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Abstract

Categorization is an important phenomenon in science and society, and

classification systems reflect the mesoscale organization of knowledge. The

Yule-Simon-Naranan model, which assumes exponential growth of the num-

ber of categories and exponential growth of individual categories predicts

a power law (Pareto) size distribution, and a power law size-rank relation

(Zipf’s law). However, the size distribution of patent subclasses departs from

a pure power law, and is shown to be closer to a shifted power law. At a

higher aggregation level (patent classes), the rank-size relation deviates even

more from a pure power law, and is shown to be closer to a generalized beta

curve. These patterns can be explained by assuming a shifted exponential

growth of individual categories to obtain a shifted power law size distribu-

tion (for subclasses), and by assuming an asymmetric logistic growth of the

number of categories to obtain a generalized beta size-rank relationship (for

classes). This may suggest a shift towards incremental more than radical

innovation.
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1 Introduction

Categorization is at the basis of reasoning. Theorizing about scientific and techno-

logical systems is no exception, and always relies on the grouping of several items

into “categories”. For instance, the concepts of paradigms, research fields, school

of thought, epistemic communities, etc. are all based on the idea that an un-

derlying grouping can be meaningfully established. Elements in these categories

(“bio-technologies”, “economics”, “subclass N234”, “keynesians”) are then taken

to behave in the same way. At the very least, the analyst can argue that elements

within a category have a degree of homogeneity which is much higher than elements

taken from different categories. Since analyzing a number of categories is simpler

than analyzing every single element, categorization reduces the dimension of the

problem.

Categorization, therefore, is at the heart of thought processes. This implies

that categories are not simply useful to describe reality, they are the main tool to

construct it. Categories, when they are created as nouns, can have a predicate and

become a subject. They enter discourses with their own identity, and shape our

understanding of reality. Classification systems are essential tools in the creation

of routinized habits of thoughts. Hence, when a classification is put to use, one

may argue that it creates a feedback on the system it describes. Classification

systems are institutions which often legitimate the items that they classify. This

affects the future evolution of the items, and their relation (boundaries) with other

items. Along this line of argument, the process of categorization is performative.

The evolution of the technological classification system therefore provides data on

how society understands its technological artefacts and legitimizes them through

the process of categorization.

In this paper, I propose an attempt at clarifying some of the key processes

underlying the evolution of technological and scientific classification systems by

studying in detail one of the most important, relatively well defined quantity: the

size distribution of categories (or the size-rank relationship, which by construction

is less noisy). I study the US patents granted by the USPTO between 1976 and

2006, partitioned at the level of more than 400 classes and 100,000 subclasses.
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The size distribution of patent subclasses is well fitted by a shifted power law,

in agreement with a slightly modified version of the Yule (1925)-Simon (1955)-

Naranan (1970) models. However, at the level of classes, the size distribution is

less skewed. The small sample (428 categories) suggests to study the size-rank

relationship instead of the size distribution. The size-rank relationship, at the level

of classes, is not a power law (Zipf’s law). An exponential relation was recently

proposed (Carnabuci 2013) for this data. Here I find that a generalized beta,

suggested for size-rank relationships by Mart́ınez-Mekler et al. (2009), fits the data

better. I give a simple and original explanation for this fact, answering partially

an open problem stated in Egghe (2012). The reason for the departure from Zipf’s

law is that the number of categories tends to grow faster in the beginning than

in the end, as compared to the growth of individual categories. The model of

Naranan (1970), which is a simplified version of Yule’s (1925) and Simon’s (1955)

models, derives Zipf’s law by assuming an exponential growth of both the number

of categories and the number of items per category. To obtain a generalized beta (of

the first kind) for the size-rank relationship, I find that one should instead assume

an asymmetric S-shaped curve for the number of categories.

The paper is organized as follows. Section 2 gives a background discussion on

category systems and technological change, and reviews existing literature. Section

3 describes the data and the methodology. Section 4 presents empirical results.

Section 5 proposes theoretical models consistent with the observed empirical laws.

Section 6 discusses the results. The last section concludes.

2 Literature review

The purpose of this section is to provide a general discussion of what categories

mean, why it is important to study them, and how this general theoretical back-

ground applies to the case of technological categories. A review of the literature on

the evolution of technological domains using patent categories follows.

2.1 Theoretical background

The philosophy of category systems1 has traditionally distinguished between Aris-

totle realism (categories of things do exist) and Kant conceptualism (what really

1see the Stanford Encyclopedia of Philosophy for Categories and Natural kinds, from where

the quotes are taken (http://plato.stanford.edu, accessed 28/08/2014).
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exists are the categories of understanding, based on experience). Husserl proposed

an encompassing view where the two systems, categories of meaning and ontolog-

ical categories, co-exist and are related. Foucault (1966) insisted on the idea that

words, the categories making up discourses, are not descriptive tools but genuinely

construct the world. Latour (2005) concluded that the social scientist should not

overimpose her own categories over the actors she analyzes. Instead, the analyst

should follow the actors, and see how they create categories themselves.

