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In this paper we investigate the set of correlated equilibria of bimatrix games. These
equilibria are interesting, because they can result in outcome profiles that are not feasible
as a result of Nash equilibria. After giving an example to illustrate the various concepts,
we present a Projection Theorem which relates the two types of equilibria. Some lemmas
are provided to clarify and extend this theorem.
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1. Introduction

In certain classes of strategic games the players have partially common interests

and they may fear that “just playing a Nash equilibrium” does not do justice to

the common interests. In such games it may be wise to introduce a cooperative

pre-play meeting to coordinate the actions of the different players. The concept of

correlated equilibrium is based on this idea (see Aumann (1974, 1987)). It gives a

method to coordinate the actions of the players before the game is played.

The idea is shown in the following: in the pre-play meeting the players agree

upon a probability space (with a finite number of outcomes) and for each player

a signalling function on the outcome space. When the game is played, a chance

mechanism with the agreed probability measure determines an outcome (out of the

reach of any player) and each player gets a signal according to his own signalling

function. Next, each player chooses an action in his action space and the payoffs

follow. The difference with playing the original strategic game is that the players

can react to the signal they get.
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During the pre-play meeting the players transform the strategic game into a

Bayesian game. A Bayesian equilibrium of the extended game is called a correlated

equilibrium of the strategic game. Note that the signal is costless and is only used

to coordinate the actions.

Osborne and Rubinstein (1994) show that if we start with an arbitrary Bayesian

equilibrium, we can construct another one by choosing the set of all pure strategy

profiles as the outcome space and for each player the signalling function assigning

to every strategy profile his own component, which generates the same outcome as

the original one. As the chance distribution over the set of pure strategy profiles is

the only thing that matters, the players do not need fancy chance mechanisms and

signalling functions. So, the set of correlated equilibria consists of all probability

measures on the set of pure strategy profiles for which the reaction functions “fol-

lowing the advice you get” form a Bayesian equilibrium. Note that if “following the

advice you get” is optimal for every player, the eventual payoffs to the players are

fully determined by the agreed probability distribution. So, the discussion during

the pre-play meeting is about the outcome.

In the recent literature, there has been some interest in the relations between

Nash equilibria and correlated equilibria. For example, Evangelista and Raghavan

(1996) prove that every extreme point of a maximal Nash set is also an extreme

point of the set of correlated equilibria. The same result is shown in Canovas et al.

(1999), who in addition pays special attention to completely mixed Nash equilibria.

Most of this literature, however, is not concerned with the corresponding payoffs

to the players. In this paper, we provide a Projection Theorem for bimatrix games,

which gives necessary and sufficient conditions for a projected Nash equilibrium to

be a correlated equilibrium. An important feature of this theorem is that it yields

a correlated equilibrium in which the payoffs to the players are higher than in

the original Nash equilibrium. In case the original Nash equilibrium is completely

mixed, some stronger results are obtained.

This paper is organised as follows. In Sec. 2, we introduce some basic notation

and basic definitions. An introduction to correlated equilibria in bimatrix games is

given in Sec. 3. After an example in Sec. 4, we state our Projection Theorem in

Sec. 5, followed by a number of lemmas.

2. Notation and Basic Definitions

Let K 6= ∅ be a finite set. Denote

∆K =

{
x ∈ RK

∣∣∣∣∣∀i∈K : xi ≥ 0,
∑
i∈K

xi = 1

}

and for x ∈ RK , denote CK(x) = {i ∈ K|xi 6= 0}. Let ei,K denote the ith canonical

unit vector in RK for every i ∈ K.
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For x ∈ RK , x ≥ 0 and S $ CK(x), define x−S ∈ RK by

x−Si =


0 if i ∈ S ,

xi

∑
j∈K xj∑
j∈K\S xj

if i ∈ K\S ,
(2.1)

for all i ∈ K.

