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Abstract

In this note, we introduce a new sufficient condition, called sign-
quasiconcavity, on the existence of a pure equilibrium in two-person
symmetric zerosum games, which generalizes both generalized ordinal
potentials (Monderer and Shapley, 1996) and quasiconcavity (Duersch
et al., 2012).
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1 Introduction

In Ismail (2014) we show that there is an equivalence between the class of
two-person symmetric zerosum games and the class of decision problems with
a complete (not necessarily transitive) preference relation. Accordingly, we
show that a strategy is a pure optimal strategy in a two-person symmetric
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Figure 1: Relations between sufficient conditions on pure equilibria in two-
person symmetric zerosum games.

zerosum game if and only if it is a maximal element in its equivalent decision
problem. By exploiting this equivalence, we find a sufficient condition, called
sign-quasiconcavity, for the the existence of a pure equilibrium which gener-
alizes both generalized ordinal potentials (Monderer and Shapley, 1996) and
quasiconcavity (Duersch et al., 2012).

A game is called sign-quasiconcave if it is quasiconcave with respect to the
sign of the payoff function. We show that if a two-person symmetric zerosum
game is sign-quasiconcave then it possesses an equilibrium in pure strategies.
We provide an example of a game that is sign-quasiconcave but neither has it
generalized ordinal potential nor it is quasiconcave. In Figure 1, the inclusion
relationships between several properties in two-person symmetric zerosum
games is shown.1 Monderer and Shapley (1996) showed that a potential game
is a generalized ordinal potential game and that these games possess pure
equilibrium. Duersch et al. (2012) showed that if a two-person symmetric
zerosum game is quasiconcave then it has a pure equilibrium. Moreover,
they showed that potential games and supermodular games (Topkis, 1998)
coincide in two-person symmetric zerosum games. We provide an example
to show that generalized ordinal potential games are not a special case of

1Note that the sizes of the shapes in Figure 1 is drawn arbitrarily.
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quasiconcave games. A potential game, however, is always a quasiconcave
game but the converse is not true as it is shown in Duersch et al. (2012,
p. 559).

2 The framework

A two-person symmetric zerosum game can be denoted by a pair (X, v) where
both players have the same set of pure actions X and v : X × X → R is
the utility function of, say, player 1. The utility function of player 2 is the
transpose of v satisfying v(x, y) = −v>(x, y) for all x, y in X.

We denote a decision problem by the pair (X,�) where X is the set of
alternatives and the relation �⊆ X × X represents the preferences of the
decision maker on X and it is assumed to be complete but not necessarily
transitive. A decision problem can be interpreted as if a decision maker is
to choose an element taking into account her preferences. Since we do not
assume that preferences are transitive it is not in general possible to represent
the preferences by a one-variable order-preserving utility function. In that
case, a convenient approach to obtain a representation is to consider a two-
variable utility function.2 We say that a real-valued function v represents
the relation � if for all x and y in X we have v(x, y) > 0 if and only if x � y.

In addition, if the function v represents the preference relation � on X
then we call the pair (X,�) the equivalent decision problem of the two-person
symmetric zerosum game (X, v). The equivalent game of a decision problem
may be interpreted as the decision maker is playing against her dual-self
where the gain of the decision maker is the loss (since the game is zerosum)
of her dual-self.3

Proposition 1. (Ismail, 2014). Let (X, v) be a two-person symmetric ze-
rosum game and let (X,�) be its equivalent decision problem. X admits a
maximal element x∗ with respect to � if and only if the game (X, v) possesses
a pure equilibrium (x∗, x∗).

This result is useful for deriving sufficient conditions for the existence of a
pure equilibrium in two-person symmetric zerosum games. The idea is to use
a basic structure of the preference relations such as acyclicity and transitivity

2Fishburn (1982) is probably one of the most well-known supporter of this approach.
3See, for example, Fudenberg and Levine (2006) for a similar interpretation of decision

problems.
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to obtain a sufficiency result for two-person symmetric zerosum games. Let
us define acyclicity formally.

Definition 1. A preference relation � on a set X is said to be acyclic if for
all finite subsets {x1, x2, ..., xn} ⊂ X,

x1 � x2, x2 � x3, ..., xn−1 � xn implies x1 � xn.

3 Sufficient conditions

The question ‘how far we can go?’ is not an unimportant one for sufficiency
investigations. The following proposition makes use of a quite general suf-
ficient condition for the existence of a maximal element in order to draw a
conclusion in two-person symmetric zerosum games.