A more realist view is that of natural kinds. A natural kind is defined as one

that “corresponds to a grouping or ordering that does not depend on humans”.

Chemistry is said to provide the least controversial example of natural kinds (the

periodic elements table), whereas biological species classification are less easily taken

for granted. From a metaphysical point of view, one is interested in the essence

of natural kinds, that is, “the property or set of properties whose possession is a

necessary and sufficient condition for a particular’s being a member of a kind”. The

existence and relevance of these essences is the point of view of “essentialists”. The

view according to which there are “genuinely natural ways of classifying things” is

called naturalism.

On the other hand, constructivists do not believe that classifications reflect the

“real” world. In its weak version, constructivism does not deny the existence of

natural kinds, but doubts that we can actually see them. Strong constructivism

however rejects the mere existence of natural kinds. “Ontological relativism” can

be defined as “the view that all entities, processes, relations and theoretical posits

are relative to a certain conceptual scheme”. More generally, constructivists argue

that categories are created, constructed by the observer. In some cases, it is even

argued that the objects – not only the categories as a concept, but the actual objects

– are constructed.

Whatever the nature of categories – real or constructed – they are the key build-

ing blocks of discourses, including scientific discourses. More generally, a criterion

for the existence of a category is that it is a level of aggregation at which a given

law holds. According to the “cluster kind realists”, “a natural kind is any (...)

family of co-occuring properties that may be employed in inductive inference for

the purpose of scientific explanation”. Quine argued that “it is the similarity or

sameness of kinds between instances that permits an induction”. Putnam’s (1975)

theory of semantic externalism holds that the meaning of what people say is not in

their head, but in the head of experts - the linguistic community- who collectively

know what things are.
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In recent years, there has been an expanding literature in sociology about classi-

fication, notably some historical studies of controversial classification systems, such

as the classification of diseases (Bowker & Star 2000). Some analytical insights

from this literature are worth mentioning (Shepherd 2010), and all have to do with

the fact that classification exerts an effect on the users of the classification scheme,

or even on the elements being classified. First, there is evidence that the degree of

institutionalization of the classification system influences the perception of hybrid

members (elements with multiple categories): once a classification system is well es-

tablished, there is a penalty to hybridity. Second, classification essentially consists

in drawing boundaries. Boundaries should be thought of as interfaces rather than

borders (Bowker & Star 2000). How communication takes places within boundaries

is different than how it takes place between; hence classification institutionalizes

possible interactions. Third, the extent to which the users of classification systems

can shape the classification changes the way in which users interpret and use the

classification system. Finally, actors exercise power to obtain classification systems

to their advantage.

2.2 The classification of technologies

2.2.1 Technologies at the mesoscale

For Arthur (2009), a technology is something that relies on the mastering of natural

phenomena to produce a useful artefact. In his words, technology is “a collection

of phenomena captured and put to use”. Acknowledging that technology builds

out of itself, we see that a technology is made of technologies, thus a technology

is a “complex of interacting phenomena”. Here is the central point of the discus-

sion: since there are families of phenomena (chemical ones, electrical ones, quantum

ones), there are families of technologies based on these phenomena. Arthur goes a

step further by arguing that “each grouping forms a language within which particu-

lar technologies – particular devices and methods – are put together as expressions

within that language”. Hence, technologies form clusters, which he calls domains,

because they are based on the same phenomena, or because of some other shared

characteristics or purposes. Individual technologies and domains, though both hier-

archical constructs (i.e. having their sub-technology or sub-domains), are distinct.

To be sure,

A technology (individual, that is) does a job; it achieves a purpose -
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– often a very particular purpose. A domain (technology-plural) does

no job; it merely exists as a toolbox of useful components to be drawn

from, a set of practices to be used. A technology defines a product, or a

process. A domain defines no product; it forms a constellation of tech-

nologies –a mutually supporting set – and when these are represented

by the firms that produce them, it defines an industry. A technology is

invented; it is put together by someone. A domain (...) is not invented;

it emerges piece by piece from its individual parts. A technology – an

individual computer, say – gives a certain potency to whoever possesses

it. A domain –the digital technologies – gives potential to a whole econ-

omy that can in time become transmuted into future wealth and political

power.

However, it is not always obvious to attribute a unique category to a given

innovation. From the inventor perspective, Arthur (2009) describes the process of

choosing a category (a “palette of components”) for a new device as domaining.

Sometimes, this is automatic, sometimes more difficult. Often, if the technology is

large enough, it will belong to several domains.

