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Abstract

We analyze Granger causality testing in a mixed-frequency VAR, where the difference
in sampling frequencies of the variables is large. Given a realistic sample size, the number
of high-frequency observations per low-frequency period leads to parameter proliferation
problems in case we attempt to estimate the model unrestrictedly. We propose several tests
based on reduced rank restrictions, and implement bootstrap versions to account for the
uncertainty when estimating factors and to improve the finite sample properties of these
tests. We also consider a Bayesian VAR that we carefully extend to the presence of mixed
frequencies. We compare these methods to an aggregated model, the max-test approach
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∗Correspondence to: Thomas B. Götz, Deutsche Bundesbank, Macroeconomic Analysis and Projection Divi-
sion, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main. Email: thomas.goetz@bundesbank.de. The views
expressed in this paper are ours and do not necessarily reflect the views of the Deutsche Bundesbank or its staff.
Any errors or omissions are our responsibility.

†Maastricht University, School of Business and Economics, Department of Quantitative Economics, P.O. Box
616, 6200 MD Maastricht, The Netherlands. Email: a.hecq@maastrichtuniversity.nl

‡Maastricht University, School of Business and Economics, Department of Quantitative Economics, P.O. Box
616, 6200 MD Maastricht, The Netherlands. Email: s.smeekes@maastrichtuniversity.nl



1 Introduction

Economic time series are published at various frequencies. While higher frequency variables
used to be aggregated (e.g., Silvestrini and Veredas, 2008), it has become more and more
popular to consider models that take into account the difference in frequencies of the processes
under consideration. As argued extensively in the mixed-frequency literature (e.g., Ghysels
et al., 2007), working in a mixed-frequency setup instead of a common low-frequency one is
advantageous due to the potential loss of information in the latter scenario and feasibility of
the former through MI(xed) DA(ta) S(ampling) regressions (Ghysels et al., 2004), even in the
presence of many high-frequency variables compared to the number of observations.

Until recently, the MIDAS literature was limited to the single-equation framework, in which
one of the low-frequency variables is chosen as the dependent variable and the high-frequency
ones are in the regressors. Since the work of Ghysels (2015) for stationary series and the
extension of Götz et al. (2013) and Ghysels and Miller (2013) for the non-stationary and possibly
cointegrated case, we can analyze the link between high- and low-frequency series in a VAR
system treating all variables as endogenous. Ghysels et al. (2015b) define causality in such
a mixed-frequency VAR and develop a corresponding test statistic. Decent size and power
properties of their test, however, are dependent on a relatively small difference in sampling
frequencies of the variables involved. Indeed, if the number of high-frequency observations
within a low-frequency period is large, size distortions and losses of power may be expected.

In this paper we analyze the finite sample behavior of Granger non-causality tests when
the number of high-frequency observations per low-frequency period is large as, e.g., in a
month/working day-example. To avoid the proliferation of parameters we consider two pa-
rameter reduction techniques: reduced rank restrictions and a Bayesian mixed-frequency VAR.
Both approaches are then compared to (i) temporally aggregating the high-frequency variable
(Breitung and Swanson, 2002), (ii) the max-test, independently and simultaneously developed
by Ghysels et al. (2015a), and (iii) the unrestricted approach.

With respect to reduced rank regressions, the factors are typically not observable and must
be estimated. This will obviously affect the distribution of the Wald tests to detect directions of
Granger causalities. Consequently, one important contribution of this paper is the introduction
of bootstrap versions of these tests (also for the unrestricted VAR), which have correct size
even for large VARs and a small sample size.

As far as the Bayesian VAR is concerned, we show how to adapt the analysis to the presence
of mixed frequencies. We do so by extending the dummy observation approach of Banbura
et al. (2010) to a mixed-frequency setting.1 Importantly, due to stacking the high-frequency
variables in the mixed-frequency VAR (Ghysels, 2015), their approach cannot be applied directly
such that a properly adapted choice of auxiliary dummy variables corresponding to the prior
moments is required. As these insights transfer beyond Granger causality testing, the adaption
of Bayesian methods to mixed-frequency time series marks a significant contribution to the

1Banbura et al. (2010) refer to these variables as dummy observations. To avoid confusion between high- and
low-frequency observations and auxiliary variables, we use the term ’auxiliary dummy variables’ henceforth.
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literature by itself.
The rest of the paper is organized as follows. In Section 2 notations are introduced, the

mixed-frequency VAR (MF-VAR hereafter) for our specific case at hand is presented and
Granger (non-)causality is defined. Section 3 discusses the approaches to reduce the num-
ber of parameters to be estimated, whereby reduced rank restrictions (Section 3.1) as well as
Bayesian MF-VARs (Section 3.2) are presented in detail. The finite sample performances of
these tests are analyzed via a Monte Carlo experiment in Section 4. An empirical example with
U.S. data on the monthly industrial production index and daily volatility in Section 5 illustrates
the results. Section 6 concludes.

2 Causality in a Mixed-frequency VAR

2.1 Notation

Let us start from a two variable mixed-frequency system, where yt, t = 1, . . . , T, is the low-

frequency variable and x
(m)
t−i/m are the high-frequency variables with m high-frequency observa-

tions per low-frequency period t. Throughout this paper we assume m to be rather large as in
a year/month- or month/working day-example. We also assume m to be constant rather than
varying with t.2 The value of i indicates the specific high-frequency observation under con-

sideration, ranging from the beginning of each t-period (x
(m)
t−(m−1)/m) until the end (x

(m)
t with

i = 0). These notational conventions have become standard in the mixed-frequency literature
and are similar to the ones in Götz et al. (2014), Clements and Galvão (2008, 2009) or Miller
(2012).

Furthermore, let Wt = (W ′t−1, W ′t−2, . . ., W ′t−p)
′ denote the last p low-frequency lags of

any process W stacked. Finally, 0i×j (1i×j) denotes an (i × j)-matrix of zeros (ones), Ii is an
identity matrix of dimension i, ⊗ represents the Kronecker product and vec corresponds to the
operator stacking the columns of a matrix.

Remark 1 Extensions towards representations of higher dimensional multivariate systems as
in Ghysels et al. (2015b) can be considered, but are left for further research here. Analyzing
Granger causality among more than two variables inherently leads to multi-horizon causality
(see Lütkepohl, 1993 among others). The latter implies the potential presence of a causal chain:
for example, in a trivariate system, X may cause Y through an auxiliary variable Z. To abstract
from that scenario, Ghysels et al. (2015b) often consider cases, in which high- and low-frequency
variables are grouped and causality patterns between these groups, viewed as a bivariate system,
are analyzed. They study the presence of a causal chain and multi-horizon causality in a Monte
Carlo analysis though.

2As long as m is deterministic, even time-varying frequency discrepancies do not pose a problem on a theo-
retical level. However, the assumption of constant m simplifies the notation greatly (Ghysels, 2015).
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2.2 MF-VARs

Considering each high-frequency variable such that

X
(m)
t = (x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−(m−1)/m)′, (1)

a dynamic structural equations model for the stationary multivariate process Zt = (yt, X
(m)′
t )′

is given by
AcZt = c+A1Zt−1 + . . .+ApZt−p + εt. (2)

Note that the parameters in Ac are related to the ones in A1 due to stacking the high-frequency

observations X
(m)
t in Zt (Ghysels, 2015).3 Explicitly for a lag length of p = 1, the model reads

as: 
1 β1 β2 . . . βm
δ1 1 −ρ1 . . . −ρm−1

δ2 0 1 . . . −ρm−2
...

...
...

. . .
...

δm 0 0 . . . 1





yt

x
(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m


=


c1

c2
...

cm+1

+


ρy θ1 θ2 . . . θm
ψ2 ρm . . . . . . 0
ψ3 ρm−1 ρm . . . 0
...

...
...

. . .
...

ψm+1 ρ1 ρ2 . . . ρm





yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+


ε1t

ε2t
...

ε(m+1)t

 .

(3)

In general, we assume the high-frequency process to follow an AR(q) process with q < m
(we set q = m in the equation above; if q < m, one should set ρq+1 = . . . = ρm = 0). For
non-zero values of βj or δj the matrix Ac links contemporaneous values of y and x, a feature
referred to as nowcasting causality (Götz and Hecq, 2014).4

Pre-multiplying (3) by A−1
c we get to the mixed-frequency reduced-form VAR(p) model:

Zt = µ+ Γ1Zt−1 + . . .+ ΓpZt−p + ut
= µ+B′Zt + ut.

(4)

Consequently, µ = A−1
c c, Γi = A−1

c Ai and ut = A−1
c εt. Let B = (Γ1,Γ2, . . . ,Γp)

′ and B(z) =
1−

∑p
j=1 Γjz

j . We then make the following assumptions on the MF-VAR:

3Compared to Ghysels (2015) we simply reverse the mixed-frequency vector Zt and put the low-frequency
variable first.

4βj 6= 0 implies that yt is affected by incoming observations of X
(m)
t , whereas δj 6= 0 implies that the

high-frequency observations are influenced by yt (see Götz and Hecq, 2014). The latter becomes interesting
for studying policy analysis, where the high-frequency policy variable(s) may react to current low-frequency
conditions (see Ghysels, 2015 for details). Note that Götz et al. (2015) consider a noncausal MF-VAR in which
one allows for non-zero elements in the lead coefficients of the Ac matrix.
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Assumption 2 Zt is generated by the MF-VAR(p) in (4), for which it holds that (i) the roots
of the matrix polynomial B(z) all lie outside the unit circle; (ii) ut is independent and identically
distributed (i.i.d.) with E(ut) = 0, E(utu

′
t) = Σu, with Σu positive definite, and E(||ut||4) <∞,

where || · || is the Frobenius norm.

Assumption 2(i) ensures that the MF-VAR is I(0), while (ii) is a standard assumption to
ensure validity of the bootstrap for VAR models, see, e.g., Paparoditis (1996), Kilian (1998)
or Cavaliere et al. (2012). For the derivation of the limit distribution of the test statistics (ii)
could be weakened (e.g., Ghysels et al., 2015b), but as we rely on the aforementioned literature
to establish the asymptotic validity of our bootstrap tests proposed in Section 3.1.4, we assume
i.i.d. error terms here.

Remark 3 Assumption 2 implies that the data are truly generated at mixed frequencies. Hence,
similar to Ghysels et al. (2015a) but unlike Ghysels et al. (2015b), we do not start with a com-
mon high-frequency data generating process (DGP hereafter).5 The latter would imply causality
patterns to arise at the high frequency. Consequently, we do not investigate which causal re-
lationships at high frequency get preserved when moving to the mixed- or low-frequency case.
Indeed, an extension of our methods along these lines would demand a careful analysis of the
mixed- and low-frequency systems corresponding to their latent high-frequency counterpart (see
Ghysels et al., 2015b for the unrestricted VAR case).

