

Parallelization experience with four canonical
econometric models using ParMitISEM
Citation for published version (APA):

Baştürk, N., Grassi, S., Hoogerheide, L., & van Dijk, H. K. (2016). Parallelization experience with four
canonical econometric models using ParMitISEM. Maastricht University, Graduate School of Business
and Economics. GSBE Research Memoranda No. 013 https://doi.org/10.26481/umagsb.2016013

Document status and date:
Published: 01/01/2016

DOI:
10.26481/umagsb.2016013

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 25 Apr. 2024

https://doi.org/10.26481/umagsb.2016013
https://doi.org/10.26481/umagsb.2016013
https://cris.maastrichtuniversity.nl/en/publications/f5a41bfb-b735-4e7b-95c3-69f1fd61a8ec

Nalan Baştürk, Stefano Grassi,
Lennart Hoogerheide, Herman K.

van Dijk

Parallelization Experience

with Four Canonical
Econometric Models using

ParMitISEM

RM/16/013

Parallelization Experience with Four Canonical Econometric
Models using ParMitISEM

Nalan Baştürk1, Stefano Grassi∗2, Lennart Hoogerheide3,4, and Herman K. van Dijk3,4,5

1Maastricht University
2University of Kent
3Tinbergen Institute

4VU University Amsterdam
5Erasmus University Rotterdam

January 7, 2016

Abstract

This paper presents the parallel computing implementationof the MitISEM algorithm, labeledParal-
lel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide etal. (2012), provides an au-
tomatic and flexible method to approximate a non-ellipticaltarget density using adaptive mixtures of
Student-t densities, where only a kernel of the target density is required. The approximation can be used
as a candidate density in Importance Sampling or MetropolisHastings methods for Bayesian inference
on model parameters and probabilities. We present and discuss four canonical econometric models using
a Graphics Processing Unit and a multi-core Central Processing Unit version of the MitISEM algorithm.
The results show that the parallelization of the MitISEM algorithm on Graphics Processing Units and
multi-core Central Processing Units is straightforward and fast to program using MATLAB. Moreover
the speed performance of the Graphics Processing Unit version is much higher than the Central Process-
ing Unit one.

1 Introduction

In several statistical and econometric models, the joint and marginal posterior distributions of the parameters
have unknown analytical properties and non-elliptical Bayesian Highest Posterior Density (HPD) credible
sets, see e.g. Berger (1985), Hoogerheide et al. (2007b) andDe Pooter et al. (2008). The phenomenon of
multi-modal, skewed shapes and/or ridges in the surface of posteriors and predictive densities, occurs fre-
quently in empirical econometric analysis, see Baştürk et al. (2014a) for a review. In such cases it is not
trivial to perform inference on the joint posterior distribution of parameters using basic Markov Chain
Monte Carlo (MCMC) methods, which may be inefficient and inaccurate due to the non-standard condi-
tional densities. The difficulty of selecting an appropriate candidate density for algorithms where such a
candidate needs to be defined is discussed in De Pooter et al. (2008), Ardia et al. (2012) and Zellner et al.

∗Corresponding author. Address: School of Economics, Keynes College, University of Kent, Canterbury, CT27NP, UK. E-mail:
S.Grassi@kent.ac.uk.

1

mailto:S.Grassi@kent.ac.uk

(2014) among several others. Efficient and accurate inference is, however, important in the context of mea-
suring economic forecast uncertainty and economic policy effects.
Recently, Hoogerheide et al. (2012) proposed the Mixture ofStudent-t Distributions using Importance Sam-
pling weighted Expectation Maximization (MitISEM) algorithm which is an automatic and flexible method
to approximate a target posterior or predictive density which possibly has non-elliptical shapes that are not
known a priori. The algorithm provides an approximation to the joint target density that can be used to
obtain features of interest. More importantly, in Bayesianinference, this approximation can be used as a
candidateor proposaldensity for the Metropolis Hastings (MH) or Importance Sampling (IS) algorithms,
see Hammersley and Handscomb (1975) and Kloek and Van Dijk (1978).1 Thus, the use of the MitISEM
algorithm for Bayesian inference involves two steps. In thefirst step, the MitISEM approximation to the
joint posterior density of model parameters is obtained, that is, a mixture of Student-t candidate densities is
fitted to the target using an expectation maximization (EM) algorithm where each step of the optimization
procedure is weighted using IS. In the second step, the obtained candidate density is used in IS or the inde-
pendence chain MH algorithms for Bayesian inference on the model parameters and model probabilities.
Several recent papers use and extend the MitISEM algorithm for Bayesian inference. Barra et al. (2013)
incorporates the MitISEM algorithm to the estimation of non-Gaussian state space models, Gatarek et al.
(2013) uses MitISEM for Value-at-Risk estimation, Lanne and Luoto (2014, 2015) estimates non-causal
models using MitISEM and Tran et al. (2014) uses MitISEM for Bayesian inference of latent variable mod-
els. Recently Baştürk et al. (2012) provided theR packageMitISEM, together with routines to use Mi-
tISEM and its sequential extension for Bayesian inference of model parameters and model probabilities.
Speeding up computations in such econometric models is appealing for several reasons. First, the amount of
data used in these models are typically increasing in areas such as finance, macroeconomics and marketing.
Second, such increases in data are often accompanied by construction of more complex models as soon
as estimation of these models is possible. For some applications, such as in macroeconomics, estimations
taking days or weeks are common. Last but not least, decisionmaking based on econometric models often
needs to be performed in a timely manner in areas such as financial risk management. These requirements
bring out the necessity to perform quick computations of theeconometric models.
The estimation of those models can be done using parallel MCMC, where a straightforward implementa-
tion is to runp independent chains in parallel and to merge the results. This comes with some theoretical
constraints as described in Rosenthal (2000), Craiu and Meng (2005), Craiu et al. (2009) and Jacob et al.
(2011). Cappé et al. (2008) noted that there is a renewed interest in IS, due to the possibility of straightfor-
ward parallel implementation. Numerical efficiency in sampling methods is not only related to the efficient
sample size or relative numerical efficiency, but also to thepossibility to perform the simulation process
in a parallel fashion. Unlike alternative methods such as the random walk MH or the Gibbs sampler, IS
makes use of independent draws from the candidate density, which can be obtained from multiple-core
processors or computer clusters. This in turn yields an increase in calculation speed, see among other
Durham and Geweke (2011).
The basic MitISEM algorithm may also benefit from parallel processing implementations due to its close
relation with the IS algorithm. This paper presents the parallel implementation of the MitISEM algorithm,
labeled asParallel MitISEM (ParMitISEM). Such an implementation requires determining at which steps
in the MitISEM parallel processing can be implemented, and adjust consequently the remaining steps. We
gain insight on the computational speed-up in four canonical econometric models using parallel computing

1The termscandidate, approximateandproposaldensity are interchangeably used in the literature and we also do so in the
present paper.

2

possibilities on Graphics Processing Units (GPUs) and multicore Central Processing Unit (CPUs).
The four canonical econometric models we analyze have different properties in terms of shapes of the target
distribution. The first application, approximating a bivariate distribution function described in Gelman and Meng
(1991), is characterized by a highly non-elliptical targetdistribution where the conditional distributions are
normal. It is not straightforward to obtain an approximation to this density due to the high correlation be-
tween conditional distributions of variables. In the second application, we consider the Bayesian inference
of a GARCH(1,1) model with Student-t errors, where the calculation of the joint posterior has to be calcu-
lated recursively and for this reason inference can be computationally demanding. In the third application
we consider the Bayesian inference of an Instrumental Variables (IV) model, where the posterior density has
a ridge. In the final fourth case, we consider the Bayesian inference of the structural form of New Keyne-
sian Philips curve (NKPC) model. This model is characterized by highly non-standard posteriors due to the
transformation of the structural model to a reduced form model and the structural parameters are restricted
to be on a tight region. Even when MitISEM is used in this case,several draws from the IS algorithm within
MitISEM can be outside the tight region leading to highly inefficient computations.
In all four cases considered, it is shown that parallel implementation of the MitISEM algorithm on GPUs
provides substantial speed gains, hence inference is more accurate given the same amount of computation
time. We note that, for the first three applications, basic MitISEM performs already better than standard
sampling algorithms, see Ardia et al. (2012), Hoogerheide et al. (2012) and Baştürk et al. (2016). To our
knowledge, the fourth application, Bayesian inference of the structural NKPC model using the MitISEM
algorithm was not considered in the literature so far. We present the GPU and CPU implementations of the
ParMitISEM algorithms using MATLAB. We show that the computations can be carried similarly in GPU
and CPU, and both implementations lead to extensive speed gains in the four cases we present.
The paper is organized as follows. Section 2 introduces the evolution in the GPU computing and explains
why it can be a valuable alternative in search of speed. Section 3 briefly describes basic MitISEM and the
parallelization strategy followed in ParMitISEM. Section4 analyzes four canonical econometric models.
Section 5 draws some conclusions.