2.2.2 Rationalizing practice: classification as legitimation

If technologies can be meaningfully categorized, the information feedback provided

by the category system will in turn influence further technological development.

From a pragmatic stance, things are real if they are real in their consequences, so if

firms use category systems to search for technologies and build their own, categories

are ontological. But how exactly do these categories map with the human percep-

tions, or construction, of them? Nelson (2006) describes technological evolution as

the co-evolution of a body of practice and a body of understanding. He describes

the role of the body of understanding as one of “rationalizing” the practice.

(...) what makes the evolution of human practice, and especially tech-

nology, different from the evolution of animal behavior as studied by

ethologists is exactly that extant human practice is generally supported

by a rather elaborate body of reasons, or rationalizations.(...) To the

extent that technology is seen as not simply a body of practice, but

also a body of understanding, the nature of the evaluation and selection

processes becomes more complicated. While the criteria for selection
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on the former aspect may well ‘fit’ with user need, the criteria for the

later may appear to be the ‘ability to explain observed relevant facts

and enable problems to be solved and progress made’. The selection

processes and those who control them, as well as the criteria, may well

be different. For practice, the process is ultimately under the control

of users, or their agents; for understanding, the control rests with the

community of technologists”.

In this paper, I consider categorization as a process of codification of an un-

derstanding concerning the technological system, and I argue that the dynamics of

patent classes and subclasses constitute a window on the “community of technolo-

gists”. Using mathematical and statistical modelling, it is possible to uncover the

most fundamental principles at play in the growth of classification systems. Perhaps

the most important of these principles is creation, i.e. the fact that new categories

are created over time.

2.2.3 The emergence of new technology categories

Technological evolution is reflected in the evolution of the classification system

and this suggests to study the dynamics of categories creation (Strumsky et al.

2012). Classification is a particularly important topic in innovation studies because

by definition, innovation challenges existing schemas (Hicks 2011). Economists of

innovation have traditionally made a distinction between incremental and radical

innovations. In the context of classification, the former can be interpreted as being

a new technology which fits perfectly in the existing classification scheme. This

sort of innovation falls into what Arthur (2009) calls “structural deepening”, the

addition of subsystems and subassemblies to an existing technology so as to improve

basic performance, adapt to wider tasks, improve reliability and safety, or simply

react to changed circumstances, for instance on the demand side. On the other

hand, a radical innovation can be defined as a new technology which creates a new

category (perhaps by creating a need to reframe the classification system, or simply

by being sui generis, the first innovation of its own kind) – this would be called

redomaining or revolution in Arthur’s terms.
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2.3 Growth and distribution of technological domains

The growth of technological domains has been deeply scrutinized in the economics

of technical change and development (Schumpeter 1934, Dosi 1982, Pasinetti 1983,

Pavitt 1984, Freeman & Soete 1997, Saviotti 1996, Malerba 2002). A recurring

theme in this literature in the high heterogeneity among sectors. Besides hetero-

geneity due to the very nature of the underlying knowledge base, sectors are also

at different stages of their life cycles (Vernon 1966, Klepper 1997).

Life-cycle theories of technological change suggest non linearities in the evolution

of individual technological domains. Andersen (1999) fits logistic growth models,

using USPTO data for the period 1890-1990, and aggregated at the level of 56

technological groups (collections of patent classes). Andersen (1999) does not fit

logistic growth for the whole period (1890-1990) but instead for subperiods, arguing

that a logistic growth episode constitutes one cycle. Hence, in this theory, an

individual category follows repeated S-shaped patterns. In this paper, I do not look

for detailed life-cycle patterns in the data. Instead, I seek for the most parsimonious

model that gives reasonable aggregated results. Hence, the results are less precise,

and less informative of individual sectors’ histories. On the other hand, the models

and results of this paper are more powerful in explaining why other, potentially

very different datasets, exhibit similar regularities (“universal laws”).

Similarly, Carnabuci (2013) detected a departure from pure multiplicative growth

(Gibrat’s model) for the size of individual categories, which I do not account for in

the models of section 5. It turns out that at both the subclass and class levels, as-

suming exponential growth of individual categories gives reasonable frequency-size

or rank–size distributions, if associated with an appropriate growth function for the

number of categories.

Finally, using the almost complete record of US patents, Youn et al. (2014) found

that the number of subclasses follows the same trend as the number of patents until

about 1870, but grew less fast afterwards. Remarkably, however, the number of

unique combinations of subclasses used in a patent keeps the same trend as the

number of patents. The data used in the present study does not contain multiple

classifications, but only the main patent class/subclass, and covers only the period

1976-2006, as described in the next section.
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3 Data and method

3.1 The United States Patent Classification System

Falasco (2002) describes three types of rationale behind the United States Patent

Classification System(USPCS). The classification by industry was the original method

when the first USPCS appeared in the beginning of the XIXth century. The classifi-

cation by structure (“arrangement of components”) is sometimes useful, for instance

composite materials can be classified according to the arrangement of their parts.

