 1, section 7). Reason-Based
Logic can be regarded as a formal semantics of rules and reasons. In this section,
we explain what we mean by this.

We introduce some convenient terminology. In the world there are /ac/s. For
instance, it can be a fact that the earth is round and that there is an oak tree in the
park. Facts can be expressed by sentences in some language. For instance, the fact
that the earth is round can be expressed in English as 'The earth is round' and in
Dutch as 'De aarde is rond'. Not all sentences express facts. For instance, if it is a
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fact that the earth is round, then 'The earth is flat' does not express a fact. A
sentence that expresses a fact is /rwe. We call a part of the world that is expressed
by a sentence, whether it is true or not, a 5/a/e o/q#a/>s. Both sentences 'The earth
is round' and 'The earth is flat' express states of affairs, but only one of them can
express a fact.

Not all facts deal with physical objects, such as the earth or oak trees. In this
chapter, for instance, we are particularly interested in objects related to
argumentation, such as rules and reasons. It can be a fact that one reason
outweighs another reason, or that there is an exception to a rule.

Facts are not isolated, but stand in relation to each other. An example is the
combination of facts by conjunction: it is a fact that the earth is round and it is a
fact that there is an oak tree in the park if and only if it is a fact that the earth is
round and there is an oak tree in the park. If we look at the corresponding
sentences, we obtain the following:

The sentence 'The earth is round' is true and the sentence 'There is an oak tree
in the park' is true if and only if the sentence 'The earth is round and there is an
oak tree in the park'is true. <̂  : <: u, , « AW> r;.;

We give another example, that is related to argumentation: if it is a fact that Mary's
argument justifies its conclusion, then it is also a fact that there are applying rules
that give rise to the steps in Mary's argument.

We call a specification of the types of facts in some domain and the relations
that hold between these facts a ,se/wan//c.y of that domain.' Since facts can be
expressed as sentences of some language, the types of facts in a domain are
specified by defining an appropriate language. The relations that hold between
facts are specified in terms of relations between the truth values of sentences.

A well-known example is the 'domain of the logical connectives', and its well-
known Tarski semantics.* One of the types of facts in this domain is conjunction.
In terms of sentences, ' 5 / and 52' expresses the conjunction of the facts expressed
by ' 5 / ' and '52'. The relation that holds between facts combined by conjunction
is, in terms of the corresponding sentences:

'57' is true and '52' is true if and only i f ' 5 / and S2' are true.
r

For the other logical connectives, similar relations hold.

' We use this terminology in analogy with that of the Tarski semantics in formal logic
(see e.g., Davis, 1993. p. 34ff.). However, in style the semantics of rules and reasons
discussed in this chapter differs, and is comparable to the representations of the
commonsense world, as discussed by. e.g.. Hayes (1985). Hobbs and Moore (1985). and
Davis (1990).
* See Haack (1978. p. IO8ff.) for a philosophical account, or any introductory text on
formal logic, e.g., Davis (1993, p. 34ff), for a formal account. . • • . • - ; v
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In the domain of the logical connectives, the truth value of a sentence is
determined by the truth values of its building blocks, such as in the example of
conjunction. The logical connectives are said to be truth-functional. In other
domains this is not always the case. For instance, the truth value of the sentence
'John loves Mary' depends on the truth value of the sentence 'John hates Mary'. In
a semantics of love and hate this relation has to be specified. The semantics might
for instance state that 'John loves Mary' and 'John hates Mary' cannot both be
true.

In this chapter, we describe a semantics of the domain of rules and reasons.
Also in this domain the truth value of sentences is not solely determined by the
truth value of their building blocks. An example of a relation between truth values
of sentences in this domain is: ' " las;,^ *•„.•} *') -li ••;-<' -stec n;. > ..*•:*/ •-„; ?•»£>

If'The rule with conclusion conc/us/ow and condition co/urt7;on is excluded' is
true, then 'The rule with conclusion CO«C/MJ/O« and condition co«c/;7/on is
valid'is true. . , . , . - .- . , . , » . . . . . ;„,...,. ..,. ...

Here comft//on and conc/uj/on are variables that stand for the condition and
conclusion of a rule. Informally, this relation between true sentences says that only
valid rules can be excluded.

The above shows a second difference between the domain of rules and reasons
and the domain of the logical connectives: there exists a semantics of the logical
connectives that is generally agreed upon, namely the Tarski semantics. This
semantics is so well-known that it seems to be the obviously right one, and even a
'silly pedantic exercise' (Davis, 1993, p. 34). In the domain of rules and reasons,
however, this is not the case. There is no general agreement on the elementary
concepts nor on their relations. This adds to the importance of our method of
research: any attempt to describe a semantics of rules and reasons should be
accompanied by informal examples (cf. chapter 1, section 7).

The validity of rules and the existence of reasons are the bottom line of our
treatment of argumentation: our semantics of rules and reasons does not define
which rules are valid, and which reasons exist. In our view, such facts can only be
determined by means of empirical investigation: which reasons exist and which
rules are valid in a given reasoning community is shown by the argumentation
behavior of the reasoners in that community. Which rules are valid and which
reasons exist is not determined by logic.

Just as with other empirically studied domains it cannot be expected that the
empirical data lead to a unique and indisputable theory of rule validity. Moreover,
it will often happen that new data gives rise to a revision of the theory of rule
validity. To complicate matters further, rule validity can change with time and
there is not always general agreement about rule validity in a community.'

' Even in the mathematical community where argumentation takes the form of
mathematical proof the ideas about rule validity can change and can be the subject of
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Therefore, examples are always based on a theory of rules and reasons that is given
beforehand as a set of premises.

To summarize, the goal of this chapter is twofold: .•., r „. .-.. • •,. ,•

• We specify types of facts concerning rules and reasons by defining an
appropriate language containing sentences that express these types of facts
(section 4).

• We specify the relations that must hold between the types of facts, in terms of
the relations between the truth values of sentences in this language (section 5).

After the formal description of the semantics of rules and reasons, we discuss
which conclusions follow from given premises (section 6). In agreement with our
method (chapter 1, section 7), we continue with an introduction of the formalism,
by means of the examples from section 1.

3 Towards a formalization ,

In the examples of section 1, we have encountered several types of facts
concerning rules and reasons. For instance, a rule can be valid, it can be applied,
and reasons can be weighed. Reason-Based Logic is a formalism in which such
facts can be formally represented, and that makes the relations between these facts
precise. In this section, we use the informal examples of section 1 to introduce this
formalism.

3.1 Rules and reasons

The conclusion of an argument is supported by reasons. For instance, in the
argument

According to the weather report, it will rain all day.
So, it will rain all day.

'According to the weather report, it will rain all day' is a reason for 'It will rain all
'O As the language of Reason-Based Logic, we use the language of First-

dispute. Examples are Brouwer's constructivist view on mathematical proof, and more
recently the dispute about the acceptability of computers as proof tools (cf. Stewart, 1996).

Actually, we should say that the j/a/e o/a#Ji/« expressed by the sentence 'According to
the weather report, it will rain all day' is a reason for j/a/e o/a#a<>.s expressed by the
sentence 'It will rain all day'. (Cf. the difference between states of affairs and the sentences
expressing them discussed in section 2.) For convenience, however, we will not use this
extensive expression.
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Order Predicate Logic." A number of special function and predicate symbols are
used to express the notions that are typical for Reason-Based Logic. The premise
and the conclusion of the argument above can be represented as
Weather_report(rainy_day) and Rainy_day, respectively.

In the argument, Weather_report(rainy_day) is a reason for Rainy_day.'^ In
Reason-Based Logic, a special predicate is used to express this fact:

Reason(weather_report(rainy_day), - r . >• - •
r a i n y _ d a y ) . . • • • • >:

This sentence expresses a state of affairs that some state of affairs is a reason for
another. As a result, the sentence, expressing one state of affairs, contains
references to other states of affairs. Here we encounter an important subtlety in the
language of Reason-Based Logic: states of affairs are expressed by sentences of
the language, and referred to by terms in other sentences. For instance, the state of
affairs that, according to the weather report, it will rain all day, is expressed by the
sentence

Weather_report(rainy_day) •

and referred to by the term • ; -.;

weather_report(rainy_day) •

in the sentence

Reason(weather_report(rainy_day),
rainy_day). . •.

As a result, in the language of Reason-Based Logic, there is a translation from
sentences to terms. In order to distinguish between sentences expressing states of
affairs and terms referring to them, a typographical convention is used: a string
with an initial upper-case character is a sentence, and a string with an initial lower-
case character a term (see section 4.3 for details).

We have discussed that reasons do not arise individually, but follow a pattern
(section 1.1). The reason above instantiates the following reason scheme:

" For an introduction to First-Order Predicate Logic, see Van Dalen (1983) or Davis
M993).

It may seem sloppy that we use the same phrase '... is a reason for ...' in the sentence
' 'According to the weather report, it will rain all day' is a reason for 'It will rain all day' '
and in the sentence "Weather_report(rainy_day) is a reason for Rainy_day'. However, no
confusion can arise, since both "According to the weather report, it will rain all day' and
Weather_report(rainy_day) express the same state of affairs, only in different language.
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Reason(weather_report(weaf/7er_fype), ..•.-.;;>..;-. .*••?,_,«^o! bcc; -y-;

Here, weaf/?er_rype is a variable, representing some type of weather.'^ The reasons
matching this pattern arise by the application of a valid rule. The rule can be
represented as follows > .

rule(weather_report(weatf7er_fype),

The rule has a condition weather_report(weaf/)er_fype) and a conclusion
weaf/?er_fype. The use of lower-case characters shows that the rule is represented
as a term: we treat a rule as an object that represents a relation between condition
and conclusion. The fact that this rule is valid is expressed by the following
sentence: • > o . ••-..

Valid(rule(weather_report(weatf7er_fype), . . • , =s • .,

weaf/?er_fype)) •••'.;•••• (1)

The rule gives rise to a reason if it applies. In our example, the rule applies
(initially) since Weather_report(rainy_day) is true. The fact that the rule above
applies is expressed as

Applies(rule(weather_report(weatf?er_fype), • • •

weather_report(rainy_day),
rainy_day). , , •

This sentence expresses that the rule with condition weather_report(weatf7er_type)
and conclusion weaf/?er_rype applies on the basis of the fact
weather_report(rainy_day).

3.2 Exclusionary reasons

A rule normally applies if its condition is satisfied. However, as we have seen, this
is not always the case. For instance, a rule does not apply if the rule is excluded
because of an exclusionary reason. We saw that 'The weather report on national
television is not good at predicting the local weather' was an exclusionary reason
against the applicability of the rule (1) above. This fact is expressed by the
following sentence: .. .

'•* This suggests that a formal language with typed variables could be useful (see for
instance Davis, 1993, p. 40ff. on many-sorted logic). We will not do this, in order to make
the formalism not unnecessarily complicated.
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Reason(bad_local_prediction, - ̂ / • v "••;••• :W ",.•>• » "<->•

excluded(rule(weather_report(weatfjer_rype), • • " ••» -

< « - . - . . • • t w e a t h e r _ r e p o r t ( r a i n y _ d a y ) , ; " . . : " . - •-• >' ' • . J - '
••.-.• . r a i n y _ d a y ) ) ;-t .>;< . , : ; " . = i ^ " ' - ' s s - . .;? - \ -• • - . • - . • - ? • ; * •

•. • : ..-. ! « ' t i s i • '•.

As a result, the rule (1) is excluded:

Excluded(rule(weather_report(weaf/ier_fype), J

weaf/)er_rype),

• weather_report(rainy_day), w.,- ' «•?-.!.. > ••'"•»• * « »';> . : H

•i<- rainy_day) i' ^1- • ... •- ;•- •• i . • • . • - • * • , • • ^ • s ' .

Since the rule is excluded, the rule is not applicable. In Reason-Based Logic, this is
expressed as follows:

-.Applicable(rule(weather_report(weatf)er_fype), " .- •• i s ' "

weatf?er_fype), . • . *.•>: <

weather_report(rainy_day),

r a i n y _ d a y ) • ••:• ' ••-'•••! • • • - - • • ' • > ;

' - , r - ' . .••• • r - j i

In the example, the rule does not apply, and the sentence

Reason(weather_report(rainy_day),

rainy_day) - •

is false. So far, there is no reason to conclude that it will rain.

3.3 Weighing reasons >•'

Later in our story John and Mary had two reasons concerning the weather that
Sunday:

Reason(belief_father(rainy_day),
rainy_day) r ?. ^ : i : . K j . i i i V , : : ; - . - , - / ^ • • • • ^ ; i / ;

Reason(cloudless_sky, • . , . . . ' - . , J I , - ; / ; • - ; , !?% ;ifvi , ' A V . • . . • • • • • ^ i

- . r a i n y _ d a y ) ' - • . ; • . •/ : - - ' • < • ; - . i • . ' • • • • . ; . » • • • . = • -:~- ••- s - - ; '

So, Belief_father(rainy_day) is a reason for Rainy_day, while Cloudless_sky is a
reason for ->Rainy_day, i.e., a reason against Rainy_day. In such a case of
conflicting reasons, the reasons must be weighed. John and Mary decide that
Cloudless_sky as a reason against Rainy_day outweighs the reason
Belief_father(rainy_day). This is expressed as:
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Outweighs({cloudless_sky}, : * ; . . ^ M > - . • • • " '

{belief_father(rainy_day)},

-irainy_day) ':.•..";•.: • > „ ; >>•••> • ••" • '

More precisely, this sentence expresses that the set of reasons containing only the
reason Cloudless_sky for -irainy_day (i.e, against rainy_day) outweighs the set of
reasons containing only the reason Belief_father(rainy_day) for rainy_day. Sets of
reasons are needed since there can be several reasons pointing in the same
direction.

3.4 Reasons concerning the application of a rule . • - . '-•• •'

We saw that there can be reasons for and against the application of a rule. In our
example, John and Mary knew that if they would apply the rule (1) and as a result
conclude that it will rain, their trip would no longer be enjoyable. That gives a
reason against the application of the rule:

. • • . • - • ; : ' < > • • ' ; " ? - ^ ^ * ' v ; ^ ~ ' i v - ^ - . •' •;. . •• - * ' : • - • • - • • ; • ' • • • •

Reason(trip_no_longer_enjoyable, ; . ,
-iapplies(rule(weather_report( weatf?er_rype),

wea//7er_fype), ..> • : . ••
weather_report(rainy_day),
rainy_day))

However, the condition of the rule is satisfied, since Weather_report(rainy_day) is
true (after John and Mary hear the radio). The rule is this time not excluded, so it is
applicable. If a rule is applicable, the fact that makes it applicable is a reason to
apply the rule. So, there is also a reason for applying the rule:

Reason(weather_report(rainy_day), - .
applies(rule(weather_report(weatfjer_rype),

weaf/7er_fype), . :
weather_report(rainy_day), - .
rainy_day)) ^

John and Mary consider the reason not to apply the rule stronger:

Outweighs({trip_no_longer_enjoyable}, . .. .
{weather_report(rainy_day)},

-.*.- ->applies(rule(weather_report(weatf?er_rype),
. weafheMype), .- - ' . . . .

weather_report(rainy_day), .. ; " • - . . ! • " • • '
rainy_day))

and they do not apply the rule.
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4 Types of facts .

In this section, we start with the formal definition of Reason-Based Logic.''' We
specify the types of facts concerning rules and reasons by defining a formal
language in which the different types of facts can be expressed.

The language of Reason-Based Logic (RBL) is based on that of First-Order
Predicate Logic (FOPL).'^ However, there are differences since the language of
Reason-Based Logic must be appropriate to represent the types of facts concerning
rules and reasons that we have encountered.

The main differences are that the language of Reason-Based Logic contains a
number of special function and predicate symbols, and that there is a translation
from sentences to terms.

As a result, terms and sentences must adhere to certain constraints. Therefore,
after the definition of alphabets (section 4.1), we must distinguish between pre-
terms and pre-sentences, not adhering to the constraints, and terms and sentences,
adhering to the constraints. In section 4.2, pre-terms and pre-sentences are defined,
analogous to terms and sentences of First-Order Predicate Logic. In section 4.3, we
define the translation from sentences to terms. In section 4.4, we then define terms
and sentences as pre-terms and pre-sentences adhering to certain constraints.
Section 4.5 contains an overview of the types of facts.

4.1 Alphabets of Reason-Based Logic

The following definition shows that an alphabet of Reason-Based Logic is
identical to an alphabet of First-Order Predicate Logic that contains some special-
purpose function and predicate symbols.

Definition 1.
F««c//on 57/W60/5 are finite strings of symbols a, b, c, ..., z, A, B, C,..., Z, _
starting with a lower-case.
/Ved/ca/e 5y/wAo/.s are finite strings of symbols a, b, c,..., z, A, B, C,..., Z, _
starting with an upper-case.
Kar/aA/e ,sy/w6o/.s are finite strings of symbols a, b, c z, /4, S, C Z, _
starting with a lower-case.
An a//?/»a6e/ of Reason-Based Logic is any set consisting of ; • r, ' .

Several versions of Reason-Based Logic have been presented over the years, e.g., by
Hage (1991, 1993, 1995). Hage and Verheij (1994a, b) and Verheij (1993. 1994, 1995e).
The differences are mainly due to new insights or differences of focus. For instance,
Hage (1995) has extended Reason-Based Logic to incorporate reasoning with goals, while
Verheij (1994) used a limited version of Reason-Based Logic to get the formalism right. See
also note 1.
'^ In the following we do not go into details of First-Order Predicate Logic, and assume
that the reader has some familiarity with it. For instance. Van Dalen (1983) gives a good
introduction to the syntax and semantics of First-Order Predicate Logic.
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1. the function symbol rule with arity 2, plus any number of additional TI -
function symbols, each assigned a natural number denoting its arity, ^

2. the predicate symbols Reason with arity 2, Valid with arity 1, Excluded
with arity 3, Applicable with arity 3, Applies with arity 3, and Outweighs
with arity 3, plus any number of additional predicate symbols, each
assigned a natural number denoting its arity, Ai

3. variable symbols, and .. • •••• '. .=.-
4. the symbols (,),{,},-«, A, v,-», 3, V, =,: and,. '* • ' . :

Function and predicate symbols do not need to have a unique arity. •••-'••
The smallest alphabet consists of the function symbol rule with arity 2,

predicate symbols Reason with arity 2, Valid with arity 1, Excluded with arity 3,
Applicable with arity 3, Applies with arity 3, and Outweighs with arity 3, no
variable symbols, and the symbols (,), {,}, -,, A, V, -•, 3, V, =, : and ,. The largest
alphabet consists of all function predicate symbols (with all arities), all variable
symbols, and the symbols (,), {,}, -., A, V, ->, 3, V, =,: and ,.

In the following, the definitions refer to a fixed alphabet of Reason-Based
Logic. . ..- ..-.,:-.-•• . ,-.• •..--. -

4.2 Pre-terms and pre-sentences

Before we can define the terms and sentences of Reason-Based Logic, we need to
define pre-terms and pre-sentences. These are defined in a similar way as the terms
and sentences of First-Order Predicate Logic. (The terms and sentences of Reason-
Based Logic have to adhere to certain additional constraints.) In the following
definition, n denotes a natural number, n > 0, except when otherwise indicated.

Definition 2.
The set of /?re-ter/ns of Reason-Based Logic is the smallest set such that the
following holds:
1. Any function symbol with arity 0 and any variable symbol is a pre-term.
2. If tern?,, tem72, ..., and tern?,, are pre-terms and functon is a function symbol

with arity n, then /uncfrbnftem?,, tem^, ... fern?,,) is a pre-term.
3. If tem?,, tem?2,..., and fern?,,, with n > 0. are pre-terms, then -ite/m,, (tern?,

A tem?2), (terni, v tem?2) and {tern?,, temij termj are pre-terms.

For convenience, we use the same typographical style for variable symbols and
metavariables. The role of the pre-terms of the forms -.fem7,, (tern?, A te/mj),
(tern, v fem?2) and {fem^, tem^ temij will be explained below (section 4.3).

Three examples of pre-terms are:

'^ Here the comma V (of the normal text font) is used to separate the symbols of the
alphabet, and the comma ',' (of the formula font) is one of the symbols.
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mary £*>-tv!!-fl;jr; ;••- <u-^ .

fatherOohn) i i ^m.S v ^ r t J•; ir.-st. ..•

rule(weather_report(weaf/?er_ fype),

Definition 3.
The set of /ve-/o/vww/as is the smallest set such that the following hold:
1. If tenr), and tem?2 are pre-terms, then term, = tem^ is a pre-formula.
2. Any predicate symbol with arity 0 is a pre-formula.
3. If tern?,, temjj,..., and tem?,, are pre-terms and P/ed/cafe is a predicate

symbol with arity n, then Pred/cate(temj,, termj, ... fern?,,) is a pre-formula.
4. If Fom7u/a, and Fom7u/a2 are pre-formulas, then -.Fomiu/a,, (Fom7u/a, A

Fomiu/a2), (Forniu/a, v FOATDU^) and (Fo/mu/a, -> Fomiu/a2) are pre-
formulas.

5. If Formu/a is a pre-formula and x is a variable symbol, then 3x: Fomiu/a and
Vx: Fom7t//a are pre-formulas.

A /?re-a/o/w is a pre-formula of one the forms Pred/cafe, fem?, = tem72, or
Pred/cate(tem?,, tem?2, ... tem?n). A /7re-///era/ is a pre-atom or a pre-atom
preceded by -•. A pre-sen/ewce is a pre-formula without free variables.'^

We use the ordinary conventions to reduce the number of brackets in formulas.
Three examples of pre-sentences and pre-formulas are:

* i • ' • • • -

ls_thief(mary) ,, •. ; f l» ! .3V. . - .-..> -.

P r e d i c t s ( l o c a l _ w e a t h e r _ r e p o r t , r a i n y _ d a y ) .; . . ' : ' • . , ' .: > ; - - J

V a l i d ( r u l e ( w e a t h e r _ r e p o r t ( i v e a f / 7 e M y p e ) , : •••-.- : .- *•--•..; i - . : • • . . •'

w e a f / ? e r _ r y p e ) )

Shortly, we will see that not all pre-terms and pre-sentences are terms and
sentences of Reason-Based Logic. We return to this issue in section 4.4. • ;

4.3 A translation from sentences to terms 4 .- »* . r

As mentioned in section 3.1, in Reason-Based Logic, we do not only need to
express states of affairs as sentences, but also to refer to them in other sentences. In
the formal language, we use a translation from (pre-)sentences to (pre-)terms in
order to refer to sentences.'^

We use a simple translation: to obtain the pre-term that corresponds to a
(quantifier free) pre-sentence, the first upper-case character of each predicate

' ' Free variables are defined as usual.
' " This is an often-encountered technique, known as rezy?ca//<v>. For other examples, we
refer to the overview of meta-languages, reflection principles and self-reference by Perlis
and Subrahmanian (1994). . . . - . . .
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symbol in the pre-sentence is replaced by the same character in lower-case. By the
choice of alphabet and the definition of terms, the result of this translation is
always a pre-term.

For example, the pre-sentence . : . , , . ..-:.;;•;• v i i ast-f? Mt-T .••••/J":

r •* . . ' • , . : . i ^ : - . : i i i W i •.'.•'. C . - 7 , > ? U ; ^ i T T » s r - " ^ .',»•• .'.••.! . i ; T -

ls_thief(mary)
,-. ' . . •:•• . • ;. .: ,;• •;••_ • - , » k n o £ J i . « J i " » < ' -

t rans la tes t o t h e t e r m .:-j»,ii>f. ,T->.-.---:-•• :•»->;.••-.;'.!*>*.*. •<• . . . 'b-^w;:-;

i s _ t h i e f ( m a r y ) . I . . - - M - . - M . . •-«•. • •; ,-i -<v . - •.. •.-„ .v . - - - . . : : : -_ . ;8 ! j . r ' : '

As the definition of pre-terms shows, the logical connectives are treated as if they
also are function symbols. In this way, the translation can be kept as simple as it is
now. For example, the pre-sentence ;.. • .

l s _ g u i l t y ( m a r y ) A - i P u n i s h ( m a r y ) > ; : w - , ^ ' i i u • : * • . . » : - s •_ <• . ^ . • - • . . .'; r

translates to the term ,•••:••. : : . . - : ' • • • • . • . • ' • -•

i s _ g u i l t y ( m a r y ) A - i p u n i s h ( m a r y ) . ^-, i t ; , ^ • . J ' : • . • ' : • : • » • • . .-;••

To stay as close as possible to the usual notation of sentences, the logical
connectives are /«/uc function symbols. For instance, instead of writing terms of the
form A(tem?,, tem?2), we write (em, A temi2.

Of course not all terms should be translations of sentences. For instance, the
terms mary and father(john) do not correspond to sentences Mary and Fatherflohn).
Therefore, we should divide the set of terms into two types, namely those that
correspond to sentences, and those that do not. As a result, only a subset of all
strings of characters beginning with an upper-case can be predicate symbols. For
convenience, we will not explicitly define such a subset, but assume that any string
of characters beginning with an upper-case that we encounter is in this subset.

The translation easily extends to metavariables for (pre-)sentences and (pre-
)terms, as follows. Metavariables for pre-sentences will be denoted as strings of
italic characters beginning with an upper-case character, e.g., Facf. Metavariables
for pre-terms will be denoted as strings of italic characters beginning with a lower-
case (just as the variables of the logical language), e.g., fee/. Matching
metavariables for pre-sentences and pre-terms, such as Facf and facf, represent a
sentence and its translation to a term. This extended translation will turn out to be
crucial in several of the coming definitions. . ., «.- .. .--•..*.•.-.

• ' • *
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4.4 Terms and sentences ;-•::•»• s... -;..i ^ • t n 7- -.:: • > -, •

In Reason-Based Logic, there are function and predicate symbols that play a
special role. There are constraints on their use. Formally, we define terms and
formulas as pre-terms and pre-formulas that adhere to a number of constraints.

Definition 4.
A /er/w of Reason-Based Logic is a pre-term that adheres to the following
constraints:
1. If rule(cond/f/on, conc/us/on) is a pre-term, Condrf/on must be a disjunction

of conjunctions of pre-literals and Conc/us/on a pre-literal.
2. If {racfi, fec^ /ac/J is a pre-term, Facr,, Fac^, ., and Fac/n must be

disjunctions of conjunctions of pre-literals. ;* ;̂ >: ^. . . . T^

In this definition, we use the translation from sentences to terms for the first time
in a formal definition. For instance, Cond/f/on denotes a sentence that translates to
the term denoted by concM/on.

Definition 5.
A/ormw/a of Reason-Based Logic is a pre-formula Fom?u/a that adheres to the
following constraints:
1. All pre-terms that occur in Fom?t//a must be terms. '
2. If Fom7u/a has the form

Reason(fecf, stete_of_affa/rs), . " •'
Valid(rule(condtf/on, conc/us/on)), '•'• "

' • • / • Excluded(rule(condrf/on, conc/us/on), fecf, sfate_o/]_affa/>s), ' ' •
- Applicable(rule(condrf;on, conc/us/on), facf, sfate_of_affa/rs),

Applies(rule(cond/Y/on, conc/us/on), facf, srate_of_affa/rs), or ' •
Outweighs(reasons,, reasons2, stete_of_affa/ra), •'•••""

then the following must hold:
a. Facf, S<ate_of_affa/rs, Reason,, Reaso^, ••• and Reaso^n must be pre-

sentences, i.e., do not contain free variables.
b. Facf must be a disjunction of conjunctions of pre-literals and must be an

• ' instance of Cond/f/on under some substitution o, and Stefe_of_affa/rs
» must be a pre-literal that is an instance of Conc/us/on under the same

substitution a.
c. The (pre-)terms reasons, and reasonsz must both have the form {focf,,

fecfj fecfj, with n > 0.
/4/o/wi and //Vera/j are formulas that are pre-atoms and pre-literals, respectively.
Sentences are pre-formulas that only contain free variables in occurrences of
terms of the form rule(cond/f/on, conc/us/on).
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Definition 6. . _ . . . . ^,. .w^.i .

A /angwage of Reason-Based Logic is the set of formulas belonging to some
alphabet of Reason-Based Logic. . . , , . .

4.5 Overview of the types of facts - , ; . • ,• ;

As we saw in section 3, in Reason-Based Logic, a number of function and
predicate symbols are used to express types of facts concerning rules and reasons.
Below we provide an overview of these function and predicate symbols and their
use.

• rule(condrf/on, conc/us/on) ; , . •,,.

Since we treat rules as objects, rules are represented as terms in Reason-Based
Logic. In this way it is possible to express facts about rules. A term denoting a
rule has the form rule(cond/Y/on, conc/us/on). Here cond/Y/on and conc/us/on are
terms with free variables. The formula Cond/Y/on that translates to the term
cond/Y/on must be a disjunction of conjunctions of one or more literals. In other
words, Cond/Y/on is quantifier free and in disjunctive normal form. An instance
of Cond/Y/on is a possible reason for a matching instance of Conc/us/on. The
formula Conc/us/on that translates to the term conc/us/on must be a literal.

• {fecfi,facf2 fecfj (for n= 1,2,...) • . . . : . - • ••

These symbols are used to refer to the sets of facts that are reasons for some
conclusion. We use an unusual syntax of terms to stay as close as possible to
the normal notation of sets. The term {thief(mary), minor(mary)} refers to the set
of the two reasons expressed by the sentences Thief(mary) and Minor(mary).
The term {} (without arguments) is used to denote an empty set of reasons.

There is a problem here with different terms that denote identical sets, such
as {thief(mary), minor(mary)} and {minor(mary), thief(mary)}. Axioms should be
included in Reason-Based Logic such that formulas that only differ in such
equivalent terms for sets are equivalent. We will not do this explicitly.
.. We do not consider infinite sets of reasons.

• Reason(/acf, sfafe_of_affa/rs) : •• . . =• •

A sentence of this form expresses that the fact referred to by the term fecf is a
reason for the state of affairs referred to by the term stete_of_affa/>s. The
sentence Facf (that translates to the term /acf) must be a disjunction of
conjunctions of literals, and Stete_o/_affa/rs (that translates to the term fecf) a
literal. If Stete_of_affa/>5 is an atom dtom, Facf is a reason for ^tom and a
reason against -,>Atom; similarly, if Stete_of_affa/rs is a negated atom
Facf is a reason for -i/Mom and a reason against dtom.
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• Va l id ( ru le(cond/ f /on, conc/us/on)) .•; •:••;;• •'-••.•

A sentence of this form expresses that the rule with condition cond/f/on and
conclusion conc/us/on is valid.

• Excluded(rule(cond/f/on, conc/us/on), facf, stete_o([_affa/A5)

A sentence of this form expresses that the rule with condition cond/f/on and
conclusion conc/us/on is excluded, for the instance Facf of the rule's condition
Cond/f/on. Facf must be an instance of Cond/f/on, and Sfafe_of_affa/rs an
instance of Conc/us/on.

• Applicable(rule(cond/f/on, conc/us/on), facf, sfafe_o/_affa/rs)

A sentence of this form expresses that the rule with condition cond/f/on and
conclusion conc/us/on is made applicable by the fact expressed by the term
facf. If a rule is applicable, it may give rise to a reason for the state of affairs
expressed by the term sfafe_of_afYa/>s. Facf must be an instance of one of the
disjuncts of Cond/f/on, and Sfafe_of_af7a/>5 an instance of Conc/us/on.

• A p p l i e s ( r u l e ( c o n d / f / o n , c o n c / u s / o n ) , f a c f , s f a f e _ o f _ a f f a / r s ) * - - • • •

A sentence of this form expresses that the rule with condition cond/f/on and
conclusion conc/us/on applies on the basis of the fact expressed by facf and
therefore generates a reason for the state of affairs expressed by
sfafe_of_affa/fs. Facf must be an instance of Cond/f/on, and Sfafe_of_a/fa/rs an
instance of Conc/us/on. The predicate >*pp//es should not be confused with the
predicate dpp//cato/e. The difference in meaning (introduced in the sections 1
and 3) is made precise in the next section.

• Outweighs(reason_pro, reasons_con, sfafe_of_affa/rs) ' '•''--?•• *• .• ' •

A sentence of this form expresses that the reasons in the set referred to by the
term reasons_pro outweigh the reasons in the set referred to by the term
reasons_con (as reasons concerning sfafe_of_affa/>s). The terms reasons_pro
and reasons_con must both have the form {facf,, facf2, .... facfj, where n > 0.
Each sentence Facf, must be a disjunction of conjunctions of literals (for each i
from 1 to n), and Sfafe_of_affa/rs a literal. The reasons in reasons_pro are
reasons for Sfafe_of_af7a/>s, and the reasons in reasons_con are reasons against
Sfafe_of_affa/rs. Equivalently, if Wof_sfafe_of_affa/Vs is the literal that is the
opposite of Sfafe_of_affa/rs, the reasons in reasons_pro are reasons against
A/of_sfafe_of_affa/rs, and the reasons in reasons_con are reasons for
A/of_sfafe_of_afya/rs. • ... H. ;.<;, ,•••• .,



Section 5: Relations between facts 35

5 Relations between facts ¥ • / ( , : * ' . :

In this section, we describe the relations that hold between the described facts
concerning rules and reasons. We do it in terms of the truth values of the
corresponding sentences. The basis is again First-Order Predicate Logic." The
relations that hold between facts (in terms of the truth values of sentences that
express the facts) as defined by First-Order Predicate Logic also hold in Reason-
Based Logic. For instance, the following relations hold:

N O T • " ^ i , i , '»,-. ; ^ ' •-* • ' . . - / . " : j . k i • - c » * ; r . • . - . ; ; • • .

For all sentences Stete_of_affia/re, * •. - ' . j v --' ;..-:,• 1 • •*•* -; •.:••«-=^
Either Sfafe_of_affa/>s is true or-.Sfafe_or_affa/Vs is true. .-••.'.

A N D • • • • • . - • - , , : . . . . • - . ; : ; , ; ; - . • ; . . . ^ ; •*

For all sentences Sfate_oCaffa/rSi and Sfate_of.affa/re2, > .
Stete_oA_affa/rsi is true and Sfate_o/_affa//52 is true if and only if
Stete_o/_affa//5, A Sfate_of_affa/>32 is true.

- • . - • . • • • » n . - . - , i - i ' ; . . . ; • , : • > : -

OR ' - ' • < ; • V •

For all sentences Sfate_of_affa/rsi and Stete_of_affa/rs2, ••- • -<
Sfate_o^_affa/rsi is true or Stete_o(_affa/rs2 is true if and only if

"• Sfafe_o(_affa/Vs, v Stete_o(_affa/AS2 is true. i •

The relations that hold between sentences that are typical for Reason-Based Logic
are defined in a similar way. They are called VALIDITY, EXCLUSION,

APPLICABILITY, APPLICATION, WEIGHING, and WEIGHINGAXIOMS.^O We assume
in the following that all mentioned sentences are well-formed, i.e., are sentences of
the language of Reason-Based Logic.

VALIDITY

For all sentences Cond/to/7, Conc/us/on, Facf and Sfate_of_affa/rs,
I f Excluded(rule(cond/Y/on, conc/us/on), facf, stete_of_affa(>s),

•*-••** • Applicable(rule(cond;fen, conc/us/on), facf, sfate_of_affa/>5) or
Applies(rule(cond;Y/on, conc/us;on), /acf, stete_of_affa/>s) is true, then
Valid(rule(condrf/on, conc/us/on)) is true.

For convenience, we will not as usual define the relations between facts in terms of
structures and models, but in terms of truth values of sentences. Such a definition can be
given, but does not provide additional insight, while the formalism become-: more complex.

These relations could also be given as a set of axioms. We have chosen the present form
in order to stress that in Reason-Based Logic the standard logical connectives, such as -•
and A, are not treated differently from the non-standard logical constants, such as Valid and
Applicable.
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Informally, VALIDITY says that a rule can only be excluded, be applicable, or apply
if it is valid.

EXCLUSION • : ^ . .

For all sentences Facr and Stete_of_a/fa/>5, r._- . > •,
«>••;,-• If Facf and Valid(rule(cond/f/on, conc/us/'on)) are true, then either • ::.• ;

Excluded(rule(cond/f/on, conc/us/on), fecf, sfafe_o)[_affa/rs) or
Applicable(rule(conc//f/on, conc/us/on), facf, sfafe_o(_affa"'s) is true. «••••

Informally, EXCLUSION says that a rule is either excluded or applicable if its
condition is satisfied. Here Facr stands for the fact that satisfies the condition of the
rule. . .: •, • , ;

APPLICABILITY

For all sentences Facf and Sfafe_of_affa/rs,
a. Applicable(rule(cond/'f/on, conc/us/on), facf, sfafe_o/_a/fa/rs) is true i f and

only if Reason(facf, applies(rule(cond/f/'on, conc/us/on), facf,
sfafe_of_affa/ra)) is true.

b. I f Applicable(rule(concM/on, conc/us/on), facf, sfafe_of_af/a/rs) is true, then
Facf is true.

Informally the first part of APPLICABILITY says that if and only if a rule is
applicable, the fact that makes the rule applicable is a reason to apply the rule. The
second part says that a rule can only be applicable if its condition is satisfied.
Again, Facf stands for the fact that satisfies the condition of the rule.

APPLICATION ,:»•::•••!•
For all sentences Facf and Sfafe_of_affa/rs, ;

There are terms cond/f/on and conc/us/on, such that Applies(rule(cond/f;on,
conc/us/on), facf, sfafe_of_affa/>5) is true if and only if Reason(facf,
sfafe_of_affa/rs) is true.

Informally this relation says that if and only if a rule applies, the fact that makes
the rule applicable is a reason for the rule's (instantiated) conclusion, or,
equivalently, a reason against the opposite of the rule's conclusion.

Notice the difference between a rule's being applicable and its being applied. If
a rule is applicable, this only indicates that there is a reason for applying the rule
(see APPLICABILITY, part a). In general, there can also be reasons against applying
a rule.

WEIGHING

For all sentences Pro,, Prt>2,..., Pro,, (for some natural number n), Con,,
..., Conn, (for some natural number m), Sfafe_of_af7a/re, and its opposite
A/of_sfafe_of_affa/>5,
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I f Reason(pro,, stefe_or"_affa/>s), Reason(pro2,
Reason(pro,,, sfate_of_affa/rs), Reason(con,, nof_stete_o/_affa/>s),
Reason(con2, nof_stete_or_a/fa/>s),..., Reason(con^, nof_stefe_of_a/fa/rs),
and also Outweighs({pro,, proj proj, {con,, con2 000^},
stete_of_affa/>s) is true, then Stete_o/_affa/>s is true, or there is a term con,
different from con,, co/72,..., and 000^, such that Reason(con, ..•;-• •
nof_stete_of_affa/re) is true. . •, 1

Informally the first part of this relation says that reasons make a conclusion true if
the pros outweigh the cons, provided that no con is overlooked. It is allowed that
one or more of the pros is overlooked: if a subset of the pros already suffices to
outweigh all cons, the conclusion certainly follows if there are even more pros.^' It
may seem that a similar relation between facts is required for the case that the cons
outweigh the pros. However, since in Reason-Based Logic a reason against a state
of affairs is just a reason for the opposite state of affairs, the relation above
suffices.^

- . - 8 0 ' '•• - • ' • • ; - . ' . > • • • • • ' • • ' "

WEIGHING_AXIOMS .-••'•
For all sentences Facf,, Facf2, •-, Fac^ (for some positive natural number n),
Stete_or_affa/75, and its opposite /Vof_stete_of_affa/rs, and all terms pros and
cons,
a. Outweighs(pros, cons, stete_of_affa/>s) and Outweighs(cons, pros,

no(_sfate_o/_affa/fs) are not both true.
b. I f Reason(facf,, stete_of_affa;rs), Reason(facf2, sfateLoCa/fa/re),....

Reason(facfn, sfate_of_a/fa//s) are true, then Outweighs({facf,, fec^
/acf,J, { } , sfafe_oA_affa/rs) is true.

The first part of this relation says that the pros as reasons for s/ate_o(_affa/Vs
cannot outweigh the cons and the other way around at the same time. However, the
first weighing axiom does not make it impossible that -,Outweighs(pros, cons,
sfate_of_affa/rs) and -.Outweighs(cons, pros, stete_of_affa/>s) are both true.

Reason-Based Logic does in general not determine which set of reasons
outweighs another set. However, for the case that all reasons point in the same
direction, i.e., all reasons are either pros or cons, the second part of the relation
gives the result: any non-empty set of reasons outweighs the empty one.

^' This is due to the accrua/ o/mKora, a term used by Pollock (1991, p. 51). Accrual is
discussed more extensively later on.
^ In other versions of Reason-Based Logic (e.g., Hage and Verheij, 1994a), the two cases
that the pros outweigh the cons and that the cons outweigh the pros, are formally
distinguished, even though there is no conceptual distinction. In the version of Reason-
Based Logic described by Verheij (1995e), this is acknowledged, and the two cases are no
longer formally distinguished.
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6 Conclusions following from given premises

Although it is not strictly part of the semantics of rules and reasons, we discuss in
this section which conclusions follow from given premises. The given set of
premises, representing a theory of rules and reasons, is called a theory of Reason-
Based Logic.

The simplest approach is to define which conclusions deductively follow from
a given theory analogous to First-Order Predicate Logic, as follows:

Definition 7. (RBL-deduction)
A ///eory of Reason-Based Logic is any set of sentences (in a given language of
Reason-Based Logic). A conclusion Conc/us/on <fe^Mcf/ve/y/o//ow.s from a
theory T, if the truth of the sentences in T follows from the truth of the
sentence Conc/us/on, using the relations between facts of Reason-Based
Logic .^ :

Definition 7 extends deduction in First-Order Predicate Logic, and allows that
conclusions are drawn on the basis of the relations between facts that hold in
Reason-Based Logic. It is possible to define a set of deduction rules, in the style of
First-Order Predicate Logic's natural deduction, that are sound and complete with
respect to this deductive consequence relation. However, this consequence relation
turns out to be weak, and intuitively attractive types of reasoning on the basis of
reasons are not captured by RBL-deduction.

As a result, we do not devote much attention to the deductive consequence
relation, and focus on a more interesting HowMonofomc consequence relation.

We give an example of a type of reasoning that is not captured by RBL-
deduction: the conclusion Rainy_day does not follow from the theory that consists
of the two sentences . ••••

- • • • • • ; : - • . • > : . .

