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Abstract

This paper presents the parallel computing implementaifadhe MitISEM algorithm, labeledParal-

lel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheidale{2012), provides an au-
tomatic and flexible method to approximate a non-elliptieagiet density using adaptive mixtures of
Studentt densities, where only a kernel of the target density is meguiThe approximation can be used
as a candidate density in Importance Sampling or Metroptdistings methods for Bayesian inference
on model parameters and probabilities. We present andsti$our canonical econometric models using
a Graphics Processing Unit and a multi-core Central Praag&iit version of the MitISEM algorithm.
The results show that the parallelization of the MitISEMaalthm on Graphics Processing Units and
multi-core Central Processing Units is straightforward &st to program using MATLAB. Moreover
the speed performance of the Graphics Processing Unioveisimuch higher than the Central Process-
ing Unit one.

1 Introduction

In several statistical and econometric models, the joidtraarginal posterior distributions of the parameters
have unknown analytical properties and non-elliptical &agn Highest Posterior Density (HPD) credible
sets, see e.g. Berger (1985), Hoogerheide et al. (2007bparieboter et al. (2008). The phenomenon of
multi-modal, skewed shapes and/or ridges in the surfacestbpors and predictive densities, occurs fre-
quently in empirical econometric analysis, see Bastiid.g2014a) for a review. In such cases it is not
trivial to perform inference on the joint posterior distriton of parameters using basic Markov Chain
Monte Carlo (MCMC) methods, which may be inefficient and mwaate due to the non-standard condi-
tional densities. The difficulty of selecting an appropiaandidate density for algorithms where such a
candidate needs to be defined is discussed in De Pooter 2088)( Ardia et al. (2012) and Zellner et al.
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(2014) among several others. Efficient and accurate infere) however, important in the context of mea-
suring economic forecast uncertainty and economic pofiects.

Recently, Hoogerheide et al. (2012) proposed the Mixtuigtoflent-t Distributions using Importance Sam-
pling weighted Expectation Maximization (MitISEM) algthim which is an automatic and flexible method
to approximate a target posterior or predictive densityclifiossibly has non-elliptical shapes that are not
known a priori. The algorithm provides an approximation e joint target density that can be used to
obtain features of interest. More importantly, in Bayediaierence, this approximation can be used as a
candidateor proposaldensity for the Metropolis Hastings (MH) or Importance S#ngp(1S) algorithms,
see Hammersley and Handscomb (1975) and Kloek and Van D9K8)L Thus, the use of the MitISEM
algorithm for Bayesian inference involves two steps. Infitet step, the MitISEM approximation to the
joint posterior density of model parameters is obtaineat, it a mixture of Studentcandidate densities is
fitted to the target using an expectation maximization (EMpathm where each step of the optimization
procedure is weighted using IS. In the second step, therdstaiandidate density is used in IS or the inde-
pendence chain MH algorithms for Bayesian inference on théaiparameters and model probabilities.
Several recent papers use and extend the MitISEM algoritmBayesian inference. Barra et al. (2013)
incorporates the MitISEM algorithm to the estimation of fBaussian state space models, Gatarek et al.
(2013) uses MItISEM for Value-at-Risk estimation, Lanne &ooto (2014, 2015) estimates non-causal
models using MitISEM and Tran et al. (2014) uses MitISEM fayBsian inference of latent variable mod-
els. Recently Basturk et al. (2012) provided RepackageMitl SEM, together with routines to use Mi-
tISEM and its sequential extension for Bayesian infererfcenadel parameters and model probabilities.
Speeding up computations in such econometric models isaipgdor several reasons. First, the amount of
data used in these models are typically increasing in atedsas finance, macroeconomics and marketing.
Second, such increases in data are often accompanied byumtias of more complex models as soon
as estimation of these models is possible. For some applicatsuch as in macroeconomics, estimations
taking days or weeks are common. Last but not least, deamsaking based on econometric models often
needs to be performed in a timely manner in areas such as ifahais&k management. These requirements
bring out the necessity to perform quick computations ofetenometric models.

The estimation of those models can be done using parallel IOMhere a straightforward implementa-
tion is to runp independent chains in parallel and to merge the resultss ddmes with some theoretical
constraints as described in Rosenthal (2000), Craiu andjN2005), Craiu et al. (2009) and Jacob et al.
(2011). Cappé et al. (2008) noted that there is a renewetksitin 1S, due to the possibility of straightfor-
ward parallel implementation. Numerical efficiency in séimgpmethods is not only related to the efficient
sample size or relative numerical efficiency, but also togbssibility to perform the simulation process
in a parallel fashion. Unlike alternative methods such asrémdom walk MH or the Gibbs sampler, 1S
makes use of independent draws from the candidate dendiighvean be obtained from multiple-core
processors or computer clusters. This in turn yields aneam® in calculation speed, see among other
Durham and Geweke (2011).

The basic MitISEM algorithm may also benefit from parallebg@ssing implementations due to its close
relation with the IS algorithm. This paper presents the lfEranplementation of the MitISEM algorithm,
labeled adParallel MitISEM (ParMitISEM). Such an implementation requires deterngram which steps

in the MitISEM parallel processing can be implemented, afjdst consequently the remaining steps. We
gain insight on the computational speed-up in four candmicanometric models using parallel computing

The termscandidate approximateand proposaldensity are interchangeably used in the literature and s@ @b so in the
present paper.



possibilities on Graphics Processing Units (GPUs) andionutt Central Processing Unit (CPUS).

The four canonical econometric models we analyze haverdiffgoroperties in terms of shapes of the target
distribution. The first application, approximating a biede distribution function described in Gelman and Meng
(1991), is characterized by a highly non-elliptical tardistribution where the conditional distributions are
normal. It is not straightforward to obtain an approximatio this density due to the high correlation be-
tween conditional distributions of variables. In the satapplication, we consider the Bayesian inference
of a GARCH(1,1) model with Studenterrors, where the calculation of the joint posterior hasa@élcu-
lated recursively and for this reason inference can be ctatipnally demanding. In the third application
we consider the Bayesian inference of an Instrumental bsa(1V) model, where the posterior density has
a ridge. In the final fourth case, we consider the Bayesiagra@nice of the structural form of New Keyne-
sian Philips curve (NKPC) model. This model is charactetizg highly non-standard posteriors due to the
transformation of the structural model to a reduced form ehadd the structural parameters are restricted
to be on a tight region. Even when MitISEM is used in this casegeral draws from the IS algorithm within
MitISEM can be outside the tight region leading to highlyffieient computations.