Throughout this paper, let M,N denote the finite action spaces of player 1 and

2, respectively. We assume |M | > 1, |N | > 1. A bimatrix game is denoted by (A,B)

where A,B ∈ RM×N are the payoff matrices of player 1 and 2, respectively. The

expected payoff when the mixed strategy profile (p, q) ∈ ∆M ×∆N is played equals

p>Aq for player 1 and p>Bq for player 2.

For D ∈ RM×N , denote by Dk· the kth row of matrix D and by D·` the `th

column of D.

We define player 1’s best-reply correspondence B1 : ∆N � ∆M , which assigns

to every mixed strategy of player 2 the subset of ∆M that gives player 1 maximal

payoff: B1(q) = arg maxp∈∆M p>Aq for all q ∈ ∆N . Similarly, player 2’s best-reply

correspondence B2 : ∆M � ∆N is defined by B2(p) = argmaxq∈∆N p>Bq for all

p ∈ ∆M . A strategy combination (p∗, q∗) ∈ ∆M ×∆N is called a Nash equilibrium

if p∗ ∈ B1(q
∗) and q∗ ∈ B2(p

∗). We denote the set of all Nash equilibria of a game

(A,B) by NE(A,B). A fundamental result in game theory (Nash (1951)) states

that for every A, B ∈ RM×N the set NE(A,B) is nonempty.

3. Correlated Equilibria in Bimatrix Games

A correlated strategy is a probability distribution Π ∈ ∆M×N over the set of all

pure strategy profiles, i.e., a matrix Π ∈ RM×N that satisfies

∀i∈M,j∈N : Πij ≥ 0 (3.1)

and ∑
(i,j)∈M×N

Πij = 1 . (3.2)

A correlated strategy is implemented in the following way:

(1) An arbiter, who is not a player himself, draws an element x = (i, j) ∈ M ×N
according to the probability distribution Π.

(2) The arbiter tells player 1 which row i has been drawn and player 2 which column

j has been drawn.

(3) Knowing the distribution Π and knowing the information the arbiter has given

him about the realisation of x, each player chooses a (mixed) strategy from his

strategy space.

(4) The payoff to each player is determined by his expected payoff, as in the mixed

extension of the game.
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A correlated strategy Π is a correlated equilibrium if in the third stage, the expected

payoff of player 1 is maximal when he plays row i with probability 1 for all possible

realisations of i:

∀i,k∈M : Πi·A
>
i· ≥ Πi·A

>
k· (3.3)

and similarly, if the expected payoff of player 2 is maximal when he plays column

j with probability 1 for all realisations of j:

∀j,`∈N : Π>·jB·j ≥ Π>·jB·` . (3.4)

In other words, a correlated equilibrium is a correlated strategy in which for each

realisation of the random draw by the arbiter, playing the row or column the arbiter

“advises” is incentive compatible for both players. We denote the set of correlated

equilibria of a game (A,B) by CE(A,B) ⊆ ∆M×N .

The set of correlated equilibria is the solution set of the system of linear inequal-

ities (3.1)–(3.4). Hence, it is a convex polytope in the (|M × N | − 1)-dimensional

space ∆M×N . Lemma 3.1, which follows from Lemma 1 on page 197 in Moulin

(1986), shows that Nash equilibria “are” in fact correlated equilibria.

Lemma 3.1. Let p ∈ ∆M , q ∈ ∆N . Then (p, q) ∈ NE(A,B) if and only if pq> ∈
CE(A,B).

Proof. Define Π = pq>. By construction, Π satisfies (3.1) and (3.2). Next, let

i, k ∈ M . Substituting Πi` = piq` and Πk` = pkq`, (3.3) can be rewritten as

piAi·q ≥ piAk·q, which holds if and only if pi = 0 orAi·q ≥ Ak·q. Because k is chosen

arbitrarily, we find that the incentive compatibility constraints corresponding to row

i are satisfied if and only if this row is played with probability zero whenever it is

not a pure best response to q. Hence, (3.3) is equivalent to p ∈ B1(q). Similarly,

(3.4) holds if and only if q ∈ B2(p). From this the assertion follows.