Equation (4) is easy to estimate for small m, yet becomes a rather large system as the latter
grows. For example, in a MF-VAR(1),

yt

x
(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m


=


µ1

µ2
...

µm+1

+


γ1,1 γ1,2 · · · γ1,m+1

γ2,1 γ2,3 · · · γ2,m+1
...

...
. . .

...
γm+1,1 γm+1,2 · · · γm+1,m+1


︸ ︷︷ ︸

Γ1

×



yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+


u1t

u2t
...

u(m+1)t

 ,

(5)

5Given such a situation it would seem natural to cast the model in state space form and estimate the param-
eters using the Kalman filter. However, this amounts to a ’parameter-driven’ model (Cox et al., 1981), which
contains latent processes, i.e., the high-frequency observations of y. The latter is a feature we try to avoid in
our MF-VAR: say we are interested in the impact of shocks to one or several variables on the whole system.
Using a high-frequency DGP with missing observations implies that shocks to these latent processes are also
latent and unobservable. This is undesirable given that, e.g., policy shocks are, of course, observable (Foroni and
Marcellino, 2014).
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ut
i.i.d.∼ (0((m+1)×1),Σu), Σu =


σ1,1 σ1,2 . . . σ1,m+1

σ2,1 σ2,2 . . .
...

...
...

. . .
...

σm+1,1 . . . . . . σm+1,m+1

 , (6)

there are (m + 1)2 parameters to estimate in the matrix Γ1. Additional lags would further
complicate the issue.

2.3 Granger Causality in MF-VARs

Let Ωt represent the information set available at moment t and let ΩW
t denote the corresponding

set excluding information about the stochastic process W . With P [X
(m)
t+h|Ω] being the best linear

forecast of X
(m)
t+h based on Ω, Granger non-causality is defined as follows (Eichler and Didelez,

2009):

Definition 4 y does not Granger cause X(m) if

P [X
(m)
t+1 |Ω

y
t ] = P [X

(m)
t+1 |Ωt]. (7)

Similarly, X(m) does not Granger cause y if

P [yt+1|ΩX(m)

t ] = P [yt+1|Ωt]. (8)

In other words, y does not Granger cause X(m) if past information of the low-frequency
variable do not help in predicting current (or future) values of the high-frequency variables
and vice versa (Granger, 1969). In terms of (5), testing for Granger non-causality implies the
following null (and alternative) hypotheses:

• y does not Granger cause X(m)

H0 : γ2,1 = γ3,1 = . . . = γm+1,1 = 0,
HA : γi,1 6= 0 for at least one i = 2, . . . ,m+ 1.

(9)

• X(m) does not Granger cause y

H0 : γ1,2 = γ1,3 = . . . = γ1,m+1 = 0,
HA : γ1,i 6= 0 for at least one i = 2, . . . ,m+ 1.

(10)

3 Parameter Reduction

This section presents techniques that we have considered, and evaluated through a Monte Carlo
exercise, with the aim to reduce the amount of parameters to be estimated in the MF-VAR
model. Two approaches are discussed in detail, reduced rank restrictions and a Bayesian MF-
VAR.

6



There are many alternative approaches to reduce the number of parameters among which are
principal components, Lasso (Tibshirani, 1996) or ridge regressions (Hoerl and Kennard, 1970,
among others). However, using principal components does not necessarily preserve the dynamics
of the VAR under the null: nothing prevents, e.g., the first and only principal component to be
loading exclusively on y implying that the remaining dynamics enter the error term. In other
words, the autoregressive matrices in (4) may and will most likely not be preserved, which
naturally affects the block of parameters we test on for Granger non-causality. As for Lasso
and ridge regressions, it is well known that they may be interpreted in a Bayesian context.
In particular, the latter is equivalent to imposing a normally distributed prior with mean zero
on the parameter vector (Vogel, 2002, among others), while the former may be replicated
using a zero-mean Laplace prior distribution (Park and Casella, 2008). Given that our set of
models contains a Bayesian VAR for mixed-frequency data, we abstract from its connection to
regularized versions of least squares at this stage. Developing a system version of Marsilli (2014)
and justifying it from a Bayesian point of view, however, constitutes an interesting avenue for
future research.

3.1 Reduced Rank Restrictions

3.1.1 Reduced Rank Regression Model

In order to reduce the number of parameters to estimate in the MF-VAR, we propose the
following reduce rank regression model, for which we make the following assumption:

Assumption 5 Let BX(m) be the matrix obtained from B′ in (4) by excluding the first columns
of Γ1, Γ2, . . ., Γp. The rank of this matrix is smaller than the number of high-frequency
observation within Zt, i.e.,

rk(B′
X(m)) = r < m.

The model then reads as follows:

Zt = µ+ γ·,1yt + α
∑p

i=1 δ
′(m)
i t−i + νt

= µ+ γ·,1yt + αδ′X
(m)
t + νt,

(11)

where γ·,1 is the (m + 1) × p matrix containing the first columns of Γ1,Γ2, . . . ,Γp, and α and
δ = (δ′1, . . . , δ

′
p)
′ are (m+ 1)× r and pm× r matrices, respectively. Note that (11) can also be

written in terms of Zt. Let us define Γi ≡ (γ
(i)
·,1 , αδ

′
i), where γ

(i)
·,1 , i = 1, . . . , p, corresponds to

the ith column of γ·,1. Then, (11) is equivalent to

Zt = µ+B′Zt + νt, (12)
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where B = (Γ1, . . . ,Γp)
′. For p = 1 the models becomes

yt
x(m)

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m

 = µ+


γ1,1

γ2,1
...

γm+1,1

 yt−1 +


α1

α2
...

αm+1

 δ′1


x

(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+ νt

= µ+




γ1,1

γ2,1
...

γm+1,1

 ,


α1

α2
...

αm+1

 δ′1


︸ ︷︷ ︸

Γ1

×



yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+ νt,

(13)

where each αi, i = 1, . . . ,m + 1, is of dimension 1 × r and where δ1 is an m × r matrix.

Hence, we could call δ′X
(m)
t a vector of r high-frequency factors. Note that r = m − s, where

s represents the rank reduction we are able to achieve within X
(m)
t . In terms of parameter

reduction, the unrestricted VAR in (4) requires p(m + 1)2 coefficients to be estimated in the
autoregressive matrices, whereas the VAR under reduced rank restrictions in (11) or (12) needs
p(m + 1) + r(m + 1) + prm parameter estimates. As an example, assume p = 1 and m = 20.
Then, if r = 1, 2 or 3, there are, respectively, 62, 103 or 144 coefficients to be estimated in Γ1

instead of 441 in Γ1 in. Note that we do not require yt−1 to be included in the same transmission
mechanism as the x variables.

Remark 6 There are several ways to justify the reduced rank feature of the autoregressive
matrix BX(m). First, at the model representation level we may assume that, in the structural
model (3), x follows an AR(q) process with q < m and that the last m − q elements of each

X
(m)
t−i , i = 1, . . . , p, have a zero coefficient in the equation for yt. Plugging these restrictions

into (4) results in a reduced rank of B′
X(m) because matrices Γi = A−1

c Ai have the rank of
Ai. Second, at the empirical level one can interpret the MF-VAR as an approximation of the
VARMA obtained after the block marginalization of a high-frequency VAR for each variable.
In this situation, reduced rank matrices may empirically not be rejected by the data because of
the combinations of many elements. Thus, a small number of dynamic factors can approximate
more complicated (possibly nonlinear) dynamics. Finally, the way one typically restricts the
MF-VAR in (4), i.e., assuming the high-frequency series to follow an ARX-process (Ghysels,
2015), actually implies a reduced rank representation. Looking slightly ahead, consider Equation
(25) or the matrix in (29), which we will use in our Monte Carlo section, for the special case
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p = 1. It is obvious that for first order MF-VAR, Zt = Γ1Zt−1 + ut, with

Γ1 =


γ1,1 γ1,2 γ1,3 . . . γ1,21

γ∗2,1 ρ20 0 . . . 0

γ∗3,1 ρ19
... . . . 0

...
...

...
. . .

...
γ∗21,1 ρ 0 . . . 0


we have, due to the block of zeros, a reduced rank matrix BX(m) with two (restricted coefficient)
factors:

rk




γ1,2 γ1,3 . . . γ1,21

ρ20 0 . . . 0

ρ19
... . . . 0

...
...

. . .
...

ρ 0 . . . 0




= rk




1 0
0 ρ20

0 ρ19

...
...

0 ρ

AA−1

(
γ1,2 γ1,3 . . . γ1,21

1 0 . . . 0

)


= 2,

where A is a 2 × 2 full rank rotation matrix, the identity in this particular example. Hence,
under HA, e.g., two factors (although unrestricted in our setting) will capture the reduced rank
feature. Note that we could impose (overidentifying) restrictions to retain the large block of
zeros in Γ1. In that sense, the model with r = 2 would not be misspecified but ”suboptimal”.
On the other hand, with merely one factor we would not be able to impose the block of zeros
implying the model to be misspecified. Under the null hypothesis the model is not misspecified
with either one or two factors, because the test tries to capture some dynamics that is not there.

Note that our focus is to compare the performance of different approaches including their
bootstrap versions (whenever applicable) and that in this light we view reduced rank regressions
as just one particular specification. In particular, next to the Bayesian MF-VAR and the max-
test, our bootstrap implementation has also made the unrestricted MF-VAR (which is not
subject to rank misspecification) a viable option to compare the reduced rank regressions with.

3.1.2 Testing for Granger Non-Causality

Given r and Assumption 5, under the condition that the high-frequency factors δ′X
(m)
t are

observable, we can estimate (11) by OLS. Letting Γ̂ = (µ̂, γ̂·,1, α̂)′ denote the corresponding
OLS estimates, we can test for Granger non-causality by defining R as the matrix that picks
the set of coefficients we want to do inference on, i.e., Rvec(Γ̂). For a general construction of
the matrix R in the presence of several low- and high-frequency variables,6 we refer the reader
to Ghysels et al. (2015b). The Wald test is constructed as

ξ̃W =
[
Rvec(Γ̂)

]′
(RΩ̂R′)−1

[
Rvec(Γ̂)

]
, (14)

6Within the unrestricted MF-VAR in (4), though.
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with
Ω̂ = (W ′W )−1 ⊗ Σ̂u, (15)

where Σ̂u = 1
T û
′û is the empirical covariance matrix of the disturbance terms and W =

(W1, . . . ,WT )′ is the regressor set consisting of Wt = (1, y′
t
, δ′X

(m)′
t )′.7 As illustrated in Ghysels

et al. (2015b), ξW is asymptotically χ2
rank(R). A robust version of (14) is also implemented in

the empirical section.
Of course, the factors are typically not observable and must be estimated (unless we im-

pose specific factors). Using estimated rather than observed factors in the regression (11) will
obviously affect the distribution of ξ̃W , certainly in small samples. For this reason we consider
bootstrap versions of the tests. Before going into the details on the bootstrap we describe how
we estimate or impose the factors.