Proposition 2. Let (X, v) be a two-person symmetric zerosum game where
X is a compact set in a topological space and let (X,�) be its equivalent
decision problem. If the relation � is acyclic such that for all x ∈ X the set
{y ∈ X | x � y} is open in the relative topology of X. Then the game (X, v)
possesses a pure equilibrium.

Proof. If the hypotheses of the proposition are satisfied and if the preference
relation� is acyclic then X admits a maximal element x∗ ∈ X with respect to
� by Bergstrom (1975).4 Hence by Proposition 1, the game (X, v) possesses
a pure equilibrium.

Corollary 1. Let (X, v) be a finite two-person symmetric zerosum game
whose equivalent decision problem is (X,�). If the relation � is acyclic then
(X, v) possesses a pure equilibrium.

Remark. It is well known that if a relation is transitive then it is acyclic.
Therefore assuming transitivity of � instead of acyclicity does not change
the conclusion in Corollary 1.

Quasiconcave games were introduced by Radzik (1991) and may be in-
terpreted as a ‘discrete version’ of quasiconcavity of payoff functions. In
two-person symmetric zerosum games, if each column has a ‘single peak’

4Although there are more general sufficient conditions on the existence of a maximal
element in the literature, we use this one due to its simplicity. Note also that this result
has been independently discovered by several authors. See Walker (1977) for a discussion.
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then we call the game quasiconcave. By exploiting the symmetry feature,
Duersch et al. (2012) showed that if a two-person symmetric zerosum game
is quasiconcave then it has a pure equilibrium. Now let us define a weaker
version of quasiconcavity called sign-quasiconcavity.

Definition 2. A symmetric two-person zerosum game (X, v) is said to be
sign-quasiconcave if there exists a total order > on X such that for every
x, y, z and every w in X with x > y > z then

sgn(v(y, w)) ≥ min{sgn(v(x,w)), sgn(v(z, w))}.

To put it differently, the game (X, v) is sign-quasiconcave if and only if
the game (X, sgn(v)) is quasiconcave. The following proposition shows the
relationship between quasiconcavity and sign-quasiconcavity.

Proposition 3. If a two-person symmetric zerosum game is quasiconcave
then it is sign-quasiconcave.

Proof. By contraposition assume that (X, v) is not sign-quasiconcave then
for every total order > there exists x, y, z and w in X with x > y > z such
that sgn(v(y, w)) < sgn(v(x,w)) and sgn(v(y, w)) < sgn(v(z, w)). There
are six ways that can occur: sgn(v(y, w)) can be either 0 or −1, sgn(v(x,w))
and sgn(v(z, w)) can be either 0 or 1. If sgn(v(x,w)) = 1, sgn(v(y, w)) = 0
and sgn(v(z, w)) = 1 then v(y, w) = 0, v(x,w) > 0 and v(z, w) > 0 hence
(X, v) is not quasiconcave. The other cases are very similar, so quasiconcavity
implies sign-quasiconcavity.

It turns out that quasiconcavity is not necessary for sign-quasiconcavity.
For a counter-example see the game in the Figure 2. The following propo-
sition establishes a connection between sign-quasiconcave games and their
equivalent decision problems.

Lemma 1. Let (X, v) be a two-person symmetric zerosum game. If it is
sign-quasiconcave, then the relation � is acyclic in the equivalent decision
problem (X,�) of the game (X, v).

Proof. Firstly, notice that the equivalent decision problem (X,�) of (X, v)
and (X, sgn(v)) are the same because for every x, y in X, v(x, y) > 0 if and
only if sgn(v(x, y)) > 0.

By contraposition, we will show that if � on X is cyclic then the game
(X, v) is not sign-quasiconcave. Assume � is cyclic then there exists a finite
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subset X ⊆ X that does not contain a maximal element. So by Proposition
3 of Ismail (2014), the two-person symmetric zerosum game (X, sgn(v|X))5

has no pure equilibrium. Then by Theorem 1 in Duersch et al. (2012), the
game (X, sgn(v|X)) is not quasiconcave. If it is not possible to find a total

order on X such that the game (X, sgn(v|X)) is not quasiconcave then it is
not possible to find a total order on X such that the larger game (X, sgn(v))
is quasiconcave. Hence (X, sgn(v)) is not quasiconcave.

Theorem 1. If a finite two-person symmetric zerosum game (X, v) is sign-
quasiconcave then it possesses a pure equilibrium.