We know that NE(A,B) need not be convex, so there are matricesA and B such

that the set of correlated equilibria, as being a convex polytope containing the set

of Nash equilibria, is strictly larger than the set of Nash equilibria. Therefore, the

concept of correlated equilibrium is a coarsening of the concept of Nash equilibrium.

4. Example

To illustrate the concepts of correlated equilibrium and projection, we present an

example of a 2× 2 bimatrix game, which is taken from Aumann (1974).

The game (A,B), with |M | = |N | = 2, is determined by the following payoff

matrices of player 1 and 2, respectively:

A =

[
6 2

7 0

]
, B =

[
6 7

2 0

]
.
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This game has two Nash equilibria in pure strategies, namely ((1, 0), (0, 1)) and

((0, 1), (1, 0)), and one equilibrium in mixed strategies, namely ((2
3 ,

1
3 ), (2

3 ,
1
3 )). The

set of correlated equilibria can be found by solving the system of linear inequalities

(3.1)–(3.4), which results in:

CE(A,B) = Conv

{[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
4
9

2
9

2
9

1
9

]
,

[
1
2

1
4

1
4 0

]
,

[
0 2

5
2
5

1
5

]}
.

The first three extreme points of CE(A,B) correspond to the Nash equilibria, while

the two other ones are projections of the completely mixed equilibrium. This exam-

ple illustrates two known results concerning the extreme points of CE(A,B): every

extreme point of a maximal Nash set is also an extreme point of the set of corre-

lated equilibria (Evangelista and Raghavan (1996) and Canovas et al. (1999)) and

in 2×2 bimatrix games, CE(A,B) 6= Conv{NE(A,B)} if and only if |NE(A,B)| = 3

(Peeters and Potters (1999)).

The payoff profiles that correspond to the three Nash equilibria are (2, 7), (7, 2)

and (14
3 ,

14
3 ), whereas the fourth extreme point of CE(A,B) has a payoff profile of

(21
4 ,

21
4 ). We conclude that, in this example, players can improve upon the efficient

payoff profiles that result from the Nash equilibria by correlating their actions.

In Fig. 1, we depict the set of correlated equilibria in ∆M×N , which is a tetrahe-

dron. The three extreme points of CE(A,B) that correspond to the Nash equilibria

are represented by bullets. The two pure equilibria are corner points of the tetrahe-

dron, i.e., extreme points of ∆M×N , while the completely mixed equilibrium lies in

the interior. The two other extreme points of CE(A,B) are represented by circles

and lie on the faces containing both pure Nash equilibria.

The two extreme points of CE(A,B) that do not correspond to the Nash equilib-

ria are projections of the completely mixed equilibrium. The extreme point on the

back face in Fig. 1 lies on the line through the front corner of the tetrahedron and
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Fig. 1. Correlated equilibria in ∆M×N .
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the completely mixed equilibrium. Similarly, the extreme point on the front-right

face lies on the line through the left corner and the completely mixed equilibrium.

Such a projection onto a face of the tetrahedron is the geometric equivalent of the

Bayesian updating that was discussed in Sec. 1.

5. Projection

In this section we establish under which circumstances we can obtain a correlated

equilibrium by projecting a Nash equilibrium (“creating zeroes”). Our main result

will be the Projection Theorem, which gives necessary and sufficient conditions

for creating a zero. In addition, we will prove some lemmas to further clarify this

theorem and to extend it towards creating multiple zeroes.

We start with the Projection Theorem.

Theorem 5.1 (Projection Theorem). Let (p, q) ∈ NE(A,B) be such that

|CM (p)| > 1 and |CN (q)| > 1 and let (i0, j0) ∈ CM (p) × CN (q). Then

(pq>)−{(i0,j0)} ∈ CE(A,B) if and only if ei0,M ∈ B1(q
−{j0}) and ej0,N ∈

B2(p
−{i0}).

Proof. Define Π = pq>, Π′ = Π−{(i0,j0)} and α = (1−Πi0j0)
−1.