2 Evolution of GPU computing

Traditionally computations using single core CPUs were thestandard method in economics and economet-
rics. In recent decades, rapid performance increases of CPUs, and the related cost reductions in computer
applications were the main drivers of the diffusion of such computational intensive estimation procedures
as MCMC. The microprocessors industry, mainly driven by Intel and AMD has seen a slow-down in perfor-
mance improvement since 2003 due to energy-consumption andheat-dissipation issues that are by-products
of clock frequency increases, see Kirk and Wen-Mei (2010). This has created the need to shift from max-
imizing the performance of a single core to integrating multiple cores in one chip, see Sutter (2005) and
Sutter (2011).
Contemporaneously, the needs of the video game industry, requiring increasing computational performance,
boosted the development of the GPUs, which enabled massively parallel computation. GPUs are a standard
part of the current personal computers and are designed for data parallel problems where they assign an in-
dividual data element to a separate logical core for processing, see Boyd (2008). Applications include video
games, image processing and 3D rendering. Figure 1 reports the evolution in GigaFLOPS (i.e., billions of
floating point operations per second in single and double precision) between GPUs and CPUs.
Despite the above-mentioned advances in GPUs, until 2006, only a few persons mastered the skills neces-

3

Figure 1: Enlarging gap in computing speed between many-core approach using GPUs and multicore approach using CPUs.
Source:http://gridtalk-project.blogspot.it/2010/07/future-of-computing-gpgpu.html

sary to use GPUs to achieve better performance for only a limited number of applications. In 2007, NVIDIA
released CUDA (Compute Unified Device Architecture,http://www.nvidia.com/object/cuda_
home_new.html) programming language similar to the well known C/C++. Thisfacilitated the transition
to parallel programming on GPU. Nowadays the GPU programming languages have been improved (see
Aldrich, 2014 for a review) and there are softwares that use it to increase performances, see e.g. Mathemat-
ica, R and MATLAB.
MATLAB is a popular software in the economics and econometrics community (see, e.g., LeSage, 1998),
which has introduced starting with version R2010b the support to GPU computing in its Parallel Computing
Toolbox. This allows to use raw CUDA code within a MATLAB program as well as already built-in func-
tions that are directly executed on the GPU, see Durham and Geweke (2011) for a discussion about CUDA
programming in econometrics.
With the massively parallel use of GPUs, researchers have achieved significant speedups in different ap-
plications, see Suchard et al. (2010), Aldrich et al. (2011), Creel et al. (2012), Durham and Geweke (2011),
Morozov and Mathur (2012) and Dziubinski and Grassi (2014) among others. However, as pointed out by
Durham and Geweke (2011), such speed-ups are generally achieved only after extensive adaptation, opti-
mization and tuning of the algorithms that is really time consuming. We comment on this point further
in Section 5. This brings forward two interesting challenges for parallelization: Transforming traditional
(sequential) algorithms to be suitable for a GPU implementation and achieving significant speed increase al-
most without any extra programming effort. In this paper, wedescribe our ParMitISEM algorithm and show
that the provided algorithm can be used for a large set of models to gain speed increases without additional
programming effort.

4

http://gridtalk-project.blogspot.it/2010/07/future-of-computing-gpgpu.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

3 Parallel implementation of MitISEM: ParMitISEM

ParMitISEM relies heavily on the use of IS in the MitISEM algorithm. IS (Hammersley et al., 1965,
Hammersley and Handscomb, 1975, Kloek and Van Dijk, 1978, Geweke, 1989) is a general method for
estimating expectations of functionsh(θ) of parameterθ where the probability density function ofθ can
be non-standard. Given a density kernelf(θ) for θ, the method is based on draws from a candidate den-
sity g(θ), instead of direct simulations fromf(θ). This indirect simulation method overcomes the issue of
simulating from the non-standard densityf(θ). The candidate densityg(θ) is chosen such that it is easy
to simulate from and the draws from the candidate density areweightedaccording to the IS weights. The
necessary conditions for the candidate density and the finite sample properties of the estimator are discussed
in Van Dijk et al. (1987) and Geweke (1989).
Let Y denote the data, e.g. time series, andθ denote the model parameters, where the posterior ortarget
density of parameters are denoted byf(θ) ≡ f(θ|Y) and simulating from this density is not trivial. In this
case, the expected value of a function of parameters,E(h(θ)) can be obtained using the following IS steps:

1) Drawθ from a ‘similar and wide-enough’ ‘importance/candidate density’ g(θ), which should approx-
imatef(θ) reasonably well and should be straightforward to simulate from;

2) SimulateM draws fromg(θ);

3) Approximate the function of parametersE(h(θ)) by:

E(h(θ)) =

∫
h(θ)f(θ)

g(θ)g(θ)dθ∫ f(θ)
g(θ)g(θ)dθ

=

∫
h(θ)ω(θ)g(θ)dθ∫
ω(θ)g(θ)dθ

≈
1
M

∑M
i=1 h(θ

(i))ω(θ(i))
1
M

∑M
i=1 ω(θ

(i))
, (1)

whereθ(i) for i = 1, . . . ,M are generated fromg(θ), andω(θ(i)) = f(θ(i))/g(θ(i)).

Note that sinceω(θ(i)) = f(θ(i))/g(θ(i)) is a ratio, one can remove the constant of proportionality inthis
ratio and forh(θ) = θ, the procedure provides estimated means of model parameters. The IS algorithm
is based on weightsω(θ(i)) = f(θ(i))/g(θ(i)) calculated from independent drawsθ(i). Due to this non-
recursive structure, one can in principle assign each draw to each core and collect the results in Equation (1)
at the end of the procedure.
We next illustrate how this parallelization strategy is implemented for ParMitISEM. As explained in Hoogerheide et al.
(2012), the MitISEM consists of two parts. In the first part a mixture of Student-t candidate densities is
fitted to the target using an EM algorithm where each step of the optimization procedure is weighted us-
ing IS. In the second stage the obtained candidate density can be used in IS or the independence chain
Metropolis-Hastings method for Bayesian inference on model parameters and model probabilities. Steps of
the MitISEM algorithm are as follows:

1) Initialization: Simulate drawsθ(1), . . . , θ(M) from a ‘naive’ candidate distribution with densitygnaive,
which is obtained as follows. First, we simulate candidate draws from a Student-t distribution with
densitygmode, where the mode is taken equal to the mode of the target density and scale matrix equal
to minus the inverse Hessian of the log-target density (evaluated at the mode), and where the degrees
of freedom are chosen by the user. Second, the mode and scale of gmode are updated using the IS
weighted EM algorithm. Note thatgnaive is already a more advanced candidate than the commonly
usedgmode; gmode typically yields a substantially worse numerical efficiency thangnaive.

5

2) Adaptation: Estimate the target distribution’s mean and covariance matrix using IS with the draws
θ(1), . . . , θ(M) from gnaive. Use these estimates as the mode and scale matrix of Student-t density
gadaptive. Draw a sampleθ(1), . . . , θ(M) from this adaptive Student-t distribution with densityg0 =
gadaptive, and compute the IS weights for this sample.

3) Apply theIS-weighted EM algorithm given the latest IS weights and the drawn sample of step(1).
The output consists of the new candidate densityg with optimized set of parametersζ. Draw a new
sampleθ(1), . . . , θ(M) from the distribution that corresponds with this proposal density and compute
corresponding IS weights.