Weather_report(rainy_day) • , : . -
Valid(rule(weather_report(weaW7er_fype), • . ; ' J - . '

Intuitively, simply applying the rule, the condition of which is satisfied, leads to
the conclusion Rainy_day. The difficulty is hidden in the world 'simply': the rule
does not simply apply, since for the rule to apply several semantical constraints
must be met. As a result, not in all circumstances in which the theory above is true,
the rule actually applies. Formally, the sentence

Applies(rule(weather_report(weaW7er_fype), r • • . ^ ..-• -.-•••

^ Normally, which conclusions follow from a theory is defined in terms of the /norfe/i of
the theory. But see note 19.
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weather_report(rainy_day), . f .?..;;;: . •
rainy_day) ..

is not always true. For instance, it can be the case that the rule is excluded, i.e., in
which ; - . ,

Excluded(rule(weather_report(weaf/7er_rype), . - • -Li,
weaf/7er_rype), :. ;; .,;.;.: - j , , , ,

weather_report(rainy_day),
rainy_day) '-. ;•:> . •

• '• '•••- .• '•'• . . . • - " • - • . - . - ^ • . * • i i ' - - * > '

is true. Then the rule is not applicable and normally not applied.
Intuitively, however, it seems most natural that the rule is not excluded, since

there is no information in the theory that makes it excluded. Therefore, it seems
natural to allow the following type of reasoning: .

If the condition of a rule is satisfied, then it follows that the rule is applicable,
unless it follows that the rule is excluded. , .•-.-

This type of reasoning is an example of a «o/j/worto/om'c rule of inference. It is
called nonmonotonic, since it can be the case that conclusions based on it must be
retracted because of newly inferred facts. For instance, it may seem now that a rule
is not excluded with respect to the currently inferred facts, but later it may be
inferred that the rule is excluded after all. This is in contrast with the usual
monotonic rules of inference. Once a conclusion based on monotonic rules of
inference is established, it never has to be retracted on the basis of newly inferred
facts.

The problem with nonmonotonic rules of inference is that they can only be
safely used to draw conclusions if one knows all consequences of a theory in
advance. This is in conflict with the step by step construction of the set of
consequences of a theory: starting from the premises in the theory conclusions are
added step by step by drawing new conclusions using the rules of inference. As a
result, the complete set of conclusion following from a theory is only known after
all steps have been completed.

Many approaches to deal with nonmonotonic rules of inference have been
proposed. Ginsberg (1987), Lukaszewicz (1990) and Gabbay ef a/. (1994b) have
given overviews of such research. We present an approach based on extensions
that is related to ideas that go back to Reiter's Default Logic (1980, 1987).

In the definition of the nonmonotonic consequences of a theory we use a set of
sentences that can be regarded as a guess in advance of the set of consequences.
The nonmonotonic rule of inference mentioned above is then read in a slightly
different way, by referring to this guess:

v
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, If the condition of a rule is satisfied, then it follows that the rule is applicable,
unless it is guessed that it follows that the rule is excluded.

Let now T be a theory, and S a set of sentences, that represents our guess of
consequences following from the theory T. We will define which conclusions
follow from the theory T relative to the guess set S. The following rule of
inference (related to the relation between facts EXCLUSION of section 5) holds in
Reason-Based Logic:

EXCLUSION*

For all sentences Facf and Sfafe_of_affa/rs,
If Facf and Valid(rule(concM/on, conc/us/on)) follow from T relative to S,
then Applicable(rule(concM/on, conc/us/on), facf, stete_of_affa/rs) follows
from T relative to S, unless Excluded(rule(cond/Y/on, conc/us/on), facf,
sfate_of_affa/rs) is an element of S.

This rule of inference says that if it follows that the condition of a rule is satisfied,
it follows that the rule is applicable, unless it is guessed that the rule is excluded.

There is a second type of reasoning that is intuitively attractive, but is not
captured by RBL-deduction. Informally: • •

If it follows that all derivable pros outweigh all derivable cons, the conclusion
of the pros follows. If it follows that all derivable cons outweigh all derivable
pros, the conclusion of the cons follows.

This type of reasoning is however also an example of a nonmonotonic rule of
inference. Since it refers to all derivable pros and cons, one has to know the whole
set of conclusions in advance. Again we use the fixed guess set S to avoid the
difficulties. Instead of using all derivable pros and cons, the following rule of
inference (related to the relation between facts WEIGHING of section 5) uses all
reasons in the guess set S.

WEIGHING*

For all sentences Pro,, Prc>2,..., Pro,, (for some natural number n), Con,,
..., Con ,̂ (for some natural number m), Sfate_of_affa/rs, and its opposite
A/of_sfate_of_affa/rs,

I f Reason(pro,, stete_of_affa/rs), Reason(pro2, sfate_of_affa/rs),...,
Reason(pron, sfate_of_affa/rs), Reason(con,, nof_sfafe_of_affa/fs),
Reasonfconj, nof_sfafe_of_affa/rs),..., Reason(con,n, nof_stete_o
and also Outweighs({proi, proj proj, {con,, conj con,J,
sfate_of_affa/re) follow from T relative to S, then Stete_of_a/fa/>s follows
from T relative to S, unless there is a term con, different from corii, con2,...,
and con,n, such that Reason(con, nof_sfate_of_affa/rs) is an element of S.
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Finally, the conclusions that deductively follow from a theory also follow from T
relative to S:

RBL-DEDUCTION .<>: . . f;.

1. All elements of T follow from T relative to S.
2. All sentences that (deductively) follow from sentences that follow from T

relative to S follow from T relative to S.

The conclusions that follow from a theory T relative to a guess set S can now be
defined as in First-Order Predicate Logic by a recursive definition using the rules
of inference EXCLUSION*, WEIGHING* and RBL-DEDUCTION. The problems of
such a recursive definition for nonmonotonic rules of inference have been avoided
by translating these rules to monotonic rules of inference relative to the fixed set S.
We have the following ordinary recursive definition of the conclusions that follow
from a theory relative to a guess set: ' •

Definition 8. (S-consequences) .
A guess se/ of Reason-Based Logic is any set of sentences (in a given language
of Reason-Based Logic). For any theory T and any guess set S, the set of
conclusions that/o//owyrom T re/a//ve /o S is the smallest set of sentences,
such that EXCLUSION*, WEIGHING* and RBL-DEDUCTION hold. The
conclusions that follow from T relative to the guess set S, are the S-
con.se<7«ertcej of T.

If T is a theory and S is a guess set, there are two cases in which the guess set S is
not acceptable as a set of nonmonotonic consequences of T. First the guess set can
be too small: there are S-consequences of T that are not in the guess set S. Second
the guess set can be too large: not all sentences in the guess set S are S-
consequences of T. So, a guess set is a set of nonmonotonic consequences of T if
and only if the guess set is equal to the set of consequences relative to the guess
set. A set of nonmonotonic consequences is usually called an extension. We get the
following fixed-point definition:

Definition 9. (extensions)
For any theory T, a set of sentences E is an ex/ms/on if and only if E is equal to
the set of E-consequences of T.^

^ One can see that this definition of extension corresponds to Reiter's (1980, 1987) if one
reads the rules EXCLUSION* and WEIGHING* as defaults. For instance, EXCLUSION*

corresponds to defaults with prerequisite Fac/ A Valid(rule(cond/f/on, conc/us/on)),
justification Excluded(rule(cond/fon, conc/us/on), facf, s/ate_of_affa/rs), and consequent
Applicable(rule(conoWon, conc/us/on), fee/, stete_or_affa/rs). Our set of S-consequences of a
theory T corresponds to Reiter's set Fj(S). Of course, several unessential technical
adaptations are necessary, such as using an RBL language.



42 Chapter 2: Reason-Based Logic: a semantics of rules and reasons

A theory does not necessarily have an extension, and, if it has one, the extension is
not necessarily unique. For instance, the theory that consists of the sentence

Valid(true, excluded(concM/bn, conc/us/on)) • • : . . .

has no extension. The theory that consists of the four sentences

A
B ' ' " . • : . • : ; - . . :

, Valid(rule(a, excluded(rule(b, conc/us/on)))) i ' • • •>"•

Valid(rule(b, excluded(rule(a, conc/us/on)))) ••' ' • ^ ' - /. v •

has two extensions, namely one in which the first rule is excluded and the second
rule applies, the other in which the first rule applies and the second rule is
excluded.

Theories that have no or several extensions contain a paradox resembling the
well-known paradoxes of self-reference. In Reason-Based Logic, such paradoxes
are possible because of the translation from sentences to terms (as defined in
section 4.3). We consider it the task of theories in Reason-Based Logic, rather than
of the consequence relation of Reason-Based Logic, to avoid these paradoxes.

- ' : . ' • • ; : < • > . ' .
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Reason-Based Logic and law

This chapter contains examples of Reason-Based Logic, taken from the field of
law. The examples illustrate the basic elements of Reason-Based Logic, and give
applications to the theory of legal reasoning.

We start with a discussion of the apparent dichotomy of reasoning with rules
and reasoning with principles (section 1). Our claim is that the seeming difference
is merely a matter of degree. We support this claim by giving an integrated view
on rules and principles (section 2). Before the formal elaboration of this view in
Reason-Based Logic (section 7), we discuss how isolated rules/principles, the
weighing of reasons, exceptions and conflicts can be modeled in Reason-Based
Logic (sections 3, 4, 5 and 6, respectively). We end the chapter with an application
of our view on rules and principles to reasoning by analogy (section 8). We show
how this view gives rise to three different ways of reconstructing reasoning by
analogy.'

1 Reasoning with rules vs. reasoning with principles

There seem to be t w o types o f reasoning : ... i , . , ' . • . . . ; . . .

w/7/7 ru/es - '
A rule is applied if its condition is satisfied. If a rule is applied, its conclusion
follows directly.

vv/7// p
In contrast with a rule, a principle only gives rise to a reason for its conclusion
if it applies. Moreover, there can be other applying principles that give rise to
both reasons for and reasons against the conclusion. As a result, a conclusion
only follows by weighing the pros and cons.

' The sections 1, 3, 7 and 8 of this chapter are based on the papers by Verheij and
Hage (1994) and Verheij (1996b).
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For instance, Dworkin (1978, p. 22ff. and p. 7Iff.) has made a strict distinction
between rules and principles in the field of law. According to Dworkin, rules have
an all-or-nothing character, while principles have a dimension of weight or
importance. An example of a typical rule, he says, is the proposition 'A will is
invalid unless signed by three witnesses'. An example of a typical principle is 'No
man may profit from his own wrong'.^

There are at least three seeming differences between rules and principles. The
first is that rules lead directly to their conclusion if they are applied, while
principles lead to their conclusion in two steps: first principles give rise to reasons,
then these reasons are weighed.

The second difference between rules and principles appears in the case of a
conflict. In case of conflicting rules, that is rules with incompatible conclusions
that apply to a single case, the rules lead directly to their conclusions, and therefore
to a contradiction. In case of conflicting principles, i.e., if there are principles with
incompatible conclusions that apply to a single case, no such problems occur. The
application of conflicting principles only leads to reasons that plead for
incompatible conclusions, so no contradiction is involved. In such cases, a conflict
can involve several distinct reasons, some of which plead for a conclusion, others
against it. Weighing the pros and cons determines the final conclusion.

The third difference is that rules lead to their conclusion in isolation, while
principles interact with other principles. For instance, additional reasons arising
from other principles can influence the result of the weighing of reasons.

These differences are summarized in Table 1.

Application
Conflict
Other rules/principles

Rule
Conclusion
Contradiction
Independent

Principle
Reason
Weighing
Dependent

Table 1: The seeming differences between rules and reasons

This leads to the question whether rules and principles are logically different.
There is no agreement. For instance, Dworkin has a strong opinion:

'The difference between legal principles and legal rules is a logical distinction'
(Dworkin, 1978, p. 24)

^ As Soeteman (1991, p. 33) notes, the usage of the terms 'rule' and 'principle' is not at
all uniform. For instance, 'Ne bis in idem' is called a principle, but has a rule-like nature,
while 'A contract must be executed in good faith' is a principle-like rule. Here, we do not
deal with the usage of the terms 'rule' and 'principle', but with the nature of rules and
principles.
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Soeteman (1991), in his discussion of rules and principles, takes an apparently
opposite stand:

'I know of no difference in logical structure between rules and principles.'
(Soeteman, 1991, p. 34)3

Indeed, there are clear similarities between rules and principles. We mention two
of them. First, rules and principles both are basically a connection of some sort
between a cowcfa/ow and a COHC/WS/O/;. The difference is only that, in the case of a
rule, the connection seems stronger than in the case of a principle.

Second, for a rule or principle /« /sote/'o/; the differences disappear. In
isolation, the conclusion of both a rule and a principle follows if the condition is
satisfied.

Because of these similarities, we claim that the seeming differences between
rules and principles are merely a matter of degree. There is no clear border
between reasoning with rules and principles. They are the two extremes of a
spectrum.'* We support our claim by giving an integrated representation of rules
and principles in Reason-Based Logic in section 5.^

Some preliminaries are required. In the next section we informally discuss our
integrated view on rules and principles. Then we discuss how isolated
rules/principles, the weighing of reasons, exceptions and conflicts can be
represented in Reason-Based Logic (sections 3, 4, 5 and 6, respectively).

2 An integrated view on rules and principles

Our integrated view on rules and principles is based on two main assumptions:

• Both rules and principles give rise to reasons if they are applied.

• The differences between reasoning with rules and principles result from
different types of relationships with other rules and principles, which may
interfere.

As a basic example of the role of the relationships between rules and principles, we
discuss a rule and its underlying principles (section 2.1). Then we discuss our view
on a typical rule (section 2.2), a typical principle (section 2.3), and a hybrid
rule/principle (section 2.4).

•* Translated from the original in Dutch: 'Ik ken (...) geen verschil in logische structuur
tussen regels en beginselen'.
* Soeteman (1991) and Sartor (1994, p. 189) make similar claims. However, our
integrated view is more explicit, and can explain the intuitive differences (see section 7).
^ By the formal elaboration, the view can be applied to the use of computers as tools in
the field of law (cf. Van den Herik, 1991). - •
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2.1 A rule and its underlying principles »• .

A basic example of the relationships between rules and principles occurs when a
rule has underlying principles.

For instance, if the legislator makes a legal rule, this is often based on a
decision in which several factors are taken into account. These factors, or to use an
already familiar term, reasons, are based on other rules and principles. If these
reasons are in conflict, the legislator decides (either explicitly or implicitly) how
they have to be weighed. We say that the rules and principles taken into account by
the legislator w/?<ier//e the newly made legal rule. In Figure 1, the situation is
depicted. The principles underlying the rule that can lead to a reason for the
conclusion of the rule are indicated as pro-principles, those that can lead to a
reason against the conclusion are indicated as con-principles.

• ; " • • : , • ' • • • " " - ' ' ' i

• • • > • " , ' • < ; : { • • ? . ; « • • - . . n : rRule . •; •: '

Pro-principle I

Pro-principle 2

Pro-principle n

Con-principle 1

Con-principle 2

Con-principle

Figure 1: A rule and its underlying principles

As an example, we take the legal rule from Dutch civil law that sale of a house
should not terminate an existing rent contract (Art. 7A:1612 BW).^ This rule has,
for instance, the following two underlying principles:

1. Somebody who lives in a house should be protected against measures that
threaten the enjoyment of the house

2. Contracts only bind the contracting parties.

The first pleads against termination of an existing rent contract; the second pleads
for termination since the new owner of the house does not have a contract with the
person (or persons) living in the house. As a result, there is (at least) one
underlying pro-principle, and one underlying con-principle.

Let us see what happens if the legal rule applies. Of course, its principles
should normally not be applicable too since they have already been considered by

" - ; ! • -'V

* This example is also discussed by Prakken (1993. pp. 22-23) and Verheij and
Hage (1994), in the context of analogy. The discussion here is largely taken from the latter.
We return to the example in section 8 when dealing with analogy. . • . • iv-..*; ••
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the legislator. We say that the legal rule when it applies rep/aces its underlying
principles. As a result, if the rule of Art. 7A:1612 BW applies, its two underlying
principles should not be applicable. The situation is shown in Figure 2. ,

Rule

Figure 2: A rule replaces its underlying principles if it applies

If the rule did not replace its underlying principles, several reasons would arise that
already had been taken account in the rule itself. However, because of the special
relationships of the rule with its underlying principles, the principles should not be
applicable.

2.2 A typical rule . j .- I

In general, the relations between rules and principles are less clear than in the case
of a rule and its underlying principles. These relationships can for instance be
determined by the weight or importance of a rule or principle, or by the degree of
pro- or con-ness. In Figure 3, we have suggested a set of interfering rules and
principles. -. . . . - . - •

Rule/principle

Rule/principle

Rule/principle

Rale/principle

Rule/principle

Rule/principle

Rule/principle Rule/principle

Rule/principle

Rule/principle

Rule/principle

Rule/principle

Figure 3; A set of interfering rules and principles
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Assume that the rule/principle in the upper left comer is in fact a typical rule. In
our view on rules and principles, if this typical rule applies, it blocks all interfering
rules/principles. This situation is shown in Figure 4. ,••-,, . ' i .; ' --;

"*• "••'•.' '. ' - F i g u r e 4 : A t y p i c a l r u l e a p p l i e s •••--• • < '

As a result, the conclusion of the rule follows directly. ' ' . :c:

2.3 A typical principle

If the rule/principle in the upper left comer were a typical principle, it would not
block any of the interfering rules/principles in case it applies. The situation is
shown in Figure 5. . . i< s

Rule/principle

Rule/principle

Rule/principle

Rule/principle

Rule/principle

Rule/principle

Rule/principle Rule/principle

Rule/principle

Rule/principle

Rule/principle

Rule/principle

Figure 5: A typical principle applies
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As a result, the conclusion of the principle does not follow directly, but only after
weighing the reasons arising from the other rules/principles. s .,/<?f<;: .(?«• -^

2.4 A hybrid rule/principle

Typical rules and typical principles are the extreme cases. Most rules/principles are
hybrid: they are neither a typical rule, nor a typical principle. A hybrid
rule/principle blocks some, but not all interfering rules/principles. The situation
that the rule/principle in the upper left corner were a hybrid rule/principle and
applies is shown in Figure 6.

Rule/principle

Rule/principle

Rule/principle

"RuTgpN4CTpie^

Rule/principle

Rule/principle

Rule/principle

Figure 6: A hybrid rule/principle applies

As a result, the conclusion of the hybrid rule/principle does not follow directly, but
only after weighing the reasons arising from the other rules/principles, that are not
blocked.

In section 7, this informal sketch of an integrated view on rules and principles
will be formalized in Reason-Based Logic. As preliminaries, we discuss how
isolated rules/principles, the weighing of reasons, exceptions and conflicts are
modeled in Reason-Based Logic (sections 3, 4, 5 and 6, respectively).

3 An isolated rule/principle in Reason-Based Logic

We start our discussion of rules and principles in Reason-Based Logic with the
case of an isolated rule/principle. This will be spelled out in detail to illustrate the
main elements of Reason-Based Logic.

As an example we use the legal rule that a person driving a car after drinking
too much alcohol should be fined a considerable amount of money. (It does not
matter that we use an isolated ru/e as an example, since in our view there is no
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difference in representation between an isolated rule and an isolated principle.)
Assume that we have:

A person driving a car after drinking too much alcohol should be fined a
considerable amount of money.
John is driving his car after drinking too much alcohol.

If we interpret the first sentence as a rule, the application of this rule must lead to
the conclusion: r : -'/• : ^;.' arn: ••:•••• , ; ^ - ; ..;.!••- > * •; .•• .

John should be fined a considerable amount of money.

This can be represented by the following three RBL sentences:^

Valid(rule(driving_with_alcohol(person),
should_be_fined(person))) . . , ,

Driving_with_alcohol(john) •• *-rj "
Should_be_fined(john) • "„ ' ™ •••

For this representation it does not matter whether the RBL rule concerning driving
with alcohol stems from a rule or from a principle: both rules and principles are
represented in Reason-Based Logic as RBL rules.

We show that if the first two sentences are assumed to be true, the truth of the
third sentence follows. We refer to the relations between facts, such as EXCLUSION
and WEIGHING, as discussed in chapter 2, section 5. Instead of using the
nonmonotonic rules of inference (chapter 2, section 6) and the corresponding
technicalities of extensions, we make some 'normality assumptions', such as that a
rule is not excluded.

First we note that the condition of the RBL rule concerning driving with
alcohol is satisfied because Driving_with_alcohol(john) is assumed to be true.*

The first normality assumption is that the rule is not excluded:

-iExcluded(rule(driving_with_alcohol(person), -•?•-;•'•->• -- -- • •
should_be_fined(person)), ' = . ' - •

driving_with_alcohol(john),
should_be_fined(john))

Since there are no facts that lead to the exclusion of the rule, this assumption is
reasonable.

' Other formalizations are possible. The translation from natural to formal language is a
problem that we do not discuss here.
° Recall the convention on the translation from formulas to terms (chapter 2, section 4.3).
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Using this assumption, the rule is applicable because of the relation between
facts called EXCLUSION:

Applicable(rule(driving_with_alcohol(pereon), ^ y / ^ - u ' 3fi ;̂ . , - -
should_be_fined(person)), ^-s^sis,

driving_with_alcohol(john), ••f.M-^'fKSHii^, .;»_•..;•• «-•* ' •

should_be_fined(john))

APPLICABILITY makes that the fact that satisfies the condition of the rule is a
reason for the rule's application:

Reason(driving_with_alcohol(john),

applies(rule(driving_with_alcohol(person), ni ••• o.: ,• - : '..*:: . ; •••v*..! ?\V

should_be_fined(pereon)), ( r ^ . ;!"=•:;"" - J : • vnjf. j>:

driving_with_alcohol(john),

should_be_fined(john))) ,>•••. ••ftJvn.M.•>•... '

{ • ' ' • • • ' . . ' • ' • • • " - • • - • • ' - '

In order to use WEIGHING to conclude that the rule applies, we have to make
another normality assumption, namely that there is no reason against the
application of the rule:^

-i3/iac(_aga/nsf_app//caf/on: i '•••. / - • •?

Reason(/acf_aga/>?s(_app/'caf/on,

-.applies(rule(driving_with_alcohol(pefson), • •-• ^ .

should_be_fined(person)),

driving_with_alcohol(john), '-"••' -."'i's •••

should_be_fined(john)))

By WEIGHINGAXIOMS we have

Outweighs({driving_with_alcoholGohn)}, < . • • • • • •-:

{}, :.
applies(rule(driving_with_alcohol(person),

should_be_fined(person)), • '
driving_with_alcohol(john),
should_be_fined(john))) ' '

' The appearance of the following sentence may suggest that the quantification over the
variable /acf_aga/nsf_app//caton is only over a specific part of the domain, namely only
over those terms that correspond to facts. However, the quantification is over the whole
domain. By the definition of a language of Reason-Based Logic (chapter 2, section 4), a
similar effect is obtained: a language contains no sentences of the form Reason(focf,
sfafe_or_affa/rs) in which Fac/ does not correspond to an instance of the condition of some
rule rule(concW/on, conc/us/on).
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and therefore a lso , by WEIGHING, .,-tta'> *»• iJ » -ssk 3«iW'••>u«fi- ' •' J '<•(•• ' •

; r . ' . ' ; " < • • ' . ' • •..•-•*"•?

Applies(rule(driving_with_alcohol(pereon),

should_be_fined(person)), ...•>. ttv^ , ^>i .:->hii?h V - ^ ' -}A .;

driving_with_alcohol(john), : .>>. , ; i. < i- ., r , . .^.r

should_be_fined(john)) \'<^<;»'ioc : • ; • ' • ' ' .

Using APPLICATION, the rule concerning driving with alcohol now gives,

Reason(driving_with_alcohol(john), ;, " • >•' JH ,. T ; / , :> •)«>.•

should_be_fined(john)) .

We have to make a third normality assumption, namely that there are no reasons
against Should_be_fined(john): •-.- ; :L r

Reason(fac(_aga/nsf_ffn/ng,

-.should_be_fined(john)) : >• • • j > _• w .: • ; • •

• . " • ' : • • • : • • ' - - r r i r : - - f t v ' : : r • • ! , » : . • • •

U s i n g WEIGHING_AXIOMS and WEIGHING a second t ime w e find that -*•• J- it,*

Outweighs({driving_with_alcohol(john)}, . , •= r.
{}. ... . •

should_be_fined(john)) • i- • : . •

and f inal ly that : ~ • v;.;

Should_be_fined(john)

are true.

At three steps in the discussion above, we had to make a normality assumption.
In summary, we assumed that
• The rule is not excluded. c i ;•.•• ,•
• There is no reason against application of the rule.
• There is no reason against fining John.

These assumptions can be avoided using the nonmonotonic inference rules of
Reason-Based Logic discussed in chapter 2, section 6. It can be shown that the
theory consisting of the sentences

Valid(rule(driving_with_alcohol(pereon), '
should_be_fined(person))) " • '

Driving_with_alcohol(john) •
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has a unique extension that contains

.... Should_be_fined(john) ,. ; v. _>v.s..• ^ n * ; . -.>.<:•: v

and does not contain sentences contradicting the assumptions. The extension is the

closure under RBL-deduction (definition 7 in chapter 2, section 6) of the set that

consists of the following sentences: _ • . .•_. . . .

; ' , • • • • • • ; ! • . ' . • N - .

Valid(rule(driving_with_alcohol(person), •=•.->•• •'-.• :*if; ?.•;•. •yiff^jn . :»w"tl

should_be_fined(person))) . «-•>:<= .-•:;•'. s--ji

Driving_with_alcohol(john)

Applicable(rule(driving_with_alcohol(person), ' •;!; ;••'• m i j . ,->. .• 1

should_be_fined(pereon)),

driving_with_alcohol(john), •;..:;••::-. .-i ;Ci: i:'nr r;,. •••••. .-; • j : i;,!-f,:

should_be_fined(john)) : • ! • : ) . : } ; . -'<-.•• . , • .;

Reason(driving_with_alcohol(john),

applies(rule(driving_with_alcohol(pereon), . , • • . • . •'

should_be_fined(peraon)), ! ' v • • . . • • • • -

!. '• driving_with_alcohol(john), ... , >- • • . •!

should_be_fined(john))) -,;>r • , • -

Outweighs({driving_with_alcohol(john)}, .•:••- . ' ' . . . .

{ } , . , - . . - • . . • » ..-..•:•.' , . i :

applies(rule(driving_with_alcohol(person), • ' •-!; r

should_be_fined(person)), . • . -.!

driving_with_alcohol(john),

should_be_fined(john))) : - ;

Applies(rule(driving_with_alcohol(peraon), • :• . • • o;r

should_be_fined(person)),

driving_with_alcohol(john), . • .

should_be_fined(john))

Reason(driving_with_alcohol(john),

should_be_fmed(john))

Outweighs({driving_with_alcoholGohn)},

{}.

should_be_fined(john))

Should_be_fined(john)

In the remainder of this chapter, we do not mention normality assumptions or

extensions.
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4 Weighing reasons in Reason-Based Logic . . . .̂ ^

In this section we describe an example of weighing reasons in Reason-Based Logic
in detail. We assume that the following sentences are true:

Robbing someone should be punished. ' : > .^L-iL . ••!>» ";; >; . • ••••
John has robbed Peter. • ' - ' -•'•-.;! '• • -• •<--

If we interpret the first sentence as a principle, we obtain a reason why John should
be punished. Since there are no other reasons, it follows that John should be
punished.

Now assume that the following sentences are also true: r*.-. J , *-

Minor first offenders should not be punished.'" .i • -^-^ •''.^•' ' '
John is a minor first offender. • -^;<.--i* >- i . ^

• • " • • . c i . i ' O ' K i T > " !*.<••••. » } i ' • ' i : ' • " > " ^

We find a second reason relevant concerning punishing John, but this time a
reason against the fact that John should be punished.

So, there is a conflict of reasons. Without further information, Reason-Based
Logic does not enforce the conclusion that John should be punished or that he
should not. Both are possible. Only if it is true that one of the reasons outweighs
the other, a conclusion follows.

We assume that the reason that John is a minor first offender outweighs the
reason that John has robbed Peter:

'John is a minor first offender' as a reason for not punishing John outweighs
the reason 'John has robbed Peter'.

In Reason-Based Logic this can be represented as follows: < .

Valid(rule(robbed(pereon7, person2), •. ' • • •:
should_be_punished(person7)))" ."

Robbed(john, peter) >• • ..•>•. . .•:"

'0 In the natural language version of this sentence it is ambiguous what the scope of 'not'
is. As the formal version shows, we mean 'It should not be the case that minor first
offenders are punished', and not 'It should be the case that minor first offenders are not
punished'.

A representation of the condition of this rule that is somewhat closer to its natural
language counterpart would be 3person2: Robbed(personl, person2). However for
simplicity the definition of the language of RBL (chapter 2. section 4) prohibits quantifiers
in the conditions of rules. The condition of the rule without the existential quantifier as it is
used here leads to similar consequences as the condition with the quantifier, since it can
only be fulfilled if the variable person2 is instantiated.
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Valid(rule(is_minor_first_offender(person), > . - • " • • • ~ '
- i shou ld_be_pun ished(person) ) ) •> •. >• " u •'

ls_minor_f i rst_of fender( john) •••..••: x ' * -it>< - v

Outweighs({ is_minor_f i rs t_of fender(person7)} , -••«•-••••-, . " - • ' ' ' « J

{robbed(personf, person2)},
-.should_be_punished(personf)) -r.r • v ; , l '

Using similar normality assumptions as in the example of section 3, it can be
shown that both rules apply: . . . ..•.-.

A p p l i e s ( r u l e ( r o b b e d ( p e r s o n 7 , p e r s o n 2 ) , • r , j , • ••• ;-• :••••

should_be_punished(personf)), i > • , •,
robbed(john, peter), ' • •., > •
s h o u l d _ b e _ p u n i s h e d ( j o h n ) ) -̂  •.';•••.• < --.•••• •."••".

Applies(rule(is_minor_first_offender(person),

-.should_be_punished(person)), - . ; . . ' , •• , . .

is_minor_first_offender(john), t»?.«';: ; ; ' ,

•-.should_be_punished(john)) . , ' r . i ;,,>:•< • >.

Applying the two rules leads to two reasons, one for and one against punishing
John: . • v j , :

Reason(robbed(john, peter), • . . •
should_be_punished(john))

Reason(is_minor_first_offender(john),
-iShould_be_punished(john)) •

Assuming that there are no other relevant reasons for punishing John, and using
the information about the relative weight of the reasons, the relation between facts
WEIGHING gives: >. • v

-iShould_be_punished(john)

It can be the case that additional reasons give rise to another conclusion. We will
discuss what can happen if there is a second reason for punishing John. We add the
f o l l o w i n g f a c t s : i , • ••••• ' -:••':•••• . •>

Injuring someone should be punished. ~ . . <-
John has injured Peter. ; i • :

These can be represented as:
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Val id ( ru le ( in ju ry , • : ' • -•*•%=•_.'.<• • . ^ ' . t -
i n j u r e d ( p e r s o n f , p e r s o n 2 ) , ••••• :, . ' . . .-
s h o u l d _ b e _ p u n i s h e d ( p e r s o n f ) ) ) - . . v

ln ju red ( john , peter ) , •' ** •• ' ' '

Now a second reason for punishing John arises: • • •'

Reason(injured(john, peter), •
should_be_punished(john)) : • • '

As a result, we cannot make the assumption that there are no other reasons for
punishing John than Robbed(john, peter).

Right now, WEIGHING cannot be used to conclude whether John has to be
punished or not, since there is no information about how the reasons are to be
weighed.

It is possible that the additional reason does not change the result of weighing:
the reason against punishing outweighs the two reasons for punishing. It should be
noted that to reach a conclusion it does not suffice that the reason against
punishing outweighs each of the two for punishing on its own. In that case,

Outweighs({is_minor_first_offender(person7)},
{injured(personf, person2)},
-.should_be_punished(person7)) ; ••

is also true, but WEIGHING can still not be used: that would require weighing
information about all three reasons together. In order to use WEIGHING it is
required that

Outweighs({is_minor_first_offender(personf)},
{robbed(person7, person2), injured(personf, person2)},
-ishould_be_punished(person7))

is true. In that case the conclusion that John should not be punished follows (using
an appropriate normality assumption).

An interesting case, characteristic for reasoning with reasons, occurs if the two
reasons for punishing John together outweigh the reason against punishing him:

Outweighs({robbed(person7, person2), injured(person7, person2)},
{is_minor_first_offender(personf)}, •
should_be_punished(pereonf))

In this case, WEIGHING leads to the opposite conclusion, viz. that John should be
punished:
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, S h o u l d _ b e _ p u n i s h e d ( j o h n ) • > > r**.^. .. . •••••». i , ••,-.,.-...

The two pros can together outweigh the con, even if each pro on its own is
outweighed by the con. This phenomenon has been called accrwa/ o/reosora.'^

5 Exceptions in Reason-Based Logic ^

In this section, we show how exceptions can be modeled in Reason-Based Logic.
We say that there is an excep//o/j to a rule (or principle), if the rule's (or
principle's) condition is satisfied while its conclusion does not hold. It can be the
case that there is another rule/principle the conclusion of which is incompatible
with the conclusion of the rule/principle under consideration. In that case we speak
of a conflict of rules/principles.'-^ Conflicts of rules/principles are discussed in the
next section.

In Reason-Based Logic, there are two main mechanisms to model exceptions to
a rule/principle, namely by exclusionary reasons and by reasons against the
application of a rule.'* We discuss these in the following two subsections.

5.1 Exceptions and exclusionary reasons . •

Legal rules often, if not always, have scope restrictions that are not explicitly
mentioned in the rule itself. For instance, in the legal rule that we already
encountered about driving with alcohol, ,

A person driving a car after drinking too much alcohol should be fined a
considerable amount of money.

it is not explicitly mentioned in which country the rule is valid. It may be objected
that this is due to the particular formulation chosen here, but also in the literal
wordings in a statute the country will normally not be mentioned at all, or only in a
separate section, where it is stated that the articles in the statute are only valid in a
particular country.

In Reason-Based Logic, exclusionary reasons can be used to model implicit
scope restrictions. For instance,

'^ Pollock (1991a, p. 51) uses this term. He writes that it is a natural supposition that
reasons accrue, but then surprisingly rejects it. We come back to Pollock's opinion in
chapter 6, section 2.
'3 Cf. the distinction between undercutting and rebutting exceptions (Pollock, 1987-1995):
in both cases there is an exception to a rule/principle, but in case of a rebutting exception
there is also a conflict of rules/principles.
'"* The first mechanism has counterparts in many logical formalisms (cf. Prakken's (1993b,
p. 84ff.) overview of exceptions), the second is typical for Reason-Based Logic.
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Valid(rule(in_country(counfry) A -.counf/y = holland, "• - . . •
excluded(rule(driving_with_alcohol(person),

- should_be_fined(person)))))' ̂

will have the effect that if John was driving in Germany, represented as

l n _ c o u n t r y ( g e r m a n y ) , •••;.:•:'- . . - • • .-^ c . • •?- - > . \ j : « • - •

the rule concerning driving with alcohol is excluded. As a result, the rule
concerning driving with alcohol is not applicable, does not apply, and does not
lead to the conclusion that John should be fined. (Of course, it is possible that the
same conclusion nevertheless follows due to another valid rule, e.g., a German rule
of law, that is not excluded.) w •.,-..-..; ••.• •--..•• , :>*

Scope restrictions for a class of rules can be represented by explicit knowledge
on the origin of the rules. For instance, using the explicit knowledge on which
articles rules are based and which articles are in the penal code, all rules that are
based on articles in the penal code are restricted to Holland by the following: ,.

Valid(rule(in_country(counfry) A -. counfry = holland
A based_on(ru/e, art/c/e) A in_penal_code(art/c/e), •• • < i . '

excluded(rufe)))

An obvious objection to this type of representation of exceptions, viz. o«te;de the
rule, is that since they are often explicitly available they can be made part of the
rule during the translation of the legal rule to its formal counterpart. For instance,
this would lead to the following representation: ,; , - .. . : is ,...>

Valid(rule(driving_with_alcohol(person) A in_country(holland),
* should_be_fined(person))) • ••.,.- • • >

There are drawbacks to this approach, as is generally accepted (see chapter 4).
First, it can easily lead to very long rule conditions, most of which have to be
repeated in many rules and are almost always unimportant for a particular case.
For analogous reasons, in actual codifications of legal rules scope restrictions are
not explicitly stated in each rule. Second, the dissimilarity in structure of the
informal and the formal representation is unnecessarily enlarged."* As a result,
translation in either direction becomes harder, which is particularly a problem in a

We have made a simplification here, since facts are often dependent on a situation or
case. For instance, a rule can apply to 0 case. As a result, many predicates would need an
extra variable for cases. For convenience we leave cases implicit. For instance, in the
following ln_country(counfry) means that the case a/ /iamf is in the country represented by
counfry.

Cf. the desirability of an womorp/iic representation of the law (see e.g. Bench-Capon
andCoenen, 1992).
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constantly changing domain, such as the law. Third - and this is a drawback that
cannot be overcome - not all exceptions to legal rules are explicitly available since
it is impossible to anticipate all cases in which a rule is not applicable.

The third point brings us to the second way of representing exceptions in
Reason-Based Logic. . , f ; r ' - ; . ;̂̂  , i ^ , ^ - .

-- ' : .• v^nr.-. • • .

5.2 Exceptions and reasons against application

When a legal rule is made by the legislator, not all cases that fall inside the
definition set by a legal rule can be foreseen, if not fundamentally, then at least in
practice. We do not treat the philosophical side of these matters, but give a
concrete example.

It can happen that there is a case that falls within the rule's condition and to
which the rule is applicable, but to which the rule should not apply for some other
reason. For instance application of the rule might be against its purpose.

We assume that there is a rule that forbids sleeping in the railway station. The
rule has as its purpose to prevent tramps from occupying the station as their place
to spend the night. An old lady that wants to meet a friend at the station dozes off
when the evening train turns out to be late. Should the prohibition apply to this
lady?"

The following two sentences describe the case:

Valid(rule(sleep_in_station(acf),
forbidden(acf))) .• •->•. . . ,.

Sleep_in_station(lady's_act)

We assume that application of the rule about the sleeping prohibition in the case of
the lady is against the rule's purpose:

Application_against_purpose(rule(sleep_in_station(acf),
forbidden(acr)),

sleep_in_station(lady's_act),
forbidden(lady's_act))

Hence, we need a general rule stating that if application is against the purpose of a
rule, this is a reason not to apply the rule: ; ,,

Valid(rule(application_against_purpose(nj/e, facf, sfate_o/[_affa/rs),
-.applies(ru/e, facf, sfafe_o(_affa/rs))) , ' t f , i ' , . • -• ,

] ;- , . ; ..filer

" This example is inspired by Fuller's (1958, p. 664). The formulation here is taken from
Hage and Verheij (1994a, b).
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Since the condition of the rule about the sleeping prohibition is satisfied, we have a
reason to apply it (by APPLICABILITY):

! Reason(sleep_in_stat ion( lady's_act) , '-•' > •;;• • ' * " ; - ' • - •

applies(rule(sleep_in_station(acr), • .j» •. , ^ r . r: • j i

forbidden(acO),
sleep_in_station(lady's_act) , •£ *••>•• ••** >-.*.•• £ f ^ •••••- >»«•"».< *

forbidden(lady's_act)))
: i - •• . - * ; • ' • - - , • : • : , . - , ; , ; • , • • " . • /

B u t w e a l s o h a v e a r e a s o n a g a i n s t a p p l i c a t i o n : •••-.; v -', " - • > • •••* . - > . • ; . , , _ -••*

Reason (app l i ca t i on_aga ins t j 3u rpose ( ru le ( s l eep_ in_s ta t i on (ac r ) , i : ^ ^ • :>
forb idden(ac f ) ) , ; • • ' •'

*:•''•• s l e e p _ i n _ s t a t i o n ( l a d y ' s _ a c t ) , - v , .. ».;• . • - . . •••• .•,.-.• • • : = ;v ,

f o r b i d d e n ( l a d y ' s _ a c t ) ) , •' ^ • • • • " • • = "•••"• ^' " ^ ; ..-. . • * - - < ! • ; ; ' •

- i a p p l i e s ( r u l e ( s l e e p _ i n _ s t a t i o n ( a c f ) , ••"•' "•••-<- *- i « • • '-•- ' - ' '

f o r b i d d e n ( a c O ) , s ^ • ^ - - ' - • < • : ' ~- ••* - : ••" ^ • '•'"

^•:-••" s l e e p _ i n _ s t a t i o n ( l a d y ' s _ a c t ) , ' ^ '• ^ - : -• -<•' »^- ' : • - ' : • • • ' • • ' ; - • ?

• ' s i - ^ f o r b i d d e n ( l a d y ' s _ a c t ) ) ) * ' ' " ^ -•"• •'• - ••••"'•'•.• • • -• ! •<• '

We suppose that the reason against application of the rule because of its purpose
outweighs the reason for application because of the applicability of the rule:

Outweighs({application_against_purpose(rule(sleep_in_station(acf),
forbidden(acO), -

sleep_in_station(lady's_act),
forbidden(lady's_act))}, . .

{sleep_in_station(lady's_act)}, • ' . • . . . . . " , •• • "

-iapplies(rule(sleep_in_station(acO,
forbidden(acr)), '• , .

sleep_in_station(lady's_act), -
forbidden(lady's_act)) ••--' •' >'

We now conclude

- .Applies(rule(sleep_in_station(acf) , ' . - '• = •> ;* • • •••••• ^ ••"" ̂  "'

forbidden(acO),

sleep_in_stat ion(lady's_act) , • . - • *•••"'• .._/?o.-&.".•:-.. v ; '

f o r b i d d e n ( l a d y ' s _ a c t ) ) ' * ' » • ••••'•'••• ,••'••'.".•.. --^ .--...;..• •-• .

Because the rule about the sleeping prohibition is not applied, it does not lead to
the prohibition of the lady's sleeping.
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6 Conflicts in Reason-Based Logic • ?-v.*. :*.:.- ~ -•- .& *•*
• ! • / • . : , ; - i i • • • . . : ' • ' • • - : , ' • • " . • • • . • * « * *

We speak of a conflict of rules/principles, if there is a group of rules/principles the
conclusions of which are incompatible, while their conditions are satisfied. There
are two main mechanisms in Reason-Based Logic to deal with conflicts of rules
and principles, namely by means of exclusionary reasons and by means of
weighing reasons.

6.1 Conflicts and exclusionary reasons . . a

When dealing with conflicting legal rules, several types of so-called con/7/c/ /•«/«
are used in law: specific priority clauses for pairs of rules, or for classes of rules,
and general rules such as Lex Superior, Lex Posterior, and Lex Specialis. The
effect is that one or more of the conflicting rules are excluded and that in the end
there is no conflict left.