3.1.3 Estimating the Factors

We use three ways to estimate the factors, canonical correlation analysis (CCA hereafter),
partial least squares (PLS hereafter) and heterogeneous autoregressive (HAR hereafter) type
restrictions. We briefly present the algorithms that are used to extract those factors.

CCA is based on analyzing the eigenvalues and corresponding eigenvectors of

Σ̂−1

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃

Σ̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m) (16)

or, similarly, of the symmetric matrix

Σ̂
−1/2

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃

Σ̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m)Σ̂
−1/2

X̃
(m)

X̃
(m) . (17)

For a detailed discussion we refer the reader to Anderson (1951) or, for the application to com-
mon dynamics, to Vahid and Engle (1993). Note that Σ̂ij represents the empirical covariance

matrix of processes i and j. Furthermore, Z̃ and X̃
(m)

indicate Zt and X
(m)
t , respectively, to

be concentrated out by the variables that do not enter in the reduced rank regression, i.e., the
intercept and yt−1. Denoting by V̂ = (v1, v2, . . . , vr), with v′ivj = 1 for i = j and 0 otherwise,
the eigenvectors corresponding to the r largest eigenvalues of the matrix in (17), we obtain the
estimators of α and δ as:

α̂ = Σ̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m)Σ̂
−1/2

X̃
(m)

X̃
(m) V̂

δ̂ = Σ̂
−1/2

X̃
(m)

X̃
(m) V̂ .

(18)

Note that the estimation of the eigenvectors obtained from the canonical correlation analysis
in (16) or (17) may, however, perform poorly with high-dimensional systems, because inversions
of the large variance matrices Σ̂−1

Z̃Z̃
and Σ̂−1

X̃
(m)

X̃
(m) are required. As an alternative to CCA we

7A sample size correction, i.e., using Σ̂u = 1
T−KW

û′û, where KW is the amount of elements in W , may
alleviate size distortions in finite samples.

10



use a PLS algorithm similar to the one used in Cubadda and Hecq (2011) or Cubadda and
Guardabascio (2012). In order to make the solution of this eigenvalue problem invariant to
scale changes of individual elements, we compute the eigenvectors associated with the largest
eigenvalues of the matrix

D̂
−1/2

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃
D̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m)D̂
−1/2

X̃
(m)

X̃
(m)

with D̂
X̃

(m)
X̃

(m) and D̂Z̃Z̃ being diagonal matrices having the diagonal elements of, respectively,

Σ̂
X̃

(m)
X̃

(m) and Σ̂Z̃Z̃ as their entries. The computation of α̂ and δ̂ works in a similar fashion as

with CCA-based factors.
Finally, we may impose the presence of r = 3p factors,8 inspired by the Corsi HAR-model

(Corsi, 2009). For i = 1, . . . , p:

δi =


03(i−1)×m

1 01×(m−1)

11×( 1
4
m) 0(1× 3

4
m)

11×m
03(p−i)×m


′

⇒ δ′X
(m)
t =



x
(m)
t−1∑ 1

4
m−1

i=0 x
(m)
t−1−i/m∑m−1

i=0 x
(m)
t−1−i/m
...

x
(m)
t−p∑ 1

4
m−1

i=0 x
(m)
t−p−i/m∑m−1

i=0 x
(m)
t−p−i/m


. (19)

For p = 1 and m = 20 this corresponds to

δ′X
(m)
t =


x

(20)
t−1∑4

i=0 x
(20)
t−1−i/20∑19

i=0 x
(20)
t−1−i/20

 ≡
 xDt−1

xWt−1

xMt−1

 , (20)

with xDt , x
W
t and xMt denoting daily, weekly and monthly measures, respectively.

Remark 7 As noted in Ghysels and Valkanov (2012) and Ghysels et al. (2007), these HAR-
type restrictions are a special case of MIDAS with step functions introduced in Forsberg and

Ghysels (2007). Considering partial sums of regressors x as Xt(K,m) =
∑K

i=0 x
(m)
t−i/m, a MIDAS

regression with M steps reads as yt = µ +
∑M

j=1 βjXt(Kj ,m) + εt, where K1 < . . . < KM .
Alternatively, we could use MIDAS restrictions as introduced in Ghysels et al. (2004), for the
difference between the latter and HAR-type restrictions has been shown to be small (Ghysels
and Valkanov, 2012). However, step functions have the advantage of not requiring non-linear
estimation methods, since the distributed lag pattern is approximated by a number of discrete

8To ensure that r < m we assume that p < 1
3
m at this stage.
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steps, thereby simplifying the analysis. Furthermore, and more crucially in the context of this
paper, implementing MIDAS restrictions and testing for Granger non-causality implies the well-
known Davies (1987) problem, i.e., the parameters determining the MIDAS weights (see Ghysels
et al., 2004 for details) are not identified under the null hypothesis.9

3.1.4 Bootstrap Tests

Despite the dimensionality reduction achieved by imposing the factor structure, a considerable
number of parameters remains to be estimated for conducting the Wald tests such that the tests
may still be subject to considerable small sample size distortions. Moreover, the estimation of
the factors will have a major effect on the distribution of the Wald test statistic. We therefore
also consider a bootstrap implementation of these tests to improve the properties of the tests
in finite samples.

Let B̂ = Γ̂δ̂′ denote the estimates of B obtained by one of the reduced rank methods, and
assume that δ is normalized such that its upper r × r block is equal to the identity matrix.10

The first bootstrap method we consider is a standard “unrestricted” bootstrap, that may have
superior power properties in certain cases (cf. Paparoditis and Politis, 2005). Its algorithm
looks as follows.

1. Obtain the residuals from the MF-VAR(p)

ν̃t = Zt − µ̂+ B̂
′
Zt, t = p+ 1, . . . , T. (21)

2. Draw the bootstrap errors ν∗1 , . . . , ν
∗
T with replacement from ν̃y,p+1, . . . , ν̃y,T .

3. Letting Z∗t = (Z∗′t−1, . . . , Z
∗′
t−p)

′, construct the bootstrap sample Z∗t recursively as

Z∗t = µ̂+ B̂
′
Z∗t + ν∗t , t = 1, . . . , T, Z∗0 = 0. (22)

Note that the null hypothesis in the bootstrap is not imposed which has consequences for
the next step.

4. Estimate the bootstrap equivalent of (11), where the factors are estimated using the same
method as for the original sample, and obtain the bootstrap Wald test statistic ξ̃∗W . As
the “true” bootstrap parameters governing the Granger causality are different from zero,

9To properly test for Granger non-causality in this case, a grid for the weight specifying parameter vector
has to be considered and the corresponding Wald tests for each candidate have to be computed. Subsequently,
one can calculate the supremum of these tests (Davies, 1987) and obtain an ’asymptotic p-value’ using bootstrap
techniques (see Hansen, 1996 or Ghysels et al., 2007 for details). While this approach is feasible, it is computa-
tionally more demanding. Admittedly, HAR-type restrictions provide less flexibility than the MIDAS approach,
yet their simplicity makes them very appealing from an applied perspective.

10This ensures that the rotation of the factors is the same for the original sample and the bootstrap sample,
which ensures for the first bootstrap method that the correct bootstrap null hypothesis is imposed. In the
simulations we experimented with different normalizations which didn’t change any results.
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we need to adapt the bootstrap Wald test such that it tests the correct null hypothesis.
Observing that those parameters form a subset of the estimates in Γ̂ used in (22), the
appropriate Wald test statistic is

ξ̃∗W =
[
Rvec(Γ̂

∗
)− Rvec(Γ̂)

]′
(RΩ̂∗R′)−1

[
Rvec(Γ̂

∗
)− Rvec(Γ̂)

]
, (23)

where all quantities with a superscript ‘*’ are calculated analogously to their sample
counterparts but then using the bootstrap sample.

5. Repeat steps 2 to 4 B times, and calculate the bootstrap p-value as the proportion of
bootstrap samples for which ξ̃∗W > ξ̃W .

While this bootstrap method has the advantage that it can be used for testing Granger
causality in both directions (as only the matrix R needs to change), it also has some drawbacks.
In particular, even with the dimensionality reduction provided by the reduced rank estimation,
it still relies on the generation of a bootstrap sample based on an (m + 1)-dimensional MF-
VAR(p) that requires p(m+ 1) + r(m+ 1) + prm parameters to estimate. This may make the
bootstrap unstable and prone to generate outlying samples, with potential size distortions or a
loss of power as a result.

Therefore we consider a second bootstrap method that imposes the null hypothesis of no
Granger causality and in doing so achieves a further significant reduction of dimensionality. A
downside of this method is that it requires separate bootstrap algorithms for testing in the two
opposite directions. We describe the procedure here for the null hypothesis that X(m) does not
Granger cause y; we comment on the test in the opposite direction below.

1. Estimate an AR(p) model for y and obtain the residuals

ũy,t = yt − µ̂−
p∑
j=1

ρ̂y,jyt−j , t = p+ 1, . . . , T.

2. Draw the bootstrap errors u∗1, . . . , u
∗
T with replacement from ũy,p+1, . . . , ũy,T .

3. Construct the bootstrap sample y∗t recursively as

y∗t =

p∑
j=1

ρ̂y,jy
∗
t−1 + u∗t , t = 1, . . . , T, y∗0 = 0,

thus imposing the null of no Granger causality from X(m) to y.

4. Letting X
(m)∗
t = X

(m)
t , use the bootstrap sample to estimate the MF-VAR using the same

estimation method as for the original estimator, and obtain the corresponding Wald test
statistic ξ̃∗W . As the null hypothesis of no Granger causality has been imposed in the

bootstrap, ξ̃∗W now has the same form as ξ̃W in (14).
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Note that only p parameters need to be estimated in order to generate the bootstrap sam-
ple, most likely making the procedure more stable than the unrestricted bootstrap above. A
similar bootstrap procedure can be implemented for the reverse direction of causality by only

resampling X
(m)
t while keeping yt fixed. As one can resample X

(m)
t independently of yt, it can

be done in the original high-frequency as a univariate process. Said differently, it only requires

fitting an AR(q) process to x
(m)
t , again achieving a large reduction of dimensionality.

It is also possible in step 2 of both algorithms to use the wild bootstrap to be robust against
heteroskedasticity. In this case the bootstrap errors are generated as u∗t = ξ∗t ũt where we gen-
erate ξ∗1 , . . . , ξ

∗
T as independent standard normal random variables. This would constitute the

so-called “recursive wild bootstrap” scheme that Brüggemann et al. (2014) prove to be asymp-
totically valid under conditionally heteroskedastic errors. In particular, employing the wild
bootstrap then allows us to replace the i.i.d. assumption in Assumption 1 with the martingale
difference sequence assumption in Assumption 2.1 of Brüggemann et al. (2014). We implement
the wild bootstrap version in the empirical application in Section 5.