In all four cases considered, it is shown that parallel imm@atation of the MitISEM algorithm on GPUs
provides substantial speed gains, hence inference is rcougade given the same amount of computation
time. We note that, for the first three applications, basit$3#EM performs already better than standard
sampling algorithms, see Ardia et al. (2012), Hoogerheidd. €2012) and Bastirk et al. (2016). To our
knowledge, the fourth application, Bayesian inferencehef gtructural NKPC model using the MitISEM
algorithm was not considered in the literature so far. Wagméthe GPU and CPU implementations of the
ParMitISEM algorithms using MATLAB. We show that the comgtibns can be carried similarly in GPU
and CPU, and both implementations lead to extensive spémrsligahe four cases we present.

The paper is organized as follows. Section 2 introduces\bkiton in the GPU computing and explains
why it can be a valuable alternative in search of speed. @e8tbriefly describes basic MitISEM and the
parallelization strategy followed in ParMitiISEM. Sectidranalyzes four canonical econometric models.
Section 5 draws some conclusions.

2 Evolution of GPU computing

Traditionally computations using single core CPUs weresthadard method in economics and economet-
rics. In recent decades, rapid performance increases osCdd the related cost reductions in computer
applications were the main drivers of the diffusion of suoimputational intensive estimation procedures
as MCMC. The microprocessors industry, mainly driven belland AMD has seen a slow-down in perfor-
mance improvement since 2003 due to energy-consumptioheatedissipation issues that are by-products
of clock frequency increases, see Kirk and Wen-Mei (2010)is has created the need to shift from max-
imizing the performance of a single core to integrating ipldtcores in one chip, see Sutter (2005) and
Sutter (2011).
Contemporaneously, the needs of the video game industnyirireg increasing computational performance,
boosted the development of the GPUs, which enabled maggiaehllel computation. GPUs are a standard
part of the current personal computers and are designedafarpérallel problems where they assign an in-
dividual data element to a separate logical core for prangssee Boyd (2008). Applications include video
games, image processing and 3D rendering. Figure 1 reertsvolution in GigaFLOPS (i.e., billions of
floating point operations per second in single and doubleigioa) between GPUs and CPUs.

Despite the above-mentioned advances in GPUs, until 2008 adew persons mastered the skills neces-



Figure 1: Enlarging gap in computing speed between mang-@pproach using GPUs and multicore approach using CPUs.
Sourceht t p: // gri dt al k- proj ect. bl ogspot.it/2010/07/future-of - conputing- gpgpu. ht m
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sary to use GPUs to achieve better performance for only &amiumber of applications. In 2007, NVIDIA
released CUDA (Compute Unified Device Architecturet p: / / www. nvi di a. coni obj ect / cuda_
home_new. ht m ) programming language similar to the well known C/C++. Thislitated the transition

to parallel programming on GPU. Nowadays the GPU programgrtanguages have been improved (see
Aldrich, 2014 for a review) and there are softwares that tigeincrease performances, see e.g. Mathemat-
ica, R and MATLAB.

MATLAB is a popular software in the economics and econoragtdommunity (see, e.g., LeSage, 1998),
which has introduced starting with version R2010b the stapdsPU computing in its Parallel Computing
Toolbox. This allows to use raw CUDA code within a MATLAB pnagn as well as already built-in func-
tions that are directly executed on the GPU, see Durham anekae(2011) for a discussion about CUDA
programming in econometrics.

With the massively parallel use of GPUs, researchers havievad significant speedups in different ap-
plications, see Suchard et al. (2010), Aldrich et al. (20CIgel et al. (2012), Durham and Geweke (2011),
Morozov and Mathur (2012) and Dziubinski and Grassi (20Mdag others. However, as pointed out by
Durham and Geweke (2011), such speed-ups are generalgvadhonly after extensive adaptation, opti-
mization and tuning of the algorithms that is really time s@ming. We comment on this point further
in Section 5. This brings forward two interesting challender parallelization: Transforming traditional
(sequential) algorithms to be suitable for a GPU implem@niaand achieving significant speed increase al-
most without any extra programming effort. In this paper,describe our ParMitISEM algorithm and show
that the provided algorithm can be used for a large set of lnddejain speed increases without additional
programming effort.
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3 Parallel implementation of MitISEM: ParMitl SEM

ParMitISEM relies heavily on the use of IS in the MitISEM aligom. 1S (Hammersley et al., 1965,
Hammersley and Handscomb, 1975, Kloek and Van Dijk, 1978vdake, 1989) is a general method for
estimating expectations of functiohgf) of parameteild® where the probability density function éfcan

be non-standard. Given a density kerriéd) for 6, the method is based on draws from a candidate den-
sity g(#), instead of direct simulations frorfi#). This indirect simulation method overcomes the issue of
simulating from the non-standard densjfy9). The candidate density(#) is chosen such that it is easy
to simulate from and the draws from the candidate densityvaightedaccording to the IS weights. The
necessary conditions for the candidate density and the Bainple properties of the estimator are discussed
in Van Dijk et al. (1987) and Geweke (1989).

Let Y denote the data, e.g. time series, @denote the model parameters, where the posteritarget
density of parameters are denotedffy) = f(6|Y) and simulating from this density is not trivial. In this
case, the expected value of a function of parameféfs(f)) can be obtained using the following IS steps:

1) Drawd from a ‘similar and wide-enough’ ‘importance/candidatesig/’ ¢(#), which should approx-
imate f(0) reasonably well and should be straightforward to simuladenf

2) SimulateM draws fromg(6);
3) Approximate the function of parameteigh(0)) by:

RGP )9(9)d9 Jh(O)w(®)g(0)ds 37 M h(0D)w(9D)

PO =00 (o Te@a0de T S, wie0)

; 1)

whered® fori = 1,..., M are generated from(#), andw(#®) = f(8%))/g(6®).

Note that sinces(6)) = £(6))/g(6®) is a ratio, one can remove the constant of proportionalitihis
ratio and forh(0) = 6, the procedure prowdes estimated means of model paranelée IS algorithm

is based on weights(8®)) = £(6(")/g(6®") calculated from independent dra®€). Due to this non-
recursive structure, one can in principle assign each dvaac¢h core and collect the results in Equation (1)
at the end of the procedure.