Such conflict rules can be represented in Reason-Based Logic by means of
exclusionary reasons. For instance, following Prakken (1993b), if there is a
contract with features of lease of business accommodation and of another type of
contract, and there is a conflict between a legal rule dealing with such lease
contracts and one dealing with contracts of the other type, the first rule prevails
according to Section 7A: 1624 of the Dutch civil code. This legal rule might be
represented as follows:

Valid(rule(deals_with_lease_of business_accommodation(n//et)
A applies(nv/e7)
A deals_with_contracts_of_another_type(o//e2)
A in_conflict(ru/e7, ru/e2),

excluded(n;/e2)))

More generally, explicit knowledge about prevalence can be used, for instance:

Valid(rule(applies(a//ef)
A in_conflict(ny/ef, ru/e2)
A prevails_over(nv/e7, a//e2),

excluded(o;/e2)))

Using the latter rule about prevalence, a conflict rule such as Lex Posterior can be
represented as follows:

Valid(rule(more_recent(nv/e'/,
prevails_over(ny/e7, nv/e2)))

- . . . " ' • • * •



62 Chapter 3: Reason-Based Logic and law

It has to be specified when rules are in conflict. It can for instance be specified that
rules are in conflict when they have opposite conclusions.'"

In practice, it can happen that conflict rules are themselves involved in a
conflict. For instance, a rule can be of earlier date and of higher authority than
another rule. Since the conflict rules are themselves represented as rules in Reason-
Based Logic, such conflicts of conflict rules can be approached in the same way as
conflicts in general.

6.2 Conflicts and weighing reasons ,-«-;i--^.if-••.; . ; < ' • "

The second mechanism to deal with conflicting rules/principles is by the weighing
of the resulting reasons." An example was already discussed in section 4 of this
chapter.

Not all rules and principles involved in a conflict lead to conflicting reasons,
since there can be rules/principles that do not apply because of exclusionary
reasons, or reasons against their application. If after such simplifications of the
conflict there is still a conflict of reasons, information about their relative weight
can resolve the conflict and lead to a final conclusion. So, there are several layers
in which a conflict of rules/principles is simplified before the resulting reasons are
weighed. Figure 7 gives an overview.

Valid rules with conclusion
State of affairs

Rules with satisfied conditio is

Valid rules with conclusion
-•State of a f f a i r s

Figure 7: Not all conflicting RBL rules lead to conflicting reasons.

It may seem strange that the applying RBL rules are not indicated as a subset of the
applicable rules. In section 8.3 on the analogous application of a rule, we will see
an example of an RBL rule that applies, while it is not applicable.

'* The need for specifying when rules are in conflict can be considered a drawback since it
puts a heavy burden on the domain theory. However, it can also be considered an advantage
since it can make the notion of conflict more manageable.
" This mechanism can only deal with conflicts of rules/principles with opposite
conclusions, due to the notion of weighing as modeled in Reason-Based Logic.
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As a final remark about dealing with conflicts of rules/principles in Reason-
Based Logic, we stress that Reason-Based Logic does not resolve all conflicts, and
merely provides different means to represent conflict-resolving information. For
instance, the following set of sentences does not have an extension in Reason-
Based Logic due to an unresolved conflict of rules:

B
: V a l i d ( r u l e ( a , c ) ) ; • /*" v > n , •• i • M . ^ L T ^ >••?••• ,-•• ••.• ,:':

Valid(rule(b, d)) • ? :

However, there is no inconsistency (in the sense of RBL-deduction), and the
conflict is resolved if the sentence Excluded(rule(a, c), a, c) or the sentence
Excluded(rule(b, d), b, d) is added, v, .iV;t'««-'< :<'..* •*•-•'.;

7 Rules and principles in Reason-Based Logic . • • •' ;

We now return to our integrated view on rules and principles, as introduced in
section 2. Recall that our view was based on two assumptions:

• Both rules and principles give rise to reasons if they are applied.
• The differences between reasoning with rules and principles result from

different types of relationships with other rules and principles, which may
interfere.

In section 7.1. we discuss our basic example of the role of the relationships
between rules and principles, namely a rule with underlying principles. In
section 7.2, we return to the differences between rules and principles as discussed
in section 1. , . . . . . . . . .

7.1 A rule and its underlying principles

In section 2.1, we discussed the Dutch legal rule of Art. 7A: 1612 BW that sale of a
house should not terminate an existing rent contract. This rule can be represented
in Reason-Based Logic as follows:

Valid(rule(sale_house, . , . .
ought_to_be_done(continuation_contract))) , . , . >

We considered two principles underlying this rule, namely a pro-principle that
somebody who lives in a house should be protected against measures that threaten
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the enjoyment of the house, and a con-principle that contracts only bind the
contracting parties. These principles can be represented as RBL rules as follows:

Valid(rule(protects_inhabitants(acr), - : : . .• . •.->..•::

ought_to_be_done(acf))) -iv-Vv-i. ••. u •••. -•..-.' ••• . ^ri

Valid(rule(-iparty_bound_by_contract,

-.ought_to_be_done(continuation_contract)))

The fact that these principles underlie the rule of Art. 7A:1612 BW is represented
as: .

Under l ies(ru le(protects_inhabi tants(acQ, :• :

ought_ to_be_done(ac f ) ) , • •>• . • •-• - • . - H
r u l e ( s a l e _ h o u s e , ' " •,.••.••••<.•••'•• > •' • • . • ^ J * J ;

ought_to_be_done(continuation_contract))) >' « «» ̂ i : j ; :,v^^:-3
Underlies(rule(-.party_bound_by_contract,

-iought_to_be_done(continuation_contract)),
; rule(sale_house, '*•: v - 'v^.*.o ;T

ought_to_be_done(continuation_contract)))

The rule and its underlying principles are schematically shown in Figure 8. ':' 3-

Art. 7A: 1612 BW

Protection of inhabitants Binding scope of contracts

Figure 8: The rule of Art. 7A:1612 BW and its underlying principles

If a house with renting inhabitants is sold, the two principles lead to conflicting
reasons, since continuation of an existing rent contract protects the inhabitants of a
house, while the new owner is not bound by the contract with the inhabitants. We
have

Protects_inhabitants(continuation_contract)
-iParty_bound_by_contract

and therefore the two RBL rules about the protection of inhabitants and about the
binding scope of contracts lead to the conflicting reasons:

Reason(protects_inhabitants(continuation_contract),
ought_to_be_done(continuation_contract))
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Reason(-.party_bound_by_contract, . . .
-iOught_to_be_done(continuation_contract))

However, by making the legal rule of Art. 7A:1612 BW, the legislator has
balanced the conflicting principles, and decided how the reasons generated by
them should be weighed against each other. Therefore, if we have the fact

Salej iouse -tyiftili' >:• •<->;' . •£..

the rule of Art. 7A: 1612 BW should lead to the conclusion ci D̂  *' A r '

Ought_to_be_done(continuation_contract) -.rk<<:' -..-; ~ ii' •-:••-;•-.:: a''..

without the interference of the two underlying principles: the rule of Art. 7A:1612
BW replaces its underlying principles if it applies (see section 2.1), and the two
principles should not be applicable. The required situation is shown in Figure 9.

Art. 7A:1612BW

Prote2i3B=»fiOEaEitants BindjntSBSpe'SGiantracts•«;• .

•••••• • •"'"•• F i g u r e 9 : T h e r u l e o f A r t . 7 A : 1 6 1 2 B W r e p l a c e s
" •••••'••. i t s u n d e r l y i n g p r i n c i p l e s i f it a p p l i e s •.-'•"'•• ••?:••

In Reason-Based Logic, replacement can be modeled using exclusionary reasons.
We need the following rule:

Valid(rule(underlies(/u/e7, nv/e2) A applies(n;/e2),
excluded(nv/ef)))2°

Since we can conclude

Applies(rule(sale_house,
ought_to_be_done(continuation_contract)),

sale_house,
ought_to_be_done(continuation_contract))

^" Henry Prakken has correctly noted that nv/e2 also excludes n//ef in case there is
another rule or principle that does not underlie rt;/e2, but nevertheless interferes. As a
result, there can be no interaction of the other rule or principle with nv/ef if fu/e2 applies.
This does not always seem desirable, and deserves further study. Interestingly, in this
situation /i//e2 is not a typical rule.
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w e f i n d : • i - . - . - , •••••" '•- ..- v — . r v = ..-;-«*%.";

Excluded(rule(protects_inhabitants(acf),

?- ought_to_be_done(acO), ••>& J •- . • ' ' . . / . ' » * .

protects_inhabitants(continuation_contract), >q g,'i;.J;>->v ;»*'.,• *.«> I-.-: u ^ :

ought_to_be_done(continuation_contract)) WHISKS • i-rf-j'-v <-: ;:"i^-:i- -,.->:>.•

Excluded(rule(-iparty_bound_by_contract,

->ought_to_be_done(continuation_contract)), •:.>>• ^ .**••*

: • . , -.party_bound_by_contract, - . 2 "̂  >• • " : • . : : . u '

-,ought_to_be_done(continuation_contract)) v.- I^.trf A\ ?>Ou'?iu: ••'"

The principles about the protection of inhabitants and about the binding scope of
contracts do no longer lead to reasons. As a result, the rule of Art. 7A:1612 BW
leads without interference to the conclusion

j l fVv.TJi i i i l f ?-'- •. •;i,-.-'!Vl -.'-•'•-<

Ought_to_be_done(continuation_contract), : c ,: - ' i - i b.'i-.-.:. • ~ ...-;•-;

just as required. --••-,•: ' %';, r,,.(.,>.• .; '

7.2 The differences between rules and principles

We can now finish our integrated view on rules and principles as represented in
Reason-Based Logic. As in the case of a rule that replaces its underlying principle,
a typical rule is an RBL rule that leads to exclusionary reasons against the
applicability of any interfering rule or principle. A typical principle is an RBL rule
that does not exclude any interfering rule/principle. Interfering rules and principles
are typically rules and principles with equal or opposite conclusion, ,-p..,; , ,,

This is in line with our two main assumptions: , ,. |,v ,r . j ;•' bs •>

• Both rules and principles give rise to reasons if they are applied. The difference
between the two is that an applying rule not only generates a reason for its
conclusion, but also exclusionary reasons for the principles it replaces.

• The differences between reasoning with rules and reasoning with principles
result from different types of relationships with other rules and principles,
interfering with them: rules lead to exclusionary reasons to interfering rules and
principles, while principles lead to reasons that are weighed in case of a

It is clear that in this view there is no clear border between rules and principles.
For instance, an isolated rule cannot be distinguished from an isolated principle.
Only if there are interfering rules and principles, gradual differences can be seen.
On the one extreme there is the typical principle that, if it applies, does not
generate exclusionary reasons for any of the rules and principles that interfere with
it. On the other extreme there is the typical rule that, if it applies, excludes all
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interfering rules and principles. In between the two extremes there are many
degrees of hybrid rules/principles, some more principle-like, others more rule-like.

In section 1, we discussed three differences between rules and principles. First,
it seemed that rules lead directly to their conclusion if they apply, while principles
lead to reasons that have to be weighed. This difference has disappeared since in
our view both rules and principles generate reasons. Therefore both rules and
principles first lead to reasons that are then weighed. Nevertheless, also in our
view, rules see/w to lead directly to their conclusion. This is the result of the fact
that in the case of an applying rule no weighing of reasons is necessary since all
interfering rules and principles are excluded. Therefore, the step from reason to
conclusion seems immediate. .•£«•> •.,

Second, it seemed that conflicting rules lead to a contradiction if they apply,
while conflicting principles merely lead to conflicting reasons. In our
representation, no real contradiction can arise by the application of rules with
opposite conclusions, since rules just as principles only generate reasons.
Moreover if an apparent rule gives rise to a reason that conflicts with another
reason, this is a sign that it is no/ a typical rule, but has a somewhat more principle-
like character.

Third, it seemed that rules lead to their conclusion in isolation, while principles
interact with other principles: additional relevant reasons arising from other
principles can influence the result of weighing. In our view, this seeming
difference is beside the point since rules in isolation do not differ from principles
in isolation. The rule-like character of a rule can only be appreciated if there are
interfering rules or principles. ^.t-. : •; ^ '•,.•••

8 Analogy in Reason-Based Logic - ' a ; . ^ : , . : ; ' . - , ; ; » . a i * 3 S " ! j

The last topic that we discuss is reasoning by analogy.^' As an application of our
integrated view on rules and principles, we describe three different ways of
reconstructing reasoning by analogy. To avoid misunderstanding, we stress that
our approach to reasoning by analogy is not based on cases,^ but on rules and
principles. Instead of using the similarity and dissimilarity of cases as criteria to
justify reasoning by analogy, we use the relationships between rules and principles.

We assume that in reasoning by analogy there is a rule that does not apply
because its condition is not satisfied, but that nevertheless its conclusion holds on
the basis of additional information about the relationships between the rule and
other rules and principles. We distinguish three forms of reasoning to analyze
reasoning by analogy: .;<j!i-». '$;-....i. •

•f 1

^' This section is based on Verheij and Hage (1994).
22 See, for instance, Ashley (1990), Yoshino ef a/. (1993) and Tiscornia (1994).
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• Application of principles that underlie the original rule that does not apply
itself.

• Application of an analogous rule/principle that has the same underlying
principles as the original rule that does not apply.

• Analogous application of the original rule, i.e., application of the rule with a
'non-standard' justification, based on, for instance, a principle.

We do not claim that these three forms of reasoning are always cases of reasoning
by analogy, but that they are useful means to analyze a given case of reasoning by
analogy. Below we use one example, and analyze it by the three mentioned forms
of reasoning. •

8.1 Application of underlying principles

In the first form of reasoning by analogy, the principles apply that underlie the
original rule that does not apply itself.

The example we use is based on Art. 7A: 1612 BW. It was also used in the
sections 2.1 and 7.1 to explain the replacement of the principles underlying a rule.
Again, we have one rule and two underlying principles:

Valid(rule(sale_house,
ought_to_be_done(continuation_contract))) • .-.-••• -•• •:

Valid(rule(protects_inhabitants(acQ. • - > • • •
ought_to_be_done(acf))) - • •-•'

Valid(rule(-,party_bound_by_contract,
-.ought_to_be_done(continuation_contract)))

Underlies(rule(protects_inhabitants(acf), • . - • • • / • •
ought_to_be_done(acf)),

rule(sale_house, •
ought_to_be_done(continuation_contract)))

Underlies(rule(-.party_bound_by_contract,
-.ought_to_be_done(continuation_contract)), ' • <:

rule(sale_house. " >' ,
••'. ought_to_be_done(continuation_contract)))

Here we assume that a house with renting inhabitants is not sold, but donated. So,
we have the facts:

-.Sale_house
Donation_house

As a result, the condition of the rule of Art. 7A:1612 BW is not satisfied, and the
rule does not apply. But just as in the case of sale, continuation of the existing rent
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contract is a way to protect the inhabitants, while the new owner is not bound by
the existing contract:

- - "• ' 7 " ~ • . - • • • • • • • ; > • . ' , • • : - • • ; ! »

P r o t e c t s _ i n h a b i t a n t s ( c o n t i n u a t i o n _ c o n t r a c t ) ^ •,. - . , . ;• ., • '10 • W&V
- i P a r t y _ b o u n d _ b y _ c o n t r a c t - "< . . ' - '

Therefore, the conditions of the principles about the protection of inhabitants and
about the binding scope of contracts are satisfied. Since the rule of Art. 7A:1612
BW does not apply, the replacement rule ...,- _. . , ..-•../• IK

Valid(rule(underlies(n//e7, n//e2) A applies(/u/e2), -• ••-.., • .. , ,i

• excluded(njtef))) - • •• , .-. -,^ .... j , . rS

does not give exclusionary reasons for the two underlying principles. They apply
and give rise to the reasons:

Reason(protects_inhabitants(continuation_contract),
ought_to_be_done(continuation_contract))

Reason(-iparty_bound_by_contract,
-iought_to_be_done(continuation_contract))

The situation is shown in Figure 10.

Protection of inhabitants Binding scope of contracts

Figure 10: The principles underlying the rule of Art. 7A:1612 BW apply

So, in the case of donation two reasons arise that are based on the same principles
as those taken into account by the legislator, when the original rule was made.

There are good reasons to assume that the weighing of these reasons has the
same outcome as in the reasoning of the legislator:

Outweighs({protects_inhabitants(continuation_contract)},
{-.party_bound_by_contract},
ought_to_be_done(continuation_contract))

and leads to the same conclusion that the contract should be continued:

Ought_to_be_done(continuation_contract)
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In this analysis, two principles applied in the case of donation. They are precisely
the two principles that were replaced in the case of sale. The case of donation is
therefore in a sense of //ie same */W as the case of sale. Therefore we speak of a
form of reasoning by analogy. If only some of the underlying principles apply, or
more goals and principles are relevant, we cannot always speak of a case of
reasoning by analogy. The case might even be solved differently, since the reasons
might be weighed differently.

• 5 • . ' • " ' ' - . • . ' - f i r . - ' > • > ' ; • ' i - » . , : - . * n ' ; ' / > > £ ' « • . ' i ~ - j ' : .••• . • ' • ; " • • • • > , v - M _ -

8 . 2 A p p l i c a t i o n o f a n a n a l o g o u s r u l e / p r i n c i p l e •-•-:••*•;.• ' i ; ••' •'.•£•> •'-»•.&

In the second form of reasoning by analogy, a analogous rule/principle applies that
has the same underlying principles as the original rule. This leads to another
analysis of the same example.

In our example the analogous rule/principle might b e : ' - ' • * < • •

Valid(rule(donation_house,

ought_to_be_done(continuation_contract))) • ' ' ' • "»-̂ -'- "• " •-•" -'•*'

The legal decision maker that wants to base his reasoning on this rule has to justify
its validity. This justification can be based on the same reasons as the ones used by
the legislator when he made Art. 7A:1612 BW:

Reason(protects_inhabitants(continuation_contract),
valid(rule(donation_house,

ought_to_be_done(continuation_contract))))
Reason(-iparty_bound_by_contract,

-.valid(rule(donation_house,
ought_to_be_done(continuation_contract))))

In this line of reasoning, the two reasons are not relevant for the conclusion that
the contract should be continued, but for the validity of the new RBL rule about
donation. In their new role, the reasons might be weighed the same way as before:

•• - . ' i f f - = - . 1 . • - . : V . , f j ' •••-.

Outweighs({protects_inhabitants(continuation_contract)}, . ^ . ~- .....•..;•;
{-iparty_bound_by_contract}, ... ..., ... .,,.-.,. ^,,-,.
valid(rule(donation_house,

ought_to_be_done(continuation_contract))) ••;.•,,-•• c' r •> C

The conclusion is that the RBL rule about donation is valid.
It may seem that there is a problem here with the separation of powers: while

the legislator can make rules, the legal decision maker cannot. However, this
problem is only seeming, and due to the different meanings of rule validity in law
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and in reasoning. We use the term 'rule validity' in the latter sense. For rule
validity in that sense the separation of powers is irrelevant.^

If the rule about donation applies, the principles about the protection of
inhabitants and about the binding scope of contracts are again replaced by the rule
about donation and do not apply. An overview of the relations of the rules and
principles involved in this reasoning is shown in Figure 11.

Donation
I , i . * •• • • ' • " > - -

I X I :i I"'

: . Figure 11: The rule about donation applies having the same underlying
principles as the original rule of Art. 7A: 1612 BW

Since the rule about donation has the same underlying principles as the rule of Art.
7A:1612 BW we say that a rule is applied analogous to the original rule.

• = - ' • - - . • • • • ' • T ' " • ' . ' • ' " •

8.3 Analogous application of the original rule • • . : > : - , , ••

The third form of reasoning by analogy is typical for Reason-Based Logic, since it
involves reasons for and against applying a rule.

In this third analysis of the example, the rule of Art. 7A:1612 BW is not
applicable, since its condition is not satisfied, just as in the previous two analyses.
As a result, the standard reason for applying the rule, based on the relation between
facts APPLICABILITY (chapter 2, section 5), does not arise. However, a rule that is
not applicable can apply, since there can be other reasons that lead to its
application.

In our case, the reasons are again those for and against the continuation of the
contract having a new role. They now are represented as follows:

Reason(protectsjnhabitants(continuation_contract),
applies(rule(sale_house,

ought_to_be_done(continuation_contract)),
sale_house,
ought_to_be_done(continuation_contract)))

^ In Verheij and Hage (1994), we put it differently: we wrote that the legal decision
maker can only validate legal principles (and not legal rules) because of the separation of
powers. However, in the line of reasoning described in the text the two underlying
principles are replaced if the RBL rule about donation applies. Otherwise the reasons arising
from these principles would be taken into account twice. As a result, the RBL rule about
donation has a rule-like character.
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;;-Reason(-iparty_bound_by_contract, » - •
-iapplies(rule(sale_house, * * . •••

ought_to_be_done(continuation_contract)), ' -'' .
" ' ' — sale_house, ••• " *• •>' - v - ' ^ M '
t / 'c "'•• ought_to_be_done(continuation_contract))) •• '•'•' - • v.i x v*i

..:•; J '.• • ••:• •• ~ - i i i g o . •, *.c;

Here the reasons protects_inhabitants(continuation_contract) and
-,party_bound_by_contract are reasons for and against applying the rule of Art.
7A:1612 BW, respectively. Again the result of weighing these reasons might be
the same in this new role, as in section 8.2:

Outweighs({protects_inhabitants(continuation_contract)}, •
{-iparty_bound_by_contract},
applies(rule(sale_house, •

ought_to_be_done(continuation_contract)),
sale_house,
ought_to_be_done(continuation_contract))) r. < . ,:

As a result, we can conclude that the rule of Art. 7A:1612 BW applies, even
though its condition is not satisfied and it is not applicable: ,, „

Applies(rule(sale_house,
ought_to_be_done(continuation_contract)),

sale_house,
ought_to_be_done(continuation_contract))

Since the rule of Art. 7A:1612 BW applies, it replaces its underlying principles by
the replacement rule, just as any applying rule: the principles about the protection
of inhabitants and about the binding scope of contracts are excluded and do not
apply. Figure 9 shows the relations of the rules and principles involved (but does
not show the reasons in their new role). These relations are the same as in the case
of normal rule application. Since in this example the rule does apply, but not for
the standard reason that its condition is satisfied, we call this a/ja/ogou-j rule
application.



• - . > . . • _ • • * « < - - . v ^ • ' • » > - r r . t

C h a p t e r 4 ,- - . . - • . . , : .; . . •; ,v- .;-;^' , •.: - - i ^ ; , ¥

Formalizing rules:
a comparative survey ^

In the chapters 2 and 3, we have described our approach to formalizing rules:
Reason-Based Logic. In this chapter, we discuss a number of other approaches,
and compare them to ours. We focus on issues concerning rules that arise because
of the defeasibility of arguments.'

In section 1, we make some general remarks on rules and their role in
argumentation. In section 2, we treat the classic formalization of rules as material
conditionals, and to what extent this formalization can cope with a number of
issues related to the defeasibility of arguments. Section 3 continues with a
discussion of approaches to dealing with the relevance of rule conditions for rule
conclusions. We discuss approaches to dealing with exceptions to rules in
section 4, and approaches to dealing with rule conflicts in section 5. In section 6,
we look at reasoning about rules.

We wish to stress that many of the observations in this chapter are not
original.^ However, we have added some originality by focusing on different
issues instead of on specific formalisms. We have selected a number of well-
known and influential formalisms, and use them to explain general approaches to
the issues. In this way, the approach to formalizing rules of Reason-Based Logic is
put in perspective.

1 Rules in argumentation

In this section, we explain our view on rules. We start with the relation between
rules and arguments. Some remarks on syllogistic and enthymematic arguments
follow. The section ends with a discussion of ordinary rule application.

Nute (1980) and Sanford (1989) describe other interesting topics, such as counterfactual
conditionals.
^ We have especially benefited from the discussions by Haack (1978), Prakken (1993a,
chapters 5 and 7) and Makinson (1994).
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1.1 Rules and arguments

We recall our interpretation of rules and their relation to arguments (see also
chapter 1, section 4.1 and chapter 2, section 1.1). As our starting point, we take
informal arguments as they occur in practice, e.g.,

. : • • . . • . . . 1 3 •• - V j

Mary is bom in Maastricht. . . . . . . . . . , , - . , . , ,
So, Mary pronounces the letter g softly.
So, people can tell that Mary is from the south of the Netherlands.

We present arguments in an idealized form, with clearly distinguished steps. Each
step consists of a reason and a conclusion, as follows:

So, Co«c/U5/O«. ':. " • ' - < -•'• • •.:. , : , •• ,-, . •••••

Arguments can consist of several steps. In that case, the conclusion of one step is
the reason of the next. The example argument consists of two steps. The first step
has the reason 'Mary is bom in Maastricht' and the conclusion 'Mary pronounces
the letter g softly', the second step the reason 'Mary pronounces the letter g softly'
and the conclusion 'People can tell that Mary is from the south of the Netherlands'.

The steps in the argument can also occur in other arguments. For instance, the
first step in the argument above also occurs in the following argument:

Mary is bom in Maastricht. ? • .
So, Mary pronounces the letter g softly. .-•• , <
So, people from Amsterdam may find Mary's accent amusing. •'•*•>• • •••••--

In other words, steps in an argument are independent of the particular argument in
which they occur. Each step can be used in an argument because there exists some
relation between the reason and the conclusion of the step. This relation between
reason and conclusion as expressed by the argument step, is what we call a rw/e.

Often argument steps follow a pattern. For instance, the first argument above
can be made for anyone who is bom in Maastricht. We have the following
argument scheme: . .. .,

Person is bom in Maastricht. .•••.-. ,,, •••;'• ,• ;-
So, Person pronounces the letter g softly.
So, people can tell that Person is from the south of the Netherlands.

The steps in the argument scheme can be used in an actual argument independently
of the particular person mentioned. Person is a variable, that can be filled in at
will: whoever the person Person is, Mary, Peter, or Fred, the scheme gives rise to
an acceptable argument. Also the relation between reason and conclusion in a step
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in such an argument scheme is called a rule, but this time it is a rule with a
variable.

There are few things about rules of reasoning that are generally agreed upon.
However, a common starting point is that a rule has a condition and a conclusion.
The condition and the conclusion of a rule correspond to the reason and the
conclusion in an argument step, respectively. So, an argument step of the form

So,

corresponds to a rule with condition /?easo« and conclusion CO/7C/K.WO«. It may
seem inconsistent terminology to use two terms, 'reason' and 'condition' for
corresponding things. However, there is a difference: if the condition of a rule is
used as a reason in an argument, the reason is assumed to hold, while for the
validity of a rule it is irrelevant whether its condition holds.

1.2 Syllogistic and enthymematic arguments

If in introductory texts on classical deductive logic examples of informal
arguments are given, they typically look as follows (e.g., Purtill, 1979; Copi, 1982,
especially p. 235 ff):

1. John is a thief. If John is a thief, then he should be punished.
So, John should be punished.

2. Either John is married to Mary or John is married to Edith. John is married to
Mary.
So, John is not married to Edith.

They are used to introduce logical connectives, such as 'If... then ...' and 'Either ...
or ...'. In ordinary language, one also finds the following, closely related
arguments that do not contain these connectives:

1'. John is a thief. ..-
So, John should be punished.

2'. John is married to Mary.
So, John is not married to Edith.

These arguments result from the arguments 1 and 2 above by omitting one of the
premises. From the point of view of classical logic, the first two arguments are
complete, while in the second two one of the premises is missing. The
arguments 1' and 2' are called ew//7y/wema//c, in contrast with their .sy//ogz.sr/c
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counterparts 1 and 2, that explicitly contain all premises (Copi, 1982,
pp. 235, 253).3

In this thesis, we have given examples of arguments that resemble the
syllogistic type of argument and of arguments that resemble the enthymematic
type. This may seem inconsistent. However, the apparent inconsistency disappears
if it is noted that the distinction between syllogistic and enthymematic arguments
only has meaning re/a//ve /o a je/ o/rw/e^. For instance, the syllogistic arguments
above are complete, relative to the rules (or rule schemes) Modus Ponens and
Disjunctive Syllogism underlying the argument schemes:

State_o/_q#H>s,. If S/ate_0/jj#a/>.r,, then
So,

Either 5/a/e_o/_
So, not S/a/eo/

Relative to these rules, we can distinguish the syllogistic arguments I and 2, in
which all premises are explicitly stated, and the enthymematic arguments 1' and
2', in which one or more premises are missing.

The example arguments 1' and 2', that are enthymematic with respect to
Modus Ponens and Disjunctive Syllogism, are syllogistic with respect to the rules
that underlie the argument schemes

Person is a thief.
So, Person should be punished.

and

Person, is married to
So, Perjo/j, is not married to

Clearly, our interpretation of rules is closely related to the warrants in
Toulmin's (1958) argument schemed

We have taken some effort to state our interpretation of the notion 'rule' as
clearly as possible, for two reasons. First, we think that research on the
formalization of reasoning with defeasible arguments should be thoroughly

^ The distinction between syllogistic and enthymematic arguments was already made by
Aristotle (cf. Copi, 1982).
* It is sometimes objected that the rules underlying these arguments refer to the meaning
of the phrases used. This ignores the fact that also a rule such as Modus Ponens refers to the
meaning of its phrases, namely the meaning of "If .... then ...', which as we will see is not
uncontroversial.
' Toulmin's argument scheme has recently inspired several researchers (cf., e.g.,
Bench-Capon, 1995).
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grounded in intuitions, simply because that research is inspired by the intuitive
differences between actual reasoning and, for instance, deductive reasoning. This
is in line with our general method of research (chapter 1, section 7)

Second, different intuitions can cause much confusion. Therefore, we stress
that our interpretation of rules differs from several other interpretations in the
literature, such as rules of inference, material conditionals, or default rules. Indeed,
there is no single, generally accepted interpretation of the notion 'rule'. In fact, a
significant part of the research on defeasible reasoning can be regarded as a search
for the meaning, or, better, for different meanings of the notion 'rule'.

1.3 Ordinary rule application ;•'•;,.• , .„ : : \ :<:>?., !!%v

In any interpretation of rules, they can in some sense be applied: if there is a rule,
the condition of which holds, the conclusion of the rule follows. Here 'holds' and ,.
'follows' can be interpreted in many ways, for instance as 'be true', 'be derivable', Ij
or 'be justified by an argument'. The latter interpretation will be our intuitive
guideline in this chapter.

Since we will be dealing with several different formalisms, a notational
convention is useful. If the conclusion Conc/us/on follows from the assumptions

, we write:

-Conc/us/on

Our guiding interpretation of this notation is as follows: assuming >1ssumpf/on,,
^ssumpf/on2, ..., dssumpf/onn, the conclusion Conc/us/on is justified (by some
argument).

Using this notation, ordinary rule application is denoted as follows:

Ru/e, Cond/Y/on h Conc/us/on

Here Ru/e denotes that there is a valid rule that has Cond/Y/on as its condition and
Conc/us/on as its conclusion.

In First-Order Predicate Logic (see, e.g., Van Dalen (1983) or Davis (1993)),
there is an obvious candidate to formalize rules, namely the material conditional.^
A rule with condition Cond/Y/on and conclusion Conc/us/on can be represented as
the material conditional Cond/Y/on -» Conc/us/on, and ordinary rule application can
be interpreted in two well-known (and equivalent) ways, namely semantically and
proof-theoretically:

If Cond/Y/on -• Conc/us/on and Cond/Y/on are true, then Conc/us/on is true.
From Cond/Y/on -• Conc/us/on and Cond/Y/on, Conc/us/on is derivable.

" The material con<#//ona/ is often called the material i/np//cafio/?. Sanford (1989),
joining Quine, explains why this is uncareful use of language.
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These are usually formally represented as follows: .
•

Cond/Y/on -> Conc/us/on, Cond/f/on |= Conc/us/on ..
Condrf/on -> Conc/us/on, Condrf/on |- Conc/us/on

In our notational convention, both become: -.».<; .̂

Cond/f/on-• Conc/us/on, Condrf/on h Conc/us/on

We stress that the symbol K does not give preference to a semantically or a
syntactically defined consequence relation.

In the chapters 2 and 3, we discussed another candidate to formalize rules,
namely the rule of Reason-Based Logic. In comparison with the complexity of the
rule of Reason-Based Logic, the material conditional is attractively simple.
Therefore an important question arises. Why is the material conditional approach
to rules unsatisfactory? That is the subject of the next section. ..,w. . •

2 Rules as material conditionals < . . . •• :

In this section, we discuss the material conditional approach to rules. First we
discuss the relevance of rule conditions for rule conclusions and the paradoxes of
the material conditional. Then we discuss the behavior of the material conditional
with respect to exceptions and conflicts. The section ends with a discussion of the
problems of the material conditional related to reasoning about rules.

2.1 Relevance and the paradoxes of the material conditional

If we formalize rules as material conditionals, the first problems that we encounter
concern the relevance of the condition for the conclusion.

The rule of our example above, that allowed the argument steps of the scheme

Person is born in Maastricht. j •:• •'• ? «' ; •
So, Person pronounces the letter g softly. • r • : ••..,•..:*•'.» , ,-.y ,-.'.

shows the relevance of the condition of a rule for its conclusion. The fact that
someone is born in Maastricht is re/eva/j/ for the fact that someone pronounces the
letter g softly, in the sense that under normal circumstances the second follows
6ecaw.se the first holds. This relevance is a consequence of the way the world is:
people born in Maastricht, normally pronounce the letter g softly. As a result, the
demand of the relevance of a rule's condition for its conclusion is in principle a
matter of the domain theory.

For instance, a domain theory that contains a rule with condition "The sky is
blue' and conclusion 'Amsterdam is the capital of the Netherlands' does not meet



Section 2: Rules as material conditionals 79

the relevance demand. However, the relevance demand is not only a matter of the
domain theory, but also of the allowed inferences. We show this using the material
conditional as an example. It turns out that material conditionals have properties
that are not in line with the relevance demand.

For instance, if we assume that Mary is no/ born in Maastricht, the material
conditional with condition Mary_is_born_in_Maastricht and conclusion
Mary_pronounces_the_letter_g_softly follows:

-,Mary_is_born_in_Maastricht h- Mary_is_born_in_Maastricht - •
Mary_pronounces_the_letter_g_softly -.>•

In fact, any material conditional with condition Mary_is_bornjn_Maastricht
follows, for instance:

-iMary_is_born_in_Maastricht (~ Mary_is_born_in_Maastricht ->
-iMary_pronounces_the_letter_g_softly

-.Mary_is_born_in_Maastricht h- Mary_is_born_in_Maastricht ->
There_is_life_on_Mars

-.Mary_is_born_in_Maastricht h- Mary_is_born_in_Maastricht -»•
-iMary_is_born_in_Maastricht

The examples have been chosen in such a way that the conditions of the material
conditionals become decreasingly relevant for their conclusions. Interpreted as
rules that give rise to acceptable arguments, these material conditionals become
increasingly absurd. For instance, in our interpretation, the last example reads as
follows. Assuming that Mary is not born in Maastricht, there is a rule that makes
the argument

Mary is born in Maastricht.
So, Mary is not born in Maastricht.

acceptable. • - . , - • •
These examples are due to the first of the following so-called paradoxes of the

material conditional (cf., e.g., Haack, 1978, p. 37):

h (/* - • 6) v (8 -> 4)

Examples of the second are:

Mary_pronounces_the_letter_g_softly h Maryjs_born_in_Amsterdam
Mary_pronounces_the_letter_g_softly
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sii Mary_pronounces_the_letter_g_softly h-There_is_life_on_Mars-> •<•;»: •:>.> n
ii,. Mary_pronounces_the_letter_g_softly ;: * i " ! . • .••

Interpreting the latter, we find: assuming that Mary pronounces the letter g softly,
there is a rule that makes the argument

There is life on Mars. . r»... -'-IUC^C -..; ';">»•>«•*
So, Mary pronounces the letter g softly.

r , - , . - . . . . - . . • . • ! , . • • « . : • ' • ' . • • . . V - » - ' - - -

acceptable. v̂ ' ; ? - ^
An example of the third paradox is:

h- (There_is_life_on_Mars -» Mary_pronounces_the_letter_g_softly) v .•••»•.. . .

(Mary_pronounces_the_letter_g_softly —>There_is_life_on_Mars)

Interpreting this, we find that there is either a rule that makes the argument

There is life on Mars. ••

So, Mary pronounces the letter g softly. .- .•"''-'

acceptable, or a rule that makes the argument

Mary pronounces the letter g softly. . . ' '•
So, there is life on Mars. . . • - . • - . : - '

acceptable. , •
The examples show that the material conditional does not behave well with

regard to relevance. Even if we are careful and assume only material conditionals
which have conditions that are relevant for their conclusions, we obtain many other
material conditionals for free which lack that property. This has been recognized
for long, and is generally considered a drawback of the formalization of rules as
material conditionals. For instance, the paradoxes of the material conditional led
C.I. Lewis to the definition of the strict conditional (that turned out to have similar
paradoxes of its own),' and Anderson and Belnap to the development of their logic
of relevance.*

Some approaches to dealing with relevance are discussed in section 3.

Cf. Haack (1978, p. 37) and Sanford (1989, p. 68ff.).
Cf. Haack (1978, p. 37, p. 198fT.) and Sanford (1989, p. 129ff.).
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2.2 Exceptions to rules • ,- . -, • • ,., • • • , . . > • , ,
: . • • : • ' . ; • - , > "' • • s v ^ j ' i f ! - :

Another source of problems for the material conditional are exceptions to rules.
We have already seen several examples of exceptions in the previous chapters
(chapter 1, section 4.1, chapter 2, section 1.2, chapter 3, section 5).

There are two intuitive requirements for reasoning with rules with exceptions:

S T A N D A R D C A S E M .. . • • ' , < " . , ' . , . - , , - . . , :.•• •.'•'; . J ; ..:-•: " n • '

If there is a rule the condition of which holds, then the rule's conclusion
follows.

EXCEPTION CASE • . • . - : : . - • > - • • •..•!T

If there is a rule the condition of which holds, and there is an exception to the

rule, then the rule's conclusion does not follow.'

If we model rules as material conditionals, we get the following:

STANDARD CASE

Cond/Y/on, ConcM/on -» Conc/us/on h Conc/us/on • .
EXCEPTION CASE I .

Cond/7/bn, Cond/f/on -» Conc/us/on, Excepfon fAConc/us/
The latter is clearly false. We recall the property called monotonicity:

If/\ssump//ons h Conc/us/on,
then ^ssumpf/ons, More_asst/mpf/ons (~ Conc/us/on.

It follows immediately that a reasoning formalism that meets the two requirements
above cannot be monotonic. Since First-Order Predicate Logic is monotonic, we
conclude that reasoning with rules with exceptions cannot be represented in it.

It may at first seem strange, but the requirement in the standard case, makes
reasoning with rules with exceptions nonmonotonic, and not the requirement in the
exception case. In the standard case, one jumps to the conclusion of the rule, while
there might be an exception. It would be more careful to add the assumption that
there is no exception, as follows:

CAREFUL STANDARD CASE

If there is a rule the condition of which holds, and there is no exception, then
the rule's conclusion follows.

Clearly, this careful requirement does not lead to nonmonotonicity. For instance,
the deductive consequence relation of Reason-Based Logic (chapter 2, beginning

Of course, the rule's conclusion can hold, as a result of o/Aer information.
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of section 6) is careful in this sense. However, as we already discussed there, this
carefulness leads to a weak notion of consequence.

Other approaches to dealing with exceptions to rules are discussed in section 4.

2.3 Rule conflicts > .

A third source of problems for the formalization of rules as material conditionals
are rule conflicts. We have already seen several examples in the previous chapters
(chapter 1, section 4.2, chapter 2, section 1.3, chapter 3, section 6). We mention
two types of unwanted behavior of the material conditional.

The first type of unwanted behavior is that, if there is a conflict of material
conditionals, i.e., their conclusions are incompatible and their conditions satisfied,
anything follows. Formally,

Condrf/on,, Cond/f;bn2. Cond/ftbn, -> Conc/us/on, Cond/ffo/^ -* -> Conc/us/on h

For instance, interpreting rules as material conditionals, we find: if thieves are
punishable, minor first offenders are not punishable, and John is a minor thief, then
Fermat's theorem is true. This easy way of settling Fermat's theorem is of course
useless since we can also conclude that it is false. Clearly, this behavior of the
material conditional is unwanted if one accepts the existence of rule conflicts.
Intuitively, a conflict of rules should not lead to a contradiction from which
anything follows. We have the following intuitive property: ,

RULE CONFLICT

If there are rules with incompatible conclusions, the conditions of which hold,
no contradiction follows.

The second type of unwanted behavior of the material conditional occurs even if
the conditions of rules with incompatible conclusions are not satisfied. We have
the following:

Cond/l/on, -> Conc/us/on, Condrf/on2 -> -.Conc/us/on |
-•Cond/Y/on,

For instance, if thieves are punishable and minor first offenders are not, then minor
first offenders are not thieves. It would be very nice for governments if simply
announcing that minor first offenders are not punishable would have this effect.
Intuitively, it is unwanted that rules with incompatible conclusions lead to other
rules, as naively as above. The property is related to the property of the so-called
contraposition of the material conditional:

Condrt/on -> Conc/us/on I—, Conc/us/on -> -iCondrf/on
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This property can easily lead to strange results. For instance, if we have that
suspects are presumed innocent, do we also have that those who are not presumed
innocent are not suspect?

Both types of unwanted behavior show that rules easily allow for too many
conclusions. First, we saw that a conflict of rules should not lead to a
contradiction; second, that a rule should not lead to its contraposition.

This is opposite to the situation in the case of exceptions, where we saw that
rules sometimes allow too few conclusions: in the standard case, we want to jump
to a conclusion, even if there might be an exception.

In Figure 1, the tension between too few and too many conclusions is
suggested. The set of strict conclusions that follow from a set of assumptions is
often considered too small. As a result, one wants to enlarge that set by allowing
tentative conclusions. On the other hand, if one enlarges the set too much, the
boundary of consistency is crossed.'^ Since this is also unwanted, one wants to
constrain the set of tentative conclusions, in order to maintain consistency.

Figure 1: The tension between too few and too many conclusions

As the figure shows, an acceptable set of tentative conclusions that follow from a
set of assumptions includes the set of strict conclusions, and is included in some
consistent set.

Other approaches to dealing with rule conflicts are discussed in section 5.

'" The figure suggests that there is a clear, unique, boundary of consistency. This is of
course not the case: there can be many different maxiconsistent sets. However, this is
unessential for what the figure attempts to depict.
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2.4 Reasoning about rules « » : - ^ " i ^ ^ *̂  -•. i r .-; ^ ; ; .

As a fourth source of problems for formalizing rules as material conditionals, we
discuss reasoning about rules. We distinguish two types of reasoning about rules:
reasoning with rules as conclusions, and reasoning that involves facts about
rules ."