Remark 8 Kilian (1998) and Paparoditis (1996) prove the asymptotic validity of the unre-
stricted VAR bootstrap under Assumption 1. The validity of the restricted bootstrap can be
derived from the results for AR(p) processes in Bose (1988), and the observation that condi-
tioning is a valid approach in the absence of Granger causality. Van Giersbergen and Kiviet
(1996) provide a detailed examination of the two different types of bootstraps in the context of
ADL models and demonstrate that the restricted bootstrap even works well in the absence of
strong exogeneity.11

Remark 9 Gonçalves and Perron (2014) consider factor-augmented regression models, with
the factors estimated by principal components. In this setting the asymptotic impact of factor
estimation depends on which asymptotic framework is assumed. Under the asymptotic frame-
work, in which factor estimation has a non-negligible effect on the limit distribution of the
regression estimators, the bootstrap correctly mimics this effect and is therefore asymptotically
valid. Consequently, the bootstrap provides a much more accurate approximation to the finite
sample distribution of the regression estimators than the asymptotic approximation, that as-
sumes a negligible effect of factor estimation. We expect the bootstrap to have similar properties
in our setting where the factors are estimated using CCA or PLS.

3.2 Bayesian MF-VARs

3.2.1 Restricted MF-VARs

Ghysels (2015) discusses the issue of parsimony in MF-VAR models by specifying the high-
frequency process in such a way as to allow a number of parameters that is independent from

11If the test statistic (14) is asymptotically pivotal, we may expect the bootstrap to provide asymptotic
refinements as well and, hence, reduce small sample size distortions (cf. Bose, 1988; Horowitz, 2001).
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m. Indeed, while it seems reasonable to leave the equation for yt unrestricted,12 it is less clear
for the remaining ones. Hence, let us make the following assumption (see Ghysels, 2015 or the
numerical examples in Ghysels et al., 2015a).

Assumption 10 The high-frequency process x
(m)
t follows an AR(1) model with one lag of the

low-frequency variable in the regressor set

x
(m)
t−i/m = µi+2 + ρx

(m)
t−(i+1)/m + πyt−1 + υ(i+2)t (24)

for i = 0, . . . ,m− 1.

Completing the system with the equation for yt leads to the following restricted MF-VAR:

yt

x
(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m


=


µ1∑m−1

i=0 ρiµ2+i∑m−2
i=0 ρiµ3+i

...
µm+1

+


γ

(1)
1,1 γ

(1)
1,2 γ

(1)
1,3 . . . γ

(1)
1,m+1

π
∑m−1

i=0 ρi ρm

0m×(m−1)
π
∑m−2

i=0 ρi ρm−1

...
...

π ρ

×


yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+
∑p

k=2

(
γ

(k)
1,1 γ

(k)
1,2 . . . γ

(k)
1,m+1

0m×(m+1)

)

×


yt−k

x
(m)
t−k
...

x
(m)
t−k−(m−1)/m

+


υ1t∑m−1

i=0 ρiυ(m+1−i)t∑m−2
i=0 ρiυ(m+1−i)t

...
υ(m+1)t


︸ ︷︷ ︸

υ∗t

,

(25)

where γ
(k)
i,j corresponds to the (i, j)-element of matrix Γk in (4). As for the error terms υit, i =

1, . . . ,m+1, we set E(υitυit) = σHH , E(υ1tυit) = σHL for i = 2, . . . ,m+1, and E(υ1tυ1t) = σLL.
Furthermore, each error term is assumed to possess a zero mean and to be normally distributed.
Consequently, υ∗t ∼ N(0((m+1)×1),Συ∗), whereby we refer the reader to Ghysels (2015) for the
exact composition of Συ∗ .

12In fact, viewed as single equation, it boils down to an unrestricted MIDAS model (Foroni et al., 2015) without
contemporaneous observations of the high-frequency variable. MIDAS restrictions (Ghysels et al., 2004) can be
imposed here as an alternative. However, doing so implies leaving the linear framework, which is needed to apply
the auxiliary dummy variable approach presented below. Furthermore, even after having drawn the MIDAS
hyperparameters, one still faces the aforementioned Davies (1987) problem when attempting to test for Granger
non-causality from X(m) to y.
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3.2.2 The Auxiliary Dummy Variable Approach for Mixed-Frequency Data

As pointed out by Carriero et al. (2011), Bayesian methods allow the imposition of restrictions
such as the ones in Assumption 10, while also admitting influence of the data. Consequently,
Bayesian shrinkage has become a standard tool when being faced with large-dimensional esti-
mation problems such as large VARs (e.g., Banbura et al., 2010, Kadiyala and Karlsson, 1997).
As for MF-VARs, Ghysels (2015) describes a way to sample the MIDAS hyperparameters and
subsequently formulates prior beliefs for the remaining parameters.13 Once these hyperparam-
eters are taken care of, the Bayesian analyses of mixed- and common-frequency VAR models
are quite similar and, hence, traditional Bayesian VAR techniques (e.g., Kadiyala and Karlsson,
1997, Litterman, 1986) can be applied.

We follow the approach of Banbura et al. (2010), which in turn is built on the work of
Sims and Zha (1998), showing that adding a set of auxiliary dummy variables to the system
is equivalent to imposing a normal inverted Wishart prior. The specification of prior beliefs is
derived from the Minnesota prior in Litterman (1986), whereby we center the prior distributions
of the coefficients in B around the restricted MF-VAR in (25):

E[γ
(k)
i,j ] =


ρm if i = j = k = 1

ρm+j−i if k = 1, j = 2, i > 1
0 else

,

V ar[γ
(k)
i,j ] =


φλ

2

k2
SLH for i = 1, j > 1

φλ
2

k2
SHL for j = 1, i > 1
λ2

k2
else

,

(26)

where all γ
(k)
i,j are assumed to be a priori independent and normally distributed. The covariance

matrix of the residuals is for now assumed diagonal and fixed, i.e., Σu = Σ = Σd with Σd =
diag(σ2

L, σ
2
H , . . . , σ

2
H) of dimension m + 1. The tightness of the prior distributions around the

AR(1) specification in (24) is determined by λ,14 the influence of low- on high-frequency data

and vice versa is controlled by φ and, finally, Sij =
σ2
i

σ2
j
, i, j = L,H, governs the difference in

scaling between y and the x-variables. For µ we take a diffuse prior.

Remark 11 As for the common-frequency case, the expressions for V ar[γ
(k)
i,j ] in (26) imply

that more recent (low-frequency) lags provide more reliable information than more distant ones.

However, due to the stacked nature of X
(m)
t , the coefficients could be shrunk according to their

high-frequency time difference instead. This implies specifying the lag associated with each

coefficient in fractions of the low-frequency time index: yt and x
(m)
t−1−s/m, e.g., are 1 + i/m

13McCracken et al. (2015) use a Sims-Zha shrinkage prior and the algorithm in Waggoner and Zha (2003) to
solve the parameter proliferation problem with Bayesian estimation techniques. Bayesian methods within mixed-
frequency VARs were also considered by Schorfheide and Song (2015). However, they use a latent high-frequency
VAR instead of the mixed-frequency system à la Ghysels (2015).

14λ ≈ 0 results in the posterior coinciding with the prior, whereas λ =∞ causes the posterior mean to coincide
with the OLS estimate of the unrestricted VAR in (4).
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low-frequency time periods apart such that the denominator in the corresponding coefficient’s
prior variance would equal (1 + i/m)2.

However, in the context of Granger causality testing such a specification is problematic as

the coefficients to test on are shrunk in ”opposite directions”: yt and x
(m)
t−1−1/2 are 1.5 t-periods

apart, whereas x
(m)
t−1−1/2 and yt−1 are separated by only 0.5 low-frequency periods. Consequently,

for a given λ, the coefficients are shrunk much more when testing for Granger causality from
X(m) to y, especially for large m. This makes it difficult to control the size of the respective
tests in one or the other direction. The common-frequency handling of the prior variances in
(26) mitigates this issue, although some losses in power have to be assumed.

Note that a treatment of the mixed-frequency nature of the variables along the lines outlined
above may well be advantageous in other circumstances (e.g., forecasting) such that we present
this approach in detail in Appendix A.15

Given the prior beliefs specified before, the analysis is very similar to the one in Banbura
et al. (2010). In short, let us write the MF-VAR as

Z = ZB∗ + E,

where Z = (Zµ1 , . . . , Z
µ
T )′ with Zµt = (Z ′t, 1)′, Z = (Z1, . . . , ZT )′, E = (u1, . . . , uT )′ and B∗ =

(B′, µ)′. Then, one can show that augmenting the model by two dummy variables, Yd and Xd,
is equivalent to imposing a normal inverted Wishart prior that satisfies the moments in (26).
Finally, estimating the augmented model by ordinary least squares gives us the posterior mean
of the coefficients, on which we can do inference as outlined in the next subsection.

Note that Xd is, in fact, identical to the matrix for the common-frequency VAR (Banbura
et al., 2010); Yd, however, is slightly different due to the prior means being centered around the
restricted VAR in (25):

Yd︸︷︷︸
((m+1)(p+1)+1)×(m+1)

=


ρmσL/λ 0 0 . . . 0

0 ρmσH/λ ρm−1σH/λ . . . ρσH/λ
0((m+1)p−2)×(m+1)

diag(σL, σH , . . . , σH)
01×(m+1)

 ,

Augmenting the model is then achieved by setting Z∗ = (Z ′, Y ′d)′ and Z∗ = (Z ′, X ′d)
′.

3.2.3 Testing for Granger Non-Causality

In terms of analyzing the Granger non-causality testing behavior within the Bayesian MF-
VAR, the auxiliary dummy variable approach is quite appealing, as it provides a closed-form

15When extending the approach we stick to the standard structure of the Minnesota prior in Litterman (1986).
It is, however, also feasible to address the aforementioned issue by introducing, say, three hyperparameters: λ1

governing the prior tightness for the coefficients determining Granger causality from y to X
(m)
t , λ2 for parameters

controlling causality in the reverse direction and λ3 taking care of the remaining coefficients. This strategy is,
however, a rather straightforward extension of the theory presented in Appendix A such that we do not present
it here.
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solution for the posterior mean of the coefficients. It is thus straightforward to compare the
testing behavior with the ones from alternative approaches using the Wald test.16 The latter
is derived analogously to the one in (14), and is, given Assumption 10, also asymptotically
χ2
rank(R)-distributed.