We next illustrate how this parallelization strategy is lempented for ParMitISEM. As explained in Hoogerheide et a
(2012), the MitISEM consists of two parts. In the first part itore of Student: candidate densities is
fitted to the target using an EM algorithm where each step efoitimization procedure is weighted us-
ing 1S. In the second stage the obtained candidate densitypeaised in IS or the independence chain
Metropolis-Hastings method for Bayesian inference on rhpdeameters and model probabilities. Steps of
the MitISEM algorithm are as follows:

1) Initialization: Simulate drawg(® . ..., (™) from a ‘naive’ candidate distribution with densigya;ve,
which is obtained as follows. First, we simulate candidatevd from a Student-distribution with
densityg...qe, Where the mode is taken equal to the mode of the target gensitscale matrix equal
to minus the inverse Hessian of the log-target density ¢eatl at the mode), and where the degrees
of freedom are chosen by the user. Second, the mode and $aglgo are updated using the IS
weighted EM algorithm. Note that,.;.. iS already a more advanced candidate than the commonly
usedg.node: 9mode typically yields a substantially worse numerical efficigrican g,,q;ve .



2)

3)

4)

5)

Adaptation: Estimate the target distribution’s mean and covarianctirasing IS with the draws
0D .. 0M) from gpaive. Use these estimates as the mode and scale matrix of Studensity
Gadaptive- Draw a sampl@® ... 0(M) from this adaptive Studentdistribution with densitygy =
Jadaptive, @Nd compute the IS weights for this sample.

Apply thel S-weighted EM algorithm given the latest IS weights and the drawn sample of l¢p
The output consists of the new candidate dengityith optimized set of paramete¢s Draw a new
sampled@ ..., 0(M) from the distribution that corresponds with this proposasity and compute
corresponding IS weights.

Iterate on the number of mixture components: Given the current mixture off components take
1% of the sampl@™) ..., (M) that correspond to the highest IS weights. Construct witkéfdraws
and IS weights a new mode and scale matrix which are stardhgs for the additional component
in the mixture candidate density. This choice ensures tleahéw component covers a region of the
parameter space in which the previous candidate mixturerdiatively too little probability mass.
Given the latest IS weights and the drawn sample from theenumixture ofH components, apply
the IS-weighted EM algorithm to optimize the parametersaxfhmixture component. Draw a new
sample from the mixture off + 1 components and compute corresponding IS weights.

Assess conver gence of the candidate density’s quality by inspecting the I S weights using the Co-
efficient of Variation of the IS weights (CoV) and return tegst) unless the algorithm has converged.

As the algorithm shows, steps 2-5 in the algorithm relyddnS draws and the calculation of the target
and candidate density values. In these steps, each drawtifimmandidate density can be assigned to a
different core that will carry out the necessary calculafitdependently and the results will be collected at
the end. For this reason, the parallelization strategy 8sMRISEM on CPUs and GPUs is straightforward.
Note that the nature of the MitISEM algorithm in steps 2-5ti sequential, despite the simplicity of
parallelization of IS steps. Specifically, the iterationtbe number of mixture components and iteration
over the EM steps are the sequential parts of the algoritem;dicannot be parallelized in a straightforward
way. Still, these steps are computationally less demarmingpared with obtaining IS draws and evaluating
target and candidate densities and hence do not cause @tangeitational burden.

We note that especially step 3 of the algorithm, Expectatirand Maximization (M) steps of MitISEM,
benefits from our parallelization strategy. We refer to Habgide et al. (2012) for these steps where the
L-th E-step for the mixture off Studentt densities is specified as follows:

# = F Z;L 0l ¢ = C(L_l)} _ Zk(@ \th Xhy V) M 7 @
' > (01, 25, v5)
ZA/T/U; = FE Z—’} 0'.¢ = C(Ll)] — 3 ";+Vh 7 -
-wh Ph + Vh
5;1 = F long 0, ¢ :C(Lfl)] —
= M _ ktvn)| . Yh\ . (Vh o
= [log( 5 > ¢< 5 )]Zh+ [log(2) ¢<2)}(1 ), (4)
O = B {i HZFC:C(L”] AL N S ) (5)
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wherepl = (0" — 1,)'S, 1 (0" — uy), ¥(-) is the digamma function (the derivative of the logarithm rud t
gamma functioog I'(+)), tx(0*|un, Xn, v1,) is ak-dimensional Student-density with modeu,, scaleX;,

and degree of freedom), for £ model parameters, angl for h = 1,..., H are the mixture weights of each
Studentt component. In this step, parametgss X1, v, 71, i-€. the candidate density’s parametéfs ),

are obtained from the previous EM stgh— 1). Given the E-step, parameters are updated using the M-step:

N P .
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whereW? = f(0%)/g0(6%) are the importance weights of each dréiirom the previous candidatg (¢).
Further,u}(LL) is solved from the first order condition of;:

N i ¢l N i St
— P(vn/2) + log(vp/2) +1 — ZZ‘?W ch _ Zi:ﬁw % _, €)
Zz‘:l we Zz‘:l we
In ParMitISEM, calculation of the expectations for each kavd: are done in parallel. In addition to
this, summations in all parts of the M-step in (6)—(9) ar®aderformed in parallel. This addition brings
computational gains particularly for the optimization 8f,(where an approximate solution for the first order
condition is obtained iteratively, but the value of the forsdler condition at each iteration of EM is obtained
using parallel calculations for the summation terms.
We note that the parallelization we employ has the advargégeing a generally applicable method. Given
any posterior or target density, ParMitiISEM can be used tainkan approximation and IS results using
this approximation as a candidate. No alteration of therélgn depending on the features of the posterior
is required. In addition, implementations in GPU and CPU lparcarried out in the same way since the
parallelization strategy is also not specific to one of theggementations. Finally, ParMitISEM consists
of a general IS procedure which is parallelized. This pracedan be used at the second stage, when the
purpose is to use the ParMitISEM approximation as a carglidieisity for IS in Bayesian inference. In this
case, speed gains from ParMitISEM are two-fold: First, RHB&EM will reduce the computational time of
obtaining the candidate density. Second, computatiora tiequired for the Bayesian inference using IS
will improve using the IS procedure inherent in ParMitISEM.