Assume that we consider the arguments ; . . ' • ; • • - ) : • • - ( •;
• ; . • . . • , v - . : - : j V , : < : / :•

It is r a i n i n g a n d I d i d n o t b r i n g a ra in coa t . *;?' r- •<•• ; • '" • : •- i
S o , m y c l o t h e s ge t w e t . •••<•/ J ? - " ' • * >I • : . ' i

a a t f ' • ••'• j ^ - f i : ••••••.-!• • • : ".: • • • • • ' ? ; • - > - - •• ' • - - • - i ^ - • .-. •••-.'•. - ' / f t b

M y c l o t h e s g e t w e t . - v " ' H '^ •' ^- •••' '> •.•• • • . • ' = . • • ; L . ... - J •

So, I will feel uncomfortable. ' a ,-: • •

to be acceptable. It seems reasonable to conclude that also the argument

It is raining and I did not bring a rain coat.
So, I will feel uncomfortable.

is acceptable. As a result, the following argument, in terms of the rules that give
rise to these arguments, is acceptable: ... ,

'If it is raining and I did not bring a rain coat, my clothes get wet' is a valid
rule.

'If my clothes get wet, I feel uncomfortable' is a valid rule.
So, 'If it is raining and I did not bring a rain coat, I will feel uncomfortable' is a

valid rule.

This argument is an example of reasoning about rules, in which the conclusion of
the argument is a rule. Other examples have facts about rules as their conclusion.
There can be an argument concerning exceptions, e.g.,

John is driving on a German highway.
So, there is an exception to the rule 'If John drives faster than 120 kilometers
per hour, he can be fined'.

or priority relations between rules, e.g.,

John knows Mary well.
Alex hardly knows Mary.

' ' We will later see (section 6) that in Reason-Based Logic this distinction disappears.
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So, the rule 'If John says Mary is nice, then Mary is nice' prevails over the rule
'If Alex says Mary is not nice, then Mary is not nice' in case of a conflict.

,?! ft'

If rules are formalized as material conditionals, the first type of reasoning about
rules, in which a rule occurs as a conclusion, can apparently be dealt with. For
instance, the first example we gave corresponds to the following property of
material conditionals, called transitivity: • ' '*'- . - • • • • • • - • • > • ' • • * . .*•"-•-*•

However, this can hardly be considered as reasoning about rules, since it is not
based on information about the particular rules involved. Transitivity is a property
that holds for general material conditionals, and does not depend on any particular
information for particular material conditionals.

Moreover, rules do not always have the property of transitivity. A
counterexample is the following. Assume we have the two argument schemes:

Person lives in Curasao. ••••••*•'; '"••*•-** • • '•
So, Person is Dutch. . ; . ,-,••• - —' V''. •

and

Person is Dutch. - ' .
So, Person lives in Europe. •"

Even if these arguments are acceptable, the argument scheme

Person lives in Curasao.
So, Person lives in Europe.

need not be acceptable, since Curasao is in the Caribbean region, and not in
Europe. The fact that the property of transitivity does not hold for the arguments in
this case is the result of the fact that the rule 'If someone is Dutch, he lives in
Europe' can have exceptions. Since material conditionals have the property of
transitivity, the rules underlying the example arguments cannot be formalized as
material conditionals.

For the other type of reasoning about rules, involving facts about rules (e.g.,
about exceptions, conflicts or priorities), modeling rules as a material conditional
is clearly inadequate, since this would require that it is possible to express facts
about material conditionals in the object language. This is not possible in standard
First-Order Predicate Logic.

Other approaches to dealing with reasoning about rules are discussed in
section 6.
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3 Relevance .•._• .,..•• . , v ,<•,-.' . . , ;

In order to avoid the problems of the material conditional with regard to relevance,
a special syntactic form should be used, reserved for the representation of rules. In
this way, it is possible to specify the properties of rules from scratch.

We discuss three approaches that follow this idea. The first is to fixate the set
of rules. The second is to treat rules as special sentences. The third is to treat rules
as special objects.

3.1 Fixating a set of rules

As an example of the first type of approach, in which the set of rules is fixated, we
discuss Reiter's Default Logic (Reiter, 1980, 1987). We start with a summary of
his definitions.

Reiter's Default Logic uses the language of First-Order Predicate Logic; for
simplicity we use that of Propositional Logic here. The assumptions are encoded as
a pair of sets (F, A), where F is a set of sentences and A is a set of default rules.
Such a pair of sets (F, A) is called a //jeory. _. ...-.-i

A de/au// rw/e has the form i. r: .-. •. • • , •. . .?

where a, P,, Pj, . . . , p,,, and y are sentences. Here a is the prerequisite of the default
rule, P,, P2, ..., Pn are the justifications of the rule, and y is the consequent of the
default rule. Representing a rule as a default rule, the condition of a rule
corresponds to the prerequisite of a default rule, and the conclusion of a rule to the
consequent of the default rule. The role of the justifications of a default rule is
discussed in section 4.2.

An ex/ms/ow of a theory (F, A) is a set of sentences E, such that E = EQ u E, u
E2 u E3 u ..., where

Eo = F, and
E; + , = Th(Ej) u { y I there is an a : P,, P2,..., Pn / Y e A, such that a € Ej, and

forallj:-.Pj g E } forany i>0 . '2 4

The definition of the E, depends on E. Intuitively, the definition of an extension
makes use of E as an advance guess of the consequences of a theory (F, A), and
then checks whether this guess can be gradually constructed using the default rules
in A starting from the fixed information F.'-* ,., ^ . ,,

'^ For a set of sentences S, Th(S) denotes the set of logical consequences of S in
Propositional Logic.
'^ The same technique was used in the definition of the nonmonotonic consequence
relation of Reason-Based Logic (chapter 2, section 6).
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There is an equivalent fix-point definition of extensions: E is an extension
if E = T(E), where the operator f is defined as follows. Let S be a set of sentences.
Then F(S) is the smallest set f of sentences, such that:

F c T , and " ' • •"*

r = Th(r), and " '
For all a : (3,, (3j,.... P , / y e A : If a e Tand for all j :-iPj e S, then y e I\

(For all S, there is a smallest set with these three properties: it is the intersection of
all sets for which the properties hold.)

Not all default theories (F, A) have an extension, and if a default theory has an
extension, it is not necessarily unique. A sentence that is an element of all
extensions of a default theory is said to follow s/fcep//ca//y from the theory; a
sentence that is an element of (at least) one of the extensions follows crec/u/owj/)'.

Reiter's starting point is the incompleteness of the information that we have
about the world. He proposes to use default rules as 'rules for extending an
underlying incomplete first-order theory'. Apparently, he thinks of (default) rules
as special rules of inference, separate from the other available information. This is
reflected in the formalism proposed. A default theory is defined as the combination
of two sets: a set of first-order sentences, representing ordinary, but incomplete
information about the world, and separately a set of default rules, representing
information to extend the incomplete information about the world. Reiter then
defines extensions of a default theory as sets of first-order sentences.

We return to our discussion of relevance. Formalizing rules as Reiter's default
rules, it is clear that the problems of the material conditional with regard to
relevance are solved. Since extensions cannot contain default rules, no default rule
can be the consequence of a default theory. As a result, if a default rule has
condition that are not considered relevant for their conclusions, it is only a flaw of
the default theory.

This is of course a crude way of solving the problems of relevance. The
'advantage' is at the same time one of the main drawbacks of Reiter's Default
Logic: there are no provisions whatsoever to represent relations between rules, or
to reason about rules (see also section 6).

3.2 Rules as special sentences

The second approach is less crude than the first, and treats rules as special
sentences. The logical language is extended with a special connective to represent
rules, as in conditional logics, as for instance defined by Anderson and
Belnap,''' Nute (1980, 1994) and Delgrande (1988). After extending the language
with a rule-representing connective, e.g., >, the properties of the connective are

See, e.g., Haack (1978, p. 198ff.) and Sanford (1989, p. 129fT.).
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specified on the meta-level by axioms and rules of inference. Some of them
m i g h t b e : ,• „ - a ^ - - < ; . •,; .-.•. , . . , . . , . ; - . • .

The choice of such axioms and rules of inference is a delicate matter (which led to
a large amount of research), and highly depends on which interpretation of rules
one has in mind. For instance,

/ \ > 8 | ~ < 4 A C > 8 , , v ; . , : , • ; • ^ . . • • . a - . - r • . . - > ' • • • „ . . . • • . • • •

should hold for strict rules, but not for rules that can have exceptions.
This approach has the advantage that it is possible to represent not only rules,

but also certain relations between them, namely those that can be expressed using
other connectives of the logical language, as in ((/* > 6) A (S > C)) -> (8 > C). Of
course, the axioms and rules of inference that guide this reasoning must be chosen
carefully, in order to meet the demand of relevance. For instance, a rule of
inference such as . .

4 > Sh-A -> 8

could lead to the same unwanted results as with the material conditional, and
would therefore probably be a bad choice. However, by carefully choosing axioms
and rules of inference, it is in this approach in principle possible to deal with the
problems of relevance.

3.3 Rules as special objects ^ '

The third approach is to treat rules as special objects, and is used in Reason-Based
Logic (chapter 2). Just as in the previous approach, rules can be represented in the
logical language. In Reason-Based Logic, they have the form:

rule(concM/on, conc/us/on) u : . >

However, there is an important difference with the previous approach: rules are not
treated as sentences in the language, but as terms, since rules are considered as
special objects. The properties of these rules-as-objects can be represented as
sentences of the logical language. For instance, the validity of a rule is expressed
as

Valid(rule(condrf/on, conc/us/on))
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RBL rules also have properties that are specified on the meta-level (described in
chapter 2, section 4). For instance, an excluded rule the condition of which is
s a t i s f i e d i s n o t a p p l i c a b l e : : . ¥ , ; - % " . : > • - < • , < . . N .! • „ >-•. ^ j t s n . - j ^ . . . ^ i , ;^ /

Cond/Y/on, Excluded(rule(cond/f/on, conc/us/on), facf, sfate_of_affa/rs) h
-iApplicable(rule(cond/ton, conc/us/on), facf, sfate_or_affa/>s)' ^

Nevertheless, in comparison with the conditional logic approach, the properties
specified on the meta-level leave much room for the specification of the rule
properties in the logical language. We come back to this in section 6, where we
discuss reasoning about rules.

In Reason-Based Logic this approach has been chosen, because we regard
many of the properties of rules as part of the domain theory. This has the
advantage that it is possible to represent different types of rules with different
properties. For instance, the properties of strict rules are clearly different from
those of rules that can have exceptions. In Reason-Based Logic, such properties
can flexibly be represented in the domain theory. For instance, a domain theory
can be such that the relevance of the rule's condition for its conclusion is implied
by the rule's validity. In general, high demands are made on the domain theory.

An alternative approach to represent types of rules with different properties
would be to use different syntactic structures for each type of rules. Since the
properties are then represented at the meta-level (as discussed in section 3.2), this
approach is a little less flexible then the approach discussed here.

4 Exceptions to rules

In this section, we discuss approaches to dealing with rules with exceptions. We do
this in two parts. First, we discuss different approaches to the representation of
exceptions. Second, we discuss approaches to dealing with exceptions and
defeasible reasoning.

4.1 Representing exceptions

We discuss three approaches to the representation of exceptions to rules. The first
uses negative rule conditions. The second uses identifiers of rules and a special
predicate. The third treats rules as special objects.

'^ Recall that there is a translation from sentences (e.g., Cond/f/on) to terms (e.g.,
cond/f/on), as described in chapter 2, section 4.3. .• ...



90 Chapter 4: Formalizing rules: a comparative survey

The first approach to the representation of an exception is as an additional negative
condition of a material conditional, as follows:

C o n d i t i o n •-• "'••'- - / J - J •

A -lExcepfton
-> Conc/us/on < : . ' ' . . . • • • » ••' . . a '• - f ^ ' , ; - • ; . • ••'

There are two drawbacks with representing exceptions as negative conditions. The
first is that an additional exception would require a change of the rule itself:

C o n d i t i o n " ••• * -•• •' '• ' " '
A - i £ x c e p f / o n , ••-- ^'-'i' • , '•• - . • • • - • ' • ' • • ; ;

A - i E x c e p f / o n ' • '- • •• ' • ' > " ••••'•-' • '* • - ' " ! - H ^ H

-' - > C o n c / u s / o n *>' ' ' '• • ; - ' •': • -•'•' "' "-wV' ' '
•••• . . ••;•. '. •'. .- . L / ' - . ^ V . • • , • . . • ! ' - . • • P . r . ? - i

The second drawback is that there is no formal difference between the condition of
a rule and its exceptions. For instance, the material conditional

/* A -.S A - .C-> D , • •

can represent a rule with condition A conclusion D, and exceptions S and C, but
also a rule with condition 4 A - I6 , conclusion D, and exception C.

Both drawbacks conflict with the intuition that a rule is characterized by its
condition and conclusion. What we would like is a system in which the existence
of an additional exception to a rule is simply an additional fact about that rule.

/?«/e /cfe«///?erj am/ excep/ion /vea7ca/es • • . • • • • • •

The second approach to the representation of exceptions solves this disadvantage.
It is characterized by the use of rule identifiers and a special purpose predicate.'^
A rule is represented as a material conditional, but has an extra condition to
represent that it has no exception, for instance as follows:

(*) ConcW/on A -iException(/denf/'ffeO -> Conc/us/on • • -

Different rules should have different identifiers. Exceptions can now be
represented as follows:

'^ The use of exception predicates stems from the early days of the research on
nonmonotonic logics. Prakken (1993a, p. 84ff.) gives an extensive overview of different
variants of this technique, in different logical formalisms.
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(+) Excepf/on -> Exception(/denf///er)

In this representation, an additional exception does not require a change of (*), but
can be represented as an additional assumption: .

Excepf/on' -> Exception(/denM/e/) • " • ' " ' ' ' ' ' •

If such a material conditional representing an exception is itself a rule that can
have exceptions, this can easily be represented by giving it its own identifier and
exception clause. For instance, the material conditional (+) becomes:

Excepf/on A -• Exception(;denf///e^2) -> Exception(/denW/eO

The problem with this approach to the representation of exceptions is that it is
rather ad hoc. The meaning of 'rule' and 'exception' are unclear and
underspecified. For instance, is a material conditional of the form (*) a rule? But
then, what does the identifier of the rule refer to? Maybe the identifier is the rule?
Does -iException(/denW/er) imply that there is a rule with the identifier /denf/fier?
Taking these questions seriously, we arrive at the third approach to the
representation of exceptions.

/?w/er as spec/a/ ofyec/s • • '

The third approach to the representation of exceptions is to treat rules as special
objects that can have properties. One of the properties of a rule can be that there is
an exception to the rule. So, the existence of an exception to a rule is considered as
a fact about the rule. Additional exceptions do not change the rule itself, but are
simply represented as additional facts about the rule.

This approach to the representation of exceptions is used in Reason-Based
Logic (chapter 2). We discussed the structure of rules and several types of facts
concerning rules. Rules have a condition and a conclusion:

rule(condrf/on, conc/us/on)

Rules can be valid, applicable and excluded, and can apply:

Valid(rule(cond/f/on, conc/us/on))

Applicable(rule(cond/Y/on, conc/us/on), fee/, stefe_of_affa/rs)
Excluded(rule(cond/Y/on, conc/us/on), fcicf, s/ate_of_affa/>s) ... - .
Applies(rule(cond/Y/on, conc/us/on), fecf, stefe_of_affa/re)

The general properties of rules are defined by the relations that hold between these
(and other) types of facts. The properties of rules (or classes of rules) are specified
in the logical language. In contrast with the previous approach using rule
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identifiers, in this approach it is made explicit what is meant by 'rule' and by
'exception'."

4.2 Exceptions and nonmonotonicity .:,,- , • • • • > • « ! •

Attempts to deal with nonmonotonic reasoning have become a vast field of
research. Here we focus on rules with exceptions, and discuss three approaches.' ̂
The first is based on maxiconsistent sets. The second uses default rules. The third
uses counterarguments. , . ; v ,• ^

Mzx/consis/e/il se/s

The first approach is based on maxiconsistent sets, as for instance used in Poole's
Logical Framework for Default Reasoning (Poole, 1988).'^ We start by giving a
brief overview of the definitions we need.

Poole's framework uses the language of First-Order Predicate Logic; for
simplicity we use that of Propositional Logic. Assumptions are encoded in a
/Aeory, defined as a pair of sets (F, A), where F and A are both sets of sentences. F
represents the strict assumptions, A the default assumptions. An ex/era/o« of (F, A)
is the set of consequences of a maximal scemino, where a scenario is a consistent
set F u D with D a subset of A.

A theory (F, A) has one or several extensions. Just as in Reiter's Default Logic
(Reiter, 1980, 1987), a cm/«/ows and a stepf/co/ consequence notion can be
defined.

Maxiconsistent sets can be used to deal with reasoning with exceptions. For
simplicity, we use a simple representation of rules here. A rule and its exception
clause is represented as the following material conditional:

(1) Cond/fion A -,Exception(/denM/eO -» Conc/us/on. ,

(Below the number (1) is used to refer to this material conditional.) Rules are
elements of the strict assumptions F, and different rules should have different
identifiers. As default assumptions, we have that rules have no exceptions.
Formally this is achieved by including assumptions of the following form:

-iException(/denf/ffeO

" In Reason-Based Logic, there are even different ways of representing exceptions, as
discussed in chapter 3. section 5.
' " Many of the observations in this section have been made before (cf., e.g.,
Prakken, 1993a). See note 2.
" We stress that we only use the maxiconsistent sets of Poole's framework (1988) here,
and nor his way to deal with rules, described in the same paper. ..
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in the default information A, for all identifiers /de«////er corresponding to a rule
occurring in F. In the following, if F = {^ss,, >teS2, ..., >4sSn}, A is as above, and
Cone,, Concj, ..., and Conc^ are elements of all extensions of the theory (F, A), we
write:

/Iss,,/\ss2 /\sSn h Cone,, Conc2 ConCm • , r

Exceptions can now be represented by an exception rule in the strict information,
as follows: ,.„ , . . . , . , . . , . .

(2) E x c e p f / o n - > E x c e p t i o n ( /den W/e/). ; • . .. ...,•> .t, - • • • • , *,.-.,

If there is no exception, the default assumption that there is no exception does not
lead to a contradiction, so we have ; .„,••. . . . ; :- , , , .-, . .. . .

Cond/f/on, (1), (2) h Conc/t/s/on, -,Exception(/den//ffef) .

In the case of an exception, the exception rule (2) gives the following:

Cond/foon, Excepfton, (1), (2) h Exception(/de/if;7?er)

Since -iException(/den<//7ef) does not follow, the conclusion of the rule does not
follow, in other words:

Cond/f/on, Excepf/on, (1), (2) (^Conc/us/on

Since this corresponds to the two intuitive requirements STANDARD CASE and
EXCEPTION CASE discussed in section 2.2, everything seems to work out fine.

However, a problem arises if there are exceptions to the exception rule itself.
Exceptions to exceptions are a common phenomenon. In such a case the
conclusion of the rule should follow in spite of the exception. We add a third
intuitive requirement

EXCEPTION-TO-EXCEPTION CASE

If there is a rule the condition of which holds, there is an exception to the rule,
and there is an exception to the exception, then the rule's conclusion follows.

In order to meet this requirement, we need to represent exceptions to the exception
rule. Therefore the exception rule (2) above is replaced by the following rule, that
can have exceptions: . . . . . - . , •

(3) Excepf/on A -,Exception(/denW/er2) -» Exception(/denM/er). . , /.

Furthermore we have an exception to the exception: ,,
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(4) Excepf/on_fo_excepf/on -> Exception(/denM/er2). ' • . . . . . . .

Since there is only one extension containing -iException(/denf/fier) and
Exception(/denW7eA2), we obtain the correct behavior in case of an exception to an
exception:

Cond/fron, Excepf/on, Excepfron_to_exceptfon, (1), (3), (4) h Conc/us/on

Unexpectedly, we have lost the correct behavior in the exception case: the
theory (F, A) with F = {Cond/f/on, Excepf/on, (1), (3), (4)} and A as above
has two extensions. One extension contains both Exception(/denW7e/) and
-,Exception(/denW/er2), as desired. The other contains -,Exception(/denW/er), and
Conc/us/on, but remains silent about whether the exception rule is applicable: it
contains neither -iException(/denM7er2) nor Exception(/denM7er2). It should be
noted that in an extension containing -,Exception(/denW/er) the inclusion of
-iException(/denW/er2) is blocked since that would give an inconsistency
with (3). The exception rule (3) just demands that an extension that contains
Excepf/on, can only contain one of the sentences -,Exception(/denf//7er) and
-iException(/dentfffef2). This demand is met in both extensions.

What is wrong is that the second extension does not contain the fact that there
is no exception to the rule with identifier ;denW7er2, only in order to maintain
consistency. The first extension contains the fact that there is an exception to the
rule /denffffer because there is an exception. Intuitively, we want that the
application of a rule can only be blocked by explicit information in the extension.

The second approach that we discuss uses Reiter's (1980, 1987) default rules. We
use the definitions discussed in section 3.1. Default rules have, apart from a
condition and a conclusion, a justification. This justification is used to block the
application of a rule in case it follows that there is an exception. We do not have to
assume by default that there is no exception to a rule, as in the previous approach.

Rules are represented as default rules as follows:

(5) Condrf/on: -iException(/denW/er) / Conc/us/on • •• - • • ; viv

Again it is assumed that different rules have different identifiers. An exception rule
is represented as: ' • • • • • . . .- •.-.•*

(6) Exceph'on : -iException(/dentfffer2) / Exception(/denW7e/) ' > ' ^ • •;

An exception-to-exception rule is represented as: ••'""•'•>'-• •-" • • :.•••_••--

(7) Excepf/on_fo_excepft'on : -iException(/denW?er3)
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It turns out that the representation of rules and exceptions in this way meets the
requirements, including that of the exception-to-exception case. To see the
difference with the maxiconsistent set approach, we look what happens in the
exception case that was problematic there.

We start with the default theory (F, A), where F = {Cond/f/on, Excepf/on} and
A= {(5), (6), (7)}. We propose two sets of sentences E and E* as guesses for
extensions. They correspond to the two extensions in the maxiconsistent set
approach:

E = Th(F u {Exception(/denW/er)} )2° ,: '

E* = Th(F u {-iException(/denMfer2), Conc/us/on}) - . . , . - . - >

The set E is indeed an extension, since we have: •.,-,• :

E Q = F , a n d , .. . .--..•.;,-•

E, = Th(F u {Exception(/denW7er)}) = E, and .,, - . ,
E; = E,, for all i > 1. . •

and therefore E = LJjEj, as required. But the set E* is not an extension. We have:

E*| = Th(F u {Conc/us/on}), and -
E * i = E * , , f o r a l i i > 1. • : • . • •

As a result LJj E*j = E*,, which is a proper subset of E*. Since no information in
the assumptions supports that there is no exception to the rule /denW/e/2, the
sentence -.Exception(/denf///er2) cannot be an element of an extension.

We conclude that this approach using default rules can adequately deal with the
three requirements for reasoning with rules with exceptions.

The third approach that we discuss uses counterarguments. We base the discussion
here on Pollock's Theory of Defeasible Reasoning (1987-1995). We start by
giving a description of some of his definitions, adapted to suit our needs.

An argM/we«/a//o/; //jeory is a pair of sets (>4rc/s, Defe), such that Defe is a set of
pairs of elements of /\rgs. The elements of >Â gs are called argwme/;te, the elements
of Defe cfe/ea/ers. If (a, (3) is an element of Defe, the argument a is said to cfe/eaf
the argument p. Pollock then defines /eve/i, as follows:

2° Here Th(S) denotes the de</«cf/ve c/arure of S, i.e., the set of all deductive
consequences of S.
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• All arguments are /n a/ /eve/ 0. " "
• An argument is in a? /eve/ n + / if and only if it is in at level 0 and it is not

defeated by any argument that is in at level n.

An argument is «///>wa/e/y Mnde/ea/e*/ if and only if there is a level such that it is in
at that level and at all higher levels. An argument is «///mate/y c/e/ea/e<i if and only
if there is a level such that it is out at all higher levels. An argument is
prov/s/om///y cfe/eo/e^ if and only if it is neither ultimately undefeated nor
ultimately defeated.

Pollock's Theory of Defeasible Reasoning can be used to represent reasoning
with rules with exceptions as follows.^' We define a //jeory o/reasow/wg as a pair
of sets (Facfs, Ru/es), where Facfs are elements of some language L and Rules
have the form Cond/Y/on -> Conc/us/on, where Cond/Y/on and Conc/us/on are
elements of the language. It is assumed that the language L contains identifiers for
the rules in Rules, and has a predicate to represent exceptions. For instance, the
fact that there is an exception to the rule Cond/Y/on -> Conc/us/on with identifier /d,
might be expressed as follows:

Exception(/d) . • • ' • "'• : :•/• •

For a theory of reasoning (Facfs, Ru/es), we can define an argumentation theory
(/\/gs, Defe), as follows. The set /*/gs consists of all facts and all loop-free chains
of rules starting from the facts. The set Defe consists of pairs of arguments (a, P),
such that the argument a ends with Exception(/d), where /d is the identifier of a
rule in the argument (3.

As an example, we assume that the set Rules consists of the following three
rules, with identifiers /df, /d2 and /d3, respectively:

Cond/Y/on -» Conc/us/on
Excepf/on -> Exception(/df)
£xcepf/on_fo_excepf/on -> Exception (/d2)

We discuss what happens in the standard, the exception and the exception-to-
exception case. In the standard case, the set of facts only contains Cond/Y/on. In that
case, the only arguments are Cond/Y/on and Cond/Y/on -> Conc/us/on, and there is
no defeater. As a result, both arguments are in at all levels, and are ultimately
undefeated.

In the exception case, the set of facts consists of Cond/Y/on and Excepf/on.
There are two new arguments, namely Excepf/on and Excepf/on -> Exception(/df).
Now there is one defeater, namely (Excepf/on -• Exception(/d7), Cond/Y/on -•
Conc/us/on). We have:

^' Here we do not follow Pollock.
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The arguments Cond/f/'on, Cond/f/'on - • Conc/us/on, Excepf/on and Except/on ->

Exception(/df) are in at level 0.

The arguments Cond/f/'on, Excepf/on and Excepf/on -> Exception(/d7) are in at

level 1, and at all higher levels. ' •'-•-=• •••"• "-'"->J

So, the arguments Cond/'f/on, Excepf/on and Excepf/on -> Exception(/df) are
ultimately undefeated, and the argument Cond/f/on -> Conc/us/on is ultimately
defeated. The latter argument is of course defeated by the argument Excepf/on ->
Exception(/d7).

In the exception-to-exception case, the set of facts consists of
Cond/f/'on, Excepf/on and Excepf/on_fo_excepf/on. The new arguments are
Excepf/on_fo_excepf/on and Excepf/on_fo_excepf/'on -> Exception(/d2). The new
defeater is (Excepf/on_fo_excepf/on -> Exception(/d2), Excepf/on ->
Exception(/d7)). We have: .

The arguments Cond/'f/on, Cond/f/'on -> Conc/us/on, Excepf/on, Excepf/on ->
Exception(/'dt), Excepf/on_fo_excepf/on and Excepf/on_fo_excepf/on ->

Exception(/d2) are in at level 0.
The arguments Cond/f/on, Excepf/on, Excepf/on_fo_excepf/on and

Excepf/on_fo_excepf/on -> Exception(/d2) are in at level 1.
The arguments Cond/f/on, Cond/f/'on - • Conc/us/on, Excepf/on,

Excepf/on_fo_excepf/on and Excepf/on_fo_excepf/on -> Exception(/d2) are

in at level 2, and at all higher levels.

So, all arguments are ultimately undefeated, except the argument Excepf/on ->
Exception(/d7), that is ultimately defeated. The latter argument is defeated by the
argument Excepf/on_fo_excepf/on -> Exception(/d2).

5 Rule conflicts

In this section, we discuss approaches to dealing with rule conflicts. We do this in
two parts. First, we discuss different approaches to the representation of conflict
resolving information. Second, we discuss approaches to dealing with conflicts and
consistency maintenance.

5.1 Representing conflict resolving information

We start with a discussion of approaches to the representation of conflict resolving

information. We distinguish three types of conflicts: conflicts of pairs of rules,

bipolar multiple conflicts, and general multiple conflicts. For each type of conflict,

we discuss a corresponding type of conflict resolving information: rule priorities,

weighing, and general conflict resolution, respectively.
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The simplest, and most common, type of rule conflict is the conflict of two rules:
there are two rules with opposite conclusions and the conditions of both rules are
satisfied.

If there is a conflict of a pair of rules, often one of the rules prevails over the
other. We have seen several examples in chapter 3, section 6.1. As a result of such
priority information, the conflict is resolved. The prevailing rule leads to its
conclusion, while the other rule does not. Clearly, the conflict of rules leads to a
special type of exception to the non-prevailing rule. As a result, rule priorities can
be represented using the techniques already discussed in section 4.1 on
representing exceptions.

Assume that we have two rules with incompatible conclusions represented as
the following two material conditionals: : „ r.=,

C o n d / Y / o n , A ^ E x c e p t i o n ( / d e n W / e r , ) - • C o n c / u s / o n > w . •> • _,:•
C o n c W / o n 2 A - . E x c e p t i o r K / d e n W / e f j ) - > - i C o n c / u s / o n .,-; -. -••;,-, •*:•_,

Assume moreover that the first prevails over the other. This priority information
can now be represented as follows: -,<-.::. . / • • . • ! - >

CondiY/on, A -.Exception(/denW7er,) -> Exceptionf/denf/fie^)

Abbreviating Cond/fron; A -,Exception(/denW/erj) as Applicable(/denW7erj) (for i = 1
or 2), we obtain the following sentence:

Applicable(/denftffer,)

It may be tempting to represent the priority information as the following sentence:

Applicable(/denW;efi) -> -,Applicable(/denM7er2)

However, this is an incorrect representation, since this sentence is symmetric in the
two rules, as its equivalent

-iApplicable(/denW7eri) v -,Applicable(/denM?er2)

clearly shows.

The second type of rule conflict that we discuss are bipolar multiple conflicts: two
groups of rules have equal conclusions in each group, but incompatible
conclusions across the groups, while the conditions of the rules are satisfied.
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For instance, the following material conditionals represent a bipolar conflict of
a group of n rules and a group of m rules (where n and m are natural numbers):

ConcM/on , , A - .Excep t i on ( /denW/e rn ) - > Conc /us /on • ' • • • ;> >,j. -.,- ^- i ;•<••

A - lExcept iorK/denW/er , , , ) - > Conc /us /on

A - , E x c e p t i o n ( / d e n f / / / e r 2 i ) - > - i C o n c / u s / o n ••'>••• .'•• ~ c ' j

A - ,Except ion( /denW/er2 ,J - > - i C o n c / u s / o n • • - ^ •

We have seen examples in which such a conflict cannot be resolved by priority
information on pairs of rules, but by priority information on groups of rules
(chapter 2, section 1.3; chapter 3, section 4).

The priority technique used for pairwise conflicts can be extended to the case
of bipolar multiple conflicts. For instance, if the first group of n rules above
prevails over the second group of m rules, this can be represented as follows:

Applicable(/denWfferii) A ... A Applicable(/denW/er,n) -> Exception(/denWJer2,) A

... A Exception(/denW/er2m) : ' • • : • .-• •,.;.._

In Reason-Based Logic (chapter 2), a representation similar to this one is possible.
However, Reason-Based Logic provides a second way of representation, using the
weighing of reasons. The priority of the first group of rules over the second is
represented as the fact that the reasons that result from the first group of rules
outweigh the reasons from the second group: •., -. . •

Outweighs({condrt;on,i, .... co/7d;f/on,n},

{cond/f/onji, ..., condrf/on2m}. • ' • ' ' • • - • • • • . •
conc/us/on)

The two techniques seem to lead to similar results. However, there is a technical
difference. The two expressions representing conflict resolving information are not
equivalent, because the weighing expression only helps to resolve the conflict if
there is no other rule with conclusion -,conc/us/on (cf. the relations between facts
described in chapter 2, section 5), while the generalized priority expression helps
to resolve the conflict also in that case. The use of the weighing expression reflects
the intuition that the bipolar multiple conflict should only be resolved if all rules of
the losing side, i.e., those with conclusion -.conc/us/on, have been considered. In
the more familiar terminology of reasons, the weighing information only should
have effect if all counterreasons have been considered.

As a result, the explicit representation of the weighing of reasons as in Reason-
Based Logic seems to be closer to the examples of accrual of reasons, that led to
the distinction of bipolar rule conflicts.
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Gewmz/ /ww/Z/p/e co«/7/c« a«rf genera/ co/i/7/c/ reso/w//on

As a third type of rule conflict, we discuss general rule conflicts: there is a group
of rules with incompatible conclusions, the conditions of which are satisfied. For
instance, we might have:

ConcM/'on, A -,Exception(/denW7er,) - • Conc/us/on, .--••.•/ \ . , .H'

A ^Except ion(/denW/erJ-> Conc/us/on,, • •• . - . • - : • •

-i(Conc/us/on, A ... A Conc/us/on,,)

We have seen two special cases of resolutions of such a general rule conflict: >
-, , _ . i* * . •

1. One of the rules might prevail over another.
2. A subgroup of rules might prevail over another subgroup of rules with

incompatible conclusion. , ... ... - .

The most general type of conflict resolution would require the representation of the
prevalence of awy subgroup over a«y other subgroup, formally: . . .

Prevails({/denf;ffer,i, ..../

We do not know a formalism in which this is explicitly done, although it is a
natural generalization of the two discussed representation techniques, i.e., using
exceptions and using weighing, to the case of general multiple conflicts.

5.2 Conflicts and consistency maintenance ...

Since there is not always sufficient information to resolve rule conflicts, many
techniques have been proposed to prevent the unwanted effects of contradiction by
means of consistency maintenance. Here we discuss three such techniques. We
start with Reiter's normal and semi-normal default rules (Reiter, 1980, 1987), then
we discuss Vreeswijk's use of conclusive force (Vreeswijk, 1991, 1993), and we
finish with Pollock's collective defeat (Pollock. 1987).

The first approach to consistency maintenance in case of rule conflicts that we
discuss are the normal and semi-normal default rules of Reiter's Default Logic
(Reiter, 1980, 1987). In section 4.2, we already discussed how default rules
(Reiter, 1980, 1987) can be used to represent rules with exceptions. There, a rule
was represented as a default of the following form: ••
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Condrf/on :->Exception(/denW/;eA) / Conc/us/on . . . . . . . . ........ . ^,

• — ' • • " - • " '-vt

If two default rules of this form are in conflict, there is no extension. An example
is the theory (F, A) defined as follows: . . . . . . . . . . . , .... . . . , . ,

F = {Cond/f/on,, Cond/Y/onj} ,-•. • , . } > , ; * -

A = {Cond/Y/bn, : -,Exception(/denftYJer,) / Conc/us/on,

Cond/Y/on2:-.Exception(/den<//(er2) /- iConc/us/on} : * ,

; ' } P * . ' : v ? l ' . K t e ' - { , ' • . • ... • • .- , i" ...• ••

As a result, using the skeptical consequence relation of Default Logic, everything
follows from such a theory. This behavior resembles the behavior of an
inconsistency in classical logic.

There is another type of default rule that can never give rise to this behavior:
default rules of this type are called normal default rules, and have the form

Conc/tf/bn : Conc/us/on / Conclusion.

Informally, a default rule leads to its conclusion if its condition is satisfied, unless
that would lead to an inconsistency. Normal defaults have the nice formal property
that a theory that only contains normal default rules always has an extension.

Reiter (1980, 1987) claimed that normal default rules were sufficient in
practice. However, as was already noted by Reiter and Criscuolo (1981, 1987),
normal default rules are not always sufficient. We saw above that non-normal
default rules are needed to represent rules with exceptions.

In order to catch the benefits of both, a combined form can be used, as follows:

Cond/Y/bn : -,Exception(/denW/er), Conc/us/bn / Conc/us/on

Default rules that have their conclusion as one of their justifications are called
semi-normal. Informally, a default rule of this form leads to its conclusion if its
condition is satisfied, unless Exception(/denf/Y7e/) or -,Conc/us/on would also
follow.

Two conflicting rules will now give rise to two extensions. For instance, the
theory (F, A) with

F =
A = {Cond/Y/bn, : -,Exception(/denW/er,), Conc/us/on / Conc/us/bn,

iConc/us/on / -.Conc/us/on}

has two extensions E, and E2: . '=-

E, =Th({Cond;Y/on,, Cond/Y/or)2, Conc/us/on}) '
E2 = Th({Cond/Y/on,, Cond/Y/bnj, -.Conc/us/on})



102 Chapter 4: Formalizing rules: a comparative survey

In each extension, only one of the rules has led to its conclusion. Intuitively, the
two extensions can arise because there are two orders in which the defaults can be
used: first drawing the conclusion of rule /denf/ffer, blocks using rule /denW/e^,
while first drawing the conclusion of /denf/Z/efj blocks using rule /denW/er,.

However, a theory with only semi-normal default rules does not always have
an extension, as the theory (F, A) with

F = {Cond/f/on,, Cond/f/onj, Cond/Y/onj} "O.
A = {Cond/Y/on, : -,Exception(/d,), Exception^) / Exception^),

Condrf/on2 : - .Exception^), Exceptionf/dj) / Exception^), ' .. ..?/•.
Condrf/onj:-.Exception(/d3), Exception(/di) / Exception(/d,)} <-; .';(!<:

s h o w s . '•'••''•• ' » : ' ; • '^-••;-, .• - . i • • ; » . ' • ' : " s ' t p • ' ^ ^ c s h : • , 4 •;•.:• • • • • . . > . ; f

Co/jc/u5/'veybrce , , . • • . ,-..- s ; . . _

The second approach to consistency maintenance in case of conflicts that we
discuss is Vreeswijk's use of the conclusive force of arguments. We give a
simplified overview of some definitions of Vreeswijk's (1991, 1993) Abstract
Argumentation Systems. w . » ; r v

Vreeswijk starts with the definition of an <3rgM/Me/rta//oM syste/n as a triple
(Language, Ru/es, <). Here Language is any set containing a special element ±,
denoting contradiction. This set is called the /angwage of the argumentation
system. The set Ru/es is a set of rules, that have the form Cond/Y/on,, ..., Cond/fron,,
- • Conc/us/on. The cowc/us/ve/orce re/a//o« < is a strict order on arguments, that
are tree-like chains of rules.

He proceeds with the definition of defeasible entailment and extensions, which
uses the notion of conflict. A set of arguments /^rgumente is /« co/i/7/c/ w/7/t an
argument >lrgumenf (relative to a set ^ssumpf/ons c Language), if ^fgumenf and
elements of /\/yumente are parts of a larger argument with conclusion 1 and with
premises in the set dssumpf/ons. A relation K between sets of sentences of the
language and arguments is called a ^e/ea«We ew/a/7/wen/ re/a//o/7 if the following
holds for all sets Facte c Language and arguments /\Agumenf: ,,„*, .

h /Jrgumenf if and only if one of the following holds:
1. 4/gumen/ is an element of /tesumpf/'ons

2. ^njumen/ has the form d/gumenf, .Argument -> Conc/us/on, and for
every set of arguments ^fyumenfs, such that dssumpfrons h- ^rgumenr for
all elements ^rgumenf of ^njumenfs, we have: :

If/^rgumenfs is in conflict with /\?gumenf (relative to dssumpft'ons), ,, i
then there is a dryumenf' in ^/yumente, such that
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(This is not a definition of the relation |~ by recursion on arguments, since h
appears on both sides of the 'if and only if. Such a definition would be unexpected
since |~ is nonmonotonic.) An extens/ow of a set /tesumpf/ons is then defined as a
set of arguments /Jrgumente, such that /Jfgumente = {dngrumenf | /Jssumptfons h

How can Vreeswijk's formalism be used to maintain consistency in case of rule
conflicts? In Vreeswijk's formalism, conflicts of rules occur as conflicts of the
final steps of arguments. Informally, Vreeswijk's definition has the result that such
conflicts between arguments are resolved by 'throwing away' one argument that is
involved in the conflict.

To choose an argument, the conclusive force relation is used: an argument
cannot be thrown away if it is stronger than any of the other arguments involved in
the conflict. Since there can still remain more than one argument that can be
chosen, multiple extensions can arise. 3 < & -i 0 * {3 - M 0 * £,

As a third approach to consistency maintenance in case of rule conflicts, we
mention Pollock's collective defeat (Pollock, 1987).
'•• He proposes to withhold from drawing a conclusion in case there is an
unresolved conflict of rules. He achieves this by considering all arguments with
conflicting last steps as defeated in case of an unresolved conflict: the arguments
a r e c o / / e c / / v e / _ y c f e / e a / e < i . j » V i $ - ? - i ' 1 t . ' r K '• ' ' ( t c ^ •' ' ' . » • • ' : . : : i ; : .• - • -

In Reason-Based Logic (chapter 2), there is a variant of collective defeat: if
there are conflicting reasons, but there is no weighing information available, no
conclusion follows. As a result, while Pollock's collective defeat can maintain
consistency for general multiple rule conflicts, Reason-Based Logic uses a form of
collective defeat in the specific case of bipolar multiple conflicts.

6 R e a s o n i n g a b o u t r u l e s -.,,... - : , , ; ?
: ^ • > . j r . - _ . ; , • • ; . • : > • . . ; , r ' -•; < • > . - . • •. . • • . " : . . : • • . . . : : • < . , ' .

Below, we discuss three approaches to dealing with reasoning about rules. The first
is to treat rules as special sentences. The second is to use rule identifiers. The third
is to treat rules as special objects.

-:,
6.1 Rules as special sentences ;i.!2jb>.^ v., »> i ;>t ^ ;̂,?^^^c•?jsq ^ h x -sc

The first approach to dealing with reasoning about rules is to treat rules as special
sentences, as in conditional logics (e.g., Nute, 1980, 1994; Delgrande, 1988). In
conditional logics, the properties of a special connective are specified on the meta-
level. We already discussed the conditional logic approach in section 3.2 on
relevance. There, we mentioned conditional logics because they make it possible to
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take the requirement of relevance into account. But conditional logics also are
regarded as logics that can treat reasoning with rules.

For instance, assume we want to represent a transitive type of rule. Then one of
the defining properties of the rule-representing conditional would be:

This rule of inference makes it possible to derive the conditional /\ > C from the
conditionals >A > S and S > C.

If we wish to represent a type of rule that is not transitive, one of the defining
properties of the conditional representing the rule type, might have the following
weaker property: . . .

• ; ; ' : - . . . : . = j i : v : . ' ' . • • > - . . - , . - - r . ; - : • • ! ' . . • •

By choosing the defining properties, we can specify different forms of reasoning
about rules.

However, there are two limitations. The first limitation is that in this way it is
impossible to distinguish classes of rules unless each class of rules is represented
by a syntactically different conditional. As a result, properties of rules of different
kinds, such as transitive and intransitive rules, can only be represented at the meta-
level, and not, more flexibly, at the logical level.