“⇐” Assume ei0,M ∈ B1(q
−{j0}) and ej0,N ∈ B2(p

−{i0}). By construction, Π′

satisfies (3.1) and (3.2). Let i ∈M and k ∈M\{i}. We check (3.3) by distinguishing

between two cases.

(1) Suppose i = i0. We have Π′i·(Ai· − Ak·)> =
∑
`∈CN (q)\{j0}Π′i`(Ai` − Ak`) =

α
∑
`∈CN(q)\{j0}Πi`(Ai` − Ak`) = αpi

∑
`∈CN (q)\{j0} q`(Ai` − Ak`) ≥ 0, where

the inequality follows from ei0,M ∈ B1(q
−{j0}).

(2) Suppose i 6= i0. Π′i·(Ai· − Ak·)> = αΠi·(Ai· − Ak·)> ≥ 0, because (p, q) ∈
NE(A,B).

From (1) and (2) we conclude that for all i, k ∈ M we have Π′i·A
>
i· ≥ Π′i·A

>
k·,

so the incentive compatibility constraints of player 1, (3.3), are satisfied. Analo-

gously, by interchanging the roles of the players, player 2’s incentive compatibility

constraints, (3.4), are satisfied as well. Hence, Π′ ∈ CE(A,B).

“⇒” Assume Π′ ∈ CE(A,B). Then for all k ∈ M\{i0} we have Π′i0·(Ai0· −
Ak·)> ≥ 0, which is equivalent to αpi0

∑
`∈CN (q)\{j0} q`(Ai0` − Ak`) ≥ 0. Because

αpi0 > 0, this implies ei0,M ∈ B1(q
−{j0}). In a similar manner, ej0,N ∈ B2(p

−{i0})

is also satisfied.

Remark 5.1. If (p, q) is a completely mixed equilibrium, that is (p, q) ∈
NE◦(A,B) = {(p, q) ∈ NE(A,B)|CM (p) = M,CN (q) = N}, then Πi·(Ai·−Ak·)> =

0 for all i, k ∈M . In this case, it follows from (1) of the “⇐” part of the proof that

Π′ −Π satisfies the incentive compatibility constraints (3.3) and (3.4). This means

that the projected correlated equilibrium is in a sense “more” incentive compatible

than the original Nash equilibrium.
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Theorem 5.1 gives necessary and sufficient conditions for creating a zero in terms

of best-replies. In order to reformulate these conditions, we need to introduce the

notion of carrier-restricted best-reply correspondence. For all p ∈ ∆M and q ∈ ∆N ,

we define B∗1 (q; p) = argmaxp′∈∆M ,CM(p′)⊆CM(p)(p
′)>Aq to be the carrier-restricted

best-reply of player 1 against q, where he is only allowed to use those pure strategies

that are played with positive probability according to p. B∗2 (p; q) is defined in a

similar manner.

The next lemma states that the conditions ei0,M ∈ B1(q
−{j0}) and ej0,N ∈

B2(p
−{i0}) in Theorem 5.1 are satisfied if and only if the pure strategy combination

(i0, j0) consists of “mutually worst responses”, i.e., i0 gives player 1 the lowest

possible payoff against j0 within the carrier of p and j0 gives player 2 the lowest

possible payoff against i0 within the carrier of q.

Lemma 5.1. Let (p, q) ∈ NE(A,B) with |CN (q)| > 1 and let (i, j) ∈ CM (p) ×
CN (q), then ei,M ∈ B∗1(q−{j}; p) if and only if (ei,M )>Aej,N ≤ (ek,M )>Aej,N for

all k ∈ CM (p).

Proof. “⇒” Assume ei,M ∈ B∗1(q−{j}; p) and suppose there exists a k ∈ CM (p)

such that (ei,M )>Aej,N > (ek,M )>Aej,N . Then (ei,M )>Aq = qj(e
i,M)>Aej,N +(1−

qj)(e
i,M )>Aq−{j} > qj(e

k,M )>Aej,N + (1− qj)(ei,M )>Aq−{j} ≥ qj(ek,M )>Aej,N +

(1−qj)(ek,M )>Aq−{j} = (ek,M )>Aq. But then p /∈ B1(q), because player 1 is better

off playing ek,M with probability zero. Hence, (p, q) /∈ NE(A,B). Contradiction.