4) Iterate on the number of mixture components: Given the current mixture ofH components take
x% of the sampleθ(1), . . . , θ(M) that correspond to the highest IS weights. Construct with these draws
and IS weights a new mode and scale matrix which are starting values for the additional component
in the mixture candidate density. This choice ensures that the new component covers a region of the
parameter space in which the previous candidate mixture hadrelatively too little probability mass.
Given the latest IS weights and the drawn sample from the current mixture ofH components, apply
the IS-weighted EM algorithm to optimize the parameters ofeachmixture component. Draw a new
sample from the mixture ofH + 1 components and compute corresponding IS weights.

5) Assess convergence of the candidate density’s quality by inspecting the IS weights using the Co-
efficient of Variation of the IS weights (CoV) and return to step4) unless the algorithm has converged.

As the algorithm shows, steps 2–5 in the algorithm rely onM IS draws and the calculation of the target
and candidate density values. In these steps, each draw fromthe candidate density can be assigned to a
different core that will carry out the necessary calculation independently and the results will be collected at
the end. For this reason, the parallelization strategy for ParMitISEM on CPUs and GPUs is straightforward.
Note that the nature of the MitISEM algorithm in steps 2–5 is still sequential, despite the simplicity of
parallelization of IS steps. Specifically, the iteration onthe number of mixture components and iteration
over the EM steps are the sequential parts of the algorithm, hence cannot be parallelized in a straightforward
way. Still, these steps are computationally less demandingcompared with obtaining IS draws and evaluating
target and candidate densities and hence do not cause a largecomputational burden.
We note that especially step 3 of the algorithm, Expectation(E) and Maximization (M) steps of MitISEM,
benefits from our parallelization strategy. We refer to Hoogerheide et al. (2012) for these steps where the
L-th E-step for the mixture ofH Student-t densities is specified as follows:

z̃ih ≡ E
[
zih

∣∣∣θi, ζ = ζ(L−1)
]
=

tk(θ
i|µh,Σh, νh) ηh∑H

j=1 tk(θ
i|µj,Σj , νj) ηj

, (2)

z̃/w
i

h ≡ E

[
zih
wi
h

∣∣∣∣ θ
i, ζ = ζ(L−1)

]
= z̃ih

k + νh
ρih + νh

, (3)

ξih ≡ E
[
logwi

h

∣∣∣θi, ζ = ζ(L−1)
]
=

=

[
log

(
ρih + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih +

[
log

(νh
2

)
− ψ

(νh
2

)]
(1− z̃ih), (4)

δih ≡ E

[
1

wi
h

∣∣∣∣ θ
i, ζ = ζ(L−1)

]
=

k + νh
ρih + νh

z̃ih + (1− z̃ih), (5)

6

whereρih ≡ (θi − µh)
′Σ−1

h (θi − µh), ψ(·) is the digamma function (the derivative of the logarithm of the
gamma functionlog Γ(·)), tk(θi|µh,Σh, νh) is ak-dimensional Student-t density with modeµh, scaleΣh

and degree of freedomνh for k model parameters, andηh for h = 1, . . . ,H are the mixture weights of each
Student-t component. In this step, parametersµh,Σh, νh, ηh, i.e. the candidate density’s parametersζ(L−1),
are obtained from the previous EM step(L−1). Given the E-step, parameters are updated using the M-step:

µ
(L)
h =

[
N∑

i=1

W i z̃/w
i

h

]−1 [N∑

i=1

W i z̃/w
i

h θ
i

]
, (6)

Σ
(L)
h =

∑N
i=1W

i z̃/w
i

h (θi − µ
(L)
h)(θi − µ

(L)
h)′

∑N
i=1W

i z̃ih
, (7)

η
(L)
h =

∑N
i=1W

i z̃ih∑N
i=1W

i
, (8)

whereW i ≡ f(θi)/g0(θ
i) are the importance weights of each drawθi from the previous candidateg0(θ).

Further,ν(L)h is solved from the first order condition ofνh:

− ψ(νh/2) + log(νh/2) + 1−

∑N
i=1W

i ξih∑N
i=1W

i
−

∑N
i=1W

i δih∑N
i=1W

i
= 0. (9)

In ParMitISEM, calculation of the expectations for each IS draw i are done in parallel. In addition to
this, summations in all parts of the M-step in (6)–(9) are also performed in parallel. This addition brings
computational gains particularly for the optimization of (9), where an approximate solution for the first order
condition is obtained iteratively, but the value of the firstorder condition at each iteration of EM is obtained
using parallel calculations for the summation terms.
We note that the parallelization we employ has the advantageof being a generally applicable method. Given
any posterior or target density, ParMitISEM can be used to obtain an approximation and IS results using
this approximation as a candidate. No alteration of the algorithm depending on the features of the posterior
is required. In addition, implementations in GPU and CPU canbe carried out in the same way since the
parallelization strategy is also not specific to one of theseimplementations. Finally, ParMitISEM consists
of a general IS procedure which is parallelized. This procedure can be used at the second stage, when the
purpose is to use the ParMitISEM approximation as a candidate density for IS in Bayesian inference. In this
case, speed gains from ParMitISEM are two-fold: First, ParMitISEM will reduce the computational time of
obtaining the candidate density. Second, computational time required for the Bayesian inference using IS
will improve using the IS procedure inherent in ParMitISEM.

4 Parallelization experience for four econometric models

In this section we describe our experience with ParMitISEM for four canonical econometric models. The
first case we consider is a non-elliptical bivariate densityfunction, the Gelman-Meng density, presented in
Gelman and Meng (1991). The second case we consider is Bayesian inference of a GARCH(1,1) model
with Student-t errors, originally proposed by Bollerslev (1986), appliedto daily S&P500 log-returns. The
third application we consider is Bayesian inference of the IV model applied to Card (1995) data on educa-
tion and income, also analyzed in Baştürk et al. (2016). The fourth and final model is Bayesian inference of

7

the structural form of the New Keynesian Phillips Curve (NKPC) model capturing the relationship between
marginal cost and inflation, applied to quarterly inflation and marginal costs in the US, also analyzed in
Baştürk et al. (2014b).
Due to the automatic and flexible nature of the MitISEM algorithm, all applications use a single parallel
implementation of MitISEM, where only the target density has to be adjusted according to the application.
Except for the Gelman-Meng density approximation, all applications make use of the ParMitISEM algo-
rithm to obtain a candidate density for Bayesian inference of model parameters using a second IS step. We
compare the CPU and GPU implementations of ParMitISEM in terms of the required computational time.
The CPU and the GPU version of the computer program are programmed in MATLAB. The CPU code uses
all the available cores as well as the GPU counterpart.2

Our test machine is a regular desktop computer with a Core i7 4th generation (Corei7) with a total of 8
cores. In the same machine there is an NVIDIA Tesla 2075C (Tesla) that is a mid-range performance GPU,
with 6GB memory and 448 cores. Moreover we compare our results with an entry level NVIDIA GeForce
750M (GeForce) with a total of 384 CUDA cores and 2GB of memory. MATLAB parallel toolbox license is
required to run our code. All models are estimated using different number of IS draws within ParMitISEM:
M = {104, 5× 104, 105, 5× 105, 106, 1.5× 106, 2× 106}. In applications where the ParMitISEM approx-
imation is used as a candidate for importance sampling for Bayesian inference, we also base the inference
onM posterior draws.

4.1 Approximation of the Gelman-Meng function

We consider the bivariate density described in Gelman and Meng (1991), for which the conditional distribu-
tions of variablesθ1 andθ2 are normal distributions, while the joint distribution takes different non-elliptical
forms depending on the parameter values:

f(θ1, θ2) = exp
{
−0.5(Aθ21 + θ21 + θ22 − 2Bθ1θ2 − 2C1θ1 − 2C2θ2)

}
, (10)

whereθ = (θ1, θ2) is the vector of interest. Moreover settingA = 1, B = 0, C1 = C2 = 3 in equa-
tion (10) leads to a non-standard ‘banana shaped’ contour presented in the upper left panel of Figure 2.
Hoogerheide et al. (2012) and Baştürk et al. (2016) show that the standard MitISEM algorithm leads to sub-
stantial gains in approximating this density compared withthe Gibbs sampler, MH and IS algorithms. We
show that this computational gain can be improved using ParMitISEM.
We apply the ParMitISEM algorithm with different number of IS draws,M , and for each number of draws
we record the execution time and compare them between CPU andthe GPU. Moreover we calculate the
Numerical Standard Error (NSE) for the CPU and GPU version ofthe program. Figure 2 reports the results
of this experiment. The top panel in Figure 2 shows the targetdensity kernel for the Gelman-Meng function
with a ‘banana shaped’ contour and the step-by-step approximations of this kernel using ParMitISEM. The
target kernel has two clear modes and the ParMitISEM approximation stops with 3 mixture components.
Even with this relatively low number of mixture components the contour of the ParMitISEM approximation
are similar to the contour of the target density. Gains from each additional component, presented in the
top-right panel of Figure 2, according to the CoV shows that the non-standard ‘banana shaped’ contour of
Gelman-Meng is well approximated with 3 mixture components, and the major improvement in this approx-
imation is obtained by adding the second mixture component in ParMitISEM.
The middle panel in Figure 2 presents the speed comparison between CPU and GPU implementations as the

2Source codes for all computations are available upon request.