The second limitation is that in conditional logics, it is impossible to represent
facts about rules, other than that they are valid or invalid. As a result, although it is
possible to represent the first type of reasoning about rules distinguished in
section 2.4, i.e., reasoning with rules as conclusions, it is not possible to represent
the second type, i.e., reasoning with facts about rules.

6.2 Rule identifiers

The second approach to dealing with reasoning about rules is an attempt to deal
with these limitations, and is the technique of rule identifiers, already discussed as
one of the techniques to represent exceptions in section 4.1.

This technique can be used in a more general way to deal with reasoning about
rules. To represent exceptions to rules the rule identifiers were only used in the
special purpose predicate Exception(/denW7eO. However, rule identifiers can also
be used as parameters for other predicates. For instance, the conclusion of a
priority argument says that some rule prevails over another rule. If the identifiers
of these rules are /denW/er, and /denf/ffe^, this can be represented as follows:

Prevails(/denMJer,,

As a result, if this technique is used, it is possible to represent the second type of
reasoning about rules distinguished in section 2.4, i.e., reasoning with facts about



Section 6: Reasoning about rules 105

rules, but it is not clear how to represent the first type, i.e., reasoning with rules as
conclusions. This limitation is the result of the fact that the approach is unclear
about the status of rules and identifiers, as was already noted in section 4.1 on
representing exceptions.

6.3 Rules as special objects s ' v . n,nj .̂  j i;'; sis- :i bn£ t '

The latter brings us to the third approach to dealing with reasoning about rules,
namely to consider rules as special objects, as in Reason-Based Logic (chapter 2).
This approach was also discussed in section 3.3 on relevance and section 4.1 on
representing exceptions. '.'"" v

As we will see, this approach can be regarded as an integration of the two other
approaches, keeping the benefits of both. To recall, rules are treated as objects, that
are represented as follows:

rule(cond/Y/on, conc/us/on)

Transitivity of rules can now be represented as

Valid(rule(a, b)), Valid(rule(b, c)) h- Valid(rule(a, c))

Transitivity of rules can be restricted to a certain class of rules by explicitly
mentioning such a class, here named transitive_class:

Class(transitive_class, rule(a, b)), Class(transitive_class, rule(b, c)),
Valid(rule(a, b)), Valid(rule(b, c)) h- Valid(rule(a, c))

Facts about rules are stated using the complete rule, instead of using only an
identifier. The former is more expressive. For instance, whereas for the
representation of an exception to a rule it is sufficient to use an identifier, as in

Excluded(/denW/e/),

for the representation of the validity of a rule the complete rule, including its
condition and conclusion are needed, as in the following sentence:

Valid(rule(cond/Y/on, conc/us/on))

As explained in chapter 2, section 3.1, this approach requires a translation from
sentences to terms. This translation is already necessary in order to draw a
conclusion from a valid rule, as in ordinary rule application:

Valid(rule(cond/Y/on, conc/us/on)), Concf/7/on h- Conc/us/on
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For details on the formal definition of such a translation, the reader is referred to
chapter 2, section 4.3.

In this approach, the properties of rules can be specified both on the meta-level
and on the level of the logical language. As a result, the meta-level can be used to
specify the general properties of rules that are considered most basic, such as rule
application and its relation to exceptions, while the level of the logical language
can be used to specify the specific properties of specific rules in a specific case or
domain.

Therefore, this approach can deal with both types of reasoning with rules that
were distinguished in section 2.4, in contrast with the conditionals and identifiers
a p p r o a c h . ,;.^ _ . , , . . , - . , . , . ,.,., . , . .„ . ;.... - ... . .. „ . ;±-iL<flv#;K.^\.

• • !

. . • • - • J I ; . ?7' ' . . . ' i J •

' « * ' . - • : - • ; * . . = . .
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CumulA:
a model of argumentation in stages

The previous chapters dealt with the nature of the rules and reasons that are at the
basis of argumentation. In this chapter, we investigate the process of
argumentation itself. We focus on arguments and their defeat. This leads to a
formal model of argumentation in stages, called CumulA.'

In section 1, we introduce argumentation with defeasible arguments and give
an overview of CumulA. In section 2, arguments and their structure are treated. In
section 3, we discuss how the defeat of arguments is formalized using defeaters. In
section 4, the stages of argumentation are characterized. Section 5 deals with lines
of argumentation and argumentation diagrams. Section 6 gives a number of
examples.

1 Argumentation in stages ' ' ' ' ' " "

Below, we first give an informal introduction of the key terminology, related to
arguments and defeat as it is used in this chapter. Second, we give an overview of
t h e f o r m a l m o d e l C u m u l A . " • • • ' - - • ••-• . • % • • - » . - • — -• - • - • • - — ••- -••

1.1 Arguments and defeat '" ''''"'"•'''*'"'""""

The goal of argumentation is to find (rationally) yitff///«/ conclusions (cf, e.g.,
Pollock, 1987). For instance, if a colleague enters the room completely soaked and
tells that it is raining outside, I would of course conclude that it is wise to put on a
raincoat. My conclusion is rationally justified, since I can give 5M/?por/ for it,
namely the fact that my colleague is completely soaked and tells me that it is
raining. If I were asked why I concluded that it is wise to put on a raincoat, I could
answer with the following argw/wertf:

i »< .
The name CumulA is an abbreviation of Cumulative Argumentation, but was chosen

since it reminds of a certain type of cloud, the cumulus. The formal model is based on
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A colleague is completely soaked and tells that it is raining.
So, it is probably raining.
So, it is wise to put on a raincoat. £ ' » - ! v ;*;•;

Such an argument is a reconstruction of how a conclusion can be supported. The
argument given here consists of two 5/e/?5. In general, an argument can support its
conclusion if the steps in the argument are based on r«/ey (see also chapter 4,
section 1). Here we do not answer the question which argument steps can give rise
to arguments that support their conclusion and which do not, or, in other words,
which steps are based on rules and which are not. We assume that the rules
allowing argument steps are somehow given.^

An argument that supports its conclusion does not always justify it. For
instance, if in our example I look out the window and see wet streets, but otherwise
a completely blue sky, I would conclude that the brief shower is over. So, while at
the time my colleague entered it was justified for me to conclude that it is wise to
put on a raincoat, it is not justified anymore after looking out the window. In this
case, we say that the argument is tfe/eatetf. In the example, the argument

A colleague is completely soaked and tells that it is raining. . , ,
So, it is probably raining.

does not justify its conclusion because of the argument

The streets are wet, but the sky is completely blue.
So, the shower is over. ,,. , .

In this case the argument that it is probably raining is defeated by the argument
that the shower is over. The new information that the shower is over has the effect
that the argument does not justify its conclusion, but does not change the fact that
in principle the argument supports its conclusion.-'

Our example has illustrated two points about argumentation, that form the basis
of our model:

1. Argumentation is a process (see also chapter 1, section 1), in which at each
stage new arguments are taken into account.

previous work (Verheij, 1995a, b, c). However, most definitions are new or have been
changed considerably.
^ We believe that in the end the rules and reasons on which argument steps are based are a
special kind ofmemw (cf. Dawkins. 1989). An interesting account of the relation between
rationality and evolution is given by Rescher(1988, p. 176fF.).
-* It should be recalled that in our use of terminology justification of a conclusion does not
imply truth of the conclusion (cf. chapter 1, section 1).
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2. Each argument that is taken into account has either one of two statuses: the
argument is either undefeated or defeated, indicating that the argument justifies
its conclusion, or not, respectively.* •• .'-•.. •/'-.- $«>••• ••«•;^w«.^;;-r

Our example showed that the status of an argument can depend on the structure of
the argument, the counterarguments that are taken into account, and the
argumentation stage.

The two-step argument that it is wise to put on a raincoat is defeated because
already its first step, in which it is concluded that it is probably raining, is
defeated. . ' ; ; • . - • • > ; • • • . • • • *

The argument that the shower is over defeats the argument that it is probably
raining. . . . . . .

• 7 7 j e a r g w m e « / a / / O H s t a g e - • . • " ' . " • . . ? » • » • . • > r ' ^ : - " - :•,-••• .

The argument that it is probably raining is only defeated once the argument that
the shower is over has been taken into account.

1.2 Overview of CumulA :•••-••

In this chapter, a formal model of argumentation with defeasible arguments is
developed. This model is called CumulA. Formally, it builds on Lin and Shoham's
Argument Systems (Lin and Shoham, 1989; Lin, 1993), Vreeswijk's Abstract
Argumentation Systems (Vreeswijk, 1991, 1993), and Dung's Argumentation
Frameworks (Dung, 1993, 1995). Key definitions in CumulA are those of

s, argw/weH/a//'o« //jeor/e.s, stages and //'«es o/argM/we«ta//o«.

Arguments in CumulA are tree-like structures that represent how a conclusion
is supported. Arguments are the subject of section 2. Our composite arguments
are not, as usual, only constructed by subordination, but also by coordination.
For instance, Lin and Shoham (Lin and Shoham, 1989; Lin, 1993) and
Vreeswijk (1991, 1993) use subordination, but not coordination in their
argumentation models. We investigate how the coordination of arguments is
related to defeat.

* Cf. Pollock (1987-1995) and Vreeswijk (1991, 1993). Prakken (1993a, b) considers a
third status: an argument can be defensible arguments, which means that it is neither
undefeated nor defeated. • , •' '
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• De/ea/ers
Defeaters indicate which arguments can defeat which other arguments. They
consist of a set of challenging arguments and a set of challenged arguments. If
the challenging arguments of a defeater are undefeated, they defeat its
challenged arguments.^ Defeaters are treated in section 3. We show that our
defeaters can represent a wide range of types of defeat. Our defeaters are
formally related to Dung's (1995) attacks. However, our defeaters can
represent how the structure of arguments is related to defeat, and can represent
more general types of defeat in which groups of arguments challenge other
groups of arguments. : •-" : • ..-••-; .-"- .-.r.iĵ iy r;«i: • ..-

Argumentation depends on the language that is used, on the arguments that can
support conclusions, and on which arguments defeat which other arguments.
This information is represented as an argumentation theory. An argumentation
theory consists of a set of sentences (together forming the language), a set of
rules that give rise to arguments, and a set of defeater schemes that determine
which arguments defeat which other arguments. In order to define forward and
backward lines of argumentation (see below), an argumentation theory does not
fix the premises of the arguments, as for instance in Lin and Shoham's (Lin and
Shoham, 1989; Lin, 1993) and Vreeswijk's (1991, 1993) argumentation
models. Argumentation theories are characterized at the end of section 3.

Stages
A stage in the argumentation process is characterized by the arguments that
have been taken into account, and by the defeat status of these arguments,
either undefeated or defeated. Which stages are allowed is determined by an
argumentation theory. A stage consists of a pair of sets, one of them
representing the arguments that are undefeated at the stage, the other the
arguments that are defeated at the stage. The union of these sets represents
which arguments have been taken into account. Stages are discussed in section
4. Vreeswijk's (1991, 1993) argument structures are comparable to our stages.
However, they are representations of the arguments currently undefeated, and
not of all arguments currently taken into account, whether undefeated or
defeated. . , •,„,..,;.., . „ , . , . ,^..*.....- ,

Argumentation can proceed in many ways, depending on the obtaining goals,
protocols and strategies of argumentation. This leads to different lines of
argumentation. A line of argumentation is a sequence of consecutive

Our notion of defeat is cou«/mjrgM/ne/i/-rriggerec/, as, e.g., Dung's (1995), and not
ry-rnggererf, as, e.g., Vreeswijk's (1991, 1993). We discuss this distinction more

extensively in chapter 6, section 4.
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argumentation stages. In a line of argumentation, arguments are gradually
constructed. At each stage in a line of argumentation, the arguments taken into
account have a defeat status. However, the status of an argument can change
during a line of argumentation. Which lines of argumentation are possible is
determined by an argumentation theory. We also define argumentation
diagrams that represent several possible lines of argumentation as allowed by
an argumentation theory. Lines of argumentation and argumentation diagrams
are defined in section 5. Our lines of argumentation are related to Vreeswijk's
(1991, 1993) argumentation sequences. However, since our argumentation
theories do not fix the allowed premises, in our lines of argumentation
arguments can be constructed not only forwardly, but also backwardly.

We have to make a disclaimer here: our definition of lines of argumentation does
not prescribe how argumentation should proceed, but only attempts to describe
which lines of argumentation are possible.^ We return to this issue in section 5.3.

2 A r g u m e n t s and their s tructure • ,' .r • . ••;•'.

This section deals with the structure of arguments. We treat arguments as tree-like
structures of sentences, similar in form to logical proofs. After an informal
discussion of elementary and composite argument structures (sections 2.1 and 2.2),
we give a formal definition of arguments in section 2.3. The section ends with the
definition of initials and narrowings of arguments (section 2.4).

2.1 Elementary argument structures

The simplest type of argument is the .sta/emenr. Examples of statements are:

The sky is blue. • : ,

and •.. -• •••!

The film was good. • ,••-•. ,.; . . . ,.

In principle, any (assertive) sentence can be used as a statement, so schematically
statements have the following trivial structure: - : ', ••

• - • • ' ? • • " • • • • • • • • • • • • •

^ Recently several protocols prescribing (or at least constraining) lines of argumentation
have been proposed, especially in a dialogical setting (see, e.g., Gordon, 1993a, 1993b,
1995; Brewka, 1994; Lodder and Herczog, 1995). , .. ,
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Some would hesitate to call statements arguments, because of their trivial structure.
Since statements can be considered as the beginning of all argumentation, it will
turn out convenient to include statements in the definition of arguments.

The simplest type of argument with non-trivial structure is the s/H
/, for instance:

T h e s u n is s h i n i n g . ' •-*--t.. ••' .:. . . a d < ;,
S o , it is a beau t i fu l d a y . < • « . . • * " • '•' .

• • • - ' • • - - - . . . ,

Schematically, a single-step argument has the following structure:

So, COWC/MS/OM. • • > • • • >

A reason in an argument can consist of a several subreasons, as for instance in the
following argument that has two subreasons:

Alex has an appointment at eight with John in Maastricht, John has an
appointment at seven with Mary in Amsterdam.

So, John cannot keep both appointments. . , . • . - . ..- i.;

Schematically, we have: . .

So, COMC/MS/O/J.

We use different terms 'subreason' and 'reason', since only the combination of the
subreasons provides a reason that supports the conclusion. It should be noted that
this is in contrast with everyday language, where the distinction between
subreasons and reasons is not made, and both are called reasons.

2.2 Composite argument structures

Arguments can be combined. There are two basic ways to combine arguments into
more complex structures, namely subordination and coordination.'

• Subordination of arguments

If a single-step argument has a conclusion that is the same as one of the reasons
or subreasons of another argument, arguments can be subordinated. We have
already seen an example of subordination, namely:

' We use the same argument structure as Van Eemeren cf a/. (1981, 1987), but our
terminology is different. Our coordinated arguments correspond to their multiple arguments.
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A colleague is completely soaked and tells that it is raining. s< '?' iv>.'. ' &:• <
•"• So, it is probably raining. r. n*aMn "

•'•$:' So, it is wise to put on a raincoat. . - M .-

This argument is the result from the subordination of the arguments >-: '<'> '̂s<

A colleague is completely soaked and tells that it is raining. '. ii« --,
So, it is probably raining. "'.'>?;

a n d : ' " > " H • ; • • • ; ^ • • - ; . • • " . • : . . • ' _ . - . ; , • • , • . : • • , •. r . , , u • • • . • > • • . •

I t i s p r o b a b l y r a i n i n g . ••• • ;
S o , i t i s w i s e t o p u t o n a r a i n c o a t . : ; . • ( ' . . ' • . • ' • • ) . • . « • / • > ' ; - ' ^ n : < < . - . . ,^ ;;•

S c h e m a t i c a l l y , •. •

S o , C o n c / M 5 / o n , . • • • J ' • - • • : • J . - . ' . H ' ^ S ' - - ! ' " ' ^ ' ^ - - ' ; : •» • . . • . . - • ; • . • • , -.'

S O , C o n c / u ^ / O n j . "-•' ':' -i"-i. • ' • / / • . . - . • T ,- ; '

• Coordination of arguments

If two arguments have the same conclusion, they can be coordinated. For
instance, if the arguments •• >• : •;

The sun is shining. • •

So, it is a beautiful day.

a n d • - • ' • • • • • . - . • ' .

The sky is blue.

So, it is a beautiful day.

are coordinated, we obtain

The sun is shining; The sky is blue. • • •
So, it is a beautiful day. . ••;

Schematically, we have •

/?easo/7(; i?eajon2- '•'
So, Cowc/us/'on. ''""' ' • ''^ " • ' • '
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It should be noted that, in contrast with the subreasons mentioned earlier, each
reason in a coordinated argument supports the conclusion on its own. To
distinguish reasons and subreasons, reasons are separated by semicolons, while
subreasons are separated by commas.^ For instance, an argument can have the
following structure: . v .. ••• . . - ••

So, Conc/i«/o/j.

Here SMftreason,, and SKZ>reasoMi2 together form a reason for the conclusion,
while 5MZ»reajo«2i and S«Areaso«22 form a separate, second reason for it.

By repeating these two ways of combining arguments, the structure of arguments
can become arbitrarily complex.

2.3 Definition of arguments

In our model of argumentation, we abstract from the language, and therefore treat
a language simply as a set without any structure. Here we follow Lin and Shoham
(Lin and Shoham, 1989; Lin, 1993), who use an unstructured language closed
under negation, and Vreeswijk (1991, 1993), who uses an unstructured language
containing a special sentence denoting contradiction.

Rules in a given language consist of a condition and a conclusion, which are
formally a set of sentences and a sentence of the language, respectively. Since in
our model all arguments are defeasible, we do not distinguish rules that give rise to
strict arguments and rules that give rise to defeasible arguments.

; ; t i r . ; • ' . • ••

Definition 1.
A /angwage is any set, the elements of which are called the .sew/ewces of the
language.^ If Stybreasons is a non-empty finite subset of a language Language
and Conc/us/on is an element of Language, then

SutoconcM/ons -> Conc/us/on •-•' •

is a rw/e of the language Language.'" The set of rules of a language Language
is denoted as Rules(Language).

Fixing a language Language, we obtain the following formal definition of
arguments in the language. Our definition of arguments in a language is related to

* This convention is similar to the conventions in the logical programming language
Prolog. In fact, a simple correspondence can be given between trees of Prolog clauses and
our arguments.
' As elements of a set Language, sentences are just unspecified sets. We need one formal
property to avoid ambiguity: there are no sentences Sentenceo and Sentence,, (for some
natural number n), such that Sentenceo e ... eSentencen-
' " Within set theory, a rule can be defined as an ordered pair (Subreasons, Conc/us/on).
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the definitions of Lin and Shoham (Lin and Shoham, 1989; Lin, 1993) and
Vreeswijk (1991, 1993), but does not presuppose a set of rules. Moreover, our
definition allows not only the subordination, but also the coordination of
arguments. Later (definition 4) we define the rules of an argument.

i
Definition 2.

The set of argw/wert/s in the language Language is the smallest set such that the
following hold: •
1. If Sentence is a sentence of the language Language, then . -' |

Sentence •
is an argument. The conclusion of the argument Sentence is Sentence.

2. If Conc/us/on is an element of Language and ^rgumenf,,..., ^rgument, are
arguments, then

{{/Jngrumenf,, ..., ^rc/umenfj} -> Conc/us/on
is an argument. The conclusion of this argument is Conc/us/on.

3. If {-Argumente,} - • Conc/us/on,..., {/4/gumente,J -> Conc/us/on are
arguments, then

{>4/gumentei, ..., dnjumentej -» Conc/us/on •
is an argument. The conclusion of this argument is Conc/us/on.

The conclusion of an argument >4/gumenf is denoted as Conclusion(4rgumenr).

The first part of the recursive definition allows statements as arguments, the
second allows subordination of arguments, and the third coordination. The
previously discussed argument structures are all captured by this definition. An
overview is given in Table 1. The abundance of brackets { } is required to
distinguish reasons and subreasons: reasons are represented as sets, and
coordinated reasons as sets of sets.''

It may seem that there is an ambiguity between a rule and a single-step
argument. However, a rule has the form Se/OfSentences -> Sentence, where
SefCYSentences is a set of sentences, while a single-step argument has the form
SerO/SefsOfSentences -• Sentence, where SefOfSeteOfSentences is a set of sets
of sentences.'^

' ' We use sets instead of sequences, as used by Lin and Shoham (Lin and Shoham, 1989:
Lin, 1993) and Vreeswijk (1991. 1993), since changing the order of reasons or subreasons
does not change an argument.
'^ Here we need the property mentioned in note 9.
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Informal argument structure

Se«/e«ce.

So, COMC/MS/OM.

So, Cortc/ws/ow.

Tteaso/7. c • • . . •;• ","

So, COMC/MJ/OH,.

So, Conc/Mi/o«2-

So, COHC/MS/OH.

5u6rea5o/72h SMreaso/122.
So, Co«c/w5/o«.

Sw^reasoMn,..., SMireasowi,, ;

Su6rea50«n,b •••> StoAreaso/Jn,,, •
So, Conc/«5/'o«.

Formal argument structure . .. .„,

Sef7tence

{{Reason}} -» Conc/us/on ^ ».-i):?.j;>-^

{{Subreasoni SubreasonJ} -» Conc/us/on

{{{{Reason}} -> Conc/us/on,}} -> Conc/us/on2

{{Reason,}, {Reason^} -> Conc/us/on

{{St/breason,,, Sufareason^}, "'••••»' •

{Sufareasonj,, SuJbreason22}} '• -'•' * '• -

-> Conc/us/on •

{{Sub/Bason^ Subreason^},

{Subreasonm, Subreason^ }} •'?
-> Conc/us/on

Table 1: Overview of informal and formal argument structures

The following definitions of the premises and the rules of an argument follows the
recursive structure of the definition of arguments. Vreeswijk's (1991, 1993)
definitions are similar in style.

Definition 3.
If /\rc/umen/ is an argument, the set of preffj/se.? of the argument, denoted as
Premises(^Agumenf), is defined recursively as follows:
1. Premises(Sentence) = {Sentence}, where Sentence is a sentence.
2. Premises({{^fpumenfi dngfumenfj} -> Conc/us/on) =

Premises(/\rgumenfi) u ... u Premises(^rgumenfn),
where ,4/gumenf, and ^/gumen^ are arguments (for some natural
number n), and Conc/us/on is a sentence.
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3. Premises({i4rt7omentei ^ngrumentej -> Conc/us/on) = , '»>.•• vli

where /\rgriymente,, ..., and d/yumenten are sets of arguments (for some
natural number n), and Conc/us/on is a sentence.

Definition 4.
If dnjumenf is an argument, the set of rw/es of the argument, denoted as
Rules(^^gumenr), is defined recursively, as follows:
1. Rules(Sentence) = 0 , where Sentence is a sentence.
2. Rules({{4rgumenf, /*/gumenf,J} -> Conc/us/on) =

{{Conclusion(/4fgumenfi) Conclusion^rgumenf,,)} -+ Conc/us/on}
u Rules^Agumenf,) u ... u Rules^rgumeny,

where /\/yumen^,..., and /JAgumenf,, are arguments, and Conc/us/on is a
sentence.

3. Rules({/Aflgrumente, ^/yumenten}-> Conc/us/on) =
Rules[y4rgumen/s,] u ... u Rules[<4/gumente,J,

where /A/gumente,,..., and ^^giumenten are sets of arguments, and
Conc/us/on is a sentence.

Rules are not the same as single-step arguments: the single-step argument
{{Suoreason, Sufcreasonn}} -> Conc/us/on has one rule, namely {Subreason,,
..., Subreasonn} -> Conc/us/on.

Next we define argument schemes and their instances. Argument schemes are
basically arguments that can contain wildcards. An instance of an argument
scheme is obtained by 'filling in' each occurrence of the wildcard •.

Argument schemes are useful to denote arguments that have a common part,
such as the same final step. For instance, all arguments with an equal final step,
informally denoted as

So,
So, CO/7C/MJ/'OM.

are represented by the argument scheme {{*Reason}} -> Conc/us/on.
In the definition of argument schemes, the wildcard * has different roles

depending on its position in the argument scheme. The argument scheme
*Conc/us/on represents an argument with conclusion Conc/us/on. Some of the
instances of • Conc/us/on are Conc/us/on and {{Reason}} -> Conc/us/on. In {{*}} ->
Conc/us/on, the wildcard represents any argument. Some instances are {{Reason}}
-» Conc/us/on and {{{{Reason,}} -• Reaso^}} -» Conc/us/on. In {*} -» Conc/us/on,

'* For a function F and a set Sef that is a subset of the domain of F, F[Sef] denotes the
image of Sef under F. ,
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the wildcard represents any (finite) set of arguments. Some instances are
{{Reason,}} -> Conc/us/on and {{Reason,}, {Reaso^}} -» Conc/us/on.

Formally, argument schemes and their instances scheme are defined as follows.
i

Definition 5.
The set of argi//we«/ .sc/ie/wes in the language Language is the smallest set such
that the following hold:
1. If Sentence is an element of Language, then Sentence, *Sentence, and *

are argument schemes.
2. If /JrsrumenfScneme,,..., /\^gt/menfSchemen are argument schemes, then

{{/Afgt/menfScheme, /J/yumenfScnemen}} -> Conc/us/on and {•} -»
Conc/us/on are argument schemes.

3. If {drgumen/Scnemes,}-> Conc/us/on,..., {/ArgumenrScnemesJ-• •
Conc/us/on are argument schemes, then {/\/gumenfSchemes, ••

> Conc/us/on is an argument scheme.

Definition 6. •... ;v; .
The /m/a/ice? of an argument scheme 4rgrumenfScheme in the language
Language, denoted as lnstances(/\fgumen(Scheme), are defined recursively, as
follows:''* ? . ! $ > ! • ' ; £ . . .*•• : ' • :r i . - " •*• i : ^

1. Instances(Sentence) = {Sentence} "*!-;. • ^ v.-. •.•.-..•• •• H> V'-

lnstances(* Sentence) =

; '" :.•» {/\/yumen^ | /\fgumenf is an argument of Language with conclusion
: Sentence} .

lnstances(») = {/J/gumenf | /^rgumenf is an argument of Language} ;:. >
2. lnstances({{4rgScheme,, ..., ^fgScnemeJ}-> Conc/us/on) =

Instances^ngrScheme,) u ... u lnstances(/lrgScneme,,) , «••- =
lnstances({»} -» Conc/us/on) = • v; •:

{/A^gumenfs —> Conc/us/on | /Irgumenfs is a set of arguments of
Language}

3. lnstances({^fgSchemes, /J/yScnemeSn}-> Conc/us/on) = >

lnstances[4fgSchemes,] u ... u lnstances[/UgSchemes,J

Any argument is an argument scheme, whose only instance is the argument itself.

2.4 Initials and narrowings of arguments ^; .. ,r- • -.-...

In this section, we discuss the initials and the narrowings of an argument. They are
purely determined by the structure of the argument.

Arguments can have other arguments as initial parts. For instance, the argument

This definition is recursive in the structure of arguments, just as the definitions of
premises, rules and argument schemes. For brevity, we do not explicitly state that Sentence
is a sentence, that dnjumenfi is an argument (for i = 1 n) etc.
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A colleague is completely soaked and tells that it is raining. •»*"; ,tf
So, it is probably raining. - r; . ;••
So, it is wise to put on a raincoat. . . . .< ,,, yr,

h a s t h e a r g u m e n t , .. • « - - . - • • • • . - ; . - . , • •• . , . ,

A colleague is completely soaked and tells that it is raining. .• •; '.-••
So, it is probably raining. -

as an initial part. Formally the initials of an argument are defined as follows. '

Definition 7.
If drgumenf is an argument, the set of ;>;///a/s of the argument, denoted as
lnitials(>4rgi/menf), is defined recursively as follows
1. Initials(Sentence) = 0 • , •. \ • '
2. lnitials({{/\fgumenfi >4rgume/rt,J} -> Conc/us/on) = '-.».-..•:'

lnitials(/*Agumenf,) u ... u Initials(i4rgfumeny u

3. lnitials({^/gumente,,..., /l^rumenten} -> Conc/us/on) =
lnitials({/4/gumenteJ -» Conc/us/on) u ... u lnitials({^^yumenfSn} -»

Conc/t/s/o/7) -̂ ' ;

The initials of an argument are also arguments. The definition shows that an
argument is not an initial of itself and that all arguments, except for statements,
have initials.

If the conclusion of an argument is supported by a coordinate argument with
separate reasons, one or more of the reasons can be removed from the argument.
For instance, if the reason 'The sun is shining' is removed from the argument

The sun is shining; The sky is blue.
So, it is a beautiful day.

we obtain the argument

The sky is blue.
So, it is a beautiful day. . : • • - . • • •

The latter argument is called a narrowing of the former. Only if one allows the
coordination of arguments, it is possible to define the narrowings of an argument.
Formally, the narrowings of an argument are defined as follows.

Definition 8. ~
If y4/gumenr is an argument, the set of narrow/wgj of the argument, denoted as
Narrowings(/\rt7tvmenf), is defined recursively as follows:
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1. Narrowings(Sentence) = 0
2. Narrowings({{/\/gumenfi, ..., ^rgumenfj}-» Conc/us/on) = :-j i> <••••

{{{A/arrow/ng,,..., Wanrw/ngn}} -> Conc/us/on | «; " " '•' •; • '
Wa/7Dw;ng, e Narrowings^rgumenf,) for all i = 1,..., n}

3. Narrowings^rgrumente, ^fgumenterJ -> Conc/us/on) = ' •
{W-> Conc/us/on | 0 c W c {/Argumente, ^/yumentej}^

If dnjumenf, is a narrowing of ^rgrumen^, then /irgumenfj is a

The definition shows that in a narrowing of an argument the final conclusion is
supported by less reasons than in the argument itself (part 3 of the definition). In a
narrowing of an argument, also the intermediate conclusions can be supported by
less reasons (part 2 of the definition).

The narrowings of arguments are also arguments. If follows from the definition
that arguments are not narrowings of themselves, and that not all arguments have
narrowings. The conclusion of a narrowing of an argument is equal to the
conclusion of the argument. As a result, no narrowing of an argument is at the
same time an initial of the argument.

3 Defeat and defeaters v > •'

In the previous section, we saw that arguments are in form comparable to proofs.
However, there is a major difference between arguments and proofs. While proofs
justify their conclusions under all circumstances, arguments do not: arguments can
be defeated.

In this section, we deal with the defeat of arguments. We distinguish several
types of defeat and corresponding defeaters. These indicate which arguments can
defeat which other arguments (sections 3.1 to 3.5). Then we discuss the role of
defeater schemes (section 3.6). This leads to the formal definition of defeaters and
defeater schemes (section 3.7).

3.1 Undercutting defeat

The first type of defeat that we discuss is defeat by an undercutter.'^ As an
example, we consider the following (single-step) argument:

The object looks red.
So, the object is red. - • "? -

'* V c W means that Visa proper subset of W.
'*• Pollock (1987-1995) has argued for the distinction between defeat by an undercutter
and by a rebutter (discussed in section 3.2).
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In principle this argument supports its conclusion, but suppose that we also have
the following argument (a statement):

The object is illuminated by a red light. -••> ;., -V • ; '̂, i. < ; • ' . . ' , • ' '

Taking both arguments into account, the argument that the object is red does no
longer justify its conclusion. Because the object is illuminated by a red light, the
fact that it looks red is no longer a reason for the conclusion that the object is red.
(Of course the object can still be red, but we cannot justify this by the fact that it
looks red.) We say that the fact that the object is illuminated by a red light
wrafercwtt the argument that the object is red.'^

In our formal model, this fact is represented as follows: ~ .""• > '•-.;
' • • • • • ' ' , . • • • ' ' •

l l luminated_by_a_red_light [{{Looks_red}} -> ls_red] ,c . \ -•:••.

This is an example of a ^e/ecr/er, the formal definition of which follows later.'*
Informally, the defeater represents that if the argument on the left,
llluminated_by_a_red_light, is undefeated, it defeats the argument on the right
{{Looks_red}} -> ls_red.'^ To emphasize that the latter argument becomes
defeated, it is put between square brackets [ ].

3.2 Rebutting defeat

The second type of defeat is rebuttal.^ For instance, if John likes French fries, but
is on a low calorie diet, we have the following two arguments:

John likes French fries. ,
So, he orders French fries.

and .< ..-;>

The example has been used at several occasions by Pollock as an illustration of
undercutting defeat (e.g., Pollock. 1986, p. 39ff.; 1994).

In our terminology, a defeater is not itself an argument or a reason that challenges
another argument (as for instance Pollock uses the term), but a relation between challenging
and challenged arguments.

Note that the arguments llluminated_by_a_red_light and {{Looks_red}} -> ls_red do not
have inconsistent conclusions. The example shows an important choice underlying the
CumulA model: the defeat of arguments is in CumulA not ;ncon.s;.yte/;c>'-/nggerec/, but
court/erargumert/-rriggere</ (see note 5). Not inconsistency, but counterargument
(represented by defeaters) is the primitive notion in CumulA. We come back to this
distinction in chapter 6, section 4.
20 See note 16.
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John is on a low calorie diet. . ;i-in••'Ji:. ;n^ • u^ <:. ' - '
So, he does not order French fries. ••jjr :-:a,-r",4.s*i-•*•:•• ••• .•

Assuming that people who are on a diet try to suppress their eating impulses, John
probably does not order fries, since the latter argument would be more important.
In this case, the former argument is defeated by the latter. Formally, this would be
represented by the following defeater:

{{On_low_calorie_diet}} -> Not_order_fries [{{Likes_fries}} - • Order_fries] •

The argument on the left, {{On_low_calorie_diet}} -> Not_order_fries, defeats the
argument in square brackets on the right, {{Likes_fries}} -• Order_fries. If, as in this
example, an argument defeats an argument with opposite conclusion, we speak of

defeat. . t a^ s , « : . ' - " ' • . ^ * '

3.3 Defeat by sequential weakening #,i4.,! ', ^ >•;: •

The third type of defeat is defeat by sequential weakening. An example of this is
the following argument, based on the well-known sorites paradox:^'

This body of grains of sand is a heap.
So, this body of grains of sand minus 1 grain is a heap. • ' <"''<
So, this body of grains of sand minus 2 grains is a heap.

So, this body of grains of sand minus « grains is a heap. »-' - • - >• "i-••- .

Each single step of the argument is correct, but clearly the argument cannot be
pursued indefinitely, since in the end there is no grain of sand left. For « large
enough, the argument above does clearly not justify its conclusion and should be
defeated. The important point here is that it is impossible to choose a single step
that makes the argument defeated. Only because the step is repeated too often, the
argument is weakened below the limit of acceptability, and is defeated.

Since argument steps normally can be chained, we need a way to represent the
fact that certain sequences of steps can lead to the defeat of an argument. A
defeater representing the situation of our example has the following form:

[Body_of_sand_is_heap -»Body_of_sand_minus_1_grain_is_heap

-» Body_of_sand_minus_2_grains_is_heap , , ,.

-> Body_of_sand_minus_n_grains_is_heap] . •;••;

For convenience, we have left out the brackets {}.

Read (1995, p. 173ff.) discusses philosophical issues related to the sorites paradox.
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In the example, there is an argument that is clearly defeated because it contains
an unacceptable sequence of steps, but that does not contain one single argument
step that is to blame. In such a case, we speak of defeat by se<7wert//a/ weakening of
the argument.^

.;
3.4 Defeat by parallel strengthening • , . • .• • '

The fourth type of defeat is defeat by parallel strengthening. Assume that John has
committed an offense, but is a minor first offender. As a result, the judge might
consider the following argument:

•.>?2 •-.. :.. • ' ;r.-.' ,. ; i v .. , f---,'..i!«!i.-»--

John is a minor first offender. • >i ••> ; :
So, John should not be punished, ox, :^--- - .;-.• ; ;=,

If for instance John has robbed Alex, the judge might consider this an argument
that rebuts the following argument with opposite conclusion:

John has robbed Alex. . , ! ... •.
So, John should be punished. ,

In the case of rebuttal the judge decided not to punish John. The judge might
decide analogously if John had injured Alex in a fight.

However, if John has both robbed Alex and injured him in a fight, the judge
might decide differently. Since there are now two reasons for punishing John,
coordination of the arguments gives us the following composite argument:

John has robbed Alex; John injured Alex in a fight.
So, John should be punished.

This argument might defeat the argument that John should not be punished. In that
case, the argument that John should be punished defeats another argument, while
its narrowings do not. A defeater representing this is the following:

{{Robbed}, {Injured}} -+ Punished [{{Minor_first_offender}} -» Not_punished]

The argument {{Robbed}, {Injured}} -> Punished defeats the argument
{{Minor_first_offender}} -• Not_punished.^ In this example the defeat of the
argument not to punish John can be explained by the para//e/ 5/re/jg//je«/«g of the
argument to punish him. We speak of defeat by parallel strengthening if an

22 The term is taken from Verheij (1995c).
2̂  In Reason-Based Logic, this example would involve the weighing of reasons (chapter 2,
sections 1.3 and 3.3). Cf. Verheij (1994). • . . •, .
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argument that has narrowings defeats another argument, while the narrowings
t h e m s e l v e s d o n o t . ^ — .•>•• . . - • • < . ••- .•.••,•.-....-..

3.5 Collective and indeterministic defeat - :t'.^.:./"*. •-

All examples of defeaters that we have seen consisted of a single challenging and a
single challenged argument. Such defeaters are called simple. However, there are
cases in which groups of arguments must be considered. We discuss two types of
situations in which this is the case, namely co//ec//ve de/ear and /ncfeterm//7/.yf/c
cfe/ea/. It turns out that in order to represent these types of defeat, we need
compound defeaters, that consist of groups of challenging and challenged
arguments.

Collective and indeterministic defeat occur if there is a number of arguments
that can clearly not all justify their conclusions, for instance because their
conclusions cannot all hold, but neither of which is clearly defeated by any of the
others. We give an example.

It can be the case that an employer wants to hire two persons if they are
qualified. If John is qualified, the employer can make the following argument:

John is qualified. So, John is hired.

On its own, this argument can be undefeated, but now assume that not only John,
but also Alex and Mary are qualified for the job. As a result, the employer can also
make the following two arguments:

• • • : ; . " . . • • ' - . • .

Alex is qualified. So, Alex is hired.
Mary is qualified. So, Mary is hired. * "•'

Since the employer only wants to hire two persons, the three arguments cannot all
be undefeated.

If there is no additional information to resolve this conflict of arguments, two
approaches can be distinguished that nevertheless 'magically' resolve the conflict:
collective and indeterministic defeat.

In the first approach to dealing with the unresolved conflict of arguments,
collective defeat,^ all arguments are considered defeated. We speak of collective
defeat if a group of arguments is defeated as a whole, while the arguments in the

^ The example given here is also an example of rebutting defeat, showing that the
discussed types of defeat can overlap.
25 The term 'collective defeat' stems from Pollock (1987). Our collective defeat
generalizes his. Pollock's collective defeat is a general principle to preserve consistency. It
makes groups of otherwise undefeated, but conflicting arguments defeated. Our collective
defeat is optional, depending on the compound defeaters of a particular argumentation
theory, and can occur for any group of arguments, not only conflicting.
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group would on their own not be defeated. A defeater representing the situation in
our example could have the following form:

[{{John_is_qualified}} -»John_is_hired, ; ,., . .•>!

{{Alex_is_qualified}} -»Alex_is_hired, ! ; . . . • . ; * ^: ; . ' ^ o > ? r

{{Mary_is_qualif ied}}-»Mary_is_hired] : • •> • • , : • - . • . > ; ;

In this defeater, all arguments are inside the square brackets indicating that they are
defeated as a group. We say that this defeater is r/g/zz-co/npoMwd, since it has more
than one challenged argument.

A defeater such as the one above represents that the arguments inside the
square brackets are defeated as a group, and not simply that they are all three
defeated. The latter would be represented by the following three simple defeaters:

[{{John_is_qualified}} -> John_is_hired] • • . . - .

[{{Alex_is_qualified}} -» Alex_is_hired] '.--.••-•;

[{{Mary_is_qualified}} -> Mary_is_hired]

The difference with the compound defeater above is that the compound defeater
only represents that the group of three should be defeated if otherwise neither of
the arguments in the group would be defeated. If the argument that Mary is hired
for the job is defeated/or amtfAer reason (i.e., because of another defeater), for
instance, that she prefers a job somewhere else, the compound defeater above does
not anymore imply the defeat of the argument that John is hired for the job. Only if
all three arguments would otherwise be undefeated, the compound defeater results
in their defeat as a group. The three simple defeaters would not have the same
effect: they represent that the arguments are defeated anyway.

The second approach to dealing with the unresolved conflict of arguments is
indeterministic defeat. In this approach, the conflict is resolved by considering one
of the arguments in the conflict defeated. Since there are several choices that can
be made, neither of which is better than the others, the conflict is
'indeterministically' solved: each choice of a defeated argument is allowed. In the
example, there are three solutions, represented by the following defeaters:

{{John_is_qualified}} -> John_is_hired, {{Alex_is_qualified}} - • Alex_is_hired
[{{Mary_is_qualified}} - • Mary_is_hired]

{{Alex_is_qualified}} -> Alex_is_hired, {{John_is_qualified}} -> John_is_hired
[{{Mary_is_qualified}} -> Mary_is_hired]

{{Mary_is_qualified}} -> Mary_is_hired, {{John_is_qualified}} - • John_is_hired
[{{Alex_is_qualified}} -> Alex_is_hired]

Each defeater represents that two of the arguments challenge the third, and can
result in its defeat if they are both undefeated. We say that this defeater is /e/?-

/, since it has more than one challenging arguments.
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3.6 Defeater schemes ^ i i j t s h / - :-**fiU*>fc'>iTrjir>Y.'<;":> *•:>•?* »K; :- ' . t»- . .J-

We have encountered several examples of defeaters. They all contained
representations of full arguments. As we will see, this is not always convenient. As
an example, we reconsider the argument that an object is red because it looks red.
This argument was defeated by the statement that the object is illuminated by a red
light. We had the following defeater:

l l l u m i n a t e d _ b y _ a _ r e d _ l i g h t [ { { L o o k s _ r e d } } - » l s _ r e d ] - > ' • •» - ; . . . . . : ; .

But it can of course also be the case that the fact 'The object is illuminated by a red
light' is not merely put forward as a statement, but is itself supported by some non-
trivial argument, for instance as follows: _,-,.

Ralph says that the object is illuminated by a red light. J P'.'.J ^ ': .{;
So, the object is illuminated by a red light. ..,. . >r: '.p .-•-•••};

If this argument is not defeated, it defeats the argument that the object is red, just
like the statement 'The object is illuminated by a red light' did. It does not matter
how the conclusion that the object is illuminated by a red light is justified. By
whatever argument that conclusion is justified, it defeats the argument that the
object looks red.

