Summary
Summary
This thesis discusses the relationship between the structure (atrial anatomy, structural remodeling processes) and the function (propagation of fibrillatory conduction) of atrial fibrillation (AF) waves both in goat and man. AF is characterized by complex conduction patterns and by an increase in AF complexity with the duration of the arrhythmia. The highly complex 3-dimensional atrial anatomy consists of thick endocardial bundles branching out into a thin epicardial layer. Moreover, different structural alterations take place with the persistence of AF. This complex interplay works in both ways, as the observed electrical activity is strongly related to the underlying anatomy, but also atrial anatomy as such is altered by the occurrence and persistence of AF. In this thesis, we focus on different aspects of this structure-function relationship and on its implications for the mechanisms driving AF.

In chapter 1, different mechanisms identified by mapping of AF in both experimental animal models and human are summarized. By reviewing mapping studies published so far, it is clear that the exact pathophysiological mechanism responsible for persistence of AF is still incompletely understood. Multiple reentrant wavelets, ectopic activity, stable and unstable rotors all have been identified depending on the mapping technique and the model that has been used or studied. There are however strong indications that AF is a 3-dimensional process and that specific conduction disturbances occur in close relation with the underlying anatomy.

In chapter 2, we zoom in on a special subtype of AF that typically occurs after (cardiac) surgery; postoperative AF (POAF). In this chapter we hypothesize that many patients already have a pre-existing substrate for AF at the time of surgery and that this substrate is unmasked by occurrence of acute factors increasing the activity of pro-arrhythmic factors in the perioperative period. Indeed, factors associated with the occurrence of POAF can be divided in factors directly related to the surgical procedure and chronic factors related to structural heart disease and ageing of the heart. Among the surgery-induced factors, sympathetic activation seems to be more relevant than inflammation and oxidative stress. These factors, however, are also clearly active in postoperative patients not developing POAF. So besides acute factors, occurrence of POAF seems strongly determined by long-lasting structural remodeling processes leading to a pre-existing substrate of AF. These structural changes prior to the onset of the arrhythmia are also reflected by the risk factors for POAF.
Summary

The effect of AF on atrial bundle architecture and consequent changes in AF conduction is studied in chapter 3. In a rapid pacing model of AF in the goat, high resolution MRI-analysis of the atrial wall after high density mapping of AF was performed. Reconstruction of the endo- and epicardial bundle anatomy demonstrated that after 7 months of AF epicardial fibers are rotated more perpendicular towards endocardial bundles than in acutely induced AF. Moreover, it was shown that in non-remodeled atria, epicardial fibrillation waves propagate fastest along the direction of endocardial bundles, while in structurally remodeled atria the conduction of epicardial fibrillation waves was fastest along epicardial fibers. In remodeled atria, this mechanism is likely contributes to the occurrence of endo-epicardial dissociation of electrical activity.

A comprehensive analysis of the development of the electro-structural substrate with the persistence of AF in man is performed in chapter 4. Epicardial mapping of AF was performed in patients with acutely induced AF, paroxysmal AF and persistent AF and in-depth analysis of right atrial appendages was performed. Analysis of fibrillation electrograms demonstrated that AF complexity is much higher in patients with persistent AF, but comparable in patients with paroxysmal AF and patients without an AF history. On the contrary, the spread of AF complexity was highest in paroxysmal AF. Structural analysis revealed that endomysial fibrosis, but not overall fibrosis, correlated well with AF complexity. As a consequence, new techniques for atrial fibrosis quantification, such as DE-MRI, may overestimate the role of fibrosis as a determinant of conduction disturbances in AF.

In chapter 5, the pathophysiological relevance of complex fractionated atrial electrograms (CFAE) in AF is studied. Semi-automated bipolar CFAE algorithms, used in daily clinical practice, correlated poorly with each other and with AF complexity measures such as conduction velocity, number of waves or breakthroughs per AF cycle and electrical dissociation. Moreover, bipolar CFAE also correlated poorly with the fractionation index derived from the unipolar electrograms. The lack of pathophysiological relevance of bipolar CFAE analysis may in part contribute to the divergent and limited success rates of catheter ablation strategies targeting CFAE.

In chapter 6, a rapid and fully automated procedure by probabilistic electrogram analysis to accurately identify local, intrinsic atrial deflections and construct fibrillation waves based on these deflections is presented. Also, this
novel analysis is validated using manually annotated electrograms and wave maps and is therefore an adequate substitute for manual annotation.

Finally, a general discussion of the results and findings in this thesis and an explanation of their implications are stated in chapter 7.
Samenvatting
Samenvatting
Samenvatting

Dit proefschrift behandelt de relatie tussen de structuur (atriale anatomie, structurele remodeling processen) en de functie (de geleiding) van atriale fibrillatiegolven in de geit en de mens. Enerzijds bestaat atriumfibrilleren (AF) uit complexe geleidingspatronen en is het gekenmerkt door een toename in complexiteit bij een langere duur van de aritmie. Anderzijds is de complexe driedimensionale atriale anatomie opgebouwd uit dikke endocardiale bundels die uitwaaien in een dunne epicardiale laag. Daarnaast treden er verschillende structurele veranderingen op door het voortbestaan van AF. Deze complexe interactie werkt in twee richtingen. De elektrische activiteit is sterk verbonden met de onderliggende anatomie en door het optreden van AF verandert ook de anatomie van het atrium. In dit proefschrift gaan we dieper in op verschillende aspecten van deze relatie tussen structuur en functie, maar ook op de implicaties voor de mechanismen van AF.

Hoofdstuk 1 van dit proefschrift vormt een samenvatting van de verschillende mechanismen van AF, aangetoond door het mappen van AF in zowel dierexperimentele modellen als in de mens. Uit de samenvatting van alle tot op heden gepubliceerde mapping studies wordt duidelijk dat het precieze pathofysiologische mechanisme, verantwoordelijk voor het voortbestaan van AF, nog niet volledig doorgrond is. Afhankelijk van de toegepaste mappingtechniek of het gekozen AF-model worden verschillende mechanismen zoals de aanwezigheid van meerdere gelijktijdige fibrillatiegolven, ectopische activiteit, stabiele en onstabiele rotoren aangetoond. Desalniettemin zijn er meerderen aanwijzingen dat AF een driedimensionaal proces is en dat het optreden van specifieke geleidingsstoornissen sterk afhankelijk is van de onderliggende anatomie.

In hoofdstuk 2 gaan we dieper in op een subtype van AF dat meestal voorkomt na (hart)chirurgie, namelijk postoperatief AF (POAF). We onderbouwen de hypothese dat veel patiënten reeds over een ‘vooraf bestaand substraat voor AF’ beschikken ten tijde van chirurgie. De aanwezigheid van dit substraat wordt onthuld door zogenaamde ‘acute factoren’ die pro-aritmische effecten hebben in de peri-operatieve periode. Factoren, geassocieerd met het ontstaan van POAF, kunnen opgedeeld worden in acute factoren, die direct terug te brengen zijn tot de chirurgische ingreep, en chronische factoren, die een gevolg zijn van structureel hartlijden en van het verouderen van het hart. Van de chirurgisch geïnduceerde factoren blijkt sympathische activatie een belangrijkere rol te spelen bij het optreden van POAF dan inflammatie of oxidatieve stress. Al deze factoren zijn echter ook duidelijk actief in patiënten die
Samenvatting

geen POAF ontwikkelen. Het ontstaan van POAF lijkt dus ook in belangrijke mate bepaald door langdurige structurele ‘remodeling’ processen die aanleiding geven tot dergelijk ‘vooraf bestaand substraat voor AF’.

Het effect van AF op de atriale anatomie en de daarop volgende veranderingen in AF-geleiding zijn het onderwerp van hoofdstuk 3. Deze studie hebben we gedaan in een geitenmodel waarin AF werd opgewekt door tachypacing. In dit model hebben we een hoge resolutie MRI-analyse van de atriale wand gemaakt nadat eerst mapping van AF was verricht. Na de reconstructie van de endo- en epicardiale bundelenanatomie hebben we kunnen aantonen dat na 7 maanden van AF de epicardiale vezels meer loodrecht gedraaid zijn ten aanzien van de endocardiale bundels dan in acuut geïnduceerd AF. Tevens hebben we kunnen aantonen dat in normale atria epicardiale golven het snelst geleiden in de richting van de endocardiale bundels. In structureel geremodelleerde atria bleken deze epicardiale golven echter meer in de richting van de epicardiale vezels te geleiden. In geremodelleerde atria is het optreden van endo-epicardiale dissociatie van elektrische activiteit waarschijnlijk mede te schrijven aan dit mechanisme.

Een uitgebreide analyse van de ontwikkeling van het elektrostructurele substraat ten gevolge van het voortbestaan van AF is terug te vinden in hoofdstuk 4. In deze studie hebben we epicardiale mapping van AF verricht in patiënten met acuut opgewekt AF, patiënten met paroxysmaal AF en patiënten met persistente AF. Daarnaast hebben we een structurele analyse van de rechter hartoortjes uitgevoerd. Na analyse van de AF electrogrammen hebben we aangetoond dat de complexiteit van AF veel hoger is in patiënten met persistente AF, maar vergelijkbaar in patiënten met paroxysmaal AF en patiënten zonder AF in de voorgeschiedenis. De spreiding van de complexiteit van AF was wel het grootst in de groep van paroxysmaal AF. De structurele analyse toonde dat endomysiale fibrose, in tegenstelling tot algehele fibrose, goed overeenkomt met de complexiteit van AF. Dit heeft implicaties voor het gebruik van nieuwere technieken voor de kwantificatie van atriale fibrose, zoals DE-MRI, omdat deze technieken de rol van algehele fibrose als parameter voor geleidingsstoornissen mogelijks overschatten.

De pathofysiologische relevantie van complexe gefractioneerde electrogrammen, ook CFAE genoemd, wordt uitgediept in hoofdstuk 5. Hieruit blijkt dat de semi-automatische bipolaire CFAE algoritmen, die in de dagelijkse klinische praktijk gebruikt worden, slecht correleren met elkaar maar ook met
parameters van de complexiteit van AF zoals geleidingssnelheid, het aantal golven of ‘breakthroughs’ per AF cycluslengte en elektrische dissociatie. Daarenboven correleren bipolaire CFAE ook zeer zwak met de fractionatie-index die afgeleid is van unipolaire elektrogrammen. Dit klaarblijkelijke gebrek aan pathofysiologische relevantie van bipolaire CFAE draagt mogelijk bij tot de uiteenlopende resultaten en eerder beperkt succes van katheter ablatie-strategieën gericht op CFAE.

Hoofdstuk 6 gaat over de ontwikkeling van een snelle en volautomatische analyse, gebaseerd op probabilistische elektrogramanalyse. Deze analyse identificeert de correcte lokale intrinsieke atriale deflecties en stelt fibrillatie-golven samen gebaseerd op deze geïdentificeerde deflecties. Ook toetsen we deze nieuwe analyse aan manueel geannoteerde electrogrammen. Aldus vormt deze geautomatiseerde analyse een substituut voor manuele annotatie van AF electrogrammen.

Tenslotte worden alle resultaten en bevindingen van dit proefschrift en de mogelijke implicaties besproken in een algemene discussie in **hoofdstuk 7**.