8

Figure 2: Speed gains and accuracy for the Gelman-Meng approximation. The top panel presents the target density kernel with the
ParMitISEM approximation to the target density kernel and CoV for different number of mixture components. All results
are based onM =100,000 draws. The middle panel presents the speed comparison for different number of draws as a
GPU/CPU ratio, where a value below 1 indicates that the GPU implementation is faster. The bottom panel reports the
numerical standard error (100× NSE) forθ1 andθ2 parameters for different number of draws and for CPU and GPU.

Target
0 2 4

-1

0

1

2

3

4

5

ParallelMitISEM with 1 comp.
0 2 4

-1

0

1

2

3

4

5

ParallelMitISEM with 2 comp.
0 2 4

-1

0

1

2

3

4

5

ParallelMitISEM with 3 comp.
0 2 4

-1

0

1

2

3

4

5

of mixture components
1 2 3

S
td

. D
ev

. o
f I

S
 w

ei
gh

ts
 (

x
10

00
0)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of draws
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

T
im

e
ra

tio
 w

ith
 r

es
pe

ct
 to

 C
P

U

0

2

4

6

8

10

12

Nvidia Tesla C2074 Nvidia GeForce 750M Intel Core i7

Number of draws
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

10
0

*
N

S
E

0

0.5

1

1.5

2

2.5

100*NSE θ
1
 - CPU 100*NSE θ

2
 - CPU 100*NSE θ

1
 - GPU 100*NSE θ

2
 - GPU

ratio of processing times in CPU and GPU, where a value below one indicates that the GPU computation is
faster. Exact values of the computational time required foreach implementation are reported in Table 1. The
table shows that the CPU implementation is superior to the Tesla GPU implementation for small number of
draws, as soon as the number of draws increases, the GPU provides a clear improvement in computing time.
This result is due to the parallel nature of the GPU with more available cores then the CPU. The other GPU
(GeForce) performs relatively worse when the number of drawsM is small, and its performance improves
as soon as the number of draws increases. Regarding the NSE, the CPU and GPU results are quite similar

9

Table 1: Computing time and accuracy for the Gelman-Meng approximation using ParMitISEM on CPU and GPU with different
number of draws. The table presents the time comparison between CPU and GPU as a GPU/CPU ratio. A value below 1
indicates the GPU is faster compared with the CPU. The bottompanel presents 100×NSE of the IS estimates forθ1 and
θ2 on CPU and on GPU for different number of draws. NSE values forGeForce are similar to those of Tesla, and are not
reported due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,000

Timing as GPU/CPU ratio
Tesla 2.23 1.33 0.59 0.46 0.33 0.26 0.25
GeForce 11.59 9.02 3.27 1.76 1.04 0.99 0.97
Corei7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100× NSE
Corei7 -θ1 2.07 0.88 0.62 0.27 0.20 0.15 0.13
Corei7 -θ2 2.01 0.78 0.53 0.29 0.19 0.16 0.14
Tesla -θ1 1.80 0.96 0.63 0.28 0.18 0.15 0.13
Tesla -θ2 2.02 1.01 0.55 0.29 0.20 0.16 0.14

and the small numerical discrepancy between the NSE values disappear as soon as the number of draws
increases.

4.2 Bayesian inference of the GARCH(1,1) model with Student-t errors

The next canonical model we consider is the standard GARCH(1,1) model (Bollerslev, 1986) with Student-
t errors. The model is applied to daily percentage S&P500 returns for the period between January 2 1998
and June 26 2015.Frequentist inference issues and the ill-behaved likelihood of GARCH type of models are
reported in Zivot (2009). Computational advantages of efficient and automatic sampling algorithms for the
Bayesian inference of GARCH type of models are reported in Ardia et al. (2012), Hoogerheide et al. (2012)
and Baştürk et al. (2016).
The GARCH(1, 1) model with Student-t errors for time series{yt}Tt=1 is defined as follows:

yt = µ+
√
htεt,

ht = ω + α(yt−1 − µ)2 + βht−1,

εt ∼ t(df).

(11)

whereht the conditional variance ofyt given the information setIt−1 = {yt−1, yt−2, yt−3, . . .} andt(df)
denotes the Student-t distribution withdf degrees of freedom. In addition,h0 is treated as a known constant,
set as the sample variance of the time seriesyt, which will consist of daily stock index (log) returns in this
example. We restrictω > 0, α ≥ 0 andβ ≥ 0 to ensure positivity ofht, df > 2 to ensure a proper posterior
density where posterior means and variances exist, and specify flat priors for the model parameters. More-
over, we truncateω andµ such that these have proper (non-informative) priors. For thek = 5 dimensional
parameter vectorθ = (µ, β, α, ω, df), we have a uniform prior on[−1, 1]× (0, 1]× [0, 1)× [0, 1)× (0,∞)
with α+ β < 1 which implies covariance stationarity.

10

Bayesian inference of this model is time consuming and possibly inaccurate with a small number of draws
for three reasons. First, the iterations required to obtainunobserved conditional variances in (11) cannot
be executed in parallel in a straightforward way. Second, the restrictions on model parameters imply that
several IS draws, in a standard IS algorithm or in obtaining the MitISEM approximation, may be outside the
relevant parameter space. Hence a large number of draws are required to obtain a reasonable approxima-
tion to the candidate, or to obtain posterior draws of parameters unless an appropriate candidate density is
used. Third, the posterior density is non-elliptical particularly due to the degree of freedom parameter. See
Ardia et al. (2012) among others for an extended discussion.
In order to perform Bayesian inference, we first obtain the ParMitISEM approximation to the joint poste-
rior density of parameters. As a second step, the ParMitISEMcandidate is used as the candidate density
for the IS algorithm. The obtained ParMitISEM candidate in this example has three mixture components.
Figure 3 presents the joint posterior with respect to model parametersα, β where the remaining parameters
are fixed at their posterior mean, together with the speed comparison of the CPU and GPU implementations
of ParMitISEM to obtain the approximation to the joint posterior. Similar to the Gelman-Meng application,
computational time is substantially improved with the GPU implementation. The top-right panel of Figure 3
shows that the CoV values are improved with each additional mixture component. Similarly, the obtained
NSE values for each parameter, except for the degree of freedom parameter, go down with additional mixture
components. Particularly the second mixture component improves the approximation accuracy substantially.
Table 2 reports the speed comparison between CPU and GPU as a GPU/CPU ratio. Similar to the Gelman-

Meng distribution results, the CPU is superior to the Tesla GPU for small number of draws, but the Tesla
GPU has a clear advantage for more reasonable (e.g. larger than 50,000) draws. In this application, even
the GeForce that starts with a disadvantage becomes more competitive as soon as the number of draws in-
creases.
Table 3 reports the IS estimator ofE[h(θ)] which is the posterior mean of the parameters based on the CPU
and GPU implementations of ParMitISEM together with the difference in the posterior means between both
implementations. For a relatively small number of draws, posterior means from the two implementations
differ and this difference disappears when the number of draws increases.
An important point is the relatively large NSE for the degreeof freedom parameterdf for M = 10, 000
draws. This NSE value indicates that the posterior density is highly non-standard especially with respect to
the degree of freedom parameter. Therefore a large number draws are needed for an accurate inference of
the model and ParMitISEM is particularly useful in this application.
We finally note that functions of parameters, such as the sum of GARCH coefficientsα+ β or the long-run
variance of the GARCH modelω/(1−α−β), are often of interest for GARCH models. Bayesian inference
for such functions of parameters does not require an additional MitISEM approximation. Using the IS draws
based on the MitISEM approximation, it is calculate to inferthese functions of parameters. In the example
we provide, using the candidate obtained with 2,000,000 draws, we obtain the following results for these
functions of parameters: Posterior mean forα+ β is 0.97 with an NSE value of0.00002, indicating a high
persistence for the variance process, and an accurate estimation with a small NSE. In addition, the posterior
for the unconditional varianceω/(1− α− β) is approximately 0.054 with an NSE value of0.00003.