“⇐” Assume (ei,M)>Aej,N ≤ (ek,M )>Aej,N for all k ∈ CM (p). Define

α = (1 − qj)
−1 and let k ∈ CM (p). Because (p, q) ∈ NE(A,B), we must

have that (ei,M )>Aq = (ek,M )>Aq. Then (ei,M )>Aq−{j} = α((ei,M )>Aq −
qj(e

i,M )>Aej,N ) = α((ek,M )>Aq − qj(e
i,M)>Aej,N ) ≥ α((ek,M )>Aq −

qj(e
k,M )>Aej,N ) = (ek,M )>Aq−{j}. Hence, ei,M ∈ B∗1 (q−{j}; p).

Of course, a similar result can be obtained for player 2. Note that Lemma 5.1

need not hold if we take the strategy spaceB1(q
−{j}) instead of the carrier-restricted

one B∗1 (q−{j}; p). Therefore, from now on we will only consider bimatrix games that

possess a completely mixed Nash equilibrium.

We now have easy conditions to check whether creating a zero in a probability

matrix representing a Nash equilibrium yields a correlated equilibrium. The next

step is to show that if we are allowed to create zeroes at a number of positions

separately, creating zeroes at these positions simultaneously yields yet another cor-

related equilibrium.

Lemma 5.2. Let (p, q) ∈ NE◦(A,B) and let I $ M × N, I 6= ∅. If (pq>)−{u} ∈
CE(A,B) for all u ∈ I, then (pq>)−I ∈ CE(A,B).

Proof. Assume (pq>)−{u} ∈ CE(A,B) for all u ∈ I. Define Π = pq>, Π′ = Π−I

and α = 1−
∑
u∈I Πu. By construction, Π′ satisfies (3.1) and (3.2). To check (3.3)
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and (3.4), we use the following relation:

Π′ = α−1
∑
u∈I

(1−Πu)(Π
−{u} −Π) + Π . (5.1)

By Remark 5.1, each of the (Π−{u} − Π) satisfies (3.3) and (3.4). The probability

matrix Π corresponds to a Nash equilibrium and therefore also satisfies the incen-

tive compatibility constraints. Because Π′ is a positive linear combination of these

matrices, it must satisfy (3.3) and (3.4) as well. Hence, Π′ ∈ CE(A,B).

When investigating how to project a particular Nash equilibrium, we have to

take the incentive compatibility constraints of both players into account. However,

if we create an entire row of zeroes, the incentive compatibility constraint corre-

sponding to that row will be trivially satisfied. Hence, if we want to create an entire

row of zeroes, we only have to look at the incentive compatibility constraints of

player 2, as the following lemma shows.

Lemma 5.3. Let (p, q) ∈ NE◦(A,B). Let i ∈M . If ej,N ∈ B2(p
−{i}) for all j ∈ N,

then (p−{i}q>) ∈ CE(A,B).

Proof. Assume ej,N ∈ B2(p
−{i}) for all j ∈ N . Obviously, (p−{i}q>) satisfies (3.1)–

(3.3). Applying Lemma 5.1, we know that for all j, ` ∈ N we have (ei,M)>Bej,N =

(ei,M )>Be`,N . But then (3.4) follows using the same argument as in the proof of

Theorem 5.1. Hence, (p−{i}q>) ∈ CE(A,B).

The conditions in Lemma 5.3 are weaker than the conditions in Lemma 5.2,

because the incentive compatibility constraints of one of the players can be left out.

Note that it follows from Lemma 3.1 that the resulting correlated equilibrium is a

Nash equilibrium.

Lemma 5.2 has some obvious extensions for combinations with entire rows or

columns. These can all be proved in a similar manner and are left to the reader.
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