Similarly, it can be the case that the argument step that the object is red because
it looks red is itself part of a larger argument, for instance as follows:

The object reflects light of a particular wave length. ••• u ••::• * ;•
So, the object looks red. ; .•;•„;• • T ,
So, the object is red. , _ v y .

This argument is defeated too if the conclusion that the object is illuminated by a
red light is justified. (It should be noted that this does not imply that the argument

The object reflects light of a particular wave length. < i ? ;• •:•:.••
So, the object looks red.

" ' ; - r , : - i . ; ' >

is defeated. The conclusion that the object looks red is still justified.) v -
This leads to the notion of <ie/eater sc/je/wer. We want to represent that any

argument that justifies the conclusion that the object is illuminated by a red light,
defeats any argument that ends with the argument step that the object is red
because it looks red. A defeater scheme representing this looks as follows:

•llluminated_by_a_red_light [{{*Looks_red}} -»ls_red] y:-,- >. . v .'. :
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Instead of arguments, a defeater scheme contains argument schemes, such as
•llluminated_by_a_red_light and {{•Looks_red}} -> ls_red. The defeater above will
have the effect that any argument that is an instance of •llluminated_by_a_red_light
challenges any instance of {{*Looks_red}} -> ls_red.

In our example, this is just as required, since the argument scheme
{{*Looks_red}} -> ls_red has both v. . .i:..--v: • • v ,,>'•-•' " ' '

•• . • - . • - • r - . w - . v - . , • . • , - ' • • ; . . > v . - - - . r

{{Looks_red}}-> ls_red • , - ; »

and * • o^'vi ; . . K - , - . ; - : ' .

{{{{Reflect_light_of_particular_wave_length}} -> Looks_red}} -> ls_red ': •••.

as instances.

3.7 Definition of defeaters and argumentation theories J i, C. C

Having finished the description of different types of defeat, we come to the formal
definition of defeaters. We have seen several examples, all captured by the
following definition.

Definition 9.
/ng/4/gume

are arguments, then

is ade/ea/er. The arguments C/ja//eng;ng>4rgumenf,,..., C/7a//eng/ng/4/gt/men^
are the c/ia//eng;«g argu/ne/j/i of the defeater, the arguments
C/7a//engecMrt7umenfi,..., Cria//enged/Afgumen^ the c/»a//e«ge^ argwwe/7^ of
the defeater. A defeater with at most one challenging and at most one
challenged argument is .?/>w/?/e, otherwise CO/M/?OIW. A defeater that has more
than one challenging argument is /e//-com/?owm/, a defeater with more than one
challenged argument

Intuitively, the defeater
[Cha//enged/4ngrumenf, CA>a//enged/4fgumeny represents the fact that the
arguments Cha//eng/ng,4rgumenfi, .... and C/7a//eng/ng/4rgumerrt,, defeat the
arguments C/?a//enged/4rgumenf,, ..., C/?a//engeddrgumenta, if they are themselves
not defeated.

Our defeaters are related to Dung's (1993, 1995) attacks. However, our
defeaters take the structure of arguments into account, and do not consist of a
single challenging and a single challenged argument, but of a group of challenging
and a group of challenged arguments. '^ """ '' • •• "••-• . „
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We already discussed the need for defeater schemes. They contain argument
schemes instead of arguments. Defeater schemes and their instances are formally
d e f i n e d a s f o l l o w s . •,»; ; D . : • ; , / . . < • ! • • • -•- ; . > • . . j ? ..-••- .: . , » - ; ; . - ^ s , > <

? ! • • . • • . - " • . • ' • ; • ; • . . • - > ! . . . • ; • - . . - : > • > • : ' ' S I " !

D e f i n i t i o n 1 0 . ..... .-r . .-,- - • . , ••,; •.... ••••, : > , •

If C/ia//eng/ng>4^gSc/jemei,..., Cha/tengmg^rgSchemen,
C/7a//engedi4rgScAjeme,,.... Cha//enged/4ngrSchemem are argument schemes,
then

Cha//eng/ng/*rgScneme,

is a rfe/eo/er ic/je/we. If each argument scheme in the defeater scheme is
replaced by one of its instances, the resulting defeater is an /ns/ance of the
defeater scheme.

Just as arguments are a special kind of argument schemes, defeaters are a special
kind of defeater schemes, with as only instance the defeater itself.

We have described several types of defeat. In Table 2, we give an overview of
these types of defeat and their corresponding defeater schemes.

Type of defeat

Undercutting defeat

Rebutting defeat

Defeat by sequential
weakening

Defeat by parallel
strengthening

Collective defeat

Indeterministic
defeat

Corresponding defeater scheme(s)

•Conc/us/'on, [* Reason -> Conc/us/on2]

•Pro -» Conc/us/on [*Con -> A/of_conc/us/on]

[•Sentence, ->...—> SentenceJ

{{•Reason,} {*Reasonn}} —> Conc/us/on,
[•Conc/us/onj]

[•Conc/us/on,, ..., •Conc/t/s/onJ

*Conc/us/on, ["Conc/us/onj *Conc/us/on,J,

*Conc/us/onn [*Conc/us/on, *Conc/us/onn.,],

Table 2: Types of defeat and their corresponding defeater schemes

The types of defeat in this table are not disjoint, in the sense that there can be
defeaters that are instances of defeater schemes of different types.
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Argumentation depends on which arguments can support conclusions and on
the situations in which arguments defeat other arguments. This is specified by an
arg«ffje«/a//ow //»eory. A natural way to specify the arguments is by the rules from
which they are constructed. A natural way to specify defeat situations is by
defeater schemes. This gives us the following definition.

Definition 11.
An argww;e«/a//o« //ieory is a triple (Language, Ru/es, DefeaterScnemes), such
that Language is a language, Ru/es is a set of rules of the language Language,
and DefeaterSchemes is a set of defeater schemes of the language. Any
argument that has only rules in Ru/es is an argM/wewf of the argumentation
theory. Any instance of a defeater scheme in DefeaterSchemes is a c/e/ea/er of
the argumentation theory. . . . >, .--.:•! -

Our argumentation theories correspond to Lin and Shoham's argument structures
(Lin and Shoham, 1989; Lin, 1993), Vreeswijk's (1991, 1993) abstract
argumentation systems, and Dung's (1993, 1995) argumentation frameworks. Lin
and Shoham and Vreeswijk include a set of premises. In CumulA, however, an
argumentation theory does not specify premises, since in CumulA's lines of
argumentation the premises can change (see section 5). Dung's definitions do not
specify a set of premises either, but for the reason that they fully abstract from the
structure of arguments. . > • • •

4 Stages of the argumentation process

In the previous two sections, we discussed arguments and defeaters. They play a
central role in argumentation: arguments represent how conclusions can be
supported and defeaters represent which arguments can defeat other arguments. In
this section, we discuss how defeaters determine the status of the arguments taken
into account, i.e. which of them are defeated and which are undefeated. In the next
subsection we treat how the status of an argument relates to the status of its initials
and narrowings (section 4.1). Then we describe some notions that characterize the
effects of a defeater (section 4.2). Thereafter we characterize the status of
arguments in an argumentation stage (section 4.3). In section 4.4, the stages of an
argumentation theory are formally defined.

4.1 Initials, narrowings and defeat

In this section, we encounter three general requirements that must hold for any
defeat status assignment of the arguments that are taken into account at a stage of
the argumentation process.

Every argument that is taken into account has one of two statuses: it can be
either undefeated or defeated. By definition, an undefeated argument justifies its
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conclusion, while a defeated argument does not. So, the first requirement is simply
that no argument can be defeated and undefeated at the same time. Obviously, an
argument cannot both justify and not justify its conclusion.

The second requirement relates the statuses of an argument and its initials: if an
initial of an argument is defeated, the argument is itself defeated. For instance, if
the argument

' ' : * • » • • ' . • ' • • ' , .

The object looks red. ., • ••••. '
So, the object is red. . • ,.:? . , ' • , ,

is defeated and does not justify the conclusion that the object is red, the argument

T h e o b j e c t l o o k s red. •• '• •-•• ~
So, the object is red.
So, the object attracts the attention. .. .- -. •' . -.?

is also defeated and cannot justify the conclusion that the object attracts the
attention. (On the other hand, it is possible that the latter argument is defeated,
while the former is not.) Generally, an argument can not justify its conclusion if an
intermediate conclusion is not justified. In other words, an argument never
withstands defeat better than its initials.

The third requirement relates the statuses of an argument and its narrowings: if
a narrowing of an argument is undefeated, the argument is itself undefeated. For
instance, if the argument

The sun is shining.

So, it is a beautiful day. ; - :

is undefeated and justifies its conclusion that it is a beautiful day, the argument

The sun is shining; The sky is blue. ;v. •
So, it is a beautiful day. • • . : % , i

cannot be defeated and not justify that same conclusion. Intuitively, an argument
does not withstand defeat worse than an argument containing less reasons.^ Only
one of the narrowings of an argument needs to be undefeated in order to make it
undefeated. For instance, the argument

The sky is blue.
So, it is a beautiful day.

^ Pollock (1991) has argued against this so-called accrual of reasons. In chapter 6,
section 2, we give our reply. . . . - . . . . -
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can be defeated (by some other argument), while the two arguments above are
undefeated. Adding a reason can never make an argument defeated, but sometimes
can make an argument undefeated, as in a case of defeat by parallel strengthening.

Summarizing we have the following three requirements for any defeat status
assignment:

1. Each argument is either undefeated or defeated.
2. If an initial of an argument is defeated, the argument is defeated.
3. If a narrowing of an argument is undefeated, the argument is undefeated.

4.2 Relevant, triggered, respected and inactive defeaters

Defeaters play a central role in the determination of the defeat status of arguments.
By default, an argument is undefeated, but defeaters can change this default status.
Recall that defeaters indicate when undefeated arguments can defeat other
arguments. We discuss four notions that are important for the effects of defeaters: a
defeater can be re/evcm/, /r/ggerec/, respected and /'nacf/ve.

As an example, we take the defeater

Ralph's_testimony -> llluminated_by_a_red_light [Looks_red -> ls_red]

A defeater only can have effects if all arguments in it have been taken into
account. If only the argument Looks_red -> ls_red has been taken into account, the
defeater above has no effect. Only if the argument Ralph's_testimony -•
llluminated_by_a_red_light is also taken into account, can the argument Looks_red
-> ls_red be challenged. If all arguments in a defeater have been taken into
account, the defeater is re/eva/i/.

A relevant defeater can only lead to the defeat of its challenged arguments if
the challenging arguments are undefeated. Returning to our example, it can turn
out that Ralph is lying, with the result that the argument Ralph'sjestimony -*
llluminated_by_a_red_light does not justify its conclusion, and is defeated (on the
basis of some other defeater). Even though the argument that the object is
illuminated by a red light is taken into account, it does not challenge the argument
that the object is red, since it is itself defeated. If all challenging arguments of a
relevant defeater are undefeated, the defeater is //7ggere<tf.

Normally, if a relevant defeater is triggered, the challenged arguments are
defeated. In our example, if the argument Ralph'sjestimony ->
llluminated_by_a_redjight is undefeated, the argument Looks_red -> ls_red is
defeated. In general, if all challenged arguments of a triggered defeater are
defeated, the defeater is respected.

There is one situation in which a defeater of which the challenging arguments
are undefeated do not lead to the defeat of its challenged arguments. This can only
happen in a case of collective defeat (see section 3.5), represented by a right-
compound defeater, when the challenged arguments are not defeated as a group,
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because some of them (but not all) are challenged arguments of another respected
defeater.

As an example, we take the following two defeaters: . . '•• <;

[John_is_qualified -> John_is_hired, Mary_is_qualified -> Mary_is_hired]
Mary_prefers_anotherjob [Mary_is_qualified -» Mary_is_hired]

Here Mary_prefers_another_job represents that Mary prefers another job than the
one for which both John and Mary are qualified. If now the two arguments

J o h n _ i s _ q u a l i f i e d —> J o h n _ i s _ h i r e d ' ! • • - > ; . - . *: „ • .< • j ; , - . ) i '* V . ;

M a r y _ i s _ q u a l i f i e d - > M a r y _ i s _ h i r e d

are taken into account, only one of the defeaters is relevant (the first), and should
result in the defeat of both arguments. But if also the statement

Mary_pre fe rs_another job ?•'•. ., •-• -• . ' T ' r.-;rr-f'•

is taken into account, the situation changes. Both defeaters are relevant. Since the
argument Mary_prefers_anotherjob is not even challenged in one of the defeaters,
it is undefeated and defeats the argument Mary_is_qualified -> Mary_is_hired. But
now the other defeater, that represents collective defeat, should not lead to the
defeat of John_is_qualified -» John_is_hired, since one of its challenged arguments
is already defeated by another defeater. In this situation, we say that the defeater is
/«ac//ve, otherwise acf/ve. Only active defeaters can lead to the defeat of their
challenged arguments.

4.3 Stages and defeat / 1

The stages of the argumentation process are characterized by the arguments that
have been taken into account, and by the status the arguments have. The status of
the arguments taken into account is determined by the defeaters of the
argumentation theory. In this section, we discuss how.

An argument can be defeated in two ways: directly and indirectly. An argument
is £//ra://v cfe/eated if it is a challenged argument of a triggered active defeater. As
an example, we consider the red light example again. We have the simple defeater

llluminated_by_a_red_light [Looks_red -»ls_red] . <; •

Assume that two arguments have been taken into account: >

l l luminated_by_a_red_light ' .••• >1

Looks red - • Is red
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Clearly, the defeater is relevant. The argument llluminated_by_a_red_light cannot
be defeated, since there is no defeater in which it is challenged. As a result, the
defeater is triggered, and also active, since it is not left-compound. As a result, the
argument Looks_red -> ls_red is directly defeated by the argument
llluminated_by_a_red_light.

An argument is /noVrec/Zy oe/ea/ea" if it has a defeated initial or broadening.
Indirect defeat corresponds to the requirements on the statuses of arguments and
their initials and narrowings (section 4.1). For instance, if in the example above the
argument •- .»'" . ;-.'

Looks_red - • ls_red -> Attracts_attention

were also taken into account, it would be defeated, because its initial Looks_red -»
ls_red would have been defeated.

An argument can be both directly and indirectly defeated. For instance, if the
argument . .

John_is_color_blind • . .'*-•' •

were taken into account, and the theory contained the defeater scheme

John_is_color_blind [*ls_red -> Attracts_attention],

the argument Looks_red -> ls_red -* Attracts_attention would be both directly
defeated, by the argument John_is_color_blind, and indirectly, by the (direct)
defeat of its initial Looks_red -» ls_red.

We have now discussed all ingredients of our definition of an argumentation
stage. A stage is characterized by the arguments that are taken into account and by
their statuses. As a result, a stage is defined as a defeat status assignment, that must
obey the requirements of section 4.1. Furthermore, which arguments have the
status undefeated and which defeated is determined by the defeaters, as follows:

An argument has the status 'defeated' if and only if the argument is directly or
indirectly defeated.

4.4 Definition of stages

We have seen that the status of initials and narrowings of an argument can have an
effect on the status of the argument itself The range of a set includes all arguments
that can have such effects for the arguments of the set. Formally, the range of a set
of arguments is defined as follows.
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D e f i n i t i o n 1 2 . < * - * < •• W e - - < - > . ^ > r ! •.•,-... -.-*. ••*.; . • • . > • • • ^ . ^ . > = . ^

The rawge of a set of arguments ^fgumente, denoted as Range(/\/gumenfs), is
the smallest set of arguments Range, such that the following hold:
1. /Jrgumente is a subset of Range.
2. Any initial of an argument in Range is an element of Range. ;
3. Any narrowing of an argument in Range is an element of Range. :
A set of arguments that is equal to its range is a range of arguments.

We have discussed three requirements that are the result of the relations of the
status of an argument and the statuses of its initials and narrowings. These
requirements lead to the following definition of a ae/e

Definition 13. •
A de/eaf Jta/Ms ass/gn/wew/ of a range of arguments Range has the form •»• .

Cndefeated/4fgumente (Defeated/4/gumente), . . . . . . . . A
such that the following hold:
1. The arguments in Range are precisely the arguments in

l/ndefeafed4rgumente and Defeated/Afgumenfc, but no argument is both in
l/ndefeated/4rgumente and in De/eated/Argumente.

2. No initial of an argument in L/ndefeated/Argumente is an element of •••-. •

3. No narrowing of an argument in Defeated/4ryi/mente is an element of
L/ndefeated/4ngrumente.

The set Range, equal to the union of L/ndefeated>Vgumente and t, ;; ^ , ,
Defeated/Afgumente, is the range of the defeat status assignment.
Notation: A defeat status assignment of a finite range of arguments will often
be denoted as . . . . i . , . . . . . . . > . . . .,.,

(Defeated^rgumenf, Defeatedd/gi/menta) . . i •

Our defeat status assignments are formally related to Pollock's (1994, 1995) partial
status assignments, but have a different use. Pollock uses status assignments to be
able to deal with certain problem cases. We use status assignments since they
enable the definition of argumentation stages.

The second requirement in the definition of defeat status assignments is well-
known and has a counterpart (in different forms) in many argumentation models
that take the subordination of arguments into account, such as the models of Lin
and Shoham (Lin and Shoham, 1989; Lin, 1993) and Vreeswijk (1991, 1993). The
third requirement is, as far as we know, new in CumulA since in other models the
coordination of arguments is not taken into account. It represents how the
coordination of arguments is related to defeat.

Next we define when a defeater is relevant, triggered, respected and (in)active.
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Definition 14. "" " ' "UtK
A defeater C/7a//eng/ng,4rgumente [C/?a//enged/4rgumente] is re/ewwtf for a
defeat status assignment L/ndefeatecMngrumente (Defeated/J/gumenfs) if all
arguments in Cha//eng/ng>4/gumente and C/7a//enged/4fgumente are in the range
of the defeat status assignment.

Definition IS. . . . . - •

A defeater C/ia/teng/ngd/gumente [C/?a//enged/Argumente] is /r/ggerec/ in the
defeat status assignment l/ndefeated/Argumente (Defeafed/Argumenfs) if it is
relevant and C/?a//eng/>?gy4fgumente is a subset of the range of

Definition 16.
A defeater Cha//eng/ng>Argfumenfs [C/ia/fenged/Jrsrumenfs] is respec/erf in the
defeat status assignment L/ndefeated/Afgumente (Defeated/Afgumente) if
C/7a//eng/>?g/4Agi/mente is a subset of the range of Wndefeated/Argumente and
C/?a//enged/4rgumente is a subset of the range of De/eated>A/gumen/s.

Definition 17.
A defeater C/ja//eng/ng/4fgumente [C/7a//engedi4rgt;men/s] is /«acf/ve in the
defeat status assignment L/ndefeated/irgumente (De/eated-4fgumenfs) if it is
relevant and there is a respected defeater C/ja//eng/ng,4rgumente'
[C/7a//enged/4Agumente'], such that some, but not all, arguments in ' •<••* ••
Cha//enged/Afgumente are an element of, or have an initial or broadening in
C/?a//enged/4Agumenfs'. A relevant defeater is ac//ve if it is not inactive.

As immediate consequences of these definitions, triggered defeaters are always
relevant, and respected defeaters are always triggered (and therefore relevant).

The following definition captures the direct and indirect defeat of arguments.

Definition 18.
The argument ^/y^menf is ^e/eare^ by the arguments C/7a//eng/ng/4^gumente in
the defeat status assignment L/ndefeatedAngfumente (Defeated>4Ag<vmente) if
there is a triggered active defeater C/7a//eng;ng/4/gumente >
[C/?a//enged/4rgi/mente], such that ''.;-. •<

•• • 1. C/)a//enged/4fgumente contains 4/yumenf, or . . ^-- •••:.•;
2. Cha//enged/4fgumenfs contains an initial or broadening of ^fyumenf.
In the first case, the argument ^/gumenr is c//rec//y <ie/ea/ed by the arguments
Cha//eng/ng/4rgumente; in the second case, ;W/>ec//y.

We finally have arrived at the formal definition of argumentation stages.
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Definition 19. ' • "
An a/-gwmert/af/on s/age of an argumentation theory (Language, Ru/es,
DefeaferScnemes) is a defeat status assignment of a range of arguments in the
language Language with rules in Ru/es,

l/ndefeafed/4ryumenfs (Defeateddngumente), . ..•> . '
such that the following holds:

/Injumenf is an element of DefeatecMrgumente if and only if ^rgumenr is
defeated by arguments that are elements of Undefeated/Anjumente.

The premises and conclusions of the arguments in the range of the
argumentation stage are the /vem/ses and the CO/7C/«.S(O/K of the argumentation
stage, respectively. The conclusions of arguments in the range of the
argumentation stage that are not an initial of another argument in the range, are
the/?«a/ cowc/us/ons of the argumentation stage. The conclusions of the
arguments in L/ndefeated,4/yumente are theyw.sf///edcortc/w.s/owj of the
argumentation stage; the conclusions of arguments in Defeated/4/yumente the

The constraint says that the arguments in Defeafed^rgumente are exactly the
arguments that are (directly or indirectly) defeated. It turns out that a given range
of arguments can correspond to zero, one or several argumentation stages of a
theory. Section 6 contains examples.

Our stages are similar to Vreeswijk's (1991, 1993) argument structures. On a
formal level, the definitions differ since the approaches to defeat in Vreeswijk's
model and in CumulA are different (see chapter 6, section 4). Moreover, the
intuitions behind Vreeswijk's arguments structures and CumulA's argumentation
are different: Vreeswijk's argumentation structures represent the arguments that
are currently undefeated, while CumulA's stages represent both the currently
undefeated arguments and the currently defeated arguments. Verheij (1995b, c)
argues that the latter is more general and closer to the idea of gradually taking
arguments into account.

Verheij (1996a) investigates the relations of CumulA's stages (in a restricted
form) and Dung's (1993, 1995) admissible sets of arguments. As Verheij (1996a)
shows, there are close relationships on the formal level. However, Dung's
admissible sets are seemingly not meant to model stages of the argumentation
process. Verheij (1996a) gives examples and formal relations that show that the
stages approach generalizes the admissible sets approach, and models the intuition
of gradually taking arguments into account.

5 Lines of argumentation and argumentation diagrams

We consider argumentation as a process, in which arguments are taken into
account, and are assigned a defeat status. Now that we have described the stages of
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this process, we will discuss lines of argumentation, that are intuitively series of
consecutive argumentation stages.

We treat the construction of arguments in a line of argumentation and the
change of status of arguments in a line of argumentation. We finish with the formal
definition of lines of argumentation and argumentation diagrams.

5.1 Construction of arguments . - ' . r . "r;

In a line of argumentation, arguments are gradually constructed. Since we consider
a line of argumentation as a sequence of argumentation stages, the gradual
construction of arguments means that the range of the stages in a line of
argumentation gradually changes. We distinguish six elementary ways to construct
new arguments from the arguments taken into account at some stage, leading to a
new stage. We also mention how these constructions affect the premises and
conclusions of the stage.

First, at any stage in a line of argumentation a «ew s/ctfeme«/ can be introduced.
Moreover, a line of argumentation can start with a statement. For instance, the
initial statement might be:

It is raining.

As mentioned earlier (e.g., in section 2 on arguments), we treat statements as
arguments with trivial structure. At this stage of the line of argumentation, where
only the statement 'It is raining' is taken into account, we have one premise and
one conclusion that coincide, namely 'It is raining'. In general, if at some stage a
new statement is introduced, at the new stage a (coinciding) premise and
conclusion are added to those of the original stage. 27

Second, a/orwaz-c/^/ep can be added to an argument taken into account. This
means that the conclusion of the argument is used to support a new conclusion. For
instance, the statement that it is raining can be used to support whether to put on a
raincoat or not. We obtain the following single-step argument:

It is raining.
So, it is wise to put on a raincoat.

If a forward step is added to an argument, the premises do not change, but a new
conclusion is introduced. In the example, the new conclusion is 'It is wise to put on
a raincoat'.

Third, a ftacAwa/-^ step can be added to an argument. This means that the
premise of the argument is supported by a new premise. For instance, if I am in a
room that has no windows, I might not take the statement that it is raining for

^ It can of course be the case that such a premise or conclusion is not new because it was
already a premise or conclusion of anor/ier argument taken into account.
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granted, and look for support of the conclusion that it is raining. For instance, the
following single-step argument can support that conclusion:

A colleague is completely soaked and tells that it is raining. •;...;•
So, it is raining.

If a backward step is added to an argument, a premise is replaced by one or more
new premises, while the conclusions remain the same. In the example, 'It is
raining' is no longer a premise, and is replaced by the premise 'A colleague is
completely soaked and tells that it is raining'.

Fourth, a 6roacfe«/>jg step can be added to an argument. This means that the
conclusion of a (non-trivial) argument is supported by an additional reason. For
instance, it might be the case that the conclusion that it is raining gets additional
support by the weather report on the radio. In that case, the previous argument can
be broadened to the following argument:

A colleague is completely soaked and tells that it is raining; The weather-report
on the radio says that is raining.
So, it is raining.

If a broadening step is added to an argument, the conclusions of the original stage
remain the same, while new premises are introduced. In the example, 'The
weather-report on the radio says that is raining' is a new premise.

Fifth, two arguments can be combined by swAoni/«a//ort if one of the
arguments taken into account has a premise that is the conclusion of the other. In
this way, an argument taken into account can be used to support the premise of
another argument. For instance, the argument

A colleague is completely soaked and tells that it is raining. . ; .>,•
So, it is raining.

can be subordinated to the argument

It is raining. • .-. * .

So, it is wise to put on a raincoat.

This results in the argument -••,-. ...;••• ,••>•:'

A colleague is completely soaked and tells that it is raining. • •.-•;<
So, it is raining. . . . . . . ,. ^ -.>:... ;
So, it is wise to put on a raincoat. • / • f.
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In a case of subordination, a premise and a conclusion of the original stage can be
dropped at the new staged In the example, the premise 'It is raining' is dropped.

Sixth, two arguments can be combined by coorc//«ano« if they have the same
conclusion. For instance, the arguments

A colleague is completely soaked and tells that it is raining.
So, it is raining. , •.>.<;' ..• <, •; -; -

a n d • • . . . ; : - . : • . • - . . . \ . • , • - • w ' - - / • > . • « > . ! . • • • ,

The weather-report on the radio says that is raining. ,. ̂ . - «•
So, it is raining.

can be coordinated, resulting in the argument

A colleague is completely soaked and tells that it is raining; The weather-report
- on the radio says that is raining. '- • r >.• •, ,•

So, it is raining.

In a case of coordination, the premises and conclusions of the original stage remain
the same at the new stage.

Summarizing, we distinguished six types of argument construction:

1. Introducing a new statement • ; :
2. Adding a forward step <r< . .,
3. Adding a backward step
4. Adding a broadening step
5. Subordinating one argument to another
6. Coordinating two arguments

Each of these types has an inverse, that can be considered as a type of argument
deconstruction. For instance, the inverse of the introduction of a statement is the
withdrawal of a statement. However, we focus on argument construction.^

5.2 Change of status

Argumentation stages are characterized by the arguments taken into account and
by their status. It is characteristic for argumentation with defeasible arguments that
the status of arguments can change in a line of argumentation. . ,

^* It can of course be the case that such a premise or conclusion is not dropped because it
is still a premise or conclusion of anof/ier argument taken into account (cf. note 27).
" Technically, as we will see, we will define lines of argumentation in terms of argument
construction. Argument deconstruction can be considered as tacfarac&ng in a line of
argumentation.
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A basic example of the change of status is reinstatement. In a case of
reinstatement, an argument is undefeated at some stage, defeated at a second, later
stage, and again undefeated at a third, again later stage. For instance, the argument

The_object_looks_red -> The_object_is_red

can first be undefeated, then defeated by the statement ' *> • ?••"

Ralph_says_the_object_is illuminated_by_red_light,

and again undefeated by the statement -?; ' . ' ' :

Ralph_is_a_liar. '

Reinstatement depends on the order in which arguments are taken into account.
For instance, if in some line of argumentation the statement that Ralph is a liar was
taken into account first, the argument that the object is red would not become
defeated.

If we abbreviate the three arguments above as a, P and y, respectively, all lines
of argumentation, corresponding to the six orders in which the three arguments can
be taken into account, can be summarized in a so-called argumentation diagram
(Figure I). The nodes in the diagram correspond to argumentation stages. The 0
corresponds to the stage with empty range, at which no arguments have been taken
into account. If an argument is defeated in a stage, it is denoted in brackets. The
arrows indicate the transition from one stage to the next in a line of argumentation.

o " '• .";. '

* • • " v " " • * • • • • - - > • • ••

a p y

••"'•• ; ( c o f " * a y * " * (P )y •"'_;•

" ( P A • -;...,-....• •;-- •

• Figure 1: Reinstatement . . •

The diagram shows that in only one of the lines of argumentation the argument a
is reinstated, namely in the line of argumentation in which first a, second p, and
third y is taken into account.

In a line of argumentation, the status of an argument can change again and
again. This leads to the notion of the status of an argument 'in the limit'. If in a
line of argumentation from some stage onwards the status of an argument remains
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constant, either undefeated or defeated, the argument is said to be undefeated or
defeated in the limit, respectively.^ <"

5.3 Definition of lines of argumentation and argumentation diagrams

Shortly we define lines of argumentation and argumentation diagrams. We need
some auxiliary definitions.

In order to capture the six ways of argument construction that we discussed, we
observe that they have a common characterizing property: the structure of the
initial arguments is reflected in the structure of the newly constructed argument.
The structural reflection of an argument in another is made precise in the following
definition. : ~ •- - -.<• . . • .

Definition 20. • r t..
The wax/ma/ argwwe>j/ sc/ie/we of an argument is defined recursively as • ' • • '
follows:
1. The maximal argument scheme of an argument of the form Senfence is

•Senfence.
2. The maximal argument scheme of the form {{^ryumenr, ^rgumenfj} ->

Conc/us/on is {{/Wax^fyScheme, MaxA^gSchemen}} -» Conc/us/on,
where /Wax/^fgScne/nej is the maximal argument scheme of /Jryumenf,, for
all i = 1,..., n.

3. The maximal argument scheme of {^rgumente, /Jryumenten} ->
Conc/us/on is {/Wax^/ySchemes,, .... Max^rgScnemesJ -> Conc/us/on,
where {Max^ngfScnemes} -> Conc/us/on is the maximal argument scheme
of {/4/gumente} -> Conc/us/on, for all i = 1,..., n.

An argument /^rgumenf is s/rMC/ttra//>> re/7ec/ec/ in an argument /Jrgumenf' if
there is an argument in the range of Argumenf that is an instance of the
maximal argument scheme of

The maximal argument scheme is just the argument itself, but with 'wildcarded
premises'. The term 'maximal argument scheme' is used because the maximal
argument scheme of an argument is the argument scheme that has a (the) maximal
set of instances among the argument schemes that have the argument as an
instance.

We can now define the successors of a stage, lines of argumentation and
argumentation diagrams. The following definition implicitly refers to an
argumentation theory (Language. Ru/es, DefeaterSchemes).

3" In Pollock's Theory of Defeasible Reasoning (Pollock, 1987-1995) and Vreeswijk's
Abstract Argumentation Systems (Vreeswijk. 1991, 1993) a similar notion is defined.
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D e f i n i t i o n 2 1 . ' > .»?? i J , - .- / ' •.. • . .*•
A stage Stage, has a stage Sfagej as its successor if all arguments in the range
of Stage, are structurally reflected in a stage Stage2- A /;«e o/argu/wewra/zoM is
a sequence of argumentation stages Stage,, Stage2 Stagen,... (not
necessarily finite), such that for all natural numbers i Stage;,., is a successor of
Stage;. A //we o//oruw<i orgM/wen/af/on is a line of argumentation that consists
of stages with a constant set of premises. A //we o/6acArward orgM/new/af/ow is
a line of argumentation that consists of stages with a constant set of
conclusions. An argw/we«/a//ow c//'agra/w is a set of lines of argumentation.

In a line of argumentation, there is no constraint on the status of the arguments.-"
A stage can have zero, one or several successors. In fact, stages will often have
many successors.

Our definitions of successors and lines of argumentation are related to
Vreeswijk's definition of successors and argumentation sequences, respectively.
However, they differ in three ways. First, the approaches to defeat in Vreeswijk's
model and in CumulA are different (see chapter 6, section 4). Second, Vreeswijk's
argumentation sequences represent how the set of arguments that are currently
undefeated changes in argumentation, while CumulA's lines of argumentation
represent how the set of arguments taken into account, whether undefeated or
defeated, changes, and how the statuses of the arguments change. Third, CumulA's
lines of argumentation are more general than Vreeswijk's argumentation sequences
since the latter have fixed premises. Vreeswijk's argumentation sequences are
therefore comparable to CumulA's forward lines of argumentation. The relation
between successors in Vreeswijk's argumentation sequences is simpler than the
relation between successor stages in CumulA's forward lines of argumentation.
This is due to the fact that CumulA's stages are representations of all arguments
currently taken into account, whether undefeated or defeated, while Vreeswijk's
argument structures are only representations of the arguments currently
undefeated. The advantages and disadvantages of the two approaches deserve
further study.

We stress that the definition of stages above is not a constructive definition of
the successors of a stage. It does provide a construction of the argw/wen/s in the
ranges of the successor stages, but not of the s/cr/wses of these arguments. It is
probably not easy to define the relation between the statuses of the arguments in
the range of a stage and in the range of a successor, since a change of status of one
argument can affect the status of a cascade of other arguments.

•" Henry Prakken has pointed out to me that in cases of multiple stages with equal range, a
constraint on the status of arguments seems appropriate. Since each of the multiple stages
represents a choice of status, it seems natural that the choice should be kept constant in the
successor stages. The problem is that the choice cannot always be kept constant. As a result,
it should be made precise how the choice can be kept 'as constant as possible'. We leave
this problem for future research.
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Nevertheless, CumulA's lines of argumentation represent how argumentation
with defeasible arguments proceeds. More precisely, they represent how
argumentation ca« proceed, and not how such argumentation S/JOWW proceed. We
give an example of the distinction: both a line of argumentation in which
counterarguments are systematically neglected, and one in which at each stage
arguments are challenged by counterarguments that are newly taken into account,
fit in the definition above. The second seems closer to how argumentation should
proceed. However, a line of argumentation of both types can serve a purpose. A
line of argumentation of the first type can help to find all arguments supporting a
fixed point of view, while one of the second type can lead more efficiently to
justified conclusions.

Which lines of argumentation are preferred with respect to specific purposes
and standards, e.g., efficiency, can be regarded as constraints on lines of
argumentation. Such constraints define argumentation protocols. Because of the
generality of CumulA's lines of argumentation, it seems likely that very different
protocols can be defined on them. Research on protocol in the context of
argumentation with defeasible arguments has only recently started (see note 6),
and is a promising direction of future research.

We finish this section with the definition of forward and backward extensions.
Intuitively, a forward extension is the result of collecting as many arguments as
possible from a given set of premises. A backward extension is the result of
collecting as many arguments as possible, supporting a given set of conclusions.

Definition 22.
A/oMvordex/em/ort of a set of sentences Prem/ses is an argumentation stage
CnctefeatecMrgumente (DefeafecMfgumente) with premises in Prem/ses that
has no successor stage with premises in Prem/ses. A forward extension
L/ncfefeatecM/gi/mente (DefeatecMfgumente) of a set of sentences Prem/ses is
co/wp/e/e if its range contains all arguments with premises in Pre/rj/ses. A

/ow of a set of sentences Conc/us/ons is an argumentation stage
(DefeatecM/gi/mente) with conclusions in Conc/us/ons

that has no successor stage with conclusions in Conc/us/ons. A backward
extension tynctefeated/4«7umente (DefeatecMfgumente) of a set of sentences
Conc/us/ons is cowp/e/e if its range contains all arguments with conclusions in
Conc/us/ons.

A set of sentences can have zero, one, or several forward and backward extensions
(possibly with empty range).

The definition of forward extensions has counterparts in many argumentation
models, but the distinction between forward and backward extensions is to our
knowledge new. Formally our definitions of extensions and complete extensions
are close to Dung's (1993, 1995) preferred and stable extensions,
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respectively.^ Verheij (1996a) shows the formal relations between Dung's
definitions and our definitions (for a version of CumulA, restricted to unstructured
arguments and simple defeaters). It turns out that there are subtle distinctions and
that the definition of extensions above corresponds somewhat better to the intuition
that in an extension as many arguments are taken into account as possible.

6 E x a m p l e s •., ,:.„ v ^ - ; •• ••>« ... .-•;..;•:-; ^ ^ . ,;-,• , ,....-, . .;; . ,-i

In this section, we discuss a number of examples of argumentation theories in
CumulA. The examples are meant as an illustration of the formal definitions
of CumulA.

6.1 Sequential weakening and parallel strengthening .̂,. ' •.., :;-.

In the sections 3.3 and 3.4, we discussed examples of sequential weakening and
parallel strengthening. Here we describe the argumentation theories corresponding
to the examples.

First, we treat the sequential weakening example about heaps of sand, based on
the sorites paradox. The following argumentation theory represents it, for a fixed
natural number n:

Language = {Heap(i) | i = 0, 1, 2, ...}
flutes = {Heap(i) -> Heap(i + 1) | i = 0, 1, 2, ...}
DefeaterScnemes = {[Heap(i)] | i > 0 }
. u {[*Heap(i) -> Heap(i+1) -» ... - • Heap(i+n)] 11 i = 0, 1, 2, ... p

Here Heap(0) abbreviates Body_of_sand_is_heap, Heap(1) abbreviates
Body_of_sand_minus_1_grain_is_heap, and for each i = 2, 3, ..., Heap(i)
abbreviates Body_of_sand_minus_i_grains_is_heap. The rules say that a body of
sand that is one grain fewer than a heap is also a heap. The first set of defeater
schemes represents that only the original body of sand is considered a heap without
further argumentation. The second set of defeater schemes represents that any
argument that contains a sequence of n steps of the rule is defeated.^ The defeater

32 Since Dung (I993, 1995) considers unstructured arguments, there is no distinction
between forward and backward extensions. '
3-* For convenience, we have left out the brackets {}.
34 The choice of n determines the "risk' we accept: for n not too large, say ten, in only a
few cases a body of sand is wrongly judged a heap, but at the same time in a few cases
reasoning can help us to determine that a body of sand is a heap. For n large, say a billion,
we will more often wrongly judge a body of sand a heap, but also reasoning can help us
more often. This trade-off between making mistakes and achieving the right results is
paramount in reasoning with defeasible arguments.
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exactly represents that such an argument becomes defeated because it contains too
many steps.

The only statement that can be undefeated is • * •;;'? • u'•v.?y!i«rs •

a o : H e a p ( O ) .,;.-••; • . > : ? j M - ^ . :-. - f - v ; ••.<•,•

Therefore the only arguments of this theory that might be undefeated are,
for i = 0 ,1 ,2 , . . . :

ov Heap(0)->Heap(1) -». . . -> Heap(i) . - ^ , . . , - ^ .• .,«

If the arguments ao, a,, ... are consecutively taken into account, the resulting line
of argumentation is the following sequence of stages: • ..-•=•••• '• ;.

aoa, :.- -:i. ;••. ^uj'

a,,., (a„ o

All arguments that contain a sequence of n steps are defeated. The first of these is
the argument a,,. As a result, according to this theory, it is justified that the body of
sand is a heap if at most n - 1 grains are taken away from the original heap.

If, for some natural number io, the conclusion Heap(io) could be justified by
some other argument than a; , the argument could be extended by n - 1 steps. It
would be an undefeated argument different from the defeated a> +„.,, and thereby
justify that the original body of sand minus ^ + n - 1 grains is a heap.

Second, we treat the parallel strengthening example about punishing John. The
following argumentation theory represents it:

Language = {Robbed, Injured, Minor_first_offender, Punished, Not_punished}
Ru/es = {{Robbed} -» Punished, {Injured} -> Punished,

{Minor_first_offender} -> Not_punished}
DefeaterSchemes = • • • . . - • .

{{{*Minor_first_offender}} - • Not_punished [{{»Robbed}} -> Punished],
{{*Minor_first_offender}} -> Not_punished [{{*lnjured}} -> Punished],
{{•Robbed}, {'Injured}} -> Punished

[{{*Minor_first_offender}}-> Not_punished]} .;.• • •-• -
1^ {[Punished], [Not_punished]}

The three rules say that John is punished if he has robbed, that John is punished if
he has injured someone, and that John is not punished if he is a minor first
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offender. The first two defeaters represent that any argument that ends in
{{•Minor_first_offender}} -> NotjDunished rebuts any argument that ends in
{{•Robbed}} -> Punished or {{*lnjured}} -> Punished. The third defeater represents
that any coordinated argument that ends with {{"Robbed}, {*lnjured}} -> Punished
rebuts any argument that ends in {{•Minor_first_offender}} -> Not_punished. The
last two defeaters represent that the statements that John is punished and that John
is not punished are defeated.

The following are the (non-statement) arguments of this theory:

a,: {{Robbed}} -+ Punished « • • •_ •< -
0:2: {{Injured}} -> Punished
P: {{Minor_first_offender}} -> Not_punished < - • ; : . : . •%} , ; • ;
" i2- {{Robbed}, {Injured}}-»Punished • - . • • • . - ics n ^ V i

The arguments a, and 02 are the narrowings of the argument a,2. In Figure 2, the
main lines of argumentation with these arguments are shown.

0

£ • ' V • • • •

P(a,) «.2

Figure 2: Parallel strengthening ..

The diagram shows that the arguments a, and 0:2 only remain undefeated in a line
of argumentation if they are both taken into account before P is.

6.2 Conflicting arguments: collective or multiple stages • •••-.:•_

It is often the case that arguments arise that have incompatible conclusions.
Sometimes additional information can be used to resolve the conflict, for instance
there can be information about the preference of the arguments.-^ However, it
remains possible that there is not sufficient information to resolve the conflict. In
that case, the conflict can be resolved by choosing one or more of the arguments
involved in the conflict. Two general approaches to dealing with such situations

•** In chapter 3, section 6. it is discussed how such conflict-resolving information can be
represented in Reason-Based Logic. In chapter 4, section 5, other approaches of dealing
with conflicts are treated.
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have been proposed in the literature. The first is to discard all arguments in the
conflict, as Pollock (1987) does, the second is to discard some of the arguments in
such a way that the conflict is resolved, while as few arguments as possible are
discarded, as for instance Vreeswijk (1991, 1993) does. Since in the latter case,
there is normally no unique choice of arguments to discard, multiple solutions can
a r i s e . • " • ' •"'"' " • •• " -' '•'•' "•• " - • • ' " • - > ' ' > •

Both approaches have their merits, and seem reasonable in certain cases.*'
Therefore, in CumulA, both approaches can be dealt with, the first by collective
defeat, and the second by multiple stages, i.e., different stages with equal range. As
an example, we look at the following arguments:

J o h n h a s s t o l e n . S o , h e i s p u n i s h e d . .-.';;• • • - . ^ . i ; • • •-•• •' •.•••* n > T . . i ,?•;•<

John is a minor first offender. So, he is not punished. " T " ' ' C-'"''
It is nice to have a picnic in the woods. So, we go to the woods. '••<'•' • -;
It is nice to have a picnic at the sea. So, we go to the sea.