4.3 Bayesian inference of the instrumental variables model

In this subsection we present the application of ParMitISEMto an Instrumental Variables (IV) model. The
model is applied to Card (1995) data on income and education.The IV model with one explanatory endoge-

11

Table 2: Computing time and accuracy for Bayesian estimation of the GARCH(1,1) using ParMitISEM on CPU and GPU with
different number of draws. The table presents the time comparison between CPU and GPU as a GPU/CPU ratio. A value
below 1 indicates the GPU is faster compared with the CPU. Thetable also reports the 100×NSE of the IS estimates for
model parameters (µ, ω, α, β, df)on CPU and on GPU for different number of draws. NSE values for GeForce are similar
to those of Tesla, and are not reported due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,000

Timing as GPU/CPU ratio
Tesla C2075 1.43 0.38 0.17 0.13 0.12 0.11 0.10
GeForce 750M 3.28 1.27 1.44 0.82 0.51 0.45 0.48
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU - 100× NSE
µ 0.01 0.01 0.00 0.00 0.00 0.00 0.00
ω 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α 0.01 0.01 0.00 0.00 0.00 0.00 0.00
β 0.01 0.01 0.00 0.00 0.00 0.00 0.00
df 1.17 0.42 0.31 0.14 0.10 0.08 0.07

GPU - 100× NSE
µ 0.01 0.01 0.00 0.00 0.00 0.00 0.00
ω 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α 0.01 0.01 0.00 0.00 0.00 0.00 0.00
β 0.01 0.01 0.00 0.00 0.00 0.00 0.00
df 0.97 0.42 0.30 0.14 0.10 0.08 0.07

Table 3: Parameter estimates of the GARCH(1,1) with studentt errors. The table presents the posterior means of model parameters
(µ, ω,α, β, df) using ParMitISEM on GPU and CPU together with the difference between the GPU and CPU estimates
for different number of drawsM .

M 100,000 1,000,000 2,000,000
GPU CPU Difference GPU CPU Difference GPU CPU Difference

µ 0.067 0.067 0.000 0.067 0.067 0.000 0.067 0.067 0.000
ω 0.013 0.014 0.000 0.014 0.014 0.000 0.014 0.014 0.000
α 0.091 0.093 -0.001 0.093 0.093 0.000 0.093 0.093 0.000
β 0.902 0.901 0.001 0.900 0.901 0.000 0.900 0.900 0.000
df 8.033 8.003 0.030 8.007 8.012 -0.005 8.005 8.005 0.000

12

Figure 3: Speed gains and accuracy for the GARCH(1,1) model with Student-t errors. The top-left figure presents the conditional
posterior density kernel of (α, β) given posterior mean of the other parameters. Second to fourth figures present the
evolution of the MitISEM approximation to the posterior kernel for 1–3 mixture components. The top-right panel presents
the CoV for the MitISEM approximation and NSE values of each model parameter for different number of components.
All MitISEM approximations are based on 100,000 draws. The bottom panel presents the speed comparison for different
number of draws, as a GPU/CPU ratio. A value below 1 indicatesthe GPU implementation is faster than the CPU
implementation.

Target
0 0.1 0.2 0.3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

ParMitISEM with 1 comp.
0 0.1 0.2 0.3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

ParMitISEM with 2 comp.
0 0.1 0.2 0.3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

ParMitISEM with 3 comp.
0 0.1 0.2 0.3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

of mixture components
1 2 3

St
d.

 d
ev

. o
f I

S
we

igh
ts

(x
10

00
)

0.4

0.6

0.8

1

1.2

1.4

1.6

NS
E

fo
r p

ar
am

et
er

s

0

0.01

0.02

0.03

0.04

0.05

0.06
NSE (left)
µ (right, x 100)
ω (right, x 100)
α (right, x 100)
β (right, x 100)
df (right)

Number of draws
10000 50000 100000 500000 1000000 1500000 2000000

T
im

e
ra

tio
 w

ith
 r

es
pe

ct
 to

 C
P

U

0

0.5

1

1.5

2

2.5

3

3.5

NVIDIA Tesla C2074 NVIDIA GeForce 750M Intel Core i7

nous variable andp instruments is defined by Bowden and Turkington (1990):

y = xβ + ε, (12)

x = zΠ+ v, (13)

where the scalarβ and thep × 1 vectorΠ are model parameters,y is theN × 1 vector of observations on
the dependent variable income,x is theN × 1 vector of observations on the endogenous explanatory vari-
able, education,z is theN × p matrix of observations on the instruments. All variables are demeaned, i.e.,
both model equations do not include a constant term. The disturbances are assumed to come from a normal

distribution: (ε′, v′)′ ∼ NID(0,Σ ⊗ I), whereΣ =

(
σ211 ρσ11σ22

ρσ11σ22 σ222

)
is a positive definite and

symmetric2×2 matrix,I denotes theN×N identity matrix and⊗ denotes the Kronecker product operator.
The endogeneity problem of the variablex arises from possible correlation between the disturbances, given
asρ ≡ cor(εi, vi) for i = 1, . . . , N .
The model in (12)–(13) is shown to have non-standard posterior densities unless the covariance matrixΣ is

13

diagonal, see Zellner (1971), Drèze (1976), Drèze (1977), Kleibergen and Van Dijk (1998). The properties
of this model are also different from the GARCH(1,1) model inSection 4.2. It is shown that the posterior
density under a flat prior has a ridge atΠ = 0 and it is not a proper density due to this ridge forp = 1.
This irregularity can be mitigated by the use of a Jeffrey’s prior see Hoogerheide et al. (2007a). In this
case, the posterior is a proper density, but sampling methods such as the Gibbs sampler are not applicable,
see Zellner et al. (2014). The applicability of the MitISEM algorithm to the IV model and the speed gains
compared with the griddy-Gibbs sampler (Ritter and Tanner,1992) are shown in Baştürk et al. (2016). In
this section we show that the ParMitISEM implementation provides substantial speed gains for the Bayesian
inference of this model.
The Card (1995) data on income and education consist of the dependent variable equal to hourly wages in
logarithms and the endogenous right hand side variable is given as educational level which takes the value
of 1 if an individual attended college and 0 otherwise. The instrument for the education level is ‘college
proximity’, which takes the value 1 if there is a nearby college and 0 otherwise. Following Baştürk et al.
(2016), we control for the remaining exogenous variables byregressing the income, education and college
proximity data on exogenous covariates and applying the IV model to the residuals of these regressions.
Table 4 reports estimated parameters using ParMitISEM on the Card (1995) dataset on GPU and CPU. All
applications of ParMitISEM lead to four mixture componentsin the approximation. As the table shows the
difference in CPU and GPU estimates is really small and dies out as soon as the number of draws increases.
The estimated posterior means of the parameters are in line with Hoogerheide et al. (2007a), and the dif-
ference between posterior means from CPU and GPU implementations of ParMitISEM are approximately
zero only with a high number of draws from the posterior, implying that a large number of draws and a high
computing time are required to obtain accurate estimates ofthese parameters.
Table 5 and Figure 4 present the speed comparison between CPUand GPU implementations of ParMi-
tISEM, where a value below one indicates that the GPU implementation is faster compared with the CPU
implementation. In this application, Tesla GPU is superiorto the CPU for all considered number of draws.
GeForce application, on the other hand, performs worse for small,M = 10, 000, and large,M = 150, 000
andM = 2, 000, 000 number of draws. While a relatively poor performance of the GeForce application
with a large number of draws is expected due to the saturationof the GPU, i.e. the large number of draws
causing a decrease in computing performance, this is not thecase for the Tesla C2074.

