Propositions of the thesis

Neural correlates of (dys)fluent reading acquisition
in typically reading and dyslexic children

Gojko Žarić

1. Dysfluent reading is the most persistent and impaired characteristic of
developmental dyslexia in transparent orthographies.
2. Impairments in neural integration of letters and speech sounds are in direct
relation to the level of reading (dys)fluency.
3. A moderate improvement in reading fluency is possible with training, but it
is dependent on the impairments in neural integration of letters.
4. Electroencephalographic event related potentials and effective connectivity
during word reading suggest that nine year old dyslexics are relying on
phonology and still do not switch to fast word recognition.
5. Dyslexia has neurobiological origins and different (combinations of) genes
related to dyslexia can lead to different deficits that ultimately hurdle the
same complex cognitive function – reading.
6. The timing of a neural event is as important as the location of the neural
event.
7. Successful research of learning disabilities requires cooperation between
scientists and practitioners.
8. Neuroscientific measures are a useful tool in the evaluation of the reading
trainings offered to children with learning disabilities.
9. “Valid criticism does you a favor.” Carl Sagan
10. “The first principle is that you must not fool yourself - and you are the
easiest person to fool.” Richard Feynman
11. Neuroscientist is a neuron’s way of knowing about neurons. Adapted from
George Wald

Maastricht, February 2016