The classification by utility (proximate function) was “adopted in the early XXth

century as the fundamental principle for classifying prior patent art in the USPCS”.

By proximate function, it is meant the fundamental function of the invention, not

some example application in a particular device or industry. The classification by

utility includes also the classification by effect or product, which “provides collec-

tions based on result”, for instance measuring, illuminating, etc.

The USPCS attributes to each patent at least one subject matter. A subject

matter includes a main class, delineating the main technology, and a subclass,

delineating processes, structural features and functional features. All classes and

most subclasses have a definition. All subclasses within a class are arranged in a

class schedule, “with the most complex and comprehensive subject matter generally

at the top of the schedule, and the least complex and comprehensive at the bottom”

(USPTO 2012). Subclasses have indentation levels. Primary subclasses are the

main type of subclass, and each patent must be assigned to at least one of them.

Some subclasses are called “Alpha subclasses”. These were previously unofficial

subclasses, created by examiners to ease their work. They are identified by their

parent primary subclass, adding one or two letters. Finally, note that these are the

patent claims which are classified, and the patent inherits the classification of its

claims. The main classification is the one of its main claim.

Patent examiners follow a rather precise algorithm for finding the appropriate

subclass (USPTO 2012): starting at the top, scan downward looking only at main

line subclasses until one is found that provides for any portion of the claim. Within

this one, scan downward subclasses which are at one higher indentation level until

one is found that provides with at least a certain portion of the subject matter, and

go ahead similarly to the next indentation level. When no subclasses can be found,

stop the process and classify at the last subclass selected.2

2It is interesting to note that this is a case of a formal, codified rule that should be followed to
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Classification is used mainly for the search of prior art. It is also used to de-

termine which department, that is, which examiners will evaluate the patent. It is

also widely used by business analysts.

3.2 The NBER patent data (1976-2006)

I use the well-known NBER patent dataset (Hall et al. 2001), updated to 2006.3

It contains information on 3,210,361 utility patents. 1335 patents have a “NA”

class, corresponding either to a “withdrawn” subclass (1328) or to a “D” subclass

(7 patents). I removed these 1335 patents, leaving a total of 3,209,056 uniquely

allocated to 428 classes and 119833 subclasses (“primary” US class/subclass). Sub-

classes are detailed at the 6 digits level, and I consider alpha subclasses as distinct.

Throughout, I use the current classification system, that is, the category of each

patent is its category in 2008 (“CCL” variables in the NBER file, i.e. the variables

“cclass” and “nclass”).

4 Empirical observations

This section presents empirical results on the size distribution of subclasses, and

the size-rank relation for classes. The size of a category is simply defined as the

number of patents within it.

4.1 The size distribution of subclasses

The size-distribution of patent subclasses is a heavy tail distribution, and it is

relatively well behaved (not too noisy). After trying a number of classical candidates

(power law, stretched exponential, Weibull, etc...), two distributions, the Waring (a

discrete version of the shifted power law) and the lognormal, were found to give a

good fit. The parameters of these two distributions were estimated using maximum

likelihood. A modified Waring distribution was used, defined so that it is properly

produce additional codified knowledge (a classification). It highlights that classification is done by

following heuristics, as would be expected from bounded rationality and evolutionary economics

theory (Simon 1947, Nelson & Winter 1982). Note that the knowledge of this procedure can in

principle be exploited to understand the growth of subclasses as a function of their indentation

level and position in the class schedule.
3see https://sites.google.com/site/patentdataproject/Home. I used the file pat76 06 assg.dta.
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Figure 1: Size distribution of patent subclasses. Top left: Probability mass function. Top right:

Complementary cumulative distribution. Bottom right: Cumulative distribution. Bottom right:

QQ-plot on double log axis. The fitted curves are a Waring and a log-normal distribution.

normalized over the range k = 1 . . .∞ (instead of 0 . . .∞):4

p(k) =
d+ γ − 1

d

B(k + d, γ)

B(d, γ − 1)
. (1)

The parameters and R2 were computed for the cumulated system (all patents

granted up to a given year), at 6 periods of 5 years interval (table 1). The visual fits

for the system as of 2006 are provided in figure 1. Although this fit is visually good,

the log-transformed data does not pass the Anderson-Darling test for normality.