Remark 12 Because the parameter vector vec(B∗) is not assumed fixed but random, construc-
tion of the test statistic, and especially its interpretation, need to be treated with special care. We
consider Bayesian confidence intervals, in particular highest posterior density (HPD) confidence
intervals (Bauwens et al., 2000), the tightness of which is expressed by α, not coincidentally
the same letter that denotes the significance level in the frequentist’s framework. Here, it is
interpreted such that (1 − α)% of the probability mass falls within the respective interval. In
other words, the probability that a model parameter falls within the bounds of the interval is
equal to (1− α)%. The interval centered at the modal value for unimodal symmetric posterior
densities is then called the HPD (Zellner, 1996 or Bauwens et al., 2000). The connection to
Wald tests is now immediate using the equivalence between confidence intervals and respective
test statistics, whereby similar care is demanded when interpreting results.

3.3 Benchmark Models

3.3.1 Low-Frequency VAR

Before the introduction of MIDAS regression models, high-frequency variables were usually
aggregated to the low frequency in order to obtain a common frequency for all variables
appearing in a regression (Silvestrini and Veredas, 2008 or Marcellino, 1999). Likewise for
systems, a monthly variable, for example, was usually aggregated to, say, the quarterly fre-
quency such that a VAR could be estimated in the resulting common low frequency. Formally,

xt = W (L1/m)x
(m)
t , where W (L1/m) denotes a high-frequency lag polynomial of order A, i.e.,

W (L1/m)x
(m)
t =

∑A
i=0wix

(m)
t−i/m (Silvestrini and Veredas, 2008).17 As far as testing for Granger

non-causality is concerned, we can rely on the Wald statistic in (14), where the set of regressors,
the matrix R and the coefficient matrix are suitably adjusted.

Remark 13 Naturally, such temporal aggregation leads to a great reduction in parameters.
After all, each set of m high-frequency variables per t-period is aggregated into one low-frequency
observation. Of course, this decrease in parameters comes at the cost of disregarding information
embedded in the high-frequency process. As argued in Miller (2011), if the aggregation scheme

16There is a large sample correspondence between classical Wald and Bayesian posterior odds tests (Andrews,
1994). For certain choices of the prior distribution, the posterior odds ratio is approximately equal to the Wald
statistic. Andrews (1994) shows that for any significance level α there exist priors such that the aforementioned
correspondence holds, and vice versa.

17This generic specification nests the two dominating aggregation schemes in the literature, Point-in-Time
(A = 0, w0 = 1) and Average sampling (A = m− 1, wi = 1/m ∀i), where the former is usually applied to stock
and the latter to flow variables. In view of the high-frequency variable we consider in our empirical application,
the natural logarithm of bipower variation, we focus on Average sampling in this paper.
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employed is different from the true one underlying the DGP, potentially crucial high-frequency
information will be forfeited. Additionally, aggregating a high-frequency variable may lead to
’spurious’ (non-)causality in the common low-frequency setup (Breitung and Swanson, 2002),
since causality is a property which is not invariant to temporal aggregation (Marcellino, 1999
or Sims, 1971).

3.3.2 The max-test

Independently and simultaneously to this work, Ghysels et al. (2015a) have developed a new
Granger non-causality testing framework, whose parsimonious structure makes it very appealing
in a situation, where m is large relative to the sample size. In short, the idea is to focus on the
first line of the MF-VAR in (4), but rather than estimating that (U)-MIDAS equation (Foroni
et al., 2015) and test for Granger non-causality in the direction from X(m) to y, the authors
propose to compute the OLS estimates of βj in the following h separate regression models:

yt = µ+

q∑
k=1

αk,jyt−k + βj+1x
(m)
t−1−j/m + vj , j = 0, . . . , h− 1,

whereby h needs to be set ”sufficiently large” (to achieve h > pm). The corresponding max-
test statistic is then the properly scaled and weighted maximum of {β̂2

1 , . . . , β̂
2
h}. Although it

has a non-standard limit distribution under H0, an asymptotic p-value may be obtained in a
similar way as when overcoming the Davies (1987) problem (see Remark 7). Testing for Granger
non-causality in the reverse direction works analogously in the following regression model:

yt = µ+

q∑
k=1

αk,jyt−k +
h∑
k=1

βk,jx
(m)
t−1−k/m + γjx

(m)
t+j/m + vj , j = 1, . . . , l.

Again, the corresponding max-test statistic is the maximum of {γ̂2
1 , . . . , γ̂

2
l } scaled and weighted

properly.18

3.3.3 Unrestricted VARs

Finally, we can attempt to estimate the full MF-VAR in (4) ignoring the possibility that the
amount of parameters may be too large to perform accurate estimations or adequate Granger
non-causality tests. To this end we estimate the MF-VAR using ordinary least squares disre-
garding the potential parameter proliferation problem. In this sense the comparison is related
to the one of U-MIDAS (Foroni et al., 2015) and MIDAS regression models for large m. We
can test for Granger non-causality using the Wald statistic in (14). Again, W , R and B have

18A MIDAS polynomial (Ghysels et al., 2004) on
∑h

k=1 βk,jx
(m)

t−1−k/m may be imposed to increase parsimony.
Note that the aforementioned Davies problem does not occur due to testing for Granger non-causality by looking
at the OLS estimates of γj . Furthermore, Ghysels et al. (2015a) argue that m contemporaneous high-frequency
observations of x should be included as instruments in order to handle simultaneity between y and x.
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to be adjusted adequately. We also consider a bootstrap version of the unrestricted MF-VAR,
which we expect to alleviate size distortions, but which cannot solve power issues due to the
parameter proliferation.

4 Monte Carlo Simulations

In order to assess the finite sample performance of our different parameter reduction techniques,
we conduct a Monte Carlo experiment. In light of our empirical investigation we set m = 20,
i.e., as in a month/ working day-example.19 Furthermore, we start by investigating the case
where p = 1 and keep the analysis of higher lag orders for future research.

As far as investigating the size of our Granger non-causality tests is concerned, we assume
that the data are generated as a mixed-frequency white noise process, i.e.,

Zt = ut. (27)

Remark 14 Additionally, we have considered three alternative DGPs for size, all based on the
restricted VAR in (25): (i) γ1,i = γ∗i,1 = 0 (’diagonal’), (ii) γ1,i = 0 and γ∗i,1 6= 0 (’only Granger

non-causality from X(m) to y’) or (iii) γ∗i,1 = 0 and γ1,i 6= 0 (’only Granger non-causality

from y to X(m)’) ∀i = 2, . . . , 21, where the parameters γ1,i and γ∗i,1 refer to (29). However,
with the respect to the respective testing direction, the outcomes do not differ qualitatively and
quantitative differences are very small. Results are available upon request.

To analyze power we generate two different DGPs that are closely related to the restricted
VAR in (25):

Zt = ΓPZt−1 + ut (28)

with

ΓP =


γ1,1 γ1,2 γ1,3 . . . γ1,21

γ∗2,1 ρ20 0 . . . 0

γ∗3,1 ρ19
... . . . 0

...
...

...
. . .

...
γ∗21,1 ρ 0 . . . 0

 , (29)

where γ1,1 = 0.5, ρ = 0.6 and γ1,j = βw∗j−1(−0.01) for j > 1. Note that wi(ψ) = exp(ψi2)∑20
i=1 exp(ψi

2)

corresponds to the two-dimensional exponential Almon lag polynomial with the first parameter
set to zero (Ghysels et al., 2007). Now, for the first power DGP we simply set w∗i (ψ) = wi(ψ),
whereas in the second power DGP w∗i (ψ) = wi(ψ)− w(ψ) with the horizontal bar symbolizing
the arithmetic mean. As far as γ∗j,1 is concerned we take γ∗j,1 = γj,1 (first power DGP) and

19See Section 5 for a justification of the time-invariance of m within this setup.
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γ∗j,1 = γj,1 − γ·,1 (second power DGP) for j = 2, . . . , 21, whereby γj,1 = (γj−1,1)1.11 for j =

3, . . . , 21.20 As an example, Figure 1 plots βw∗j−1 and γ∗j,1 for β = 2 and γ2,1 = 0.25.

[INSERT FIGURE 1 HERE]

Remark 15 Due to the zero-mean feature of w∗j−1(ψ) and γ∗j,1, j = 2, . . . , 21, in the second
power DGP, we expect the presence of Granger causality to be ’hidden’ when Average sampling
the high-frequency variable (see Section 3.3.1). It is thus a situation, in which classical temporal
aggregation is expected not to preserve the causality patterns in the data (Marcellino, 1999). The
first power DGP serves as a benchmark in the sense that we do not a priori expect one approach
to be better or worse than the others.

For the methods in Section 3 we analyze size and power for T = 50, 250 and 500, corre-
sponding to roughly 4, 21 and 42 years of monthly data. Note that an additional 100 monthly
observations are used to initialize the process. As far as the error term is concerned, we assume
ut ∼ N(0(21×1),Σu), where Σu has the same structure as the covariance matrix of the restricted
VAR in (25) with σLL = 0.5 and σHH = 1.21

For CCA and PLS we consider r = 1, 2 and leave the analysis of higher factor dimensions
for further research. Recall from Remark 6 that under H0 the model is not misspecified with
either amount of factors. Under HA, however, the model is misspecified for r = 1, but not
for r = 2. In that sense, we implicitly analyze the impact of misspecification, stemming from
choosing r too small, on the behavior of the respective test statistics. As far as the Bayesian
approach is concerned, we experimented with various values for the hyperparameter and found
λ = 0.175 to be a good choice. Furthermore, we approximate ρ by running a corresponding
univariate regression. For the max-test we take q = 1 and h = l = m = 20.

We consider different variants of our size and power DGPs by varying the values of σHL and
β. To be more precise, we choose σHL = 0,−0.05,−0.1 when analyzing size properties of our
tests in both directions. A value of zero implies the absence of nowcasting causality, whereas the
other two values imply some degree of correlation between the low- and high-frequency series.
For both power DGPs we fix σHL = −0.05, though. When investigating Granger causality
testing from X(m) to y in the first power DGP we consider β = 0.5, 0.8, 2; in the second power
DGP we only take the β = 0.5. For causality in the reverse direction we take γ2,1 = 0.2 in both
power DGPs, because the results do not seem sensitive in this respect.

The figures in the tables below represent the percentage amount of rejections at α = 5%.22

All figures are based on 2,500 replications and are computed using GAUSS12. For the bootstrap
versions we use B = 499.

20The parameter values have been chosen to mimic part of the structure of the restricted VAR in (25) and to
ensure stability of the system. In the first DGP late xt−1-observations have a larger impact on yt, and positive
values of yt−1 increase x towards the end of the current period, but hardly have an impact at the beginning. In
the second power DGP a zero-mean feature is imposed on the coefficients w∗j−1(ψ) and γ∗j,1 without changing
the general pattern of their evolvement.