Proof. By Lemma 1 sign-quasiconcavity of (X, v) implies acyclicity of � in
the equivalent decision problem. Then Corollary 1 implies that (X, v) has a
pure equilibrium.

Since we showed that sign-quasiconcavity is a weaker condition than qua-
siconcavity in Propoisition 3, Theorem 1 generalizes Theorem 1 of Duersch
et al. (2012) where they show that every finite two-person symmetric zerosum
quasiconcave game has a pure equilibrium.

The notion of generalized ordinal potential game is introduced by Mon-
derer and Shapley (1996). It is a sufficient condition for the existence of a
pure equilibrium in normal-form games. Here we are interested in general-
ized ordinal potentials in a specific class, namely in two-person symmetric
zerosum games. Let us now formally define it for this class.

Definition 3. A symmetric two-person zerosum game (X, v) is a generalized
ordinal potential game if there exists a function P : X ×X → R such that
for all y and all x, z in X,6

v(x, y)− v(z, y) > 0 implies P (x, y)− P (z, y) > 0,

v(x, y)− v(z, y) > 0 implies P (y, x)− P (y, z) > 0.

The following proposition illustrates that the equivalent decision problem
of a generalized ordinal potential game is transitive.

5The notation v|X denotes the function v restricted to the domain X.
6Note that the second line below is expressed in terms of the payoff function of player

1 instead of player 2.
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Proposition 4. Let (X, v) be a two-person symmetric zerosum game and let
(X,�) be its equivalent decision problem. If (X, v) has a generalized ordinal
potential, then � is transitive and for all x, y and z in X with x � y � z,

v(x, z) ≥ min{v(x, y), v(y, z)}.

Proof. By contraposition, we will show in three cases that if � is not transi-
tive then (X, v) has no generalized ordinal potential.

Case 1: Suppose there exists x, y, z in X with x � y � z � x. Then the
decision problem ({x, y, z},�) has no maximal element which implies the
game ({x, y, z}, v|{x,y,z}) associated to it has no pure equilibrium by Proposi-
tion 3 of Ismail (2014). Therefore, it does not have a generalized ordinal po-
tential by Monderer and Shapley (1996, p. 128-129). Since ({x, y, z}, v|{x,y,z})
has no generalized ordinal potential, the game (X, v) does not have too.7

Case 2: Suppose there are x, y and z in X with x � y � z ∼ x.
It implies v(x, y) > 0, v(y, z) > 0 and v(x, z) = 0. Accordingly, a po-
tential function must satisfy the following impossible sequence of relations:
P (z, x) > P (y, x) > P (y, z) > P (x, z) > P (x, y) > P (z, y) > P (z, x).

Case 3: Suppose there exists x, y and z in X with x � y ∼ z ∼ x which
implies v(x, y) > 0, v(y, z) = 0 and v(x, z) = 0. It further implies that
a potential function must satisfy P (z, x) > P (y, x) > P (y, z) = P (x, z) >
P (x, y) > P (z, y) = P (z, x) which leads to a contradiction again.

Finally, assume by contradiction that there exists x � y � z such that
v(x, z) < min{v(x, y), v(y, z)}. Then a potential function for the game (X, v)
fails to satisfy the following sequence of relations: P (z, x) > P (y, x) >
P (y, z) > P (x, z) > P (x, y) >P (z, y) > P (z, x).

It is an open question whether the conditions given in the Proposition 4
are sufficient for the existence of a generalized ordinal potential. When we
require the game to be an exact potential game8, however, we are able to
characterize the game with respect to its equivalent decision problem. As it
might be expected due to a stronger requirement of exact potential games,
the equivalent decision problems additionally satisfy the independence axiom.
Ismail (2014) shows that a two-person symmetric game is an exact potential

7Clearly this is true for any game. Because if it is not possible to construct a generalized
ordinal potential for v|X where X ⊆ X then it is not possible to construct one for v.

8The definition of exact potential game can be obtained when we modify Definition 3
as follows. We replace strict inequalities with an equality and replace ‘implies’ parts with
‘if and only if’.
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game if and only if its equivalent decision problem satisfies von Neumann-
Morgenstern utility. The following proposition illustrates that transitivity
implies sign-quasiconcavity in finite games.

Proposition 5. Suppose that � is transitive in the equivalent decision prob-
lem (X,�) of a finite two-person symmetric zerosum game (X, v). Then, the
game (X, v) is sign-quasiconcave.