4The normalization constant C = d+γ−1
dB(d,γ−1) is found as follow. First impose

∑

∞

k=1 CB(k +

d, γ) =
∑

∞

s=0 CB(s + 1 + d, γ) = 1). From that
∑

∞

s=0
(1+d)s

(1+d+γ)s
= 1/(CB(1 + r, γ)). The LHS is

Gauss Hypergeometric Function and Gauss hypergeometric theorem can be applied to get rid of

the summation symbol. Simplifying and solving for C then gives the result.
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Waring Log-normal

# patents # categories 〈k〉 γ d mean std. dev.

1981 378,040 84,834 4.46 4.44 7.49 1.05 0.90

1986 702,508 99,776 7.04 4.00 11.27 1.40 1.02

1991 1,145,796 109,268 10.49 3.74 15.85 1.71 1.12

1996 1,654,321 114,372 14.46 3.43 18.89 1.96 1.20

2001 2,390,834 117,772 20.30 3.01 19.63 2.20 1.29

2006 3,209,056 119,833 26.78 2.69 18.96 2.36 1.36

Table 1: Parameter estimates for the size distribution at the level of subclasses.

The values of the likelihood (not reported) were slightly but systematically higher

for the Waring distribution than for the lognormal.

4.2 Rank-size relationship of classes

The number of classes is quite low, which makes the probability density rather

noisy.5 For this reason, I choose to study the rank-size distribution. Carnabuci

(2013) noticed that this relationship is not Zipfian. He fitted an exponential func-

tion, that is,

r(g) = Ce−xg,

where r is the rank and g is the relative size (i.e. the number of patents in the

category of rank r, divided by the total number of patents6). However, while this fit

is better than that of a power law and gives a good first approximation (R2 ≈ 0.96),

the exponential functional form clearly underestimates the tail (as can be seen in

the plots, but is only poorly reflected by the R2). On the other hand, since the tail

is not as fat as Zipf’s law would imply, one needs to find an alternative functional

form. Mart́ınez-Mekler et al. (2009) showed that for a number of datasets the size-

rank relation could be very well fitted by the following formula, which expresses

size g as a function of rank r:

g(r) = K1(N + 1− r)br−a, (2)

5Sanditov (2005) fitted a log-normal and gamma distribution to the 1963-1999 database.
6Carnabuci (2013) worked with absolute size, but it is easier here to work with relative size.
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where K1 is a normalization constant. To ease later comparison with a close formula

derived here, I consider N + 1→ N . Then equation 2 can be rewritten as

g(r) = K2

(

1−
r

N

)b

r−a, (3)

where K2 is a normalization constant. This formula is like a power law, except

for the factor
(

1− r
N

)b
which decreases as the rank r approaches the number of

categories N , creating an overall decay faster than normal power laws. Mart́ınez-

Mekler et al. (2009) call it a Generalized Beta Distribution (GBD).
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Figure 2: Fit of the size-rank relationship at the level of classes. The same data is displayed on

the two panels. On the left panel, only the axis for size is on a log scale, as in Mart́ınez-Mekler

et al. (2009), and on the right, only the axis for rank is on a log scale, as in Carnabuci (2013).

# of # of equation 3 equation 10

patents categories a b γ z

1981 378040 423 0.33 1.14 0.24 0.28

1986 702508 425 0.35 1.08 0.27 0.34

1991 1145796 426 0.36 1.07 0.29 0.36

1996 1654321 427 0.35 1.13 0.27 0.33

2001 2390834 427 0.36 1.18 0.27 0.31

2006 3209056 428 0.36 1.36 0.23 0.23

Table 2: Parameter estimates for the size-rank relation at the level of classes.
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Using the NBER patent data at the class level, I compared three hypothesis:

the exponential relation between rank and size (Carnabuci 2013), the Generalized

Beta Distribution (GBD) of Mart́ınez-Mekler et al. (2009) (equation 3), and the

slightly different GBD equation 10 derived in section 5 infra. Figure 2 shows that

the two GBD clearly outperform the exponential. The R2 values are 0.9597 for

the exponential, 0.9974 for the GBD (3), and 0.9978 for the GBD derived from

an original model in section 5 (equation 4). These results suggest that these two

different GBD perform equally well, at least for this data. Note that following

Mart́ınez-Mekler et al. (2009), I take N directly from the data, that is, N is equal

to the number of classes. Hence only two parameters are estimated by the fitting

procedure.7 Table 2 shows the estimated parameters for the two GBD over time. It

is interesting to see that the parameters seem very stable for the first four 5-years

periods, and change after 2001, except for the power law exponent (a) of Mart́ınez-

Mekler et al.’s (2009) equation, which is strikingly constant.8 This may reflect a

great stability in at least part of the process, as well as a slightly better performance

of Mart́ınez-Mekler et al.’s (2009) equation over the one presented here.