4 Paralleization experience for four econometric models

In this section we describe our experience with ParMitISEXféur canonical econometric models. The
first case we consider is a non-elliptical bivariate denfitction, the Gelman-Meng density, presented in
Gelman and Meng (1991). The second case we consider is Bayie$erence of a GARCH(1,1) model
with Studentt errors, originally proposed by Bollerslev (1986), applteddaily S&P500 log-returns. The
third application we consider is Bayesian inference of ¥enlodel applied to Card (1995) data on educa-
tion and income, also analyzed in Bastirk et al. (2016} fbuirth and final model is Bayesian inference of



the structural form of the New Keynesian Phillips Curve (NKFPnodel capturing the relationship between
marginal cost and inflation, applied to quarterly inflatioxdanarginal costs in the US, also analyzed in
Bastirk et al. (2014b).

Due to the automatic and flexible nature of the MitISEM altjor, all applications use a single parallel
implementation of MitISEM, where only the target densitys ha be adjusted according to the application.
Except for the Gelman-Meng density approximation, all eggplons make use of the ParMitISEM algo-
rithm to obtain a candidate density for Bayesian infererfamadel parameters using a second IS step. We
compare the CPU and GPU implementations of ParMitISEM im#eof the required computational time.
The CPU and the GPU version of the computer program are progeal in MATLAB. The CPU code uses
all the available cores as well as the GPU counterpart.

Our test machine is a regular desktop computer with a Corehifydneration (Corei7) with a total of 8
cores. In the same machine there is an NVIDIA Tesla 20750d)Ydsat is a mid-range performance GPU,
with 6GB memory and 448 cores. Moreover we compare our geatth an entry level NVIDIA GeForce
750M (GeForce) with a total of 384 CUDA cores and 2GB of memMpTLAB parallel toolbox license is
required to run our code. All models are estimated using@uifit number of IS draws within ParMitISEM:
M = {10%,5 x 10%,10%,5 x 10°,10%,1.5 x 10%,2 x 10%}. In applications where the ParMitISEM approx-
imation is used as a candidate for importance sampling fge&ian inference, we also base the inference
on M posterior draws.

4.1 Approximation of the Gelman-Meng function

We consider the bivariate density described in Gelman anuig|£991), for which the conditional distribu-
tions of variable®, andf, are normal distributions, while the joint distribution &skdifferent non-elliptical
forms depending on the parameter values:

f(01,02) = exp {—0.5(A07 + 03 + 05 — 2B6165 — 20161 — 2Cs05) } (10)

wheref = (61,05) is the vector of interest. Moreover settiolg= 1,B = 0,C; = Cy = 3 in equa-
tion (10) leads to a non-standard ‘banana shaped’ cont@septed in the upper left panel of Figure 2.
Hoogerheide et al. (2012) and Bastiirk et al. (2016) shattte standard MitISEM algorithm leads to sub-
stantial gains in approximating this density compared with Gibbs sampler, MH and IS algorithms. We
show that this computational gain can be improved using REBEM.

We apply the ParMitISEM algorithm with different number & diraws,\, and for each number of draws
we record the execution time and compare them between CPthan@PU. Moreover we calculate the
Numerical Standard Error (NSE) for the CPU and GPU versiagh®program. Figure 2 reports the results
of this experiment. The top panel in Figure 2 shows the tatgesity kernel for the Gelman-Meng function
with a ‘banana shaped’ contour and the step-by-step appatians of this kernel using ParMitiISEM. The
target kernel has two clear modes and the ParMitISEM appraton stops with 3 mixture components.
Even with this relatively low number of mixture componeriis tontour of the ParMitISEM approximation
are similar to the contour of the target density. Gains fraoheadditional component, presented in the
top-right panel of Figure 2, according to the CoV shows thatrion-standard ‘banana shaped’ contour of
Gelman-Meng is well approximated with 3 mixture compongatsl the major improvement in this approx-
imation is obtained by adding the second mixture componmeRarMitISEM.

The middle panel in Figure 2 presents the speed comparigaebe CPU and GPU implementations as the

2Source codes for all computations are available upon réques



Figure 2: Speed gains and accuracy for the Gelman-Meng agymation. The top panel presents the target density keritblthe
ParMitISEM approximation to the target density kernel armMJor different number of mixture components. All results
are based on\/ =100,000 draws. The middle panel presents the speed corapdas different number of draws as a
GPU/CPU ratio, where a value below 1 indicates that the GPlplementation is faster. The bottom panel reports the
numerical standard error (10& NSE) forf; andf, parameters for different number of draws and for CPU and GPU.
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ratio of processing times in CPU and GPU, where a value betmindicates that the GPU computation is
faster. Exact values of the computational time requirectémh implementation are reported in Table 1. The
table shows that the CPU implementation is superior to tlsaT@PU implementation for small number of
draws, as soon as the number of draws increases, the GPUgs@/clear improvement in computing time.
This result is due to the parallel nature of the GPU with meeeélable cores then the CPU. The other GPU
(GeForce) performs relatively worse when the number of dr&idis small, and its performance improves
as soon as the number of draws increases. Regarding the NSEPIJ and GPU results are quite similar



Table 1: Computing time and accuracy for the Gelman-Meng@pmation using ParMitISEM on CPU and GPU with different
number of draws. The table presents the time comparisoneleet@PU and GPU as a GPU/CPU ratio. A value below 1
indicates the GPU is faster compared with the CPU. The bottanel presents 100NSE of the IS estimates fér and
62 on CPU and on GPU for different number of draws. NSE value&ffforce are similar to those of Tesla, and are not
reported due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,0
Timing as GPU/CPU ratio
Tesla 2.23 1.33 0.59 0.46 0.33 0.26 0.25
GeForce 11.59 9.02 3.27 1.76 1.04 0.99 0.97
Corei7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 x NSE

Corei7 -6, 2.07 0.88 0.62 0.27 0.20 0.15 0.13
Corei7 -6 2.01 0.78 0.53 0.29 0.19 0.16 0.14
Tesla -6, 1.80 0.96 0.63 0.28 0.18 0.15 0.13
Tesla -6, 2.02 1.01 0.55 0.29 0.20 0.16 0.14

and the small numerical discrepancy between the NSE valsapgkar as soon as the number of draws
increases.

4.2 Bayesian inference of the GARCH(1,1) model with Student-t errors

The next canonical model we consider is the standard GARQHodel (Bollerslev, 1986) with Student-
t errors. The model is applied to daily percentage S&P500nstfor the period between January 2 1998
and June 26 2015.Frequentist inference issues and thehiéivied likelihood of GARCH type of models are
reported in Zivot (2009). Computational advantages of iefficand automatic sampling algorithms for the
Bayesian inference of GARCH type of models are reported thigAet al. (2012), Hoogerheide et al. (2012)
and Basturk et al. (2016).

The GARCH1, 1) model with Student-errors for time serie$y; }._, is defined as follows:

e = i+ Ve,
he = w+ a(ye—1 — p)? + Bhy_1, (11)
gt ~ t(df)

whereh, the conditional variance af; given the information sef;_1 = {y;—1,yt—2,y¢—3, ...} andt(df)
denotes the Studentdistribution withdf degrees of freedom. In additiohy is treated as a known constant,
set as the sample variance of the time segiesvhich will consist of daily stock index (log) returns in ghi
example. We restriev > 0,« > 0 and > 0 to ensure positivity oh;, df > 2 to ensure a proper posterior
density where posterior means and variances exist, andfysflatpriors for the model parameters. More-
over, we truncates andy such that these have proper (non-informative) priors. kekt= 5 dimensional
parameter vectdt = (u, 3, «, w, df ), we have a uniform prior oft-1,1] x (0,1] x [0,1) x [0,1) x (0, c0)
with o + 8 < 1 which implies covariance stationarity.
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Bayesian inference of this model is time consuming and plyssiaccurate with a small number of draws
for three reasons. First, the iterations required to ohtaiobserved conditional variances in (11) cannot
be executed in parallel in a straightforward way. Seconel réfstrictions on model parameters imply that
several IS draws, in a standard IS algorithm or in obtainigMitiISEM approximation, may be outside the
relevant parameter space. Hence a large number of drawsquigad to obtain a reasonable approxima-
tion to the candidate, or to obtain posterior draws of patarsainless an appropriate candidate density is
used. Third, the posterior density is non-elliptical pararly due to the degree of freedom parameter. See
Ardia et al. (2012) among others for an extended discussion.

In order to perform Bayesian inference, we first obtain theViESEM approximation to the joint poste-
rior density of parameters. As a second step, the ParMiti®BMlidate is used as the candidate density
for the IS algorithm. The obtained ParMitISEM candidatetiis example has three mixture components.
Figure 3 presents the joint posterior with respect to modehmetersy, 3 where the remaining parameters
are fixed at their posterior mean, together with the speegadson of the CPU and GPU implementations
of ParMitISEM to obtain the approximation to the joint pagie Similar to the Gelman-Meng application,
computational time is substantially improved with the GRipiementation. The top-right panel of Figure 3
shows that the CoV values are improved with each additionaiure component. Similarly, the obtained
NSE values for each parameter, except for the degree ofdne@arameter, go down with additional mixture
components. Particularly the second mixture componentdugs the approximation accuracy substantially.
Table 2 reports the speed comparison between CPU and GPURIS/£8U ratio. Similar to the Gelman-
Meng distribution results, the CPU is superior to the TedRUGor small number of draws, but the Tesla
GPU has a clear advantage for more reasonable (e.g. lagebth000) draws. In this application, even
the GeForce that starts with a disadvantage becomes mongetitime as soon as the number of draws in-
creases.

Table 3 reports the IS estimator B/ (#)] which is the posterior mean of the parameters based on the CPU
and GPU implementations of ParMitISEM together with théeddnce in the posterior means between both
implementations. For a relatively small number of drawsstpor means from the two implementations
differ and this difference disappears when the number afiglincreases.

An important point is the relatively large NSE for the degmédreedom parameteif for M = 10,000
draws. This NSE value indicates that the posterior densibyghly non-standard especially with respect to
the degree of freedom parameter. Therefore a large numbaessdire needed for an accurate inference of
the model and ParMitISEM is particularly useful in this apation.

We finally note that functions of parameters, such as the SUBRRCH coefficientso + 3 or the long-run
variance of the GARCH model/(1 —« — 3), are often of interest for GARCH models. Bayesian inference
for such functions of parameters does not require an additidittSEM approximation. Using the IS draws
based on the MitISEM approximation, it is calculate to irtfe@se functions of parameters. In the example
we provide, using the candidate obtained with 2,000,00Wvslrave obtain the following results for these
functions of parameters: Posterior meandof 5 is 0.97 with an NSE value df.00002, indicating a high
persistence for the variance process, and an accurateaistinvith a small NSE. In addition, the posterior
for the unconditional variance/(1 — a — 3) is approximately 0.054 with an NSE value®60003.

4.3 Bayesian inference of the instrumental variables model

In this subsection we present the application of ParMitISiBMn Instrumental Variables (IV) model. The
model is applied to Card (1995) data on income and educafioalV model with one explanatory endoge-
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Table 2: Computing time and accuracy for Bayesian estimatibthe GARCH(1,1) using ParMitiISEM on CPU and GPU with
different number of draws. The table presents the time casgrabetween CPU and GPU as a GPU/CPU ratio. A value
below 1 indicates the GPU is faster compared with the CPU.tahke also reports the 100NSE of the IS estimates for
model parameters, w, o, 3, df)on CPU and on GPU for different number of draws. NSE value&#g-orce are similar
to those of Tesla, and are not reported due to space consirain

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,0

Timing as GPU/CPU ratio

Tesla C2075 1.43 0.38 0.17 0.13 0.12 0.11 0.10
GeForce 750M 3.28 1.27 1.44 0.82 0.51 0.45 0.48
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU - 100x NSE

I 0.01 0.01 0.00 0.00 0.00 0.00 0.00
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o 0.01 0.01 0.00 0.00 0.00 0.00 0.00
B 0.01 0.01 0.00 0.00 0.00 0.00 0.00
df 1.17 0.42 0.31 0.14 0.10 0.08 0.07
GPU - 100x NSE
I 0.01 0.01 0.00 0.00 0.00 0.00 0.00
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o 0.01 0.01 0.00 0.00 0.00 0.00 0.00
B 0.01 0.01 0.00 0.00 0.00 0.00 0.00
af 0.97 0.42 0.30 0.14 0.10 0.08 0.07

Table 3: Parameter estimates of the GARCH(1,1) with stuterrbrs. The table presents the posterior means of modelpaters
(1, w, a, B, df) using ParMitISEM on GPU and CPU together with the diffeehetween the GPU and CPU estimates
for different number of draws/.

M 100,000 1,000,000 2,000,000

GPU CPU Difference GPU CPU Difference GPU CPU Difference
1 0.067 0.067 0.000 0.067 0.067 0.000 0.067 0.067 0.000
w 0.013 0.014 0.000 0.014 0.014 0.000 0.014 0.014 0.000
o 0.091 0.093 -0.001 0.093 0.093 0.000 0.093 0.093 0.000
B 0.902 0.901 0.001 0.900 0.901 0.000 0.900 0.900 0.000
df 8.033 8.003 0.030 8.007 8.012 -0.005 8.005 8.005 0.000
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Figure 3: Speed gains and accuracy for the GARCH(1,1) modhlStudentt errors. The top-left figure presents the conditional
posterior density kernel ofy, ) given posterior mean of the other parameters. Second thfdigures present the
evolution of the MitISEM approximation to the posteriorheirfor 1-3 mixture components. The top-right panel present
the CoV for the MitISEM approximation and NSE values of eacHehparameter for different number of components.
All MitISEM approximations are based on 100,000 draws. Ttitdm panel presents the speed comparison for different
number of draws, as a GPU/CPU ratio. A value below 1 indicates GPU implementation is faster than the CPU
implementation.
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nous variable ang instruments is defined by Bowden and Turkington (1990):
y=xp+e, (12)
x = zIl 4 v, (13)

where the scalaf and thep x 1 vectorIl are model parameterg,is the N x 1 vector of observations on

the dependent variable incomejs the N x 1 vector of observations on the endogenous explanatory vari-

able, educationz is the N x p matrix of observations on the instruments. All variables @emeaned, i.e.,

both model equations do not include a constant term. Tharzd'mnces are assumed to come from a normal

distribution: (¢/, ') ~ NID(0,% ® I), whereX = ( o1 PIIT2 ) s g positive definite and
PO11022 099

symmetric2 x 2 matrix, I denotes théV x N identity matrix ands denotes the Kronecker product operator.

The endogeneity problem of the variabl@rises from possible correlation between the disturbamiesn

asp = cor(g;,v;) fori =1,..., N.

The model in (12)—(13) is shown to have non-standard pastdensities unless the covariance matiiis
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diagonal, see Zellner (1971), Dréze (1976), Dreze (19RI&ibergen and Van Dijk (1998). The properties
of this model are also different from the GARCH(1,1) modeSiection 4.2. It is shown that the posterior
density under a flat prior has a ridgel&t= 0 and it is not a proper density due to this ridge foe= 1.
This irregularity can be mitigated by the use of a Jeffrey®mpsee Hoogerheide et al. (2007a). In this
case, the posterior is a proper density, but sampling methoch as the Gibbs sampler are not applicable,
see Zellner et al. (2014). The applicability of the MitISEMarithm to the IV model and the speed gains
compared with the griddy-Gibbs sampler (Ritter and Tanb@8?2) are shown in Bastirk et al. (2016). In
this section we show that the ParMitISEM implementationvjates substantial speed gains for the Bayesian
inference of this model.

The Card (1995) data on income and education consist of ghendent variable equal to hourly wages in
logarithms and the endogenous right hand side variableséngis educational level which takes the value
of 1 if an individual attended college and 0 otherwise. Thatriment for the education level is ‘college
proximity’, which takes the value 1 if there is a nearby cp#leand O otherwise. Following Bastirk et al.
(2016), we control for the remaining exogenous variablesegyessing the income, education and college
proximity data on exogenous covariates and applying the ddehto the residuals of these regressions.
Table 4 reports estimated parameters using ParMitISEM eCdrd (1995) dataset on GPU and CPU. All
applications of ParMitISEM lead to four mixture componeintthe approximation. As the table shows the
difference in CPU and GPU estimates is really small and diés®soon as the number of draws increases.
The estimated posterior means of the parameters are in ltheHoogerheide et al. (2007a), and the dif-
ference between posterior means from CPU and GPU impleti@rgaof ParMitiISEM are approximately
zero only with a high number of draws from the posterior, iy that a large number of draws and a high
computing time are required to obtain accurate estimatdsese parameters.

Table 5 and Figure 4 present the speed comparison betweena@®GPU implementations of ParMi-
tISEM, where a value below one indicates that the GPU impiaati®n is faster compared with the CPU
implementation. In this application, Tesla GPU is supetiothe CPU for all considered number of draws.
GeForce application, on the other hand, performs worsenfatlsi/ = 10, 000, and large M = 150, 000
and M = 2,000,000 number of draws. While a relatively poor performance of theF@ce application
with a large number of draws is expected due to the saturafitime GPU, i.e. the large number of draws
causing a decrease in computing performance, this is naiae for the Tesla C2074.

An important feature in this application in terms of comiataal burden is the restriction in the param-
eter space € (—1,1) and the ridge of the posterior at= 0. These properties of the posterior leads to a
large number of IS draws within ParMitISEM to have a zero st probability. We follow the robustness
method provided in Bastirk et al. (2016) to improve thefgrenance of the MitISEM method. Specifically,
within the MitISEM algorithm a rejection step is included keep a subset of/ draws which lead to a
non-zero posterior density. This robustification is applie both CPU and GPU implementations of Par-
MitISEM and improves the approximation at the expense of @adsed number of effective number of
drawsM < M. An increase inM does not automatically lead to a smaller NSE since sevesalsiare
‘thrown away’ with this robustification. We conjecture thhis lack of comparability between NSE values
for different M explains the slightly higher NSE values for larfie shown in the bottom panel of Table 5.
Restrictions in the parameter space also have a poterfgk @h the first step of the MitISEM algorithm.
As discussed earlier, the initialization of the algorithatigs on the numerical evaluation of the Hessian
matrix for the very first Studentcomponent. In models with tight parameter constraints, tassible that
this Hessian is not estimated properly or it is not estimateall due to numerical accuracy. A straightfor-
ward method to avoid such a problem is to start the MitISEMEIgmM with a user-defined Hessian, such
as a diagonal matrix with positive diagonal entries. Sucmaialization will possibly lead to an inefficient
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Table 4: Parameter estimates of the IV model for Card datae fHible presents the posterior means of model parameteng usi
ParMitISEM on GPU and CPU together with the difference betmvthe GPU and CPU estimates for different number of

draws M.
M 100,000 1,000,000 2,000,000
GPU CPU Difference GPU CPU Difference GPU CPU Difference

B 0.753 0.756 -0.005 0.739 0.744 -0.003 0.733 0.732 0.001
T 0.059 0.059 0.000 0.059 0.060 0.000 0.059 0.059 0.000
a%l 0.213 0.214 0.001 0.210 0.210 -0.001 0.212 0.212 0.000
P -0.441 -0.443 0.006 -0.433 -0.439 0.002 -0.439 -0.439 0.000
032 0.169 0.169 0.000 0.169 0.169 0.000 0.169 0.169 0.000

Table 5: IV model estimated using ParMitiISEM on CPU and GPthwlifferent number of draws. The table presents the time
comparison between CPU and GPU as a GPU/CPU ratio. A valuevbdl! indicates the GPU is faster compared with
the CPU. The table also reports the TORISE of the IS estimates for model parametést( o, p, 03,) on CPU and
on GPU for different number of draws. NSE values for GeForeesamilar to those of Tesla, and are not reported due to
space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,0
Timing as GPU/CPU ratio

Tesla C2074 0.94 0.61 0.47 0.39 0.26 0.23 0.20
GeForce 750M 1.44 0.85 0.78 0.80 0.88 1.05 1.37
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU - 100x NSE

B 1.05 0.69 0.55 0.53 0.27 0.18 0.18
0 0.05 0.03 0.02 0.02 0.01 0.01 0.00
o2, 0.16 0.16 0.15 0.15 0.05 0.03 0.03
P 0.93 0.39 0.29 0.25 0.23 0.15 0.13
03, 0.01 0.00 0.00 0.00 0.00 0.00 0.00
GPU - 100x NSE
B 1.16 0.37 0.89 0.28 0.26 0.40 0.16
™ 0.03 0.01 0.03 0.01 0.00 0.01 0.00
o2, 0.13 0.13 0.12 0.07 0.05 0.04 0.02
P 0.95 0.25 0.20 0.18 0.21 0.17 0.14
03, 0.01 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4:
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Speed gains and accuracy for the IV model. The toghia the figure shows the target density apart from an irgggn
constant (left panel) and ParMitISEM candidate (right pBrie natural logarithms. The bottom panel shows the speed
comparison for different number of draws, as a GPU/CPU rati value below 1 indicates that the GPU is faster
compared with the CPU.
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initial Student¢ candidate which is very different from the target densityespite this inefficiency, this

initial Hessian is updated several times within the Par$&iM procedure. Provided that the number of IS
draws are large enough, the initial inefficiency of the Hms$s expected to have minimal effect on the final
approximation.

4.4 Bayesian inference of the structural NKPC model

In this subsection we apply ParMitISEM to a highly non-lineaonometric model, namely the structural
form representation of the New Keynesian Philips Curve (RKmodel for quarterly inflation and marginal
costs in the US for the period between 1962Q2 and 2012Q4. e gtat there are substantial gains from
the ParMitISEM in this model in terms of the required compgtiime.
The structural form (SF) representation for the NKPC mastel i
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T = A2t + YE(Tpq1) + €14,
2t = Q12¢-1 + P2zi—2 + €24,

(14)
(15)



0'2 . . . . .
where (e1 4, €24) ~ NID (0, < 51 02 >> m IS quarterly inflation,z; is quarterly marginal cost (de-

€2
meaned and detrended) and the unobserved varidbte, ;) can be derived as a function of the past
marginal costs;;_; and z;_». Standard stationary restrictions should hold #gr ¢, and it is assumed
that(\, ) € [0,1] x [0,1].
As shown in Bastirk et al. (2014b), solving for the unolssdrinflation expectations on the right hand side
of (14) leads to the following model which is highly non-laren structural parameters:

(P + P2y o
- (1 + ¢27)7th1 * L — (o1 + d27)7 #-2F €L (16)
2t = G124—1 + Pazi—2 + €2.¢, (17)

where the paramete(s, v, ¢1, ¢2) are again restricted according to the structural form NKR@eh

We specify flat priors foksq, ¢, uninformative normal priors fofy, A) and inverse gamma priors for the
residual variances, similar to Bastirk et al. (2014b)st-iParMitISEM algorithm is used to approximate
the joint posterior density of parameters. In a second step,candidate density is used as a candidate
density in IS to obtain posterior means and variances ofttoetaral parameters.

Bastirk et al. (2014b) analyzes this model and extensibibtsand show that the posterior densities of model
parameters are highly non-standard due to the non-lin¢arenaf the model and parameter restrictions. The
shape of the posterior kernel, with respect to paraméters) are shown in Figure 5. The posterior density
shown at the left panel of Figure 5 has multiple modes, whietcaptured well by the MitISEM candidate
on the right panel of Figure 5. In addition,the posteriorsigrhas non-zero values only on a very restricted
region for parameterg\, ). This region is much smaller than the parameter spaceatestrthrough the
priors, A,y € [0,1] x [0,1]. Hence in this application, the use of MitISEM to obtain adidate density
resembling the posterior is important for improving MCMCthas’ convergence based on this candidate
density. Despite this clear advantage, obtaining a gootSEM candidate in this application is potentially
time consuming due to the parameter restrictions and maadlity in the model. Parameter estimates of the

Figure 5: Bayesian inference of the structural NKPC modéle Tigure shows the posterior density(&f ) in the structural NKPC
model. Remaining model parameters are fixed at their pasterean.
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model and the computational speed comparisons for the CEWG&Y implementations of ParMitISEM
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are shown in Tables 6 and 7, respectively, for different nendd drawsM/. We first note that obtaining

a large number of draws, e.g. above 1,500,000 draws, usn@Bt or GPU is not feasible in this model
due to memory saturation arising from the large number oénMagions and draws, e.g. MATLAB gives
the standard message ‘out of memory’, consequently mom@aed clusters and GPU cards are required to
obtain higher number of draws. For our purpose of speed cosgoa Tables 6 and 7 report results only for
the number of draws which are possible to obtain in this ma8etond, the same robustification step as in
Section 4.3 is used in ParMitISEM in order to remove drawscihead to zero posterior density values in
the NKPC model. However, this robustness does not affeajeheral pattern in the obtained NSE values
in CPU or GPU implementations: NSE values for all parametepsrted on the bottom panel of Table 7
typically go down with the number of drawe/. Posterior means of the structural parameters reported in
Table 6 are similar to those reported in Bastirk et al. {&)li.e. the candidate density obtained by ParMi-
tISEM and the IS results are in line with the method used iftiB&t al. (2014b). In this application, Tesla
GPU is always superior to CPU in terms of computational tiregardless of the number of draws. Similar
to the earlier experiments, the GeForce implementation bas an advantage for an increased number of
draws, e.g. foi\/ > 100, 000.

An important result is that the speed gains from Tesla ancb@eRmplementations in this applications are
much higher than those obtained for the GARCH(1,1) modeliegijpn in Section 4.2. This result follows
from our parallelization strategy and the properties of &RCH(1,1) model posterior. The strategy we
follow for parallelization is not tailored for each specifitodel. l.e. we do not optimize the speed of the
calculations of the GARCH model posterior and these calicunia are done sequentially. With the paral-
lelization of the general method, MitISEM, relative speeaing from the GPU are mainly determined by
whether the posterior density has to be evaluated in a ségueranner. Additional gains from ParMitISEM
can be achieved if the posterior density is adjusted to maginhe amount of sequential calculations.

5 Conclusion

This paper presents a parallelized version of MitISEM oidliy proposed by Hoogerheide et al. (2012)
and refined in Bastirk et al. (2016). MitISEM is a generadl automatic algorithm based on IS for the
approximation of a possibly non-elliptical target densiging an adaptive mixture of Studentiensities as
approximating or candidate density. The parallelizedivarsf MitISEM, ParMitISEM, is an implementa-
tion of this algorithm for GPU and multi core CPU calculason

The parallelization strategy is based on IS steps of theS¥#itll algorithm, where we exploit the paralleliza-
tion of the IS draws and functions of IS draws. It is shown vighr examples that the implementation is
not model specific, leading to a general algorithm which camsed to approximate a multi-dimensional
target, e.g. a posterior density, without the need to pizdl the posterior density explicitly. We show that
ParMitISEM is easy to implement in MATLAB and can run on GPWs & multi-core CPUs.

We present substantial speed gains from the GPU implenamtaf the ParMitISEM algorithm com-
pared with the multi core CPU implementation using foureati#int models: The Gelman-Meng density,
a GARCH(1,1) model with Studerterrors applied to S&P 500 daily returns, an IV model appleddta
on income and education and a structural form NKPC modelieghpd quarterly US data. These appli-
cations have different properties in terms of the shape®tdiget density approximated by ParMitISEM.
The speed gains from GPU implementation of ParMitiISEM aréiqudarly pronounced in case of highly
irregular target densities where a large number of IS draevsemuired to obtain an accurate approximation
to the target density.
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Table 6: Parameter estimates of the NKPC model. The tabkepts the posterior means of model parameters using P8HIi
on GPU and CPU together with the difference between the GRUGIPU estimates for different number of drais

M 100,000 1,000,000
GPU CPU Difference GPU CPU Difference

A 0.065 0.064 0.000 0.065 0.065 0.000
y 0.367 0.370 -0.003 0.370 0.369 0.001
o1 0.853 0.853 0.000 0.853 0.853 0.000
103 0.065 0.064 0.000 0.064 0.064 0.000
o? 0.390 0.390 0.000 0.390 0.390 0.000
p -0.023 -0.022 0.000 -0.023 -0.023 0.000
o3 1569 1570  -0.001 1.570 1.570 0.000

Table 7: NKPC model estimated using ParMitiISEM on CPU and @GRt different number of draws. The table presents the time
comparison between CPU and GPU as a GPU/CPU ratio. A valuevbdl! indicates the GPU is faster compared with
the CPU. The table also reports the TORSE of the IS estimates for model paramet@st( 0?4, p, 03,) on CPU and
on GPU for different number of draws. NSE values for GeForeesamilar to those of Tesla, and are not reported due to
space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000
Timing as GPU/CPU ratio

Tesla C2074 0.25 0.15 0.12 0.11 0.05 0.04
GeForce 750M 1.10 1.10 0.50 0.46 - -
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00

CPU - 100x NSE

A 0.03 0.01 0.01 0.01 0.01 0.00
5 0.30 0.13 0.09 0.06 0.06 0.04
1 0.10 0.04 0.03 0.02 0.02 0.01
2 0.10 0.04 0.03 0.02 0.02 0.01
o? 0.04 0.02 0.01 0.01 0.01 0.00
p 0.07 0.03 0.02 0.01 0.01 0.01
o3 0.15 0.06 0.04 0.03 0.03 0.02
GPU - 100x NSE
A 0.03 0.01 0.01 0.01 0.00 0.00
5 0.29 0.14 0.10 0.06 0.04 0.04
1 0.09 0.04 0.03 0.02 0.01 0.01
2 0.10 0.04 0.03 0.02 0.01 0.01
o? 0.04 0.02 0.01 0.01 0.01 0.00
p 0.07 0.03 0.02 0.01 0.01 0.01
o3 0.14 0.06 0.05 0.03 0.02 0.02
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Finally, a further comment regarding the speed gains of th& @ith respect to multicore CPU is in order.
Some studies such as Lee et al. (2010) and Aldrich et al. {28@ddument massive speed gains, from 35
up to 500, of the GPU code with respect to single-threaded Gild. Considering these results, it can be
concluded that our GPU speed performance could be increadestantially, this observation is right and
wrong at the same time.

It is right because ParMitlISEM could be written using jusivr@UDA code. This low level program-
ming language allows to get around memory bandwidth liroitet and access directly to the internal
GPU memory, such an implementation would increase tremeftgdhe performance, as discussed in
Durham and Geweke (2011). These impressive speed gains aicthe cost of getting familiar with in-
ternal GPU architecture and CUDA programming languagewleage that requires months to master.
The above statement is also wrong because the approach paspris fast and easy to implement and only
a good familiarity of MATLAB environment is required. No kwtedge of the internal GPU architecture
and the raw CUDA code are not necessary. Of course this agfpoaanot deliver the same performance of
raw CUDA code but this is the trade-off of easy implementatiDespite these limitations, the speed gains
in our applications are considerable. In fact, to have rbutite same performance of the Tesla C2074 card
on e.g. GARCH(1,1) model with 2,000,000 draws, the usermwe#d a cluster with around 80 cores. Those
clusters are expensive to buy and difficult to maintain, andbntrary, the Tesla C2074 fits in a normal
desktop computer.

New versions of MATLAB continuously improve the performanaf the GPU computing, and decreases
the gap between raw CUDA code and MATLAB (GPU) code. Follaptimese advances, improving the per-
formance and the applicability of ParMitISEM without longithe ease of implementation is an interesting
avenue of research.
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