21These values resemble the data in the empirical section, where σ̂LL = 0.55 and σ̂HH = 1.09.
22Outcomes for α = 10% and α = 1% are available upon request.
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4.1 Size

Tables 1 and 2 contain the size results for Granger non-causality tests within the following
approaches: the low-frequeny VAR (LF), the unrestricted VAR (UNR), reduced rank restric-
tions using canonical correlations analysis (CCA) or partial least squares (PLS), and with three
imposed factors using the HAR model (HAR), the max-test (max) and the Bayesian mixed-
frequency VAR (BMF). With respect to CCA and PLS, the outcomes for r = 2 turn out to
be qualitatively very similar to the r = 1 case, showing that the methods are apparently not
affected by the presence of misspecification. Consequently, we only show the outcomes for
r = 1 to save on space. Furthermore, aside from the results of the standard Wald tests, we
only display the outcomes for the best performing bootstrap variant, which are denoted with
a superscript ‘∗’ (e.g., CCA∗ is the bootstrap CCA-based Wald test). In the case of testing
causality in the direction from the high- to the low-frequency series this turns out to be the
bootstrap that imposes the null hypothesis, whereas the unrestricted variant dominates for the
reverse direction.23 For both methods we set the lag length within the bootstrap equal to p = 1.

When testing causality from y to X(m) size distortions may occur due to computing a joint
test on mp parameters from m different equations in the system. In order to address this issue,
we take the maximum of the Wald statistics computed equation by equation. We denote these
tests by adding a subscript ’b’, e.g., CCAb. For the tests with asymptotic critical values we
apply a Bonferroni correction to control the size under multiple testing (Dunn, 1961). In similar
spirit as in White (2000), the bootstrap implementations of these tests automatically provide
an implicit Bonferroni-type correction for multiple testing, as we calculate the corresponding
maximum of the single-equation Wald tests within each bootstrap iteration and compare that
to the maximum of the original tests. We will refer to all these tests as ‘Bonferroni-type’ tests
to avoid confusion with the max-test, and present the corresponding outcomes in Table 3.

[INSERT TABLE 1 HERE]

Let us start by analyzing the testing behavior from X(m) to y. First, LF has size close to
the nominal one, which is not surprising given that the flat aggregation scheme is correct in this
white noise DGP (no matter the value of σHL). The unrestricted VAR, however, incurs some
size distortions for small T due to parameter proliferation. Reduced rank restrictions based
on CCA and PLS yield considerable size distortions, whereby the imposed HAR-type factor
structure delivers good results (despite being slightly oversized for T = 50). Finally, max
and BMF show almost perfect size, whereby the former is marginally under- and the latter
marginally oversized.

Turning to the outcomes of the bootstrap versions we observe that, independent of the value
of σHL, even for T = 50 the actual size of the Wald tests within the unrestricted VAR and
reduced rank restriction models with CCA- or HAR-type factors is very close to the nominal one,

23The unrestricted bootstrap is seriously oversized testing causality from X(m) to y, while the other way around
the bootstrap under the null is mildly oversized for small samples. All outcomes not shown here are available
upon request.
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such that the bootstrap tests clearly dominate their asymptotic counterparts. For PLS-based
factors this conclusion only holds in the absence of nowcasting causality, and size distortions
arise quickly as we increase the contemporaneous correlation between X(m) and y.

[INSERT TABLE 2 HERE]

[INSERT TABLE 3 HERE]

Many of the aforementioned statements carry over to testing causality in the reverse direc-
tion: LF delivering nearly perfect size (as it is the correct model under the null), max performing
very well (being only marginally oversized for small T ) and BMF being a bit oversized (by a
slightly larger degree than in Table 1).24 The size distortions incurred by UNR, CCA, PLS
and HAR are, however, amplified. The use of the Bonferroni-corrected UNRb, CCAb, PLSb and
HARb can only mitigate this effect, yet not fully eradicate it. The bootstrap version does elim-
inate the size distrotions, though: actual size of UNR∗, PLS∗ and HAR∗ becomes oftentimes
very close to 5%; only CCA∗ remains a bit oversized for T = 50. The Bonferroni-type tests
UNR∗b , CCA∗b , PLS∗b and HAR∗b all have size very close to the nominal one for all sample sizes.

To sum up, the Granger non-causality tests with size close to the nominal one are LF,
max and BMF to some degree. Furthermore, these are UNR∗, CCA∗, PLS∗ (with at most
”mild” nowcasting causality) and HAR∗ when testing the direction from X(m) to y, and UNR∗,
CCA∗, PLS∗ and HAR∗ as well as their Bonferroni-type counterparts when testing the reverse
direction. Consequently, these are the cases we focus on when analyzing power (and when
dealing with real data in Section 5).

4.2 Power

Tables 4 and 5 contain the corresponding outcomes under the alternative hypothesis. Recall
that for the direction from X(m) to y we consider three different values of β within the first
power DGP, β = 0.5, 0.8 and 2. For the second power DGP we fix β = 0.5. For the reverse
direction we always keep γ2,1 = 0.2.

[INSERT TABLE 4 HERE]

Let us again start with the direction from the high- to the low-frequency variable and first
focus on the outcomes for the first power DGP, i.e., the top three blocks of Table 4. Observe (i)
how power reaches one asymptotically for all approaches, and (ii) how larger values of β imply
an increase in the rejection frequencies for a given T . Naturally, for a large enough β all tests
have power equal to one, irrespective of the sample size (as nearly happens for β = 2). So, in
order to compare our different tests let us focus on β = 0.5.

The asymptotic Wald test within the low-frequency VAR still performs very well, with the
highest rejection frequency for T = 50. Note, however, that the Granger causality feature

24Strangely, BMF seems to be rejected less and less for growing σHL, with the effect being strongest for small
T .
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in the data does not get averaged out by temporal aggregation in the first power DGP. The
bootstrapped version of the Wald test after HAR-type restrictions have been imposed in a
reduced rank regression perform almost as well as LF. max, BMF and PLS∗ appear to fall a
bit short, but catch up quickly as either T or β grows. A similar observation holds for UNR∗

and CCA∗, whereby they seem to be markedly less powerful for small T .
These conclusions generally carry over to the second power DGP, with two exceptions: First

and foremost, the outcomes of LF show that Average sampling of X(m) annihilates the causality
feature between the series for all sample sizes (power actually almost coincides with the nominal
size of 5%). Second, the rejection frequencies are lower than they were in the corresponding
setting of the first power DGP.

[INSERT TABLE 5 HERE]

Turning to the direction from y to X(m), it becomes obvious that the outcomes for the
first and second power DGP are, once again, similar, with the same two exceptions mentioned
before. This being said and leaving aside the ones for LF due Granger causality not being
invariant to temporal aggregation (Marcellino, 1999), it suffices to analyze the results of the
first power DGP.

Both max and BMF have higher power than the bootstrapped Wald tests corresponding to
the reduced rank restrictions approaches. However, recall that BMF and max were somewhat
oversized, especially for small T , which may inflate their power. However, so far we did not
consider the Bonferroni-type tests based on the maximum of the individual Wald tests. Given
the way in which max is constructed though, it seems more natural to compare it to the
Bonferroni-type counterparts of the bootstrap tests. Indeed, both approaches rely on a statistic
that is computed as the maximum of a set of test statistics.25 Here it turns out that, for a
given T , almost all approaches are more powerful than max. The fact that UNR∗b , PLS∗b
and HAR∗b are all slightly undersized for small T , while max is marginally oversized, even
strengthens the aforementioned conclusions. Also note that the bootstrap tests based on the
reduced rank restrictions seem to be slightly more powerful than UNR∗b , confirming again
(though less pronounced than in the other direction) that while the bootstrap can correct size
of the unrestricted MF-VAR approach well, the parameter proliferation problem continues to
have a negative effect on power.

Combining the power and size outcomes, it seems that BMF, HAR∗, max (for large enough
β when T is small) and PLS∗ (in the absence of nowcasting causality) are the dominant Granger
non-causality testing approaches as far as the direction from X(m) to y is concerned. For the
reverse direction of causality, CCA∗b , PLS∗b and HAR∗b as well as UNR∗b and max (though both
to a lesser degree) appear superior.

25There is a difference in terms of the underlying regression to obtain the various test statistics, of course.
Ghysels et al. (2015a) consider univariate MIDAS regressions with leads, whereas the Bonferroni-type tests are
based on estimated coefficients from different equations, i.e., the ones for X(m), of the corresponding system
regression.
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5 Application

We apply the approaches described in Section 3 to a MF-VAR consisting of the monthly growth
rate of the U.S. industrial production index (ipi hereafter), a measure of business cycle fluctua-
tions, and the logarithm of daily bipower variation (bv hereafter) of the S&P500 stock index, a
realized volatility measure more robust to jumps than the realized variance. While the degree
to which macroeconomic variables can help to predict volatility movements has been investi-
gated widely in the literature (see Schwert, 1989b, Hamilton and Gang, 1996, or Engle and
Rangel, 2008, among others), the reverse, i.e., whether the future path of the economy can
be predicted using return volatility, has been granted comparably few attention (examples are
Schwert, 1989a, Mele, 2007, and Andreou et al., 2000). Instead of using an aggregate mea-
sure of volatility such as, e.g., monthly realized volatilities (Chauvet et al., 2015) or monthly
GARCH estimated variances, we use daily bipower variation computed on 5-minute returns ob-
tained from the database in Heber et al. (2009). With the bv-series being available at a higher
frequency than most indicators of business cycle fluctuations, we obtain the mixed-frequency
framework analyzed in this paper.

The sample covers the period from January 2000 to June 2012 yielding a sample size of
T = 150. We take m = 20 as it is the maximum amount of working days that is available

in every month throughout the sample we deal with.26 Consequently, we have BV
(20)
t =

(bv
(20)
t , bv

(20)
t−1/20, . . . , bv

(20)
t−19/20)′. Figure 2 plots the data.

[INSERT FIGURE 2 HERE]

Table 6 contains the outcomes of Granger non-causality tests for all approaches discussed in
Section 3. As mentioned before, we disregard the cases that showed considerable size distortions
in the Monte Carlo analysis. Note that a lag length of p = 1 and 2 is considered (the same
for the bootstrap) and that the numbers represent p-values (in percentages). For reduced rank
restrictions using CCA and PLS we consider one up to three factors, whereby we only show
the outcomes for r = 1 and r = 2 for representational ease; r = 3 gives similar results. For
the non-bootstrap tests, except the max-test and the Wald-test within the Bayesian mixed-
frequency VAR,27 we also consider a heteroscedasticity consistent variant of (14) by computing
a robust estimator of Ω (see Ravikumar et al., 2000) to account for the potential presence of a
time varying multivariate process:

26Whenever a month contains more than 20 working days we disregard the corresponding amount of days at
the beginning of the month. In June 2012, e.g., there are 21 working days such that we do not consider June
1. For May 2012 we disregard the first three days. An alternative (balanced) strategy would have been to take
the maximum number of days in a particular month (i.e., 23, usually in July, August or October) and to create
additional values for non-existing days in other months whenever necessary. As far as the treatment of daily
data is concerned we have also taken bv

(20)
t = bv

(20)

t−1/20 when there are no quotations for bv
(20)
t .

27Note that, as discussed in Section 3.2.2, there is a one-to-one correspondence between the OLS estimator
of the augmented model and the prior setting we consider in our Bayesian framework. As we did not discuss
setting that corresponds to a robust version of the Wald test we disregard from that test variant here.
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Ω̂R = T ((W ′W )−1 ⊗ Im+1)Ŝ0((W ′W )−1 ⊗ Im+1), (30)

where

Ŝ0 =
1

T

T∑
t=1

(Wt ⊗ ût)′(Wt ⊗ ût). (31)

For the bootstrap tests we achieve the robustness to heteroskedasticity by implementing the
wild bootstrap version as described in Section 3.1.4.

[INSERT TABLE 6 HERE]

If we consider the test statistics that perform best in our Monte Carlo experiment, the out-
comes above clearly point towards Granger-causality from BV (20) to ipi. This result supports
Andreou et al. (2000) concluding that ”[...] volatilities may also be useful [...] indicators for
both the growth and volatility of industrial production” (p. 15). The situation is less clear
cut when looking at Granger-causality from the low-frequency variable to the high-frequency
volatility measures. Indeed, max and most Bonferroni-type tests seem to reject the null of no
Granger-causality, whereas the joint tests do not. However, the higher power obtained on the
maximum of the individual Wald-type tests would favor the presence of Granger-causality in
the direction from business cycle movements to financial uncertainties as well. A more careful
investigation, out of the scope of this paper, could be done on different subsamples in order
to analyze whether, e.g., periods before, during or after the financial crises lead to similar
conclusions.

6 Conclusion

We investigate Granger non-causality testing in a mixed-frequency VAR, where the mismatch
between the sampling frequencies of the variables under consideration is large, causing estima-
tion and inference to be potentially problematic. To avoid this issue we discuss two parameter
reduction techniques in detail, reduced rank restrictions and a Bayesian MF-VAR approach,
and compare them to (i) a common low-frequency VAR, (ii) the max-test approach and (iii) the
unrestricted VAR in terms of their Granger non-causality testing behavior. To further improve
their finite sample test properties we also consider two bootstrap variants for the reduced rank
regression approaches (and the unrestricted VAR).

For both directions of causality we find a different set of tests to result in the best Granger
non-causality testing behavior. For the direction from the high- to the low-frequency series,
standard testing within the Bayesian mixed-frequency VAR, the max-test of Ghysels et al.
(2015a), and the restricted bootstrap version of the Wald test in a reduced rank regression
after HAR-type factors have been imposed or PLS-type factors have been computed, the latter
of which being restricted to nowcasting non-causality (Götz and Hecq, 2014), perform best.
For the reverse direction, the unrestricted bootstrap variants of the Bonferroni-corrected Wald
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tests within the following models dominate: the unrestricted VAR and reduced rank regressions
with CCA-, PLS- or HAR-based factors.

An application investigating the presence of a causal link between business cycle fluctuations
and uncertainty in financial markets illustrates the practical usefulness of these approaches.
While Granger causality from uncertainty in financial markets to business cycle fluctuations
was clearly supported by the data, evidence for causality in the reverse direction only comes
from a subset of the tests, yet the more powerful ones according to our simulation results.
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“Realized volatility and business cycle fluctuations: a mixed-frequency VAR approach” and
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A Bayesian VAR estimation with mixed-frequency prior variances

Properly accounting for the high-frequency time difference between the variables involved im-
plies the following prior variances:

V ar[γ
(k)
i,j ] =


φ λ2

(k+(j−2)/m)2
SLH for i = 1, j > 1

φ λ2

(k+(2−i)/m)2
SHL for j = 1, i > 1

λ2

(k+(j−i)/m)2
else

, (32)

Now, define Z = (Zµ1 , . . . , Z
µ
T )′, where Zµt = (Z ′t, 1)′, and let us re-write the MF-VAR in (4)

in the following way:

vec(Z)︸ ︷︷ ︸
(m+1)T×1

= Z∗︸︷︷︸
(m+1)T×(m+1)n

vec(B∗)︸ ︷︷ ︸
(m+1)n×1

+ vec(E)︸ ︷︷ ︸
(m+1)T×1

, (33)

where Z = (Z1, . . . , ZT )′, Z∗ = Im+1⊗Z, E = (u1, . . . , uT )′, B∗ = (B′, µ)′ and n = (m+1)p+1.
In order to drop the undesirable feature of a fixed and diagonal covariance matrix Σ, we impose
a normal inverted Wishart prior (at the cost of having to set φ = 1) with the following form
(Kadiyala and Karlsson, 1997):

vec(B∗)|Σ ∼ N(vec(B∗0), [Z∗′0 (Σ−1 ⊗ IT )Z∗0 ]−1) and Σ ∼ iW (V0, v0), (34)

where Z∗0 = Im+1 ⊗ Z0 with Z0 being a (T × n)-matrix. B∗0 and Z0 have to be chosen as to let
expectations and variances of the elements in B∗ coincide with the moments in (26). Likewise,
V0 and v0 need to be set such that E[Σ] = Σd.

Similar to Banbura et al. (2010), we can show that adding auxiliary dummy variables Yd and
Xd, the precise composition of which is given in Appendix B, to (33) is equivalent to imposing
the normal inverted Wishart prior in (34). To this end, let

B∗aux0 = (X ′dXd)
−1X ′dYd,

Zaux0 = Xd

V0 = (Yd −XdB
∗aux
0 )′(Yd −XdB

∗aux
0 ) and

v0 = m+ 3 = Td − naux + 2,

(35)

where naux = m(2p+ 1) and Td = naux + (m+ 1), and subsequently set

vec(B∗0) = S′vec(B∗aux0 ) and
V ar[vec(B∗)] = S′[Z∗aux′0 (Σ−1 ⊗ ITd)Z∗aux0 ]−1S,

(36)

with Z∗aux0 = Im+1 ⊗ Zaux0 and where S is an [(m + 1)naux × (m + 1)n]-dimensional selection
matrix, the precise construction of which is given in Appendix C.

Remark 16 Intuitively speaking, Zaux0 is an auxiliary matrix constructed as the ’union’ of the
Z0 matrices corresponding to the different columns of B∗. The non-random matrix S selects,

33



for each column of B∗, the corresponding elements of Zaux0 in order to let the variance of each
element in B∗ match the corresponding prior variance. Likewise, B∗aux0 is an auxiliary matrix
from which we derive B∗0 .

In order to augment the model in (33), let us define Zdj = (Z ′, (XdSj)
′)′, where Sj is the

jth block of the selection matrix S (see Appendix C for details), j = 1, . . . ,m+ 1.28 Then, the
augmented system becomes

vec(Z∗)︸ ︷︷ ︸
(m+1)(T+Td)×1

= Z∗∗︸︷︷︸
(m+1)(T+Td)×(m+1)n

vec(B∗)︸ ︷︷ ︸
(m+1)n×1

+ vec(E∗)︸ ︷︷ ︸
(m+1)(T+Td)×1

, (37)

where Z∗ = (Z ′, Y ′d)′, E∗ = (E′, E′d)
′ and Z∗∗ is block diagonal with Z∗∗ = diag{Zd1, Zd2, . . . , Zdm+1}.

The posterior then has the form

vec(B∗)|Σ, Z ∼ N(vec(B̂∗), [Z∗′∗ (Σ−1 ⊗ IT+Td)Z∗∗]
−1) and Σ|Z ∼ iW (V̂ , T +m+ 3), (38)

where V̂ = Ê′∗Ê∗ with vec(Ê∗) = vec(Z∗)− Z∗∗vec(B̂∗).29 Note that the posterior mean of the
coefficients boils down to

vec(B̂∗) = [Z∗′∗ (Σ−1 ⊗ IT+Td)Z∗∗]
−1Z∗′∗ (Σ−1 ⊗ IT+Td)vec(Z∗), (39)

i.e., the GLS estimate of a SUR regression of vec(Z∗) on Z∗∗. As for the common-frequency
case, it can be checked that it also coincides with the posterior mean for the prior setup in (26).
An example with p = 1 and m = 2 illustrates the auxiliary dummy variables approach and is
provided in Appendix D.

B The auxiliary dummy variables with mixed-frequency prior variances

The auxiliary dummy variables that imply a matching of the prior moments turn out to be

Yd︸︷︷︸
Td×(m+1)

=



02(m−1)×1

Dρ ⊗ (0, σH/λ)′σLρ
m/λ
0

0(m(2p−1)−1)×(m+1)

diag(σL, σH , . . . , σH)
01×(m+1)

 , (40)

28Here, Sj picks the elements of Zaux
0 = Xd corresponding to column j of B∗.

29In practice, we estimate Σ in the standard way, i.e., Σ̂ = 1
T+Td

Êols′
∗ Êols

∗ , where Êols
∗ denotes the OLS

residuals of the system in (37). Again, a sample size correction alleviates potential size distortions (see Section
3.1.2). The ith column of Êols

∗ , i = 1, . . . ,m + 1, corresponds to the residuals of a regression of (Z′·,i, Y
′
d,i)
′ on

Zd
i , where Z·,i and Yd,i denote the ith columns of Z and Yd, respectively.
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Xd︸︷︷︸
Td×naux

=


J1
p ⊗ diag(σL, σH)/λ 02pm×(m−1) 02pm×1

0(m−1)×2pm J2
pσH/λ 0(m−1)×1

0(m+1)×2pm 0(m+1)×(m−1) 0(m+1)×1

01×2pm 01×(m−1) ε

 , (41)

where Dρ = diaga(ρm, m−1
m ρm−1, . . . , 2

mρ
2, 1
mρ), with diaga(·) denoting an anti-diagonal matrix.

Furthermore,
J1
p = diag( 1

m ,
2
m , . . . , 1,

m+1
m , . . . , 2, . . . , . . . , p),

J2
p = diag(p+ 1

m , p+ 2
m , . . . , p+ m−1

m ).
(42)

The last line of both, Yd and Xd, corresponds to the diffuse prior for the intercept (ε is a very
small number), the block above imposes the prior for Σ and the remaining blocks set the priors

for the coefficients γ
(k)
i,j . As in Banbura et al. (2010), we set σ2

i = s2
i , i = L,H, where s2

i is the
variance of a residual from an AR(p), respectively an AR(mp), model for yt, respectively for

x
(m)
t .

C Construction of the selection matrix S

Let us investigate the variance of vec(B∗)|Σ more closely. Noting that we have to choose Z0,
or Z∗0 in (34), in such a way as to let the variances of the corresponding coefficients coincide
with the prior variances in (26), it turns out that we need to set

V ar[vec(B∗)|Σ] =



σ2
LΩ

(2)
0 0n×n . . . . . . 0n×n

0n×n σ2
HΩ

(2)
0 0n×n . . . 0n×n

... 0n×n σ2
HΩ

(3)
0 . . .

...
...

...
...

. . . 0n×n

0n×n 0n×n . . . 0n×n σ2
HΩ

(m+1)
0


, (43)

where

Ω
(i)
0 = diag( λ2

(1+(2−i)/m)2σ2
L
, λ2

(1+(2−i)/m)2σ2
H
, λ2

(1+(3−i)/m)2σ2
H
, . . . , λ2

(1+1+(1−i)/m)2σ2
H
, . . . ,

. . . , λ2

(p+(2−i)/m)2σ2
L
, λ2

(p+(2−i)/m)2σ2
H
, . . . , λ2

(p+1+(1−i)/m)2σ2
H
, 1
ε2

)
(44)

for i = 2, . . . ,m+ 1.

Hence, unlike in the common-frequency case, where Ω
(i)
0 = Ω0 ∀i (Banbura et al., 2010),

the set of variances changes due to the stacked nature of the vector Zt and the specific lag
structure for each coefficient (see the variances in (26)). Let us form an auxiliary matrix Ωaux

0 ,

which contains the union of all elements in Ω
(2)
0 , . . . ,Ω

(m+1)
0 . Each matrix Ω

(i)
0 contains p + 1

new elements compared to Ω
(i−1)
0 for i > 2. As there are n elements in Ω

(2)
0 , we end up with a

dimension of m(2p+ 1) = naux for the square matrix Ωaux
0 :

Ωaux
0 = diag( λ2

(1/m)2σ2
L
, λ2

(1/m)2σ2
H
, . . . , λ2

12σ2
L
, λ2

12σ2
H
, λ2

(1+1/m)2σ2
L
, λ2

(1+1/m)2σ2
H
, . . . , λ2

22σ2
H
,

. . . , . . . , λ2

p2σ2
L
, λ2

p2σ2
H
, λ2

(p+1/m)2σ2
H
, . . . , λ2

(p+1−1/m)2σ2
H
, 1
ε2

).
(45)
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All that remains is to define a [(m + 1)naux × (m + 1)n]-dimensional selection matrix S such
that S′(Σd ⊗ Ωaux

0 )S = V ar[vec(B∗)|Σ] . Note that from Ωaux
0 we can then derive Zaux0 = Xd

by using Ωaux
0 = (Zaux

′
0 Zaux0 )−1.

Let us denote by 1i an naux-dimensional column vector with a one in row i and zeros
elsewhere. It turns out that S is a block-diagonal matrix, i.e., S = diag{S1, S2, . . . , Sm+1},
where each off-diagonal block is 0naux×n. Each Sj , j = 1, . . . ,m+1, can be described as follows:

Sj = (S1
j , S

2
j , 1naux) for j = 2, . . . ,m+ 1, (46)

where

S1
j = ( 12m−(2j−3), 12m−(2j−4), 12m−(2j−6), . . . , 14m−(2j−2), 14m−(2j−3), . . . ,

16m−(2j−2), . . . , . . . , 12pm−(2j−3), 12pm−(2j−4), . . . , 12pm),
(47)

S2
j =

{
∅ for j = m+ 1
(12pm+1, 12pm+2, . . . , 12pm+m−(j−1)) else

(48)

and
S1 = S2. (49)

Each of the indices in Sj reveals which row element of the jth column of Baux
0 gets selected by

S. Put differently, the indices that are missing in Sj correspond to elements of Baux
0 (in column

j) that will not get chosen by S. This implies that the values of these elements do not play a
role for the computation of vec(B∗0). Consequently, when constructing Baux

0 , and subsequently
also Yd, we assign these elements a value of zero for simplicity.

D Example of the auxiliary dummy variables approach with mixed-frequency
prior variances

Let p = 1 and m = 2. The prior beliefs in (26) corresponding to this setup, and written in
terms of vec(B∗) = vec((B′, µ)′), are given by

E(vec(B∗)) = vec


ρ2 0 0
0 ρ2 ρ
0 0 0
0 0 0
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and

V ar(vec(B∗)) = λ2



1 0 . . . 0
0 SLH 0 . . . 0
0 0 1

(3/2)2
SLH 0 . . . 0

0 . . . 0
σ2
L

ε2λ2
0 . . . 0

0 . . . 0 SHL 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 1

(3/2)2
0 . . . 0

0 . . . 0
σ2
H

ε2λ2
0 . . . 0

0 . . . 0 1
(1/2)2

SHL 0 . . . 0

0 . . . 0 1
(1/2)2

0 0

0 . . . 0 1 0

0 . . . 0
σ2
H

ε2λ2



.

(50)
With Td = 9 and naux = 6 the auxiliary dummy variables look as follows:

Yd =



0 0 0

0 0
1
2
ρσH
λ

ρ2σL
λ 0 0

0 ρ2σH
λ 0

0 0 0
σL 0 0
0 σH 0
0 0 σH
0 0 0


, Xd =



1
2
σL
λ 0 0 0 0 0

0
1
2
σH
λ 0 0 0 0

0 0 σL
λ 0 0 0

0 0 0 σH
λ 0 0

0 0 0 0
3
2
σH
λ 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ε


.

Let us demonstrate that these auxiliary dummy variables truly imply a matching of the
prior moments in (34) and the prior beliefs given above. Simple algebra gives us Zaux0 = Xd,
v0 = 5 as well as

B∗aux0 = (X ′dXd)
−1X ′dYd =



0 0 0
0 0 ρ
ρ2 0 0
0 ρ2 0
0 0 0
0 0 0

 ,

V0 = (Yd −XdB
∗aux
0 )′(Yd −XdB

∗aux
0 ) =

 σ2
L 0
0 σ2

H 0
0 0 σ2

H

 .
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To obtain vec(B∗0) we require the selection matrix S. Following the guidelines in Appendix C
yields S = diag{S1, S2, S3}, where the off-diagonal blocks are of dimension 6× 4 and

S1 = S2 =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, S3 =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1


.

Now it is easy to show that, indeed,

vec(B∗0) = S′vec(B∗aux0 ) = vec


ρ2 0 0
0 ρ2 ρ
0 0 0
0 0 0

 = E(vec(B∗))

and S′[Σ⊗ (Zaux′0 Zaux0 )−1]S = V ar(vec(B∗)) as in equation (50).
Having shown that Yd and Xd capture the prior moments, we need to augment the MF-VAR.

Let us start by re-writing it into the format presented in equation (33):

vec


y2 x

(2)
2 x

(2)
2−1/2

...
...

...

yT x
(2)
T x

(2)
T−1/2

 =

I3 ⊗


y1 x

(2)
1 x

(2)
1/2 1

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1


 vec


γ1,1 γ2,1 γ3,1

γ1,2 γ2,2 γ3,2

γ1,3 γ2,3 γ3,3

µ1 µ2 µ3


︸ ︷︷ ︸

vec(B∗)

+vec(E).

Following the steps outlined at the end of Section 3.2.2 gives us the augmented system:

vec



y2 x
(2)
2 x

(2)
2−1/2

...
...

...

yT x
(2)
T x

(2)
T−1/2

0 0 0

0 0
1
2
ρσH
λ

ρ2σL
λ 0 0

0 ρ2σH
λ 0

0 0 0
σL 0 0
0 σH 0
0 0 σH
0 0 0



= Z∗∗vec(B
∗) + vec(E∗).
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with

Z∗∗ =



y1 x
(2)
1 x

(2)
1/2 1

0(T+9)×4 0(T+9)×4

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1

0 0 0 0
0 0 0 0
σL

λ 0 0 0
0 σH

λ 0 0

0 0
3
2σH

λ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε

0(T+9)×4

y1 x
(2)
1 x

(2)
1/2 1

0(T+9)×4

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1

0 0 0 0
0 0 0 0
σL

λ 0 0 0
0 σH

λ 0 0

0 0
3
2σH

λ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε

0(T+9)×4 0(T+9)×4

y1 x
(2)
1 x

(2)
1/2 1

...
...

...
...

yT−1 x
(2)
T−1 x

(2)
T−1−1/2 1

1
2σL

λ 0 0 0

0
1
2σH

λ 0 0
0 0 0 0
0 0 σH

λ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε



.

The GLS estimate of vec(B∗) in the regression above is then a closed-form solution for the
posterior mean of the coefficients.
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Table 6: Testing for Granger Causality between BV (20) and ipi

BV (20) to ipi
p = 1 p = 2

Wald Robust Wald Robust

LF 0.0 0.2 0.1 2.1
max 0.1 ./. 0.0 ./.
BMF 14.4 ./. 21.8 ./.

UNR∗ 15.0 17.4 7.3 8.7
CCA1∗ 2.9 7.9 12.4 20.4
CCA2∗ 14.5 16.2 19.2 25.1
PLS1∗ 0.1 0.7 0.2 1.9
PLS2∗ 0.6 2.8 0.1 1.4
HAR∗ 1.2 2.2 1.5 2.4

ipi to BV (20) p = 1 p = 2
Wald Robust Wald Robust

LF 0.1 1.5 0.4 5.0
max 4.4 ./. 1.1 ./.
BMF 23.5 ./. 42.5 ./.

UNR∗ 28.9 34.2 25.8 26.4
CCA1∗ 25.8 33.5 20.5 38.4
CCA2∗ 35.9 46.1 17.6 34.3
PLS1∗ 15.8 24.6 11.4 24.4
PLS2∗ 18.3 26.9 10.3 18.0
HAR∗ 19.2 27.0 11.4 18.6

UNR∗b 5.4 8.9 20.0 22.9
CCA1∗b 4.1 10.5 7.8 16.9
CCA2∗b 5.0 10.8 7.7 15.1
PLS1∗b 1.5 4.3 1.5 9.5
PLS2∗b 1.2 5.2 1.1 4.0
HAR∗b 2.3 6.5 6.2 14.1

Note: For testing Granger non-causality between BV (20) and ipi the figures represent p-values (in percentages)
of the asymptotic Wald test statistics, the restricted bootstrap variants for the direction from BV (20) to ipi and
the unrestricted bootstrap variants for the direction from ipi to BV (20) (bootstrap variants are indicated with a
superscript ’*’, the Bonferroni-type tests with a subscript ’b’). For all approaches but the max-test (max) and
the Bayesian MF-VAR (BMF) a robustified version is computed as well. The lag length of the estimated VARs
is equal to one or two. For CCA and PLS the results for one and two factors are displayed.

46



F Figures

Figure 1: Parameter values for 2w∗j−1(−0.01) and γ∗j,1 (γ2,1 = 0.25)
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Figure 2: Growth Rate of Industrial Production Index and the logarithm of Bipower Variation

Note: This figure shows the monthly growth rate of the U.S. industrial production index (lower line), i.e., ipi,
and the logarithm of daily bipower variation of the S&P500 stock index (top lines), i.e., BV (20), for the time
period from January 2000 to June 2012. The graph for the former is shifted downwards to enable a visual
separation of ipi from the bv-lines.
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