Proof. Take an element in X which is minimal with respect to � and call
it x1. Take a minimal element from X \ {x1} and call it x2. Then take a
minimal element in X \{x1, x2} and call it x3. Continue the process until no
element remains in X. Define the total order > on X as follows: We have
xj > xi whenever j > i. Note also that we have defined > such that j > i
only if xj � xi. We show that for every xk, xj, xi and every xm in X with
xk > xj > xi we have sgn(v(xj, xm)) ≥ min{sgn(v(xk, xm)), sgn(v(xi, xm))}.
There are two cases to consider.

Case 1: Suppose xm > xj which implies that xm � xk hence we have
sgn(v(xj, xm)) ≤ 0. Case 1.1: Suppose that v(xj, xm) = 0. Since xm � xi

we have sgn(v(xi, xm)) ≤ 0. Case 1.2: Suppose that sgn(v(xj, xm)) = −1
which means xm � xj. By transitivity, it implies xm � xi, so we have
sgn(v(xi, xm)) = −1.

Case 2: Suppose xj > xm which implies that xj � xm hence we have
sgn(v(xj, xm)) ≥ 0. Case 2.1: Suppose that v(xj, xm) = 0. Since xm � xi,
sgn(v(xi, xm)) ≤ 0. Case 2.2: If sgn(v(xj, xm)) = 1 then the inequality is
satisfied because it is the largest value of the sign function.

Corollary 2. If a two-person symmetric zerosum game has a generalized
ordinal potential, then it is sign-quasiconcave.

Proof. By Proposition 4, if a game two-person symmetric zerosum game
has a generalized ordinal potential, then the relation � is transitive in its
equivalent decision problem. Hence Proposition 5 applies.

Let us now illustrate some of the results we have been discussing. Con-
sider the two-person symmetric zerosum game (X, v) in Figure 2. Only player
1’s payoff matrix is given. The rows and columns are labeled by the actions
x, y, z and w. Notice that the payoff function of the game (X, sgn(v)) is the
sign function of v and that the place of the actions has been changed with
respect to the game on the left.

8



x
y
z
w


0 −3 −1 −5
3 0 6 3
1 −6 0 2
5 −3 −2 0

 ,

y
z
w
x


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0


Figure 2: Games (X, v) and (X, sgn(v)) respectively.

Observe that the strategy y guarantees the payoff of zero (the value of
the game) so it is an optimal strategy and (y, y) is a pure equilibrium in
both games. To the best of our knowledge, however, the sufficient conditions
that is known in the literature cannot predict that this game has a pure
strategy equilibrium. By contrast, this game is sign-quasiconcave. To see
this, we consider the sign function of v and order the actions as y, z, w, x
which is given on the right in Figure 2. Notice that in this game each column
has a single peak, therefore making the game (X, v) sign-quasiconcave. By
Theorem 1 we conclude that (X, v) has a pure equilibrium.

Firstly, notice that the game (X, v) is not quasiconcave, because, no mat-
ter how you order the actions, it is not possible to obtain a matrix such
that each column has a single-peak. Secondly, let (X,�) be the equiva-
lent decision problem of (X, v). Since we have z � w � x and v(z, x) <
min{v(z, w), v(w, x)} by Proposition 4 the game (X, v) cannot have a gener-
alized ordinal potential.

It follows by definition that sign-quasiconcavity is invariant under mul-
tiplication of a particular payoff by a positive constant. For example, let
us multiply v(w, x) by 1

5
which equals 1 and set v(x,w) = −1 keeping the

symmetry property of the game in Figure 2. Then the game (X, v) would
have a generalized ordinal potential but would still fails to be quasiconcave.
The generalized ordinal potential function is given by: P (x, x) = 1, P (x, y) =
14, P (x, z) = 6, P (x,w) = 3, P (x, x) = 15, P (y, y) = 16, P (y, z) = 12, P (y, w)
= 13, P (z, x) = 8, P (z, y) = 10, P (z, z) = 9, P (z, w) = 7, P (w, x) = 2, P (w, y)
= 11, P (w, z) = 5 and P (w,w) = 4.

4 Conclusion

In this note, we introduced a property of games called sign-quasiconcavity.
We showed that two-person symmetric zerosum games possessing this prop-
erty has at least one equilibrium in pure strategies, which generalizes both
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generalized ordinal potentials (Monderer and Shapley, 1996) and quasicon-
cavity (Duersch et al., 2012). In addition, these inclusions are strict as shown
in Figure 2.
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