5 Theoretical models

Yule (1925) proposed the first model generating a power-law size distribution. He

assumed that the number of categories grows at an exponential rate, and each

category grows at an exponential rate.9 Under these assumptions, the size distribu-

tion of categories is a Yule distribution, which has power law tails. Simon (1955)

proposed a different version of Yule’s model, in which time is not clock time but

system time. However, up to a small modification, the two processes are equivalent

7I used nonlinear least squares with a Gauss-Newton algorithm. Alternative optimization

algorithms and starting conditions do not change the results significantly. Note that for Mart́ınez-

Mekler et al.’s (2009) equation, using (2) instead of (3) makes OLS estimation possible, by taking

logs. In this case, the estimated parameters are slightly different (for 2006, a = 0.24 and b = 1.55,

R2 = 0.986).
8The same heuristic conclusion could be reached by looking at the plots of the four parameters

over time for each year, not reported here.
9Yule’s model is actually more complicated, in that he does not assume exponential growth

but derives it from first principles, namely that each new species (item) has a fixed probability of

generating a new species of a new genera and a fixed probability of generating a new species of

an existing genera. Note that Yule’s model is stochastic, but the deterministic version here can

be seen as a mean-field approximation.
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(Simkin & Roychowdhury 2011). Naranan (1970) proposed a deterministic version

and obtained similar results.

As we have seen in the previous section, neither the subclasses nor the classes

have a pure power law size distribution. How should the Yule-Simon-Naranan’s

model be modified to produce the distributions observed empirically? To answer

this question, I use Egghe’s (2012) Generalized Naranan’s Framework. Egghe (2012)

extended Naranan’s work for arbitrary invertible growth functions. He concluded

his paper by asking whether one could obtain Mart́ınez-Mekler et al.’s (2009) for-

mula (equation 3) using the generalized Naranan’s framework. Here I show first

how to derive a shifted power law size distribution from the Generalized Naranan’s

framework (to explain the phenomenology of subclasses), and second how to derive

a generalized beta curve very close to that of Mart́ınez-Mekler et al. (2009) for the

size-rank function (to explain the phenomenology of classes).

Consider that the number of categories at (continuous) time t is φ(t), and the

number of items in a category of age t is ψ(t). Moreover, assume that φ and ψ are

invertible. Egghe (2012) proved the following:

Theorem 1. In the generalized Naranan’s framework, the size-rank function, which

gives the size of a category as a function of its rank is

G(r) = ψ(t− φ−1(r)). (4)

Theorem 2. In the generalized Naranan’s framework, the frequency-size function,

which gives the number of categories having a given size, is

P (k) =
φ′(t− ψ−1(k))

ψ′(ψ−1(k))
. (5)

5.1 Shifted power law for subclasses

Let us start by analyzing the subclasses. We seek for φ and ψ such that P (k) ∝

(k + a)−γ . It is known from growing network models that a shifted attachment

kernel (i.e. where the probability that the next newborn node links to an existing

node of degree k is proportional to k+constant) gives a shifted power law. In other

words, if a category accumulates items at a rate proportional to how many items it

already has, growth is exponential and the size distribution is a power law. But if

a category accumulates items at a rate proportional to how many items it already

has plus a constant, we should expect a shifted power law. Hence, I assume

dψ(t)

dt
= x1ψ(t) + x2,
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which implies

ψ(t) =
−x2 + etx1(x1 + x2)

x1
= −q + c2e

a2t, (6)

where the parameters have been rewritten in a more condensed way. My assumption

for the growth of the number of categories is the same as Yule-Naranan’s:

φ(t) = c1e
a1t. (7)

Theorem 5 with the assumptions (6) and (7) gives

P (k) =
a1c

a1/a2
2

c1e
a1t

a2
(k + q)

−1−
a1

a2 .

The probability density p(k) is obtained by diving by the total number of categories

at time t,

p(k) = P (k)/φ(t) =
a1
a2

(k + q)
−1−

a1

a2 ,

which is the shifted power law we were seeking to obtain. Moreover, it is a steady-

state result. So, to obtain a shift in the power law size distribution in the generalized

Naranan’s framework, all that needs to be modified is the shift parameter q in the

function ψ describing the growth of individual categories. It implies that in their

early life, categories (here, patent subclasses) benefit from an additional growth

factor that ultimately dies out. This factor is equivalent to Dorogovtsev et al.’s

(2000) “initial attractiveness”, which is necessary when such models are applied

to citation networks (de Solla Price 1976). In fact, using a stochastic and discrete

model (that is, Simon’s (1955) model with a shifted attachment kernel) would allow

to derive directly the Waring distribution. However, I preferred to use the general-

ized Naranan’s framework here, because it is much easier to apply to the next case

of interest: the generalized beta size-rank function observed for patent classes.