The first two of these arguments have incompatible conclusions, the second two
also. In the first conflict, it seems best to consider both arguments defeated without
further information. In the second conflict, it can be argued that one of the two
arguments should be defeated, each choice being equally good. Both are modeled
in the following argumentation theory (Language, Ru/es, DefeaterSchemes):

Language = {Has_stolen, ls_punished, Minor_first_offender, ls_not_punished,
Nicejn_the_woods, Go_to_the_woods, Nice_at_sea, Go_to_the_sea}

Ru/es = {Has_stolen -> ls_punished, Minor_first_offender -> ls_not_punished,
Nice_in_the_woods -> Go_to_the_woods, Nice_at_sea -» Go_to_the_sea}

DefeaterSchemes = {[*ls_punished, •ls_not_punished],
•Go_to_the_woods [*Go_to_the_sea], *Go_to_the_sea
[*Go_to_the_woods]}

The main arguments of this theory are:

•'̂  These solutions correspond to what are often called extensions. In the literature, three
perspectives on multiple extensions have been proposed, as Makinson (1994, p. 38) notes:
the skeptical perspective, the liberal (or credulous) perspective, and the choice perspective.
The skeptical perspective focuses on the intersection of the extensions, the liberal
perspective on their union, and the choice perspective on a selected extension. In CumulA,
we prefer the latter perspective since the skeptical perspective is closely related to collective
defeat, as Pollock (1992, p.7) remarks, which can be dealt with using a compound defeater
(cf. section 3.5), while the liberal perspective does not help to resolve conflicts: the union of
the multiple extensions that arise to resolve some conflict, again contains th; conflict.
37 For instance. Pollock (1994; 1995, pp. 62-64) argues that while in epistemic reasoning
unjustified choices are unreasonable, in practical reasoning it is sometimes better to make
some choice than none. Since he focuses on epistemic reasoning, he prefers the collective
defeat approach.
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a : Has_stolen-> ls_punished „ . . . . . ; . , >-,-. ' j - ^ ns^ • • ' ' • '

P: Minor_first_offender -»ls_not_punished , ,; , - *-i/.W >r, - i-)^ -

y: Nice_in_the_woods-> Go_to_the_woods .., . ^ ;,, ,-,, ,f--,^•'1,^1-104

5: Nice_at_sea -»Go_to_the_sea / ' ';,-'/? - < ..•- ^f--^'v'- 'H

The two conflicts are handled in different ways: the conflict of the arguments a
and P is dealt with by the compound defeater [*ls_punished, *ls_not_punished],
while the conflict of the arguments y and 8 is dealt with by two simple defeaters,
*Go_to_the_woods [*Go_to_the_sea] and *Go_to_the_sea [*Go_to_the_woods].

Figure 3 shows two argumentation diagrams of this theory. On the left, the
arguments a and P are taken into account, and are collectively defeated. On the
right, Y and 5 are taken into account, resulting in two stages with the same range.
(They are separated by a comma.) There are two stages with all four arguments as
range, namely (a P) y (5) and (a p y) 8.

0 0

a p y 8 . , . . ,

(ap) Y(8),(y)S

Figure 3: Collective defeat and multiple stages .,.• ;

Although the example argumentation theory is tailor-made for the four mentioned
arguments, it shows how general argumentation theories can be defined, in which
there is one class of arguments that are collectively defeated in cases of conflict,
and another class of arguments that lead to multiple stages in cases of conflict.

To finish the example of collective defeat and multiple stages, we show what
happens if there are additional arguments that challenge one of the arguments in
the conflict. For instance, there might be two additional arguments

e: S e v e r e _ c r i m e /.,•!• >• . •••-;•.•-•• :; -

£ Stormy_weather

and two additional defeaters

•Severe_crime [*Minor_first_offender

*Stormy_weather [*Go_to_the_sea]. >•

In the case of collective defeat and in the case of multiple stages, one of the
arguments involved in the conflict is reinstated. Taking into account the argument
e that John's crime was severe, has the effect that a, challenged by e, is defeated,

• . • f . _ • " . - • ' .

ls_not_punished]

» - • - : - ; • . - • • - < •

- • - . C - ; •

• • f ' . ' •
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and that as a result a and p are not collectively defeated. Taking into account the
argument £ that the weather is stormy, has the effect that y, challenged by £, is
defeated, and that as a result y and 8 do not give rise to multiple stages. Figure 4
shows the corresponding argumentation diagrams. ., , ^ . :

Zi

ct,

xp)

0

V

p

• - . . . .

* • . „

(a)Ve

• - >

E
Z i '

Y

Y(8).(Y)5

0

8

••-
(YK

• * «

5 ; ' • . • • • • : • • ; - . ' • • • "

••'""- ' "• '* Figure 4: Reinstatement of conflicting arguments

The diagrams shows that collective defeat and multiple stages still occur if e and £
are not taken into account.

6.3 Stable marriages

Dung (1995) discusses the so-called s/a6/e worr/age /?roWe/w in terms of
argumentation. In this problem, there is a number of people, some of which love
someone else, and some of which are married or, more generally, have a love
affair. However love is not always answered, and people do not always have a love
affair with the one they love. As a result, love affairs are not necessarily stable. For
instance, if John loves Mary, and Mary has a love affair with Alex, the affair of
Mary and Alex is in danger, since John will strive for an affair with Mary.
However, this threat to Mary and Alex's love affair is overcome if Mary loves
Alex: in that case, she will not answer John's attempts. The problem is now to
determine which collections of love affairs are stable.^*

We examine the case that there is a 'love circle': there are n persons
person,,..., person,, (with n larger than 2), and for i = 1, ..., n, person, loves
person,*,, and person,, loves person,. In this situation, the fact that person, loves
person,*, is a threat to the affair which person,,, has with person^- This case can
be translated to an argumentation theory (Language, Ru/es, DefeaterSchemes), as
follows.

^ Dung (1995) discusses the slightly more general problem, in which each person has
linearly ordered the other persons according to his or her 'love preference'.
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- Language = {Loves(person,, person,,,), Affair(person,, person,,,) | i is an integer
modulo np9

Ru/es = {Loves(person,, person,,,) -> Affair(person,, person,,,) | i is an integer
modulo n}

DefeaterSchemes = {Loves(person,, person,,,) [*Affair(person,,,, person,^)] | i is
an integer modulo n}

We consider the following arguments, for i an integer modulo n:

a,: Loves(person,, person,,,) -•Affair(person,, person,,,) " - ^ '

These arguments represent that if person, loves person,,,, person, strives for an
affair with person,,,.

In the case there are four persons (i.e., n = 4), there are two stable situations, in
which all four persons have an affair: either person, and person have an affair,
and personj and person^ have an affair, or person and persona have an affair, and
person, and person have an affair. Figure 5 shows the resulting argumentation
diagram, for n = 4, that ends in two stages with equal range, that correspond to the
two intuitive solutions. : . .. •,_• ^ ;<'t-

£.' VJ' si '-A
O| Oj 03 04

, a, aj (a,) aj 0204 0:3(014)

1̂ 1̂  <i--'-ik V <£-"-'iv"-A 4." " A 1̂ 1V - •
a, (aj)a3 (0^0304 0,0,(04) 03(03)04 , ,

c-a_.••-•., ;• , " 1 ( 0 2 ) 03 (04), ( a , ) 02 (03) 04 , ;.v«»". '.

.... ."-.̂ :-.̂  .'»•-••- Figure 5: The four-persons case ./.r-:---

In the three-persons case (i.e., n = 3), there is no stable solution: any love affair
will be threatened.^ This instability is reflected in the corresponding
argumentation diagram (Figure 6). It turns out that there is no stage in which all
three arguments are taken into account. Any pair of arguments can be taken into

™ Here 'i modulo n' means 'the remainder of the integer division i/n'.
^ Note that for n odd at least one of the love affairs involves two persons of the same sex.
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account, but the third argument cannot be. In the figure this is indicated by three
question marks ???.•*'

The stages in Figure 6 have a meaning in terms of argumentation. For instance,
in the stage a, (ctj) the argument a, is not challenged, since the argument 03 is not
yet taken into account. The argument ctj is challenged by Loves(person,, persor^).
As a result, a, justifies Affair(person,, persor^), while ctj cannot justify
Affair(persori2, persona). „ . , . - .._..... . . . . . . „ . ,...„,

' ' •• -*•• ' ' t ' . ' , ' ' j I I I ' ; Y • •.- - ' : ^ •.•f*fr?U«*-.\ "•>> ••;'.?•- v . s . ' i i « - ' t i V :~ ; ' 0 ; - f b ' ' ! A

i f • - - ;•'!• •> . . . . . .

« * • • . ' ^ - - . - . - • • ^ - - ' v " " • • • • • • - >

a, (a,) 02(0,)

Figure 6: The three-persons case

The three-persons and four-persons cases directly generalize to the cases of any
odd and even number of persons, respectively. In the odd case, there is no overall
stable solution, in the even case there are two.

6.4 The neurotic fatalist

In the three-persons case above, we saw that not all ranges of argumentation
theories correspond to a stage. However, in that example there were maximal
subranges that did correspond to a stage, viz. the two-argument subranges. We
now show an argumentation theory that has a range, such that there is no maximal
subrange that corresponds to a stage.

As an example, we consider the story of the neurotic fatalist. There is one thing
our fatalist has been certain of for months: if the world does not end today, it will
end tomorrow. Each morning after sunrise he admits that he was wrong the day
before, and that the world does not yet end today, but that he nevertheless believes
that the world will end the next day.

The arguments of the neurotic fatalist can be formalized in the following
argumentation theory:

*' The fact that there is no stage with all three arguments corresponds in Dung's (1995)
approach to the fact that there is no stable extension. The stage approach gives more
information about the argumentation theory than Dung's approach since there are stages
with less than three arguments. See Verheij's (1996a) comparison of the two approaches for
details.



152 Chapter 5: CumulA: a model of argumentation in stages

Language = {World_ends(day,), -,World_ends(dayi) | i = 0. 1, 2,... } • ' '
Ru/es = {-,World_ends(day,) -> World_ends(day,,,) | i = 0, 1, 2, ... } • -
DefeaterSchemes = {•-,World_ends(dayj) [•World_ends(dayj)] | i > j }

We consider the following arguments, for i any natural number: *» «"• .*.

a|!->World_ends(day,)-+World_ends(day^i) <,^ >.,-.: •. .;,->-^*-

At day 0, our fatalist considers the argument <Xo that the world ends at day 1. It is
undefeated. The next day he considers the argument a,: the world did not end at
day 1, so it ends at day 2. The argument a, defeats the argument a,). At each new
day, he takes a new argument ô  into account, that defeats all previous arguments,
since, for each i, the argument a^, challenges the argument ctj.

We get the following stages if the arguments ao, a,, otj, 03,... are consecutively
taken into account:

(ao)a,
,)a2

d , 012)0:3

In Figure 7, an overview of these stages is given in an argumentation diagram of
the theory.

' ' ' • ; • • • » . • I . F

• >

1..... , , . *

. -i

- ' ' • • • ! • • ' • .

• ; ; ; • ; /

' ' - ' ' • • • • ' • • " • '

i ' •

• • - ' • • ,

a

(ao) a.

V

(ao a, 02)03

Figure 7: The case of the neurotic fatalist
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Although the argumentation theory itself may not be considered sensible, the
theory is technically interesting since there is no stage with all arguments a< in its
range, nor a maximal subrange that corresponds to a stage. Nevertheless there are
several sensible stages. This can be seen as follows.

Assume first that there is a maximal subrange Subrange. If Subrange is finite,
there is a natural number io that is the maximum of the indices i of the arguments
a; in Subrange. But then the stage (a, aj ... otj ) a; +, has larger range, which
contradicts the assumption. Therefore we can assume that Subrange is infinite. It is
impossible that all arguments ot; in Subrange are defeated, since in this
argumentation theory an argument can only be defeated by an undefeated
argument. Therefore, let io be the smallest natural number i, such that ctj is not
defeated. However, if a; is not defeated, all arguments that challenge it, i.e., all ctj
with i > io, must be defeated. But that is impossible, since then for each argument
a; there must be an undefeated argument that challenges a;, and such an argument
must have an index larger than i. This contradicts the choice of io. .
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Analyzing argumentation models
using CumulA

After the description of the argumentation model CumulA in chapter 5, we show
how CumulA can be used to analyze existing argumentation models. We start with
a discussion of distinctions that can be made between argumentation models. We
make these distinctions precise by showing their formal counterparts for CumulA's
argumentation theories. After capturing elements of a number of existing
argumentation models in CumulA's argumentation theories, we apply the
distinctions to these argumentation theories.

In section 1, we discuss types of arguments. In section 2, we treat argument
structure and defeat. We distinguish sentence-type, step-type and composite-type
defeat. In section 3, we consider individual and groupwise defeat. In section 4, we
characterize triggers of defeat. We distinguish inconsistency-triggered and
counterargument-triggered defeat. In section 5, we deal with directions of
argumentation. We distinguish forward, backward and bidirectional
argumentation. In section 6, we capture elements of several major argumentation
models in CumulA's argumentation theories.' In section 7, the distinctions made
are applied to these argumentation theories. In this way, the argumentation theories
capturing elements of existing argumentation models can be compared on formal
grounds.

1 Types of arguments

Several types of arguments, that have been proposed in argumentation models, can
in CumulA (chapter 5) be distinguished by their structure.

The first type of arguments are the j/a/eme««, that have trivial structure:

' We stress that we give no formal relations between the argumentation models and
CumulA's argumentation theories.
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Many argumentation models do not deal with structured arguments. For instance,
Poole's Logical Framework for Default Reasoning (Poole, 1988)^ uses special sets
of sentences without structure. In Dung's Argumentation Frameworks
(Dung, 1993, 1995), arguments are structureless objects, that can attack each other.

The second type of arguments are the j/ng/e-j/ep argM/wenfs, which have the
simplest non-trivial structure: »',)»Ts f1v».>ii}f? i ;"CiH ;;'i;.- 4 ^ ' % ' ';.'*; A

^?eajo/j . • . • - • - • - •

So,

For instance, in Propositional and First-Order Predicate Logic,-* the semantical and
proof-theoretical consequence relations, denoted as N and K respectively, which
are often interpreted as arguments (e.g., Purtill, 1979; Copi, 1982), have this
structure.

The third type of arguments are the arguments that are constructed by
j , such as the argument: , «•-.,-...-.•,. .,;.-;

S o , , , ; ; ;
S o , C O A J C / M J / O « . , . , . _,.,, ; • , . . , ' , , •

This argument structure is most common. For instance, in Lin and Shoham's
Argument Systems (Lin and Shoham, 1989; Lin, 1993) and Vreeswijk's Abstract
Argumentation Systems (Vreeswijk, 1991, 1993),'' arguments are explicitly
constructed by subordination. Also the proofs of several proof theories for
Propositional or First-Order Predicate Logic have this structure. Less obviously,"
this structure is also at the heart of Reiter's Default Logic (Reiter, 1980, 1987),*
Bondarenko ef a/.'s Assumption-Based Framework for Non-Monotonic Reasoning
(Bondarenko e/ a/., 1993), and Loui and Chen's Argument Game (Loui and
Chen, 1992). Pollock's linear arguments in his Theory of Defeasible Reasoning
(1995, p. 39)6 can jjg regarded as having this structure.?

^ See also chapter 4. section 4.2.
^ See, e.g.. Van Dalen (1983) or Davis (1993). •• ".
* See also chapter 4, section 5.2. " •'• ' ' '• . '••
' See also chapter 4. sections 3.1. 4.2 and 5.2. ' ' -• ••
^ See also chapter 4. section 4.2.
' Pollock (1995, p. 39) defines linear arguments as finite sequences of sentences, each of
which is either a premise or supported by a previous member of the sequence. The structure
of linear arguments is not only ambiguous, as Pollock (1995, p. 87) notes, but is somewhat
less expressive than that of subordinated arguments, because it cannot distinguish different
occurrences of the same sentence in an argument. For instance, the arguments
{{{M} -»• 6}} -> C and {{{{/*}} -* 6, /A}} -> C in CumulA both correspond to the linear
argument /A, 6, C.
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The fourth type of arguments are the arguments that are constructed by both
of arguments, for instance: > ••> c . ; ' «:•'«.''?'•>

S o , C O / J C / M S / O / J . •'.-. '.'*•'-••• '•>!

This is the argument structure that is used in CumulA. In the argumentation theory
of Van Eemeren and Grootendorst (Van Eemeren e/ a/., 1981, 1987), real-life
arguments are reconstructed and evaluated using the mentioned argument
structure.8 Van Eemeren and Grootendorst have included both subordination and
coordination in their model since both can be found in argumentative texts. In the
next section, we argue for the need of coordination, especially for defeasible
arguments because of defeat by pararallel strengthening and the accrual of reasons.

We mention a fifth type of argument structure that occurs, for instance, in
natural deduction proofs of Propositional and First-Order Predicate Logic, and in
Pollock's Theory of Defeasible Reasoning (Pollock, 1987-1995): argMwn/s w/7/i
f up/705/f/o/u. For instance, such arguments occur if the natural deduction rule of
inference -^-Introduction is used in a proof or argument:

A proof of Q with suppositions in a set S u {Q} can be extended to a proof of
P—• 0 with suppositions in the set S.

Here, a proof is considered relative to a set, the suppositions of the proof. The rule
of inferences-Introduction above shows that the set of suppositions can change.
After the introduction of P-> Q, the supposition Q can be withdrawn.

If one reads 'argument' instead of 'proof, this rule of inference becomes a type
of argument construction, as Pollock does. To include this type of argument
construction in his argumentation model, Pollock (1995, p. 86ff.) constructs
arguments not from sentences (as in CumulA), but from sentences relative to a set
of suppositions, formally an ordered pair of a sentence and a set of sentences
(P, S). For instance, the rule of inference -^-Introduction becomes: '

An argument supporting (Q, S u {Q}) can be extended to an argument
supporting (P -> Q, S).

We have not included this type of argument in CumulA for two reasons. First, we
think that the intuition of an argument without suppositions is easier to grasp than
the intuition of an argument with suppositions. Whereas arguments without
suppositions can be thought of as consisting of steps that represent the support of a

* The terminology of Van Eemeren and Grootendorst differs from ours. Their multiple
arguments correspond to CumulA's coordinated arguments (cf. chapter 5, note 7).
' We paraphrase Pollock's 'rule of inference graph formation' called conditionalization
(Pollock, 1995, p. 90).
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state of affairs (expressed by a sentence) by another state of affairs (expressed by
another sentence), arguments with suppositions cannot be thought of that way.
This is due to the fact that some

'... natural deduction rules have an indirect, even quasi-metalogical character'
(Haack, 1978, p. 19).

This does of course not diminish the importance of the arguments with
suppositions based on natural deduction rules, and their role in argumentation
certainly deserves further study.

Second, arguments with suppositions behave unexpectedly if they are
defeasible, as Vreeswijk (1993, p. 185ff.) shows. He gives a technical example in
which arguments that should be undefeated nevertheless become defeated if the
rule of -^-Introduction is adopted. Vreeswijk's conclusion is that it is best to leave
arguments with suppositions out of theories of argumentation with defeasible
arguments for now until we have a better understanding of the behavior of more
simply structured defeasible arguments. Since, to the best of our knowledge, the
problems pointed out by Vreeswijk have not been solved, we have adopted the
same conclusion.

' r > V . . . - . . , : ! • • : ; . . • • , - • . - • : • • . \ ' • ; - - O M • ; ; • : . ' , . . . • • , " • ' < ; - n / •

2 Argument structure and defeat
• ? • • - • • . , '• ^ . . . * . . » .* ^ / " • ' - , ? •. • r . '.• ; ^- -•

The structure of an argument can determine whether an argument is defeated. In
this section, we treat different types of structure-based defeat, as they are found in
existing argumentation models. We show how the types of defeat can be
distinguished in CumulA.

The first and simplest type of structure-based defeat is the trivial type of wo
de/eaf at all. The prototypical examples of argumentation models that have no
defeat are the classical deductive logics, such as Propositional and First-Order
Predicate Logic. In CumulA, an argumentation theory has no defeat if it has no
defeater schemes.

The second type of structure-based defeat is sert/e/ice-fype cfe/ea/. The defeat of
an argument is of sentence-type if the defeat depends on sentences occurring in the
argument. For instance, an argument

So, CO«C/M5/O/J.

might be defeated because of an (undefeated) statement that denies the conclusion,
such as:
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This is a case of sentence-type defeat: any argument containing the sentence
CoHc/Mj/ort is defeated if the statement iVo/cowc/ns/oH is undefeated. A defeater
scheme representing this in CumulA has the form

A/of_conc/us/on [*Conc/us/on].
-•»• '"".'1 ' • • . ' : • " j ; . - ; _ ' i . t J ", ?i <lj'"'i

The challenged argument scheme *Conc/us/on has any argument with conclusion
Conc/us/on as an instance. If any argument with conclusion /Vo/_conc/us/on
challenges any argument with conclusion Conc/us/on, this would be represented by
the defeater scheme ••>*-••»'•.•=• <»- . s i—^-!>•» . ! • . •* • »fjj ' . v j « i i * i M « - . v ) ^

• / V o f _ c o n c / u s / o n [ * C o n c / u s / o n ] . '*> 'i'.-!s-'i'^rsrfj."»-trv» ••••;*- -.••':•.««•. *. w . . . . ,

We say that the two mentioned defeater schemes are of sentence-type, which
means that all their argument schemes have a statement as an instance. An
argumentation theory has sentence-type defeat if it has sentence-type defeater
schemes.

Argumentation models with sentence-type defeat are Poole's Logical
Framework for Default Reasoning (Poole, 1988), and Lin and Shoham's Argument
Systems (Lin and Shoham, 1989; Lin, 1993). Also Dung's Argumentation
Frameworks (Dung, 1993, 1995) can be regarded as having sentence-type defeat
since all arguments are structureless.

Bondarenko e/ a/.'s Assumption-Based Framework for Non-Monotonic
Reasoning (Bondarenko e/ a/., 1993) describe a special kind of sentence-type
defeat, that we call attw/w/?f/'on-iy/?e de/ea/. There is a special set of assumptions,
that can be used as premises of arguments. If there is an undefeated argument that
has the denial of an assumption as its conclusion, all arguments with that
assumption as a premise are defeated. A defeater scheme representing this in
CumulA has the form

• - - • • • • • - ; . - •• r . : • - . - < ' : , • - • • .

*/Vof_assumpfton [/\ssumpf/on]. - •'

This defeater scheme has no consequences for arguments that do not have
/Issumpf/on as a premise, even if/^ssumpf/on occurs in the argument elsewhere. A
sentence-type defeater scheme, as the one above, that has only statements as
challenged arguments, is of assumption-type. An argumentation theory has
assumption-type defeat if it has defeater schemes of assumption-type.

The third type of structure-based defeat is s/ep-rype cfe/ea/. The defeat of an
argument is of step-type if the defeat depends on a step occurring in the argument.
For instance, an argument

So, CO/JC/HS/OM.
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might be defeated because there is an (undefeated) statement that does not deny the
conclusion, but undercuts the argument step (cf. chapter 5, section 3.1): ,*

This is a case of step-type defeat: any argument containing the argument step
'fleoro/j. So, Co«c/w.s/on' is defeated if the conclusion IWercwf/er is justified. A
defeater scheme representing this in CumulA has the following form: ~•-.,•.?,-.•..• „' •

_ ,.. jv ',.-••; • • • : * P ^ \

•l/nderci/fter [{{'Reason}} -> Conc/us/on].

Another example of step-type defeat is rebuttal (cf. chapter 5, section 3.2): an
argument

• • • i . . . : . . • ••- , - - « i s r ' ' r - - . • > : ; • • • • ; : - i r \ : t t v = - - . - ~ ; * J : ^ . ' • • . £ • • • • - • . - - " ' • . •

So, COMC/WJ/O/J. ' < . ,

is defeated because there is an (undefeated) argument that supports the denial of its
conclusion:

SO, A / 0 / _

Any argument containing the step '/?easo«,. So, Conc/ws/ow' is defeated if an
argument containing the step 'Reason,. So, Co«c/«s/ort' is undefeated. A defeater
scheme representing this in CumulA has the following form: : ...: .

{{*Reason2}} -> A/o(_conc/us/on [{{• Reason,}} - • Conc/us/on] ,-,

The latter two defeater schemes are of step-type: all their argument schemes have a
single-step argument as an instance that is not of sentence-type. An argumentation
theory has step-type defeat if it has step-type defeater schemes.

The fourth type of structure-based defeat is co/M/?os//e-̂ ype cfe/ea/. We speak of
composite-type defeat if the defeat of an argument depends on a composite
structure occurring in the argument. In chapter 5, sections 3.3 and 3.4, we
discussed two kinds of composite-type defeat: defeat by sequential weakening and
defeat by parallel strengthening. We recall that in defeat by sequential weakening
an argument is defeated because it ends in some sequence of steps. A defeater
scheme representing that any argument ending with the two-step sequence
'/teasort. So, Cortc/us/on,. So, Cortc/Ms/cw,' is always defeated has the following
form:

[{{{{* Reason}} -> Conc/us/on,}} -» Conc/us/o^]
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In defeat by parallel strengthening an argument is defeated because some argument
that has narrowings (chapter 5, section 2.4) is undefeated. A defeater representing
that any argument in which two reasons Reason, and Reason support the
conclusion Conc/us/on defeats any argument in which the reason f?easor?3 supports
Afof_conc/us/on has the following form: -"*•-,. •„ ,,,'•• i > ' ; « i- *i:-.Jiru ;=i; ^ ,

"• {{• Reason,}, {*Reason2}} -> Conc/t/s/on [{{• Reason^} -» Wof_conc/us/on]

The latter two defeaters are of composite-type, meaning that they are neither of
sentence-type nor of step-type.'" An argumentation theory has composite-type
defeat if it has composite-type defeater schemes. . , • . . * , i. a^fc^*}, ;

Most existing argumentation models do not have composite-type defeat. An
exception is Vreeswijk's Abstract Argumentation Systems (Vreeswijk, 1991,
1993). In Vreeswijk's formalism defeat depends on a conclusive force relation on
full arguments. However, since Vreeswijk only uses subordination to construct
composite arguments and no coordination, his formalism only can model defeat by
sequential weakening and not defeat by parallel strengthening. , ..;;«.;.

Defeat by parallel strengthening requires the coordination of arguments. It is
based on the natural idea of accrual of reasons:" A conclusion can be better
supported if there are more independent reasons for it. Although several people
have made the point that reasons can accrue,'^ it remains controversial.

For instance, Pollock (1991a, 1995, pp. 101-102) explicitly argues against
accrual. He thinks accrual is a natural idea, but then gives an example that makes
him doubt that reasons accrue. The example goes as follows. If someone testifies
that the president of Slobovia has been assassinated, that is a reason that the
president is assassinated. Accrual would imply that testimonies of different people
make the fact that the president is assassinated more credible. Pollock points out
that this does not generally hold and depends on contingent facts. For instance, if
testimonies are indeed independent, they make the president's assassination more
credible. However, the testimonies are not necessarily independent: we can
imagine a community in which people only confirm each other's lies. In that case,
more reasons based on testimonies do not give increasing support to the
president's assassination: more than one testimony would even make the
assassination unjustified.'-'

'0 Defeater schemes of composite-type should not be confused with compound defeater
schemes. Compound defeater schemes are defeater schemes that contain more than one
challenging or more than one challenged argument scheme (chapter 5, sections 3.5 and 3.7).
See also the next section on individual and groupwise defeat.
" Pollock (1991, p. 51) uses this terminology.
'^ Chronologically: Naess (1978) in argumentation theory, Hage (1991) in legal reasoning,
Pinkas (1991) in neural computing, Brewka and Gordon (1994) and Gabbay (1994,
pp. 196-198) in formal logic, Visser (1995. p. 177) in AI and law.
'^ A similar, more realistic, example is the following, by Henry Prakken. John likes to
walk if it is Sunday. John does not like to walk if it is either hot or raining. If it is either hot
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As a solution, Pollock proposes that different independent reasons for a
conclusion are subsumed in a new composite reason. In our opinion, this approach
probably can be made to work - Pollock does not give details. However, the
example does not «ece5s//ate Pollock's approach, while the approach does throw
away the intuitively attractive idea of accrual of reasons. Both in chapter 2 on
Reason-Based Logic and in chapter 5 on CumulA, we have presented formalisms
that capture accrual and still can deal with examples such as Pollock's. For
instance, Pollock's example is captured in CumulA by the following compound
defeater scheme: . ••••• - -- . •. -.: !•.." ..r,

[ { { • T e s t i m o n y , } , { • T e s t i m o n y ^ } - > A s s a s s i n a t i o n ] ; . ; ' : . : •_^.-

Moreover, properties characteristic for accrual, such as the property that if a
narrowing of an argument is undefeated, the argument itself is undefeated
(chapter 5, section 4.1), and the property that, if the pros outweigh the cons,
additional pros do not change the balance (chapter 2, section 5), can easily be
overlooked.

3 Individual and groupwise defeat • n -no :

The defeat of an argument often depends on other arguments. Mostly the defeat of
an argument depends on one other argument, but not always. In this section, we
distinguish argumentation models by the number of arguments that determine
defeat.

First, the defeat of an argument can depend only on itself, and not on any other
argument. We call this re^<fe/fear. For instance, an argument that has a
contradiction as its conclusion often is considered defeated, for instance in Lin and
Shoham's Argument Systems (Lin and Shoham, 1989; Lin, 1993). In CumulA, this
could be represented by a defeater scheme of the following form:

[•Confrad/ch'or)] • • . « . . ! . • : •. • •

Another example is an argument that is defeated because it contains some
sequence of steps, as in defeat by sequential weakening (chapter 5, section 3.3). If
an argumentation theory has defeater schemes, the instances of which have no
challenging and one challenged argument, we say the argumentation theory has
self-defeat.

or raining on Sunday, he does not like to walk. If it is hot and raining on Sunday, he likes to
walk. The difficulty is here that the reasons 'It is hot" and i t is raining' together are
apparantly weaker, in contrast with the principle of accrual. Since we choose to keep the
intuitively attractive principle of accrual, we propose to deal with this example by
considering i t is hot and raining" as a new reason, and not only as the coordination of two
reasons.
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Second, the defeat of an argument can depend on one other undefeated
argument. We call this j/wp/e c/e/ea/. Examples are arguments that are defeated by
an undercutter or by a rebutter, as distinguished in Pollock's Theory of Defeasible
Reasoning (Pollock, 1987-1995). In CumulA, defeat by an undercutter or rebutter
is represented by defeater schemes, such as the following two:

•L/ncfercuffer [{{*Reason}} -> Conc/us/on] •
{{•Reason^} - • A/of_conc/us/on [{{*f?eason,}} -> Conc/us/on] •' • < •

"'• •,'.-:.v<)i';*'f

Both defeater schemes are simple since their instances have at most one
challenging and at most one challenged argument (chapter 5, section 3.7). If an
argumentation theory has simple defeater schemes, we say it has simple defeat.

Third, the defeat of an argument can depend on more than one undefeated
argument. We call this /e/?-co/w/>oHMc/ cfe/ea/ (because of the form of the
corresponding defeater schemes). An example is an argument that is defeated
because its conclusion conflicts with the conclusion of other arguments, as for
instance in Poole's Logical Framework for Default Reasoning (Poole, 1988) and
Lin and Shoham's Argument Systems (Lin and Shoham, 1989; Lin, 1993). If
Conc/us/on,, ... Conc/us/on,,., and Conc/us/on,, are conflicting, this can in CumulA
be represented by a defeater scheme of the following form:

•Conc/us/on, *Conc/us/on,,..| [*Conc7us/on,J '•

This defeater scheme is left-compound since its instances have more than one
challenging argument (chapter 5, section 3.7). If an argumentation theory has left-
compound defeater schemes, we say it has left-compound defeat.

Fourth, the defeat of an argument can depend on other defeated arguments. We
call this r/g/rt-co/wpoiW <fe/ea/. An example is an argument that is defeated
together with other arguments because their conclusions are conflicting, as the
collective defeat of arguments in Pollock's Theory of Defeasible Reasoning
(Pollock, 1987-1995). If Conc/us/'on,, ... Conc/us/o/Vi and Conc/us/on,, are
conflicting, this can in CumulA be represented by a defeater scheme of the
following form:

[•Conc/us/on,, ..., *Conc/us/onn..,, *Conc/us;'onJ

This defeater is r ight-compound since its instances have more than one challenged
argument (chapter 5, section 3.7). If an argumentation theory has r ight-compound
defeater schemes, we say it has r ight-compound defeat.
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4 Triggers of defeat . ; . . . . , : .-...:•.- >.

Argumentation models can differ in the way the defeat of arguments is triggered.
Two triggers of defeat can be distinguished: inconsistency and counterarguments.
We call the resulting types of defeat inconsistency-triggered and counterargument-
triggered defeat, respectively.''*

/Hco/w/s/ency-/r/ggered <ie/ea/ has the longest tradition and is related to the
early work on nonmonotonic reasoning. Its basic intuition is that the defeat of
arguments is at heart the maintenance of the consistency of argument conclusions.
Many variants have been proposed. For instance, one of a (minimal) set of
arguments with conflicting arguments can be considered defeated, as in Poole's
Logical Framework for Default Reasoning (Poole, 1988) and Lin and Shoham's
Argument Systems (Lin and Shoham, 1989; Lin, 1993). If Conc/us/on,, ...
Conc/us/on,,., and Conc/us/on,, are conflicting, this can in CumulA be represented
by n (left-compound) defeater schemes of the following form:

• Conc/us/on, »Cc»7c/us/onj.i, •Conc/us/o/v, *Conc/us/onn •,.••> .••:;

[• Conc/us/onJ - '

This leads to indeterministic defeat since each of these defeaters represents an
arbitrary choice of a defeated argument (chapter 5, section 3.5).'^ In Vreeswijk's
Abstract Argumentation Systems (Vreeswijk, 1991, 1993), the choice of a defeated
argument is restricted by a conclusive force relation: an argument in a minimal set
of arguments with conflicting conclusions cannot be considered defeated if it has
stronger conclusive force than one of the other arguments in the set.

If an argumentation theory has defeater schemes the instances of which consist
of arguments with conflicting conclusions (with respect to some appropriate sense
of inconsistency), we say the argumentation theory has inconsistency-triggered
defeat.

CoMrt/erargMwenMr/ggerecy de/ea/ is based on another intuition: defeat is the
result of arguments challenging other arguments. The purest version of
counterargument-triggered defeat is Dung's formalism of Argumentation
Frameworks (Dung, 1993, 1995). Dung studies a binary attack relation between
arguments. In CumulA, his attacks can be represented as defeaters of the following
form: .

'•* The distinction between inconsistency-triggered and counterargument-triggered defeat
corresponds to Verheij's (1995a. b) distinction between indirect and direct defeat.
'^ As a result, indeterministic defeat leads to multiple extensions, as in many models of
nonmonotonic reasoning. Cf. the overviews by Ginsberg (1987), Lukaszewicz (1990) and
Gabbay e/ a/. (1994b). See also chapter 5, section 6.2.
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Attacks are represented as defeaters and not as defeater schemes since Dung treats
arguments as structureless objects. As a result his arguments correspond to
statements in CumulA. If an argumentation theory has defeater schemes the
instances of which do not consist of arguments with conflicting conclusions (with
respect to some appropriate sense of inconsistency), we say the argumentation
theory has counterargument-triggered defeat. Clearly, general argumentation
theories in CumulA have counterargument-based defeat.

In a way, counterargument-triggered defeat is more general than inconsistency-
triggered defeat. Whereas inconsistency-triggered defeat can naturally be captured
as a special case of counterargument-based defeat (as in the examples above), not
all counterargument-triggered defeat can as naturally be captured as a special case
of inconsistency-triggered defeat.

The distinction between inconsistency-triggered and counterargument-based
defeat can be recognized if one considers rebutting and undercutting defeat.
Rebutting defeat is by its nature an example of inconsistency-triggered defeat, but
can as we have seen naturally be captured in the defeater schemes CumulA, which
has counterargument-triggered defeat. Undercutting defeat is by its nature an
example of counterargument-triggered defeat, and can naturally be captured in
CumulA's defeater schemes, but not as naturally in inconsistency-triggered defeat.

For instance, Vreeswijk (1993, pp. 51-53) claims that it is possible to
incorporate undercutting defeat in his Abstract Argumentation Systems, which
have inconsistency-triggered defeat. However, in order to incorporate undercutting
defeat, Vreeswijk has to adapt his argumentation model, as follows. He introduces
a defeasible conditional > in his language. In a case of undercutting defeat,
Vreeswijk forces an inconsistency between the conditional and its negation. The
use of defeasible conditionals is a fine approach to undercutting defeat, and is very
similar to the approach of Reason-Based Logic (chapter 2), but requires an
adaptation of the formalism. Moreover, Vreeswijk hinges on two thoughts: he
incorporates undercutting defeat using defeasible conditionals and rebutting defeat
using argument defeat. However, we have seen that it is possible to capture both
undercutting and rebutting defeat using defeasible conditionals (as for instance in
Reason-Based Logic), and using argument defeat (as for instance in CumulA).

5 Directions of argumentation

Argumentation models can differ in the direction of argumentation they describe.
We distinguish static, forward, backward and bidirectional argumentation.

S/a//c argwmeHtaf/on occurs in argumentation models that do not treat
argumentation as a process. No sequences of stages are considered, but only stages
that are in some sense maximal. The extensions of Reiter's Default Logic (Reiter,
1980, 1987) and Poole's Logical Framework for Default Reasoning (Poole, 1988)
can be regarded as such special stages.
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orgw/we«/a//o/; is the most common among existing argumentation
models. Argumentation starts from a fixed set of premises. Arguments are
constructed by adding forward steps. In forward argumentation, the goal is to find
conclusions supported by arguments with given premises. For instance, Lin and
Shoham's Argument Systems (Lin and Shoham, 1989; Lin, 1993), Vreeswijk's
Abstract Argumentation Systems (Vreeswijk, 1991, 1993) and Bondarenko ef a/.'s
Assumption-Based Framework for Non-Monotonic Reasoning (Bondarenko e/ a/.,
1993) are models of forward argumentation. In CumulA, forward argumentation
means that a line of argumentation only contains stages with premises in a
fixed set.

Bacjbvara' argwwe«/a//on is less common. Argumentation starts from a set of
conclusions. Arguments are constructed by adding backward steps. In backward
argumentation, the goal is to find premises for arguments supporting given
conclusions. For instance, Loui and Chen's Argument Game (Loui and
Chen, 1992)'^ is a model with backward argumentation. In CumulA, backward
argumentation means that a line of argumentation only contains stages with
conclusions in a fixed set.

Bj'a7rec//o/7a/ argwmerttaft'on is the natural generalization of forward and
backward argumentation. Argumentation does not start form a fixed set of
premises or conclusions. Arguments are both forwardly and backwardly
constructed. In bidirectional argumentation, the goal is neither only to find
conclusions nor only to find premises, but a mixture of both. Except for CumulA,
we know of no argumentation model of bidirectional argumentation.'^ . . ; - •:,

6 Capturing elements of argumentation models in CumulA > .

In the previous sections, we have discussed several ways to distinguish
argumentation models. We explained how these distinctions can be made for
CumulA argumentation theories. To be able to use the distinctions to compare
existing argumentation models, we show how elements of a number of major
argumentation models can be captured in argumentation theories of CumulA. We
stress that we do not give formal relations between argumentation models and
CumulA's argumentation theories. The presented argumentation theories capturing
elements of existing argumentation models are meant to illustrate CumulA and our
views on other argumentation models, and not to show strict formal relations.

Our selection of argumentation models is influenced by our focus, as made
explicit by the CumulA model. Each selected argumentation model has been
influential, or shows a specific characteristic of argumentation that falls within our

'6 Recently, a variant of Loui and Chen's Argument Game has been implemented by
Kang.
" Pollock (1995, p. 153) describes forward and backward argumentation in another sense:
he keeps both allowed premises and desired conclusions fixed. In bidirectional
argumentation in our sense, neither premises nor conclusions are fixed.
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focus. We have selected Propositional Logic, Poole's Logical Framework for
Default Reasoning (Poole, 1988), Lin and Shoham's Argument Systems (Lin and
Shoham, 1989; Lin, 1993), Reiter's Default Logic (Reiter, 1980, 1987), Pollock's
Theory of Defeasible Reasoning (Pollock, 1987-1995), Vreeswijk's Abstract
Argumentation Systems (Vreeswijk, 1991, 1993), Bondarenko e/ a/.'s
Assumption-Based Framework for Non-Monotonic Reasoning (Bondarenko er a/.,
1993), Dung's Argumentation Frameworks (Dung, 1993, 1995), and Loui and
Chen's Argument Game (Loui and Chen, 1992).'*

We do not discuss all argumentation models in full detail, but capture elements
that fall within our focus in CumulA. Some acquaintance with the discussed
argumentation models is assumed.

• t V - J • . - : • , I V - - - . . * ! : • • • ' • ' • • " .. ! T ' • • .

6.1 Propos i t ional Logic 'f •'.-<i > . .. • -!.•••>•

We have selected Propositional Logic as an example of an argumentation model
without defeat. An argumentation theory capturing elements of Propositional
Logic in CumulA can be defined as follows:

Language = LpL, the language of Propositional Logic. " .; .
Ru/es = {{Sentence, Sentence^ -» Sentencen,, |

Sentence, Sentencen (=p̂  Sentence,^,},
where f=PL denotes the consequence relation of Propositional Logic.

DefeaterSchemes = 0 . • • •

The rules of the argumentation theory correspond to logical consequence in
Propositional Logic. There are no defeater schemes.

Mostly only single-step arguments are considered, although proof theories for
Propositional Logic can be interpreted as descriptions of subordinated arguments
from a restricted set of rules. Accounts of Propositional Logic normally do not
describe a counterpart of our lines of argumentation. Only maximal sets of
conclusions from a set of premises are considered. These are similar to CumulA's
forward extensions (restricted to single-step arguments).