An important feature in this application in terms of computational burden is the restriction in the param-
eter spaceρ ∈ (−1, 1) and the ridge of the posterior atπ = 0. These properties of the posterior leads to a
large number of IS draws within ParMitISEM to have a zero posterior probability. We follow the robustness
method provided in Baştürk et al. (2016) to improve the performance of the MitISEM method. Specifically,
within the MitISEM algorithm a rejection step is included tokeep a subset ofM draws which lead to a
non-zero posterior density. This robustification is applied in both CPU and GPU implementations of Par-
MitISEM and improves the approximation at the expense of a decreased number of effective number of
drawsM̃ ≤ M . An increase inM does not automatically lead to a smaller NSE since several draws are
‘thrown away’ with this robustification. We conjecture thatthis lack of comparability between NSE values
for differentM explains the slightly higher NSE values for largeM shown in the bottom panel of Table 5.
Restrictions in the parameter space also have a potential effect on the first step of the MitISEM algorithm.
As discussed earlier, the initialization of the algorithm relies on the numerical evaluation of the Hessian
matrix for the very first Student-t component. In models with tight parameter constraints, it is possible that
this Hessian is not estimated properly or it is not estimatedat all due to numerical accuracy. A straightfor-
ward method to avoid such a problem is to start the MitISEM algorithm with a user-defined Hessian, such
as a diagonal matrix with positive diagonal entries. Such aninitialization will possibly lead to an inefficient

14

Table 4: Parameter estimates of the IV model for Card data. The table presents the posterior means of model parameters using
ParMitISEM on GPU and CPU together with the difference between the GPU and CPU estimates for different number of
drawsM .

M 100,000 1,000,000 2,000,000
GPU CPU Difference GPU CPU Difference GPU CPU Difference

β 0.753 0.756 -0.005 0.739 0.744 -0.003 0.733 0.732 0.001
π 0.059 0.059 0.000 0.059 0.060 0.000 0.059 0.059 0.000
σ211 0.213 0.214 0.001 0.210 0.210 -0.001 0.212 0.212 0.000
ρ -0.441 -0.443 0.006 -0.433 -0.439 0.002 -0.439 -0.439 0.000
σ222 0.169 0.169 0.000 0.169 0.169 0.000 0.169 0.169 0.000

Table 5: IV model estimated using ParMitISEM on CPU and GPU with different number of draws. The table presents the time
comparison between CPU and GPU as a GPU/CPU ratio. A value below 1 indicates the GPU is faster compared with
the CPU. The table also reports the 100×NSE of the IS estimates for model parameters (β, π, σ2

11, ρ, σ
2

22) on CPU and
on GPU for different number of draws. NSE values for GeForce are similar to those of Tesla, and are not reported due to
space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,000

Timing as GPU/CPU ratio

Tesla C2074 0.94 0.61 0.47 0.39 0.26 0.23 0.20
GeForce 750M 1.44 0.85 0.78 0.80 0.88 1.05 1.37
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU - 100× NSE
β 1.05 0.69 0.55 0.53 0.27 0.18 0.18
π 0.05 0.03 0.02 0.02 0.01 0.01 0.00
σ211 0.16 0.16 0.15 0.15 0.05 0.03 0.03
ρ 0.93 0.39 0.29 0.25 0.23 0.15 0.13
σ222 0.01 0.00 0.00 0.00 0.00 0.00 0.00

GPU - 100× NSE
β 1.16 0.37 0.89 0.28 0.26 0.40 0.16
π 0.03 0.01 0.03 0.01 0.00 0.01 0.00
σ211 0.13 0.13 0.12 0.07 0.05 0.04 0.02
ρ 0.95 0.25 0.20 0.18 0.21 0.17 0.14
σ222 0.01 0.00 0.00 0.00 0.00 0.00 0.00

15

Figure 4: Speed gains and accuracy for the IV model. The top panel in the figure shows the target density apart from an integration
constant (left panel) and ParMitISEM candidate (right panel) in natural logarithms. The bottom panel shows the speed
comparison for different number of draws, as a GPU/CPU ratio. A value below 1 indicates that the GPU is faster
compared with the CPU.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

500

1000

1500

2000

2500

3000

β
ρ −1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1
−100

−80

−60

−40

−20

0

20

β
ρ

Number of draws
10000 50000 100000 500000 1000000 1500000 2000000

T
im

e
ra

tio
 w

ith
 r

es
pe

ct
 to

 C
P

U

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

NVIDIA Tesla C2074 NVIDIA GeForce 750M Intel Core i7

initial Student-t candidate which is very different from the target density. Despite this inefficiency, this
initial Hessian is updated several times within the ParMitISEM procedure. Provided that the number of IS
draws are large enough, the initial inefficiency of the Hessian is expected to have minimal effect on the final
approximation.

4.4 Bayesian inference of the structural NKPC model

In this subsection we apply ParMitISEM to a highly non-linear econometric model, namely the structural
form representation of the New Keynesian Philips Curve (NKPC) model for quarterly inflation and marginal
costs in the US for the period between 1962Q2 and 2012Q4. We show that there are substantial gains from
the ParMitISEM in this model in terms of the required computing time.
The structural form (SF) representation for the NKPC model is:

πt = λzt + γE(πt+1) + ǫ1,t, (14)

zt = φ1zt−1 + φ2zt−2 + ǫ2,t, (15)

16

where (ǫ1,t, ǫ2,t)′ ∼ NID

(
0,

(
σ2
ǫ1

0

0 σ2
ǫ2

))
, πt is quarterly inflation,zt is quarterly marginal cost (de-

meaned and detrended) and the unobserved variableE(πt+1) can be derived as a function of the past
marginal costszt−1 and zt−2. Standard stationary restrictions should hold forφ1, φ2 and it is assumed
that(λ, γ) ∈ [0, 1] × [0, 1].
As shown in Baştürk et al. (2014b), solving for the unobserved inflation expectations on the right hand side
of (14) leads to the following model which is highly non-linear in structural parameters:

πt =
(φ1 + φ2γ)λ

1− (φ1 + φ2γ)γ
zt−1 +

φ2λ

1− (φ1 + φ2γ)γ
zt−2 + ǫ1,t, (16)

zt = φ1zt−1 + φ2zt−2 + ǫ2,t, (17)

where the parameters(λ, γ, φ1, φ2) are again restricted according to the structural form NKPC model.
We specify flat priors forφ1, φ2, uninformative normal priors for(γ, λ) and inverse gamma priors for the
residual variances, similar to Baştürk et al. (2014b). First, ParMitISEM algorithm is used to approximate
the joint posterior density of parameters. In a second step,this candidate density is used as a candidate
density in IS to obtain posterior means and variances of the structural parameters.
Baştürk et al. (2014b) analyzes this model and extensionsof it, and show that the posterior densities of model
parameters are highly non-standard due to the non-linear nature of the model and parameter restrictions. The
shape of the posterior kernel, with respect to parameters(γ, λ) are shown in Figure 5. The posterior density
shown at the left panel of Figure 5 has multiple modes, which are captured well by the MitISEM candidate
on the right panel of Figure 5. In addition,the posterior density has non-zero values only on a very restricted
region for parameters(λ, γ). This region is much smaller than the parameter space restricted through the
priors,λ, γ ∈ [0, 1] × [0, 1]. Hence in this application, the use of MitISEM to obtain a candidate density
resembling the posterior is important for improving MCMC methods’ convergence based on this candidate
density. Despite this clear advantage, obtaining a good MitISEM candidate in this application is potentially
time consuming due to the parameter restrictions and non-linearity in the model. Parameter estimates of the

Figure 5: Bayesian inference of the structural NKPC model. The figure shows the posterior density of(λ, γ) in the structural NKPC
model. Remaining model parameters are fixed at their posterior mean.