5.2 Generalized beta for classes

To obtain a generalized beta size-rank function, one can stick to Naranan’s as-

sumption that individual categories grow exponentially, but needs to assume a very

flexible function for the number of categories. More precisely, the number of items

in a category of age t is

ψ(t) = c2e
a2t, (8)
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as in Naranan’s, and the number of categories is Richard’s curve. It is obtained as

the solution of (Tsoularis & Wallace 2002)

dφ(t)

dt
= a1φ(t)

(

1−

(

φ(t)

n

)z)

,

which is

φ(t) =
φ0n

(φz
0
+ e−a1zt (nz − φz

0
))

1

z

, (9)

where the initial condition is φ(0) = φ0. With z = 1, it is the classical logistic

(Verhulst) equation, which is also S-shaped but symmetric. Verhulst equation is

too simple to obtain a good rank-frequency function, because the inflexion point

is precisely at the point where size has reached exactly half of the total possible

(long term) size. The parameter z allows greater flexibility as to the position of the

inflexion point, making the S-shaped asymmetric.

Theorem 5 under the assumptions (8) and (9) gives the following size-rank re-

lation

G(r) = C1

(

1−
( r

n

)z)γ/z

r−γ,

where C1(t) = c2e
a2t(nφ0)

γ(nz−φz
0
)−γ/z and γ = a2/a1. Note that this equation

will give 0 at the boundary r = n, which is not desirable but comes from the

assumption that growth functions are continuous in this framework. The total size

(total number of patents) is
∑

r G(r) (or the integral if we stick to the continuous

approximation). Hence, since the relative size is g(r) = G(r)/
∑

r G(r), we have

g(r) = C2

(

1−
( r

n

)z)γ/z

r−γ, (10)

where C2(t) is a normalization constant. Equation 10 is not exactly the same as,

but is very similar to equation 3. Therefore, I believe that the mechanism described

here provides a good theoretical background for the original equation proposed by

Mart́ınez-Mekler et al. (2009) (equation 2). Hence, the results presented here answer

to a good extent the open problem stated in Egghe (2012), who asked if equation 2

could be derived from the Generalized Naranan’s framework.

It should be noted that Mart́ınez-Mekler et al. (2009) proposed a generative

model for their equation, based on a dynamical model of boolean replication. Their

model assumes that a vector of 0 and 1 is grown with a probabilistic rule, such that

an entry is flipped with some probability, or repeated otherwise. They then show

that the frequency with which non-overlapping sextuplets occur is well fitted by
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a GBD. Their interpretation is that the parameter a is associated to permanence

(when an entry is replicated), whereas b is associated to change (when an entry if

modified). The model presented here presents several differences with Mart́ınez-

Mekler et al.’s (2009). First, it is simpler. Second, the derivation of the GBD is

analytical. Third, the formula is not exactly the same. Finally, the interpretation

of the parameters is quite different. In the model of this paper, the parameters are

determined directly by the parameters of the growth functions φ and ψ.

These results show that, using the generalized Naranan’s framework, a non

linear modification of the growth of the number of categories is enough to obtain

a very good fit of the rank-size relationship in many cases. This does not mean

that the number of categories is actually bounded, nor that we need to observe the

growth functions assumed here to obtain the GBD. In fact, note that the variable t

appears only in the constant of equation 10. Hence what the model means is that,

whatever the growth functions are in clock time (say φ(τ) and ψ(τ)), if we can find

a variable t(τ) such that φ(t) and ψ(t) follow (8) and (9), then we should obtain

the steady-state size-rank relation (10). It is difficult to test directly for the shape

of φ and ψ here, because the data covers only about the last half of the US patents,

while most classes were created very early, way before 1976 (Strumsky et al. 2012).

Nevertheless, we can get some insights into the shape of ψ by taking logs of equation

8 to obtain the linear regressions:

logψ(t) = log c2 + a2t+ ǫt, (11)

where t is the year. Figure 3 shows the results for the 415 classes which had

positive size in 1976. We can conclude from it that exponential growth, while very

rough and unfair to the heterogeneity among classes, is a decent assumption, with

most R2 above 0.9, and the coefficients highly concentrated between 0.05 and 0.15.

Although this exercise does not show that growth is exponential, it suggests that the

assumption of exponential growth has a fairly good amount of descriptive power.

Finally, note that Richards’ curve (9) cannot be meaningfully estimated directly,

since in 1976 there were already 415 classes out of 428. The next section discusses

why such simple assumptions nevertheless allow to make a good prediction of the

size-rank relationship.

18



a2

F
re
q
u
e
n
c
y

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
1
0

3
0

5
0

R
2

F
re
q
u
e
n
c
y

0.6 0.7 0.8 0.9 1.0

0
1
0

2
0

3
0

4
0

Figure 3: Test of the explanatory power of the exponential growth assumption of individual classes.

OLS regressions for equation 11. The mean a2 is 0.10 and the median 0.095.

6 Discussion

The assumptions of the models presented here should not be taken at face value. For

instance, it is likely that the functions need not be deterministic for the results on the

shape of the distributions to hold true (for the same reason that Yule and Simon’s

models give a result similar to Naranan’s, which can be seen as deterministic mean-

field continuous approximation of these discrete stochastic models). Moreover, what

matters is not the exact shape of the growth function over (real) clock time, but the

relationships that the time variable implies between the growth of different items

and the number of items.10 For these two reasons, one can expect that the models

presented here can be stated in more general terms. Pinning down the general

conditions under which these laws hold is certainly an interesting avenue for future

research.

It can be seen in table 1 and 2 that the estimated exponents are not always

constant over time. To the extent that this is true, the models used are falsified. The

models display “steady-state” results, and therefore, if they were entirely correct,

we would not observe time-varying parameters. However, one possibility is that

10To be more explicit, consider a given model with a given φ(t) and ψ(t), predicting g(r) and

p(k). For the model to be correct, we need not observe φ and ψ as assumed, with t being our

experienced time in months or years. What we need to observe is φ and ψ such that there exists

a rescaling of time which makes them behaving as assumed over the rescaled time. It should be

emphasized that, even for subclasses, the growth assumptions are not validated if we consider t

as years (e.g. the number of subclasses grows much slower than exponentially)
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the systems have not yet reached their steady-state, so that we are observing the

convergence dynamics, which may not be accounted for in the models. Alternatively,

and perhaps more plausibly, the system is actually in disequilibrium. There are no

steady-state distribution of the US patent classes and subclasses sizes, because the

way in which categories grow individually and in number is unstable. Note, in

particular, that the mean number of patents per category is increasing. This trend

can be worrying if one takes a realist view on technological categories. For instance,

if one thinks that new categories reflect radical innovation and new patents in

existing categories represent incremental innovations, then the data tell us that there

is a tendency towards innovation being more and more incremental (less and less

radical). echoing the concerns raised by other researchers using different theoretical

frameworks (Jones 2009, Gordon 2012).

Finally, the models presented here shed light on the significant differences be-

tween the dynamics of classes and subclasses in the US patent classification system.

Why is it the case that subclasses are almost power law distributed, whereas classes

have a much less fat tail? The models suggest a simple explanation for that: the

number of classes stops growing as the number of patents do, whereas the number

of subclasses does keep a pace similar (in terms of functional form) to the growth

of the number of patents. This is not a surprising result, because while classes have

a purely horizontal structure (each class is at the same level of the classification

tree), subclasses do not. Indeed, as explained in the literature review, subclasses

have different indentation levels, so that as patents accumulate one can create a

new subclass in a lower layer of the tree. Hence, if technological change is bounded

horizontally (taking a realist view, there is a finite number of categories of natural

phenomena, hence a finite number of categories of technologies based on them),

this will be reflected in the number of classes but not in the number of subclasses.

Moreover, while classes give an indication of the technological domain in which a

patent is granted, subclasses are a mandatory classification for claims, which are

the elements of novelty in a patent document. Novelty by definition cannot be novel

for too long, hence as new patents arrive it should be expected that new subclasses

are created to accommodate genuine novelty. Beside these explanations, we cannot

dismiss other factors behind the emergence of the US patent classification struc-

ture. It is possible that the decision to create or not a category is based on search

efficiency arguments more than on ontological realities regarding the technology

being described. For instance, it can be decided by classification decision-makers

that the classes should not be changed too often, so as to provide a stability that is
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necessary to fix common understanding and expectations. This would explain the

low growth of the number of classes. Albeit more speculative due to the lack of

data, the non-fully-realist interpretation reminds us that patent classifications do

not show directly the mesoscale organization of inventions, but the technologists’

understanding of it, codified for specific purposes which are not only ontological

but also functional (in particular searchability).

7 Conclusion

This paper proposed three results. First, considering the US patents granted be-

tween 1976 and 2006, the size distribution of subclasses is well fitted by a shifted

power law. Second, the size-rank relation of classes is well fitted by two different

forms of a generalized beta distribution. Third, it is possible to derive a general-

ized beta functional form for rank-size relationships using the generalized Naranan’s

framework, by assuming an asymmetric logistic growth of the number of categories.

Much work is left to be done in this area. The models used make very strong

assumptions but it remains to be seen how much conclusions would change if more

randomness and heterogeneity were allowed. The role of time also needs to be clar-

ified by mathematical arguments, both to understand how general are the models

based on the generalized Naranan’s framework, and to allow for disequilibrium dy-

namics, a common feature of knowledge systems. Moreover, the dataset used here

covers (utility) patents granted in the US between 1976 and 2006, which is only

about a half of the total number of US patents, whereas the models assume that

the complete system is observed (notably the growth of the classification system).

By observing these “universal” laws more precisely and in different contexts, future

research may be able to understand better their fundamental drivers.
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