This example shows that it is not necessary to explicitly distinguish classes of
strict and defeasible arguments, as is done in many argumentation models, e.g. in
Lin and Shoham's Argument Systems (Lin and Shoham, 1989; Lin, 1993) and
Vreeswijk's Abstract Argumentation Systems (Vreeswijk, 1991, 1993). If required.

'* Obvious omissions are the models of Nute (1988), Geffner and Pearl (1992), Simari and
Loui (1992), Gordon (1993a, 1993b, 1995), Lodder and Herczog (1995), extending the
work of Hage e/ a/. (1994), and Prakken and Sartor (1996). All describe significant
research, relevant for argumentation, but with a focus different from CumulA's. Nute
focuses on a Prolog implementation, Geffner and Pearl on integration of argumentation and
the so-called e-semantics. Simari and Loui on the mathematics of argumentation and
specificity, Gordon on dialogue in legal argumentation. Lodder and Herczog on dialogues
and commitment, and Prakken and Sartor on defeasible priorities. .
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an argumentation theory can incorporate a set of arguments that cannot be defeated
because the theory does not have defeater schemes that could cause their defeat.'^

6.2 Poole's Logical Framework for Default Reasoning i ^ ' . • ••-.'•.-..-•»

We have selected Poole's Logical Framework for Default Reasoning since it is the
purest example of consistency maintenance. An argumentation theory capturing
elements of Poole's Framework in CumulA can be defined as follows: , - -

: o - : s • * •

Language = LPL, the language of Propositional Logic. »i •<••.> r . ' !u- '
Ru/es = {{Sentence, Sentence^} -» Sentence,,*, | ••; ' :• -:v «.•>. r -f»u- :

Sentence, Sentencen NPL Sentence,,,.,},
where j=p^ denotes the consequence relation of Propositional Logic. > »

DefeaterScnemes = {Sentence,, ..., Sentence,,., [SentenceJ |
Sentence, Sentence,,.,, Sentencen NPL -L}, •.^•-•- • -.-^i? i'-*

where 1 denotes contradiction in Propositional Logic. • ' *<••*>•. • •:•••«' •*:•

The rules correspond to ordinary logical consequence in Propositional Logic, as in
the argumentation theory for Propositional Logic above. The defeater schemes say
that an argument is challenged by other arguments if the argument's conclusion is
inconsistent with the conclusions of the other arguments.

In Poole's Framework, only single-step arguments are considered. Poole's
Framework does not contain a counterpart of our lines of argumentation. Poole's
extensions are similar to CumulA's forward extensions.

6.3 Lin and Shoham's Argument Systems • . "• .- •;• .-jf: . \ '

Lin and Shoham's Argument Systems are related to Poole's Logical Framework
for Default Reasoning, since both deal mainly with consistency maintenance. We
have selected Lin and Shoham's Argument Systems, since in this argumentation
model it is recognized that the defeat of arguments can be studied independent of
the specific language and argument rules, and that for the study of argument defeat
it is useful to consider special sets of structured arguments, such as sets of
arguments closed under initials.

An argumentation theory capturing elements of Lin and Shoham's Argument
Systems in CumulA can be defined as follows:

Language =/Atoms u-i<4toms, ,, . . . ;,;
where /Woms is any set and -i/Woms is the set {-idtom | /Worn is an element
of /Voms} (disjoint from /Uoms).

Ru/es is any set of rules of the language. •.:•,•--•-.;> •

' " If moreover strict arguments always should defeat defeasible arguments in case of a
conflict, additional defeaters are required.
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DefeaterSchemes = {*/4tom [»-u4tom], *-u4tom [*/4tom] | /Won? is an element
o f / W o m s } . v • - •-.:••. .j.;-.'.:.

Lin and Shoham abstract from the language used. It is a set of sentences closed
under negation. The set of rules is arbitrary. The defeater schemes represent that an
argument challenges another if it has opposite conclusion.

Lin and Shoham consider subordinated arguments, and forward lines of
argumenta t ion . , - . . ^ ^ v I • f e : i ' ; i u^^ ' I • ' , «* • -u J i f i ? i »«• iv- '•••.-S*^«^f-t

• ' * " - • • ; • .

6.4 Reiter's Default Logic

Reiter's Default Logic is selected since it rightly remains influential. It should be
regarded as an argumentation model avant la lettre. An argumentation theory
capturing elements of Reiter's Default Logic in CumulA can be defined as follows:

Language = LPL, the language of Propositional Logic. •. •; \ •,
Ru/es a {{Sentence, Sentence^} -> Sentence,,*, | «i

Sentence, Sentence,, |=PL Sentencen+,},
where (=PL denotes the consequence relation of Propositional Logic.

DefeaterSchemes c
{*-iJus//ffcaton [{{*Cond///on,, ..., •Condtf/onJ} -> Conc/us/on] |

{ConcW/on, Cond/Y/onJ -> Conc/us/on is an element ^

For convenience, we restricted the language to Propositional Logic. The set of
rules is a superset of the set of rules corresponding to ordinary logical
consequence. As in Default Logic, rules have so-called justifications. A rule can
only be used if its justification is not denied. This leads to defeater schemes of a
special form: an argument justifying the negation of a justification of some rule
challenges an argument that ends with a step corresponding to the rule. So, a
default Cond/Y/on, ConcM/on,, : JusW/catfon, JusM/caton^ / Conc/us/on of
Default Logic corresponds to a rule {Condrt/'on,, ..., ConcW/onJ -> Conc/us/on in
Ru/es and defeater schemes *-JusW/ca//on, [{{*Condrf/on, •Condrf/onn}} ->
Conc/us/on], for i = 1 to m, in DefeaterSchemes. (So, defaults that only differ in
their justifications are not distinguished.)

Reiter's Default Logic implicitly describes subordinated arguments and no
forward lines of argumentation. Reiter's extensions are similar to CumulA's
forward extensions.

20 Lin and Shoham (Lin and Shoham. 1989; Lin. 1993) and Dung (1995) show how
Reiter's (1980. 1987) Default Logic can be translated to their argumentation models. In
contrast with us, they also prove formal relations.



170 Chapter 6: Analyzing argumentation models using CumulA

6.5 Pollock's Theory of Defeasible Reasoning « »;.* -v-vvwyv-.-•••• ; •,

Pollock's Theory of Defeasible Reasoning is probably the most worked-out
argumentation model. It has been developed and adapted since 1987. An
argumentation theory capturing elements of Pollock's theory in CumulA can be
defined as follows:

Language = LPL, the language of Prepositional Logic. . ,r«" .J i--"i'v-
Ru/es 2 {{Sentence, Sentence,} -> Sentencep*, |

Sentence, Sentencen NPL Sentencen^i}, * «*•
where (=PL denotes the consequence relation of Propositional Logic.

Co/tecf/VeDefeaf c DefeaterScnemes c l/ndercuttere u Rebutters u •-!;*>•

w h e r e ? T » » J . J ' T " t • .>!«••>••"".'•• . . . . t i u i •?.'>.'•>•.?••;» :•

Co//ecWveDefear =
{[{•Subreason,,, .... •Subreasonn,} ^ Conc/us/on,

Conc/us/on, Conc/us/onn is minimally inconsistent},
; . L/ndercutters= ., -^ - . . i ^ ; -v- • viyi'i.;,(,,; i

{•Conc/us/on, [{*Subreason, *Subreasonn}-> Conc/us/onj]},
and

'" • Rebutters = v - • ••. - H - ^ • • • c ; * i r ^ . . , .. v,:^:r. .}.

{{•Subreason,, *Subreasonm}-> Conc/us/on,
1v iM*. [{* Sub/eason, 2 * Sub/Bason,^ -> Conc/t/5/on2] |
in i»;t. • .••:-.<' Conc/us/on,, Conc/us/on2 ^PL 1}. '•-•

Again, the set of rules is a superset of the rules corresponding to ordinary logical
consequence. The defeater schemes are of three forms: those representing
collective defeat (restricted to arguments with inconsistent conclusions),
undercutting defeat, and rebutting defeat (see chapter 5, section 3.5, 3.1, and 3.2,
respectively). Since Pollock uses collective defeat as a general means to preserve
consistency, the set of defeater schemes is a superset of the set of defeater schemes
representing collective defeat.

Pollock describes subordinated arguments and forward lines of argumentation.

6 . 6 V r e e s w i j k ' s A b s t r a c t A r g u m e n t a t i o n S y s t e m s t; »; • :.?-:u, L < : , v . •

Vreeswijk's Abstract Argumentation Systems have been selected since
Vreeswijk's argumentation model has influenced the development of CumulA (see
chapter 5). Vreeswijk's model can be regarded as a refinement of Lin and
Shoham's Argument Systems. An argumentation theory capturing elements of
Vreeswijk's Abstract Argumentation Systems in CumulA can be defined as
follows:
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Language is any set, containing 1, denoting contradiction..«!5i: -?'
Ru/es is any set of rules in the language. .;'!>!;. ••' 'n :>iriuj}-t/i
DefeaterSchemes c {/Are/omen̂  /A^gumen^., [>AAgi/menf,0 |

There is a rule {Conclusion(/\rgumenr,) Conclusion(4fgumenf,,)} ->1}..

Just as Lin and Shoham's Argument Systems and CumulA, Vreeswijk's model is
independent of a specific language; Vreeswijk's language only contains a special
element denoting contradiction. The set of rules is arbitrary. The defeater schemes
of Vreeswijk's model represent that an argument is challenged by other arguments,
if the argument's conclusion is inconsistent with the conclusions of the other
arguments. The defeater schemes resemble those of the theory capturing elements
of Lin and Shoham's Argument Systems. However, there are three differences.
First, Vreeswijk notion of inconsistency is somewhat more general than Lin and
Shoham's since it includes inconsistency of more than two arguments. Second,
only a subset of the defeater schemes is used. Which defeater schemes are selected
depends on Vreeswijk's conclusive force relation, included in each Abstract
Argumentation System, in the following way: for arguments /Jrgumenf,
d/gumenf,,, such that there is a rule {Conclusion(/Jrgumenf,)
Conclusion(^^gt/men/n)} -> 1, the fact that for some i, 1 < i < n, /Arc/umenfj has less
conclusive force than yA/gumenf,, implies that /Argumenf, /lAgumenfr,.,
[drgumenfj is not in DefeaterSc/jemes.^' Third, the defeater schemes
corresponding to Vreeswijk's model are of composite-type, whereas those of Lin
and Shoham's model are of sentence-type. This is the result of the fact that
Vreeswijk's conclusive force relation is a relation between full arguments.

Vreeswijk's model describes subordinated arguments and forward lines of
argumentation.

6.7 Bondarenko ef a/.'s Assumption-Based Framework ^'"id. r'•-;•• .

Bondarenko e/ a/.'s Assumption-Based Framework for Non-Monotonic Reasoning
have been selected since the formalism has a specific type of defeat, that is worth
distinguishing: assumption-type defeat. An argumentation theory capturing this
specific element of Bondarenko e: a/.'s Assumption-Based Framework in CumulA
can be defined as follows: . . . . . . . . . . . . _ . „ , ,

Language = /Woms u -./^torns, • :" ...'• ;HL .:
where /Itoms is any set and -i>ltoms is the set {-i^tom | >1tom is an element
of /Wo/us} (disjoint from /Woms).

f?u/es is any set of rules in the language.
DefeaterSchemes c {*/^tom [-./Mom], *-i^fom [/Atom] | /Mom is an element

of/Atoms}.

^' It could be interesting to establish formal connections between properties of a
conclusive force relation and those of the corresponding set of defeater schemes.
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This theory is related to the one capturing elements of Lin and Shoham's
Argument Systems. The language is a set closed under negation and the set of rules
is arbitrary. However, the defeater schemes differ subtly from those in the theory
capturing elements of Lin and Shoham's, in two ways. First, the challenged
arguments in the instances of the defeater schemes are statements. As a result,
argument defeat of a non-statement argument is always indirect (see chapter 5,
sections 4.3 and 4.4), because of the defeat of a premise of the argument. The
defeater schemes are of assumption-type (see section 2). Second, not all defeater
schemes of the given form need to be included in the argumentation theory. If
Mtom [-i/Wom] (or *-./\tom [/Worn]) is included, -,/Wom (or dtom, respectively) is
called an assumption of the theory. Intuitively, an assumption can be the premise
of an undefeated argument, unless its negation is justified.

Bondarenko e/ a/.'s model implicitly describes subordinated arguments and
forward lines of argumentation. . ... .

6 . 8 D u n g ' s A r g u m e n t a t i o n F r a m e w o r k s ' . ; . ' * > < ; • • *: . " ? • ' .>•

Dung's Argumentation Frameworks have been selected since Dung has brought
the abstract study of argumentation and defeat to its extreme. Dung notices that the
basis of defeat is the attack relation between arguments. As a result, he focuses on
that relation, independent of the structure of the arguments involved. This is an
important step towards a better understanding of argumentation and defeat.

An argumentation theory capturing elements of Dung's Argumentation
Frameworks in CumulA can be defined as follows:

Language is any set. •,:.:
Ru/es = 0 .
DefeaterSchemesc {Statement, [Sfatemenfj]} * »> v, > i . <

As Lin and Shoham's Argument Systems, Vreeswijk's Abstract Argumentation
Systems and CumulA, Dung's model is independent of a specific language.
Moreover, Dung abstracts from the structure of arguments. As a result, the set of
rules is empty. The defeater schemes - actually defeaters - are all simple defeaters.

Dung considers unstructured arguments, corresponding to CumulA's
statements, and no lines of argumentation. Verheij (1996a) investigates the formal
relations between Dung's model and the stages approach of CumulA.

6.9 Loui and Chen's Argument Game **. -Hi-

i and Chen's Argument Game has been selected since it shows a characteristic
of argumentation not found in any of the other discussed argumentation models:
backward argumentation. The Argument Game is a two-player card game,
designed as a model of argumentation. One of the players tries to justify a
conclusion by means of an undefeated argument, the other tries to challenge the
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argument. As a result, the conclusion is fixed, while the premises vary throughout
the game.

An argumentation theory capturing elements of Loui and Chen's Argument
Game in CumulA can be defined as follows:

Language = /Moms u -»4toms,
where >4toms is any set and -./Moms is the set {-i/Wom | /\tom is an element

; of 4(oms) (disjoint from /Atoms).
Ru/es is any set of rules in the language.
DefeaterSc/?emes c {* t̂om [*-i/\tom], *-i/Wom [*/ltom] | /^tom is an element

of dtoms}

Surprisingly, this argumentation theory is the same as the one capturing elements
of Lin and Shoham's Argument Systems. This shows that the underlying notions
of argument and defeat are the same in both models. However, argumentation is
different in both models, since Loui and Chen consider backward lines of
argumentation. Moreover, other differences between the models have disappeared,
since we only focus on the underlying model of argumentation, and have therefore
abstracted from the game elements of the Argument Game, such as bidding and the
different roles of the players.

The arguments of Loui and Chen's Argument Game are constructed by
subordination. The game models backward lines of argumentation with a single
fixed conclusion.

7 A comparison of argumentation models

After capturing elements of several argumentation models as argumentation
theories in CumulA in the previous section, we now apply the distinctions
discussed in the sections 1 to 5 to those argumentation theories. An overview is
given in table 1. The table shows differences and similarities.

We have shown the generality of CumulA by capturing elements of selected
argumentation models in CumulA. Previously, Lin and Shoham (Lin and
Shoham, 1989; Lin, 1993) and Dung (1995) have captured other selections of
argumentation models in their formalisms. We stress that, in contrast with us, they
have also proven formal relations. V K •

Lin (1993) has also classified formalisms of nonmonotonic reasoning, using a
distinction based on intuition. He distinguished two classes, namely sentence-based
and argument-based formalisms. His distinction seems to be close to our
distinction of sentence-type and composite-type defeat. Interestingly, in a footnote,
Lin (1993, note 1, p. 254) remarks that Default Logic (Reiter, 1980) should
probably be classified in both categories. We are able to clarify the position of
Default Logic by classifying it in the intermediate class of step-type defeat.
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Since we focused on the argumentation theories capturing elements of
argumentation models in CumulA, we were able to establish a number of
distinctions on formal grounds in contrast with Lin's distinction based on intuition.
As a result, we have shown similarities and differences between the argumentation
models.

• i
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Chapter 7

Results and conclusions
" * « ; • '

In chapter 1, sextion 7, we discussed the research questions and goals of the thesis.
In this final chapter, we summarize the results and conclusions. We do this in three
parts: rules and reasons (section 1), legal reasoning (section 2), and dialectical
argumentation (section 3). We close with some suggestions for future research
(section 4).

1 Rules and reasons

Our first group of research questions (chapter 1, section 7) was the following:

• What is the role of rules and reasons in argumentation with defeasible
arguments? What properties of rules and reasons are relevant for argumentation
and defeat? How do these properties relate?

In order to answer these questions, we have presented a formal model of rules and
reasons as they are used in argumentation: Reason-Based Logic. The formalism is
a formal semantics of rules and reasons; it focuses on the types of facts relevant for
argumentation with defeasible arguments, and the relations between these facts.

We established the following types of facts concerning rules and reasons that
are relevant for argumentation with defeasible arguments:

• The state of affairs rta/e-o/^b/rsi is a reason for the state of affairs

There is a valid rule with condition CO«C//7/O/J and conclusion
The rule with condition com#//o/7 and conclusion cortc/wj/ort is excluded for
the instanceyacf of its condition.
The rule with condition co/ni/V/on and conclusion CO«C/M5/O/I is made
applicable by the fact expressed by the instanceybcf of its condition.
The rule with condition con<////o/i and conclusion CO/JC/MS/O/J applies on the
basis the fact expressed by the instance^ac/ of its condition.
The reasons reoso«j-pro for the conclusion CO«C/«J/O/J outweigh thr reasons
reasora-con against it.
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In chapter 2, the relations between these types of facts are elaborated in the
formalism Reason-Based Logic.

In Reason-Based Logic, there are three main mechanisms that lead to defeat:

1. An exclusionary reason makes a rule inapplicable (cf. Raz, 1990).
2. Reasons for a conclusion do not lead to that conclusion if the reasons against

the conclusion outweigh the reasons for it (cf. Naess, 1978).
3. A rule does not apply if the reasons against applying the rule outweigh the

reasons for applying it.

In chapter 2, these are worked out in detail. The use of exclusionary reasons is
closely related to the use of exception predicates, well-known in the research on
nonmonotonic reasoning (cf, e.g., Prakken, 1993). Although there are several
formalisms that model some form of weighing of reasons, Reason-Based Logic is,
as far as we know, the first in which weighing is treated qualitatively instead of
quantitatively. We know of no other formalism that models reasons for and against
applying a rule.

Once again we stress that there is no single generally agreed upon
interpretation of the notions 'rule' and 'reason'. As the many versions of Reason-
Based Logic' show, this is not even the case if one restricts oneself to the rules and
reasons of argumentation with defeasible arguments.

Therefore our formalism is accompanied by many examples in order to make
the interpretation of the notions rule and reason as clear as possible (cf. our method
of research, described in chapter 1, section 7).

Apart from the particular form of Reason-Based Logic as presented in this
thesis, we have made three general contributions to the research on the
formalization of rules and reasons:

1. We have separated the semantics of rules and reasons, as used in argumentation
with defeasible arguments, from the definition of a defeasible consequence
relation. Although this is similar to the preferential-model semantics for
nonmonotonic consequence relations (Shoham, 1988; Kraus e/ a/., 1990;
Makinson, 1994), there is a difference: in Reason-Based Logic, the facts
concerning rules and reasons related to defeat are explicitly represented in the
logical language, while the preference relation (that determines
nonmonotonicity) of a preferential-model semantics is separated from the
logical language. In this way, the definition of defeasible reasoning in Reason-
Based Logic becomes less ad hoc, and is based on explicit standards (cf.
chapter 2, section 6).

2. We have shown that it is advantageous to consider rules as special objects and
to use a translation from sentences to terms (cf. chapter 2, section 4). In this

' E.g.. Hage (1991. 1993, 1995), Hage and Verheij (1994a. b), Hage er a/. (1993), Verheij
(1994. 1995e). Verheij and Hage (1994).
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way, it becomes possible to represent facts about rules, and to reason with
them. As a result, we could keep the merits of two competing approaches: the
use of rule identifiers and the use of special-purpose conditionals. Our
approach enhances the ad hoc use of rule identifiers, which was introduced in
order to represent facts about rules. At the same time, our approach can
represent the validity of rules, which is an advantage of the use of special-
purpose conditionals in contrast with the use of rule identifiers (cf. chapter 4).

3. We have separated the generation of a reason and the generation of a
conclusion, which can both occur when the condition of a rule is satisfied.
First, this clarifies the relation of rules and reasons, and second, this allows
different levels where defeasibility can occur (cf. chapter 3, sections 5 and 6).

2 Legal reasoning

Legal reasoning has been an important inspiration during the development of
Reason-Based Logic. Legal reasoning provides good examples for Reason-Based
Logic, since in the law several pragmatic solutions have been developed to dealing
with exceptions to rules, dealing with rule conflicts, and reasoning about rules. As
a result, the usefulness of Reason-Based Logic can be shown using examples from
the field of law.

In chapter 3, we have formalized several examples of legal reasoning in
Reason-Based Logic. Apart from different ways of dealing with exceptions to rules
and rule conflicts, which are specific for Reason-Based Logic, we have given two
applications of Reason-Based Logic to the theory of legal reasoning, namely to
integrating rules and principles, and to reasoning by analogy:

1. We have presented an integrated view on rules and principles, and have shown
that rules and principles can be regarded as the extremes of a spectrum of
hybrid rules/principles. This integrated view is in contrast with Dworkin's strict
distinction between rules and principles (cf. Dworkin, 1978).

2. We have given three different ways of reconstructing reasoning by analogy: (1)
application of principles that underlie the original rule, (2) application of an
analogous rule/principle that has the same underlying principles as the original
rule, and (3) analogous application of the original rule, i.e., the application of
the rule with non-standard justification. The first of these ways of
reconstruction of reasoning by analogy follows directly from the integrated
view on rules and principles. The second is a familiar interpretation of analogy,
except that we have made the nature and justification of the analogy explicit in
terms of underlying principles. The third is typical for Reason-Based Logic.

Since we have given formal elaborations in Reason-Based Logic, the insights can
be applied to the use of computers as tools in the field of law (cf. Van den
Herik, 1991).
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3 Dialectical argumentation r.

The second group of research questions (chapter 1, section 7) was the following:

• What is the role of process in argumentation with defeasible arguments? How
is the defeat of an argument determined by its structure, counterarguments and
the argumentation stage?

In order to answer these questions, we developed a formal model of dialectical
argumentation, CumulA, in chapter 5.

We have focused on the process of taking arguments into account, and on the
defeasibility of arguments. CumulA is a model in which the defeat status of an
argument, either undefeated or defeated, depends on:

: - • . - •:,.•* Vi>isi- >• ~

1. the structure of the argument;
2. counterarguments; . ,. - • - , , . . • ; ^,w< v ; ; !
3. the argumentation stage. , , ? ,-.;.-j,g,̂

We discuss each below.
In CumulA, the structure of arguments is modeled as in, e.g., the argumentation

theory of Van Eemeren e/ a/. (1981, 1987). Both the subordination and the
coordination of arguments are possible. In CumulA, it is explored how the
structure of arguments can lead to their defeat. To our knowledge, CumulA is the
only formalism that explores how the coordination of arguments influences defeat
(cf. the definitions of the narrowings of arguments in chapter 5, section 2.4, and of
defeat status assignments in chapter 5, section 4.4).

In CumulA, the influence of counterarguments on defeat is modeled using
defeaters. Defeaters indicate when arguments can defeat other arguments. We have
shown that defeaters can be used to represent a wide range of types of defeat:
undercutting and rebutting defeat, as distinguished by, e.g., Pollock (1987), defeat
by sequential weakening and by parallel strengthening, as distinguished by Verheij
(1995c), and collective and indeterministic defeat, related to the well-known
skeptical and credulous approaches in nonmonotonic reasoning (cf. Ginsberg,
1987). However, these types of defeat were not previously integrated in one
formalism (cf. chapter 5, section 3).

Argumentation stages represent the arguments taken into account and the status
of these arguments, either defeated or undefeated. CumulA's lines of
argumentation, formally sequences of stages, give insight into the influence that
the process of taking arguments into account has on the status of arguments. For
instance, by means of argumentation diagrams, which give an overview of possible
lines of argumentation, phenomena that are characteristic for argumentation with
defeasible arguments, such as the reinstatement of arguments, are explicitly
depicted. • , ..



Section 4: Future research 181

In chapter 6, we have analyzed a number of existing argumentation models.
First, we made several formal distinctions between argumentation theories.

• Four types of arguments were distinguished in CumulA by their structure:
statements, single-step arguments, arguments that are constructed by
subordination, and arguments that are constructed by subordination and
coordination.

• Four types of defeat were distinguished by the structure of the challenging and
challenged arguments involved: no defeat, sentence-type defeat (with, as a
special case, assumption-type defeat), step-type defeat, and composite-type
defeat.

• Five types of defeat were distinguished by the number of challenging and
challenged arguments involved: no defeat, self-defeat, simple defeat, left-
compound defeat, and right-compound defeat.

• Two types of defeat were distinguished by different ways in which defeat is
triggered: inconsistency-triggered and counterargument-triggered defeat.

• Four types of direction of argumentation were distinguished: static
argumentation, forward argumentation, backward argumentation, and bi-
directional argumentation.

Second, we have shown the generality of CumulA by capturing elements of
selected argumentation models in CumulA. Previously, Lin and Shoham (Lin and
Shoham, 1989; Lin, 1993) and Dung (1995) have captured other selections of
argumentation models in their formalisms. However, we have not proven formal
relations, in contrast with Lin and Shoham and Dung.

Third, we have shown similarities and differences between the argumentation
theories capturing argumentation models by applying the distinctions above.
Previously, Lin (1993) made a distinction related to our distinction of sentence-
type and composite-type defeat. However, his distinction was based on intuition,
while ours is based on formal grounds. Moreover, we have made several other
distinctions.

To conclude, CumulA has shown that

1. it is advantageous to consider arguments structured both by subordination and
by coordination if argumentation with defeasible arguments is modeled;

2. the defeat of arguments can be described in terms of their structure,
counterarguments, and the stage of the argumentation process;

3. both forward and backward argumentation can be formalized in one model.

4 Future research

A first direction of future research will be the integratation of the ideas behind
Reason-Based Logic and CumulA. Whereas Reason-Based Logic lacks a process



182 Chapter 7: Results and conclusions

model of argumentation, like that of CumulA, CumulA lacks a rich language, like
that of Reason-Based Logic. Because of the already existing connections between
the two models, e.g., the admission of the accrual of reasons, this direction of
research could be fruitful, and could lead to a better understanding of
argumentation with defeasible arguments.

A second direction of future research will be the implementation of Reason-
Based Logic and CumulA. Early versions of Reason-Based Logic have been
implemented in Prolog (Hage, 1993; Verheij, 1993, 1995e), but have become
outdated by the later theoretical enhancements. CumulA has not been
implemented, but seems to be well-suited, due to its process-orientation. Moreover,
it is promising that Dung (1995) has shown close connections between
argumentation and logic programming. •- „>.- • • »

A third direction of future research will be the practical assessment of the
mostly theoretically motivated ideas on legal reasoning, as presented in this thesis.
Probably, the actual legal practice will necessitate several adjustments and
compromises. There is a detailed plan to test the theoretical ideas against the actual
practice in the legal domain of tort.^

f - • • • . - » > " • • •

t : : u • • " •

^ The Dutch National Program for Information Technology and Law (ITeR) has recently
provided funding for this project, that will be carried out at the Department of Metajuridica
of the Universiteit Maastricht.
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Summary

The subject of this thesis is argumentation. We consider argumentation as a
process in which arguments supporting a conclusion are taken into account. During
the process of argumentation, a conclusion originally justified by some argument
can become no longer justified. This is the result of the cfe/feos/M/fy of arguments,
a term introduced by Hart in 1948 (cf. Loui, 1995a). Our central theme is how
argumentation and the defeasibility of arguments can be formally modeled.

The purpose of our research is to find answers to two groups of research
questions. , : .... , , .^:,, ... ... , - , . . . • -,,. -.»-.

• What is the role of rules and reasons in argumentation with defeasible
arguments? What properties of rules and reasons are relevant for argumentation
and defeat? How do these properties relate?

• What is the role of process in argumentation with defeasible arguments? How
is the defeat of an argument determined by its structure, counterarguments and
the argumentation stage?

Trying to answer these groups of questions, we study argumentation and defeat
from two angles, resulting in formalisms of different nature, Reason-Based Logic
and CumulA.

Reason-Based Logic is a model of the nature of rules and reasons, which are at
the basis of argumentation. We investigate the properties of rules and reasons that
are relevant for the argumentation and defeat, and how these properties relate to
each other. A

CumulA is a model of argumentation in stages. We investigate how the
structure of an argument is related to defeat, when arguments are defeated by
counterarguments, and how the status of arguments is affected by the
argumentation stage. ... ; ,,.

The thesis has five goals: ,. ..••;.? ;

• Providing a mode! of rules and reasons, Reason-Based Logic, focusing on
properties that are relevant for the defeasibility of arguments.

• Demonstrating the usefulness of the model by providing examples in the field
of law.

• Discussing how Reason-Based Logic relates to previously proposed models.
• Providing a model of argumentation, CumulA, that focuses on the process of

constructing arguments, and shows how the status of an argument is
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determined by the structure of the argument, the counterarguments and the
stage of the argumentation process.

• Demonstrating how CumulA can be used to analyze other models of
argumentation.

Each of these goals corresponds to a chapter. In chapter 2, we describe Reason-
Based Logic. We determine types of facts concerning rules and reasons that are
relevant for the defeasibility of arguments, and show their relations. Using this
semantics of rules and reasons, we determine some intuitively attractive modes of
reasoning. However, these lead to the difficulties of nonmonotonic reasoning. We
show how the ideas of Reiter (1980, 1987) can be used to define rigorously which
conclusions nonmonotonically follow from a given set of premises.

Chapter 3 contains a series of examples of Reason-Based Logic, taken from the
field of law. We give applications of Reason-Based Logic to the theory of legal
reasoning: we describe three different ways of reconstructing reasoning by
analogy, and provide an integrated view on rules and principles, which seem
fundamentally different (cf. Dworkin, 1978, p. 22ff. and 7Iff.).

In chapter 4, we survey other models of rules, and compare them to Reason-
Based Logic. We do this by treating a number of issues concerning the
formalization of rules, and discussing various approaches to deal with these issues.

Fn chapter 5, the second part of the thesis starts with a discussion of CumulA. It
is a formal model of argumentation with defeasible arguments, focusing on the
process of taking arguments into account. The main ingredients of the formalism
are arguments, defeaters, argumentation stages and lines of argumentation.

In chapter 6, we show how CumulA can be used to analyze models of
argumentation. We investigate types of argument structure and of defeat, the role
of inconsistency and counterarguments for defeat, and directions of argumentation.
As a result, we are able to distinguish a number of existing argumentation models
on formal grounds.

The thesis ends with the results and conclusions of the research (chapter 7). We
also give some suggestions for future research.

The contributions of the thesis are as follows: ' '

1. We have separated the semantics of rules and reasons, as used in argumentation
with defeasible arguments, from the definition of a defeasible consequence
relation. In this way, the definition of defeasible reasoning becomes less ad
hoc, and is based on explicit standards (cf. chapter 2, section 6).

2. We have shown that it is advantageous to consider rules as special objects and
to use a translation from sentences to terms (cf. chapter 2, section 4). In this
way, it becomes possible to represent facts about rules, and to reason with
them. As a result, we could keep the merits of two competing approaches: the
use of rule identifiers and the use of special-purpose conditionals. Our
approach enhances the ad hoc use of rule identifiers, that was introduced in
order to represent facts about rules. At the same time, our approach can
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represent the validity of rules, which is an advantage of the use of special-
purpose conditionals in contrast with the use of rule identifiers (cf. chapter 4).

3. We have separated the generation of a reason and the generation of a
conclusion, that both can occur when the condition of a rule is satisfied. First,
this clarifies the relation of rules and reasons, and second this allows different
levels where defeasibility can occur (cf. chapter 3, sections 5 and 6).

4. We have presented an integrated view on rules and principles, and have shown
that rules and principles can be regarded as the extremes of a spectrum of
hybrid rules/principles (cf. chapter 3, sections 2 and 7). This integrated view is
in contrast with Dworkin's strict distinction between rules and principles (cf.
Dworkin, 1978). The view is formally elaborated in Reason-Based Logic.

5. We have given three different ways of reconstructing reasoning by analogy (cf.
chapter 3, section 8): (1) application of principles that underlie the original rule,
(2) application of an analogous rule/principle that has the same underlying
principles as the original rule, and (3) analogous application of the original
rule, i.e., the application of the rule with non-standard justification.

6. We have shown how the effect of the accrual of reasons on the defeat of
arguments can be dealt with in a formal model. In Reason-Based Logic, we
focused on the weighing of sets of reasons (chapter 2); in CumulA, we focused
on the coordination of arguments and defeat by parallel strengthening
(chapter 5).

7. We have provided the model of argumentation CumulA, in which the defeat of
arguments is determined by the structure of arguments, counterarguments, and
the stage of the argumentation process. We have shown that CumulA's
defeaters can represent a wide range of types of defeat, that were not previously
integrated in one formalism (cf. chapter 5).

8. We have used CumulA to analyze argumentation models. First, we have made
several formal distinctions between argumentation theories. Second, we have
captured elements of a number of existing argumentation models in CumulA's
argumentation theories. Third, we have applied the distinctions to the resulting
argumentation theories. As a result, we were able to show similarities and
differences between the argumentation theories capturing argumentation
models by applying the formal distinctions above (chapter 6).
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Samenvatting

Het onderwerp van dit proefschrift is argumentatie. We beschouwen argumentatie
als een proces. Tijdens dit proces worden redeneringen geconstrueerd ter
ondersteuning van een conclusie. Gedurende dit proces kan een conclusie
aanvankelijk wel en later niet meer gerechtvaardigd zijn door een redenering. Dit
komt door de weerlegbaarheid van redeneringen (Eng. defeasibility of arguments).
Ons centrale thema is hoe argumentatie en de weerlegbaarheid van redeneringen
formed kan worden gemodelleerd. -•^i^ior^^ '.&(*•• . • •-. : - ^ J * > : « ; ; ! : };*»

Ons onderzoeksdoel is het vinden van antwoorden op de twee groepen
onderzoeks vragen.

' '•• > .' - • ' . ' ' • ••• , . : . i - u : v . ' ' s > : . •• • < • • . . ' ; • . • • : ••' . • • • • • • . . '

• Wat is de rol van regels en redenen in argumentatie met weerlegbare
redeneringen? Welke eigenschappen van regels en redenen zijn relevant voor
argumentatie en weerlegging? Hoe verhouden deze eigenschappen zich tot
elkaar?

• Wat is de rol van het argumentatieproces bij argumentatie met weerlegbare
redeneringen? Hoe wordt de weerlegging van een redenering bepaald door de
structuur van de redenering, andere redeneringen, en het argumentatiestadium?

Ter beantwoording van de vragen bestuderen we argumentatie en weerlegging
vanuit twee gezichtspunten. Dit leidt tot formalismen van verschillende aard,
Reason-Based Logic en CumulA.

Reason-Based Logic is een model van de aard van regels en redenen, die de
basis vormen van argumentatie. We onderzoeken welke eigenschappen van regels
en redenen relevant zijn voor argumentatie en weerlegging, en hoe deze
eigenschappen zich tot elkaar verhouden.

CumulA is een model van argumentatie in stadia. We onderzoeken hoe de
structuur van een redenering zich verhoudt tot weerlegging, wanneer andere
redeneringen een redenering weerleggen, en hoe het argumentatiestadium de status
van een redenering bei'nvloedt. ,. -,-., , . • ,• >i

Het proefschrift heeft vijf doelen: •, , • ! . ' : • ; : - • *>

• Het beschrijven van een model van regels en redenen, Reason-Based Logic,
gericht op eigenschappen die relevant zijn voor de weerlegging van
redeneringen.

• Het aantonen van de bruikbaarheid van het model door het geven van
juridische voorbeelden. , . , . , - , . , , „ , . , . , - , > „ = >>» .,,.....«..
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• Het laten zien van de verbanden van Reason-Based Logic met eerdere
voorgestelde modellen.

• Het beschrijven van een argumentatiemodel, CumulA, dat gericht is op het
proces van het construeren van rederingen en dat laat zien hoe de status van een
redenering wordt bepaald door de structuur van de redenering, andere
redeneringen, en het argumentatiestadium.

• Het aantonen van de bruikbaarheid van CumulA bij het analyseren van andere
argumentatiemodellen.

Elk doel wordt behandeld in een hoofdstuk. In hoofdstuk 2 beschrijven we
Reason-Based Logic. We bepalen feittypen voor regels en redenen die relevant zijn
voor de weerlegbaarheid van argumentatie, en laten de relaties tussen de feittypen
zien. Gebruik makend van deze semantiek van regels en redenen bepalen we
enkele intuTtief aantrekkelijke redeneerwijzen. Deze redeneerwijzen leiden echter
tot de problemen van niet-monotoon redeneren. We laten zien hoe de ideeen van
Reiter (1980, 1987) kunnen worden gebruikt voor een formele definitie van de
conclusies die de niet-monotone gevolgen zijn van gegeven premissen.

Hoofdstuk 3 bevat een reeks voorbeelden van Reason-Based Logic in het recht.
We geven twee toepassingen van Reason-Based logic in de rechtstheorie. Ten
eerste bechrijven we drie manieren om redeneren naar analogie te reconstrueren.
Ten tweede geven we een geintegreerde kijk op regels en beginselen, die
fundamenteel van elkaar lijken te verschillen (cf. Dworkin, 1978, p. 22ff. en 7Iff).

In hoofdstuk 4 geven we een overzicht van modellen van regels en vergelijken
ze met Reason-Based Logic. We doen aan de hand van een aantal problemen bij de
formalisering van regels te en behandelen benaderingen om met deze problemen
om te gaan.

In hoofdstuk 5 begint het tweede deel van het proefschrift met de beschrijving
van CumulA. Het is een formed model van argumentatie met weerlegbare
redeneringen, gericht op het geleidelijk construeren van redeneringen. De
belangrijkste ingredienten van het formalisme zijn redeneringen, weerleggers
(Eng. defeaters), argumentatiestadia en betogen (Eng. lines of argumentation).

In hoofdstuk 6 laten we zien hoe CumulA gebruikt kan worden voor het
analyseren van argumentatiemodellen. We onderzoeken typen redeneringen en
weerlegging aan de hand van de structuur van redeneringen, de rol van
inconsistentie en tegenargumenten in weerlegging en argumentatierichtingen. Zo
kunnen we een aantal bestaande argumentatiemodellen op formele gronden van
elkaar onderscheiden.

Het proefschrift eindigt met de resultaten en conclusies van het onderzoek
(hoofdstuk 7). We geven ook enkele suggesties voor toekomstig onderzoek.

De bijdragen van het proefschrift zijn als volgt:

1. We hebben de semantiek van regels en redenen, zoals die gebruikt worden in
argumentatie met weerlegbare redeneringen, onderscheiden van de definitie
van een weerlegbare-gevolgtrekkingsrelatie. Zo wordt de definitie van
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weerlegbaar redeneren minder ad hoc en kan ze gebaseerd worden op
expliciete standaarden (cf. chapter 2, section 6).

2. We hebben laten zien dat het voordelig is om regels als speciale objecten te
beschouwen en een vertaling tussen zinnen en termen te gebruiken (cf.
chapter 2, section 4). Zo wordt het mogelijk om feiten over regels te
representeren en over regels te redeneren. Als gevolg hiervan konden de
voordelen van twee benaderingen worden behouden: het gebruik van
regelnamen en het gebruik van een speciale conditionele zinsstructuur. Onze
benadering verbetert het gebruik van regelnamen, dat was gei'ntroduceerd om
feiten over regels te representeren. Tegelijkertijd kan onze benadering de
geldigheid van regels representeren. Dit was een voordeel van het gebruik van
een speciale conditionele zinsstructuur tegenover het gebruik van regelnamen.
(cf. chapter 4).

3. We hebben het onstaan van een reden en het trekken van een conclusie van
elkaar gescheiden. Beide kunnen plaatsvinden als aan de voorwaarde van een
regel is voldaan. Ten eerste verheldert dit de relatie tussen regels en redenen en
ten tweede kan weerlegging op verschillende niveaus voorkomen (cf.
chapter 3, sections 5 and 6).

4. We hebben een geintegreerde kijk op regels en beginselen gegeven en laten
zien dat regels en beginselen beschouwd kunnen worden als de extremen van
een spectrum van hybride regels/beginselen (cf. chapter 3, sections 2 and 7).
Deze geintegreerde kijk contrasteert met Dworkin's stride onderscheid tussen
regels en beginselen (cf. Dworkin, 1978). De kijk wordt formeel uitgewerkt in
Reason-Based Logic.

5. We hebben drie manieren beschreven om redeneren naar analogie te
reconstrueren (cf. chapter 3, section 8): (1) als de toepassing van beginselen die
aan de oorspronkelijke regel ten grondslag liggen, (2) als de toepassing van een
analoge regel of beginsel met dezelfde onderliggende beginselen als de
oorspronkelijke regel, en (3) de analoge toepassing van de oorspronkelijke
regel, d.w.z. de toepassing van de regel met niet-standaard rechtvaardiging.

6. We hebben laten zien hoe met het effect van de ophoping van redenen (Eng.
accrual of reasons) op de weerlegging van redeneringen formeel kan worden
omgegaan. In Reason-Based Logic waren we gericht op het wegen van
verzamelingen redenen (chapter 2); in CumulA waren we gericht op de
nevenschikking van redeneringen en weerlegging door parallele versterking
(chapter 5).

7. We hebben het argumentatiemodel CumulA voorgesteld. Hierin wordt de
weerlegging van redeneringen bepaald door hun structuur, door andere
argumenten en door het argumentatiestadium. We hebben laten zien dat
CumulA's weerleggers (Eng. defeaters) een breed scala van typen weerlegging
kunnen representeren. Deze typen zijn nog niet eerder in een formalisme
geintegreerd (cf. chapter 5).

8. We hebben CumulA gebruikt om bestaande argumentatiemodellen te
analyseren. Eerst hebben we een aantal formele onderscheidingen gemaakt
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voor CumulA's argumentatietheorieen. Daama hebben we elementen van een
aantal bestaande argumentatiemodellen beschreven in CumulA's
argumentatietheorieen. Tenslotte hebben we de gemaakte onderscheidingen
toegepast op deze argumentatietheorieen. Op deze manier was het mogelijk om
op grond van de genoemde formele onderscheidingen overeenkomsten en
verschillen tussen deze argumentatietheorieen te laten zien.
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