γ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

target density candidate density

model and the computational speed comparisons for the CPU and GPU implementations of ParMitISEM

17

are shown in Tables 6 and 7, respectively, for different number of drawsM . We first note that obtaining
a large number of draws, e.g. above 1,500,000 draws, using the CPU or GPU is not feasible in this model
due to memory saturation arising from the large number of observations and draws, e.g. MATLAB gives
the standard message ‘out of memory’, consequently more advanced clusters and GPU cards are required to
obtain higher number of draws. For our purpose of speed comparison, Tables 6 and 7 report results only for
the number of draws which are possible to obtain in this model. Second, the same robustification step as in
Section 4.3 is used in ParMitISEM in order to remove draws which lead to zero posterior density values in
the NKPC model. However, this robustness does not affect thegeneral pattern in the obtained NSE values
in CPU or GPU implementations: NSE values for all parametersreported on the bottom panel of Table 7
typically go down with the number of drawsM . Posterior means of the structural parameters reported in
Table 6 are similar to those reported in Baştürk et al. (2014b), i.e. the candidate density obtained by ParMi-
tISEM and the IS results are in line with the method used in Bas¸türk et al. (2014b). In this application, Tesla
GPU is always superior to CPU in terms of computational time,regardless of the number of draws. Similar
to the earlier experiments, the GeForce implementation only has an advantage for an increased number of
draws, e.g. forM ≥ 100, 000.
An important result is that the speed gains from Tesla and GeForce implementations in this applications are
much higher than those obtained for the GARCH(1,1) model application in Section 4.2. This result follows
from our parallelization strategy and the properties of theGARCH(1,1) model posterior. The strategy we
follow for parallelization is not tailored for each specificmodel. I.e. we do not optimize the speed of the
calculations of the GARCH model posterior and these calculations are done sequentially. With the paral-
lelization of the general method, MitISEM, relative speed gains from the GPU are mainly determined by
whether the posterior density has to be evaluated in a sequential manner. Additional gains from ParMitISEM
can be achieved if the posterior density is adjusted to minimize the amount of sequential calculations.

5 Conclusion

This paper presents a parallelized version of MitISEM originally proposed by Hoogerheide et al. (2012)
and refined in Baştürk et al. (2016). MitISEM is a general and automatic algorithm based on IS for the
approximation of a possibly non-elliptical target densityusing an adaptive mixture of Student-t densities as
approximating or candidate density. The parallelized version of MitISEM, ParMitISEM, is an implementa-
tion of this algorithm for GPU and multi core CPU calculations.
The parallelization strategy is based on IS steps of the MitISEM algorithm, where we exploit the paralleliza-
tion of the IS draws and functions of IS draws. It is shown withfour examples that the implementation is
not model specific, leading to a general algorithm which can be used to approximate a multi-dimensional
target, e.g. a posterior density, without the need to parallelize the posterior density explicitly. We show that
ParMitISEM is easy to implement in MATLAB and can run on GPUs and in multi-core CPUs.
We present substantial speed gains from the GPU implementation of the ParMitISEM algorithm com-
pared with the multi core CPU implementation using four different models: The Gelman-Meng density,
a GARCH(1,1) model with Student-t errors applied to S&P 500 daily returns, an IV model applied to data
on income and education and a structural form NKPC model applied to quarterly US data. These appli-
cations have different properties in terms of the shape of the target density approximated by ParMitISEM.
The speed gains from GPU implementation of ParMitISEM are particularly pronounced in case of highly
irregular target densities where a large number of IS draws are required to obtain an accurate approximation
to the target density.

18

Table 6: Parameter estimates of the NKPC model. The table presents the posterior means of model parameters using ParMitISEM
on GPU and CPU together with the difference between the GPU and CPU estimates for different number of drawsM .

M 100,000 1,000,000
GPU CPU Difference GPU CPU Difference

λ 0.065 0.064 0.000 0.065 0.065 0.000
γ 0.367 0.370 -0.003 0.370 0.369 0.001
φ1 0.853 0.853 0.000 0.853 0.853 0.000
φ2 0.065 0.064 0.000 0.064 0.064 0.000
σ21 0.390 0.390 0.000 0.390 0.390 0.000
ρ -0.023 -0.022 0.000 -0.023 -0.023 0.000
σ22 1.569 1.570 -0.001 1.570 1.570 0.000

Table 7: NKPC model estimated using ParMitISEM on CPU and GPUwith different number of draws. The table presents the time
comparison between CPU and GPU as a GPU/CPU ratio. A value below 1 indicates the GPU is faster compared with
the CPU. The table also reports the 100×NSE of the IS estimates for model parameters (β, π, σ2

11, ρ, σ
2

22) on CPU and
on GPU for different number of draws. NSE values for GeForce are similar to those of Tesla, and are not reported due to
space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000

Timing as GPU/CPU ratio

Tesla C2074 0.25 0.15 0.12 0.11 0.05 0.04
GeForce 750M 1.10 1.10 0.50 0.46 - -
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00

CPU - 100× NSE
λ 0.03 0.01 0.01 0.01 0.01 0.00
γ 0.30 0.13 0.09 0.06 0.06 0.04
φ1 0.10 0.04 0.03 0.02 0.02 0.01
φ2 0.10 0.04 0.03 0.02 0.02 0.01
σ21 0.04 0.02 0.01 0.01 0.01 0.00
ρ 0.07 0.03 0.02 0.01 0.01 0.01
σ22 0.15 0.06 0.04 0.03 0.03 0.02

GPU - 100× NSE
λ 0.03 0.01 0.01 0.01 0.00 0.00
γ 0.29 0.14 0.10 0.06 0.04 0.04
φ1 0.09 0.04 0.03 0.02 0.01 0.01
φ2 0.10 0.04 0.03 0.02 0.01 0.01
σ21 0.04 0.02 0.01 0.01 0.01 0.00
ρ 0.07 0.03 0.02 0.01 0.01 0.01
σ22 0.14 0.06 0.05 0.03 0.02 0.02

19

Finally, a further comment regarding the speed gains of the GPU with respect to multicore CPU is in order.
Some studies such as Lee et al. (2010) and Aldrich et al. (2011) document massive speed gains, from 35
up to 500, of the GPU code with respect to single-threaded CPUcode. Considering these results, it can be
concluded that our GPU speed performance could be increasedsubstantially, this observation is right and
wrong at the same time.
It is right because ParMitISEM could be written using just raw CUDA code. This low level program-
ming language allows to get around memory bandwidth limitations and access directly to the internal
GPU memory, such an implementation would increase tremendously the performance, as discussed in
Durham and Geweke (2011). These impressive speed gains occur at the cost of getting familiar with in-
ternal GPU architecture and CUDA programming language, knowledge that requires months to master.
The above statement is also wrong because the approach we propose is fast and easy to implement and only
a good familiarity of MATLAB environment is required. No knowledge of the internal GPU architecture
and the raw CUDA code are not necessary. Of course this approach cannot deliver the same performance of
raw CUDA code but this is the trade-off of easy implementation. Despite these limitations, the speed gains
in our applications are considerable. In fact, to have roughly the same performance of the Tesla C2074 card
on e.g. GARCH(1,1) model with 2,000,000 draws, the user willneed a cluster with around 80 cores. Those
clusters are expensive to buy and difficult to maintain, on the contrary, the Tesla C2074 fits in a normal
desktop computer.
New versions of MATLAB continuously improve the performance of the GPU computing, and decreases
the gap between raw CUDA code and MATLAB (GPU) code. Following these advances, improving the per-
formance and the applicability of ParMitISEM without loosing the ease of implementation is an interesting
avenue of research.

20

References

Aldrich, E. M. (2014). GPU Computing in Economics. In Kenneth, J. L. and Schmedders, K., editors,
Handbook of Computational Economics, Vol. 3. Elsevier.

Aldrich, E. M., Fernández-Villaverde, J., Gallant, A. R.,and Rubio-Ramırez, J. F. (2011). Tapping the Su-
percomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors.Journal
of Economic Dynamics and Control, 35:386–393.

Ardia, D., Baştürk, N., Hoogerheide, L. F., and Van Dijk, H. K. (2012). A Comparative Study of Monte
Carlo Methods for Efficient Evaluation of Marginal Likelihoods. Computational Statistics and Data
Analysis, 56:398–414.

Barra, I., Hoogerheide, L., Koopman, S. J., and Lukas, A. (2013). Joint Independent Metropolis-Hastings
Methods for Nonlinear Non-Gaussian State Space Models. Technical Report 2013-050/3, Tinbergen
Institute.

Baştürk, N., Çakmaklı, C., Ceyhan, S. P., and Van Dijk, H.K. (2014a). On the Rise of Bayesian Economet-
rics after Cowles Foundation Monographs 10, 14.Œconomia, 4:381–447.

Baştürk, N., Çakmaklı, C., Ceyhan, S. P., and Van Dijk, H.K. (2014b). Posterior-Predictive Evidence on US
Inflation using Extended Phillips Curve Models with non-Filtered Data.Journal of Applied Econometrics,
29:1164–1182.

Baştürk, N., Grassi, S., Hoogerheide, L., Opschoor, A., and Van Dijk, H. K. (2016). The R Package Mi-
tISEM: Mixture of student-t distributions using importance sampling weighted expectation maximization
for efficient and robust simulation.Journal of Statistical Software, Forthcoming.

Baştürk, N., Hoogerheide, L. F., Opschoor, A., and Van Dijk, H. K. (2012).MitISEM: Mixture of Student-t
Distributions using Importance Sampling and Expectation Maximization in R. version 1.0.

Berger, J. O. (1985).Statistical decision theory and Bayesian analysis. Springer.

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity.Journal of econometrics,
31:307–327.

Bowden, R. J. and Turkington, D. A. (1990).Instrumental Variables. Cambridge University Press.

Boyd, C. (2008). Data - Parallel Computing.Queue, 6:30–39.

Cappé, O., Douc, R., Guillin, A., Marin, J. M., and Robert, C. P. (2008). Adaptive Importance Sampling in
General Mixture Classes.Statistics and Computing, 18:447–459.

Card, D. (1995). Using Geographic Variation in College Proximity to Estimate the Return to Schooling. In
Christofides, L. N., Grant, E. K., and Swidinsky, R., editors, Aspects of labour market behaviour: essays
in honour of John Vanderkamp, chapter 7. University of Toronto Press, Toronto.

Craiu, R., Rosenthal, J., and Yang, C. (2009). Learn from thyneighbour: Parallel-chain and regional
adaptive mcmc.Journal of American Statistal Association, 104:1454–1466.

21

Craiu, R. V. and Meng, X.-L. (2005). Multiprocess parallel antithetic coupling for backward and forward
markov chain monte carlo.Annals of Statistics, 33:661697.

Creel, M., Mandal, S., and Zubair, M. (2012). Econometrics on GPU. Technical Report 669, Barcelona
GSE Working Paper.

De Pooter, M., Ravazzolo, F., Segers, R., and Van Dijk, H. K. (2008). Bayesian Near-Boundary Analysis in
Basic Macroeconomic Time Series Models.Advances in Econometrics, 23:331–432.

Drèze, J. H. (1976). Bayesian Limited Information Analysis of the Simultaneous Equations Model.Econo-
metrica, 44:1045–1075.

Drèze, J. H. (1977). Bayesian Regression Analysis Using Poly-t Densities.Journal of Econometrics, 6:329–
354.

Durham, G. and Geweke, J. (2011). Massively Parallel Sequential Monte Carlo for Bayesian Inference.
http://www.censoc.uts.edu.au/pdfs/geweke_papers/gp_working_9.pdf.

Dziubinski, M. P. and Grassi, S. (2014). Heterogeneous Computing in Economics: A Simplified Approach.
Computational Economics, 43:485–495.

Gatarek, L. T., Hoogerheide, L. F., Hooning, K., and Van Dijk, H. K. (2013). Censored Posterior and
Predictive Likelihood in Bayesian Left-Tail Prediction for Accurate Value at Risk Estimation. Technical
Report 15–042/III, Tinbergen Institute.

Gelman, A. and Meng, X. (1991). A Note on Bivariate Distributions that are Conditionally Normal.The
American Statistician, 45:125–126.

Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Integration.Economet-
rica, 57:1317–1339.

Hammersley, J. M. and Handscomb, D. C. (1975).Monte Carlo Methods. Taylor & Francis.

Hammersley, J. M., Handscomb, D. C., and Weiss, G. (1965). Monte Carlo Methods.Physics Today, 18:55.

Hoogerheide, L., Kleibergen, F., and Van Dijk, H. K. (2007a). Natural Conjugate Priors for the Instrumental
Variables Regression Model Applied to the Angrist-KruegerData.Journal of Econometrics, 138:63–103.

Hoogerheide, L., Opschoor, A., and Van Dijk, H. K. (2012). A Class of Adaptive Importance Sampling
Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation.Journal of Econo-
metrics, 171:101–120.

Hoogerheide, L. F., Kaashoek, J. F., and Van Dijk, H. K. (2007b). On the Shape of Posterior Densities
and Credible Sets in Instrumental Variable Regression Models with Reduced Rank: An Application of
Flexible Sampling Methods Using Neural Networks.Journal of Econometrics, 139:154–180.

Jacob, P., Robert, C. P., and Smith, M. H. (2011). Using parallel computation to improve independent
metropolishastings based estimation.Journal of Computational and Graphical Statistics, 20:616–635.

Kirk, D. and Wen-Mei, W. (2010).Programming massively parallel processors: a hands-on approach.
Morgan Kaufmann.

22

http://www.censoc.uts.edu.au/pdfs/geweke_papers/gp_working_9.pdf

Kleibergen, F. and Van Dijk, H. K. (1998). Bayesian Simultaneous Equations Analysis Using Reduced Rank
Structures.Econometric Theory, 14:701–743.

Kloek, T. and Van Dijk, H. K. (1978). Bayesian Estimates of Equation System Parameters: An Application
of Integration by Monte Carlo.Econometrica, 46:1–19.

Lanne, M. and Luoto, J. (2014). Noncausal Bayesian Vector Autoregression. CREATES Research Papers
2014–7, School of Economics and Management, University of Aarhus.

Lanne, M. and Luoto, J. (2015). Estimation of DSGE Models under Diffuse Priors and Data-Driven Iden-
tification Constraints. CREATES Research Papers 2015–37, School of Economics and Management,
University of Aarhus.

Lee, A., Yau, C., Giles, M. B., Doucet, A., and Holmes, C. C. (2010). On the Utility of Graphics Cards to
Perform Massively Parallel Simulation of Advanced Monte Carlo Methods. Journal of Computational
and Graphical Statistics, 19:769–789.

LeSage, J. P. (1998). ECONOMETRICS:MATLAB Toolbox of Econometrics Functions. Statistical Soft-
ware Components, Boston College Department of Economics.

Morozov, S. and Mathur, S. (2012). Massively Parallel Computation Using Graphics Processors with Ap-
plication to Optimal Experimentation in Dynamic Control.Computational Economics, 40:151–182.

Ritter, C. and Tanner, M. A. (1992). Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-
Gibbs Sampler.Journal of the American Statistical Association, 87:861–868.

Rosenthal, J. (2000). Parallel computing and monte carlo algorithms. Far East Journal Theoretical Statis-
tics, 4:207–236.

Suchard, M., Holmes, C., and West, M. (2010). Some of the What?, Why?, How?, Who? and Where?
of Graphics Processing Unit Computing for Bayesian Analysis. Bulletin of the International Society for
Bayesian Analysis, 17:12–16.

Sutter, H. (2005). The free lunch is over: A fundamental turntoward concurrency in software.
http://www.gotw.ca/publications/concurrencyddj.htm.Last accessed on Sep 11, 2015.

Sutter, H. (2011). Welcome to the jungle. http://herbsutter.com/welcome-to-the-jungle/. Last accessed on
Sep 11, 2015.

Tran, M., Scharth, M., Pitt, M. K., and Kohn, R. (2014). Importance Sampling Squared for Bayesian Infer-
ence in Latent Variable Models.http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2386371.

Van Dijk, H. K., Hop, J. P., and Louter, A. S. (1987). An algorithm for the computation of posterior moments
and densities using simple importance sampling.The Statistician, 36:83–90.

Zellner, A. (1971).An Introduction to Bayesian Inference in Econometrics. Wiley, New York.

Zellner, A., Ando, T., Baştürk, N., Hoogerheide, L., and Van Dijk, H. K. (2014). Bayesian Analysis of
Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo.Econometric Reviews,
33:3–35.

23

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2386371
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2386371

Zivot, E. (2009). Practical Issues in the Analysis of Univariate GARCH Models. In Andersen, T. G., Davis,
R. A., Krei, J. P., and Mikosch, T., editors,Handbook of Financial Time Series, pages 113–155. Springer
Verlag, New York.

24

	Introduction
	Evolution of GPU computing
	Parallel implementation of MitISEM: ParMitISEM
	Parallelization experience for four econometric models
	Approximation of the Gelman-Meng function
	Bayesian inference of the GARCH(1,1) model with Student-t errors
	Bayesian inference of the instrumental variables model
	Bayesian inference of the structural NKPC model